Package ‘colorspace’

December 14, 2016

Version 1.3-2
Date 2016-12-14
Title Color Space Manipulation
Description Carries out mapping between assorted color spaces including
RGB, HSV, HLS, CIEXYZ, CIELUV, HCL (polar CIELUV),
CIELAB and polar CIELAB. Qualitative, sequential, and
diverging color palettes based on HCL colors are provided
along with an interactive palette picker (with either a Tcl/Tk
or a shiny GUI).
Depends R (>= 2.13.0), methods
Imports graphics, grDevices
Suggests datasets, stats, utils, KernSmooth, MASS, kernlab, mvtnorm,
vcd, dichromat, tcltk, shiny, shinyjs
License BSD_3_clause + file LICENSE
URL https://hclwizard.org/
LazyData yes
NeedsCompilation yes
Author Ross Ihaka [aut],
Paul Murrell [aut],
Kurt Hornik [aut],
Jason C. Fisher [aut],
Reto Stauffer [aut],
Achim Zeileis [aut, cre]
Maintainer Achim Zeileis <Achim.Zeileis@R-project.org>
Repository CRAN
Date/Publication 2016-12-14 23:28:25

R topics documented:

choose_palette .. 2
color-class .. 4
choose_palette

Graphical User Interface for Choosing HCL Color Palettes

Description

A graphical user interface (GUI) for viewing, manipulating, and choosing HCL color palettes.

Usage

choose_palette(pal = diverge_hcl, n = 7L, parent = NULL, gui = "tcltk")
hclwizard(n = 7L, gui = "shiny", shiny.trace = FALSE)

Arguments

pal function; the initial palette, see ‘Value’ below. Only used if gui="tcltk".
n integer; the initial number of colors in the palette.
parent tkwin; the GUI parent window. Only used if gui="tcltk".
gui character; GUI to use. Available options are tcltk and shiny, see ‘Details’ below.
shiny.trace boolean, default FALSE. Used for debugging if gui="shiny".
choose_palette

Details

Computes palettes based on the HCL (hue-chroma-luminance) color model (as implemented by polarLUV). The GUIs interface the palette functions `rainbow_hcl` for qualitative palettes, `sequential_hcl` for sequential palettes with a single hue, `heat_hcl` for sequential palettes with multiple hues, and `diverge_hcl` for diverging palettes (composed from two single-hue sequential palettes).

Two different GUIs are implemented and can be selected using the function input argument `gui` ("tcltk" or "shiny"). Both GUIs allows for interactive modification of the arguments of the respective palette-generating functions, i.e., starting/ending hue (wavelength, type of color), minimal/maximal chroma (colorfulness), minimal maximal luminance (brightness, amount of gray), and a power transformations that control how quickly/slowly chroma and/or luminance are changed through the palette. Subsets of the parameters may not be applicable depending on the type of palette chosen. See `rainbow_hcl` and Zeileis et al. (2009) for a more detailed explanation of the different arguments. Stauffer et al. (2015) provide more examples and guidance.

Optionally, active palette can be illustrated by using a range of examples such as a map, heatmap, scatter plot, perspective 3D surface etc.

To demonstrate different types of deficiencies, the active palette may be desaturated (emulating printing on a grayscale printer) and, if the `dichromat` package is available, collapsed to emulate different types of color-blindness (without red-green or green-blue contrasts).

Value

Returns a palette-generating function with the selected arguments. Thus, the returned function takes an integer argument and returns the corresponding number of HCL colors by traversing HCL space through interpolation of the specified hue/chroma/luminance/power values.

Author(s)

Jason C. Fisher, Reto Stauffer, Achim Zeileis

References

See Also

`rainbow_hcl`

Examples

```r
if(interactive()) {
  # Using tcltk GUI
  # Analog to: hclwizard(gui="tcltk")
```
color-class

Description

Objects from the class color represent colors in a number of color spaces. In particular, there are subclasses of color which correspond to RGB, HSV, HLS, CIEXYZ, CIELUV, CIELAB and polar versions of the last two spaces.

Objects from the Class

Objects can be created by calls to the functions rgb, srgb, hsv, hls, xyz, luv, lab, polarluv, and polarlab. These are all subclasses of the virtual class color.

Slots

coords: An object of class "matrix".

Methods

[signature(x = "color"): This method makes it possible to take subsets of a vector of colors.

coerce signature(from = "color", to = "RGB"): convert a color vector to RGB.

coerce signature(from = "color", to = "sRGB"): convert a color vector to sRGB.

coerce signature(from = "color", to = "XYZ"): convert a color vector to XYZ.

coerce signature(from = "color", to = "LAB"): convert a color vector to LAB.

coerce signature(from = "color", to = "polarLAB"): convert a color vector to polarLAB.

coerce signature(from = "color", to = "HSV"): convert a color vector to HSV.

coerce signature(from = "color", to = "HLS"): convert a color vector to HLS.

coerce signature(from = "color", to = "LUV"): convert a color vector to LUV.

coerce signature(from = "color", to = "polarLUV"): convert a color vector to polarLUV.

coords signature(color = "color"): extract the color coordinates from a color vector.

plot signature(x = "color"): plot a color vector

show signature(object = "color"): show a color vector.
coords

Author(s)
Ross Ihaka

See Also
rgb, xyz, hsv, hls, lab, polarLAB, LUV, polarLUV, mixcolor.

Examples

```r
x <- RGB(runif(1000), runif(1000), runif(1000))
plot(as(x, "LUV"))
```

Description
This function returns a matrix with three columns which give the coordinates of a color in its natural color space.

Usage

```r
coords(color)
```

Arguments

color A color.

Value
A numeric matrix giving the coordinates of the color.

Author(s)
Ross Ihaka.

See Also
rgb, xyz, lab, polarLAB, LUV, polarLUV, mixcolor.

Examples

```r
x <- RGB(1, 0, 0)
coords(as(x, "HSV"))
```
Desaturate Colors by Chroma Removal in HCL Space

Description

Transform a vector of given colors to the corresponding colors with chroma removed (collapsed to zero) in HCL space.

Usage

desaturate(col)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element of colors), a hexadecimal string of the form "#rrggbb" or "#rrggbbaa" (see rgb), or an integer i meaning palette()[i].

Details

Given colors are first transformed to RGB (either using hex2RGB or col2rgb) and then to HCL (polarLUV). In HCL, chroma is removed (i.e., collapsed to zero) and then the color is transformed back to a hexadecimal string.

Value

A character vector with (s)RGB codings of the colors in the palette.

Author(s)

Achim Zeileis

See Also

polarLUV, hex

Examples

rainbow of colors and their desaturated counterparts
rainbow_hcl(12)
desaturate(rainbow_hcl(12))

convenience demo function
wheel <- function(col, radius = 1, ...)
 pie(rep(1, length(col)), col = col, radius = radius, ...)

compare base and colorspace palettes
(in color and desaturated)
par(mar = rep(0, 4), mfrow = c(2, 2))
hex

```r
## rainbow color wheel
wheel(rainbow_hcl(12))
wheel(rainbow(12))
wheel(desaturate(rainbow_hcl(12)))
wheel(desaturate(rainbow(12)))
```

Description

This functions converts “color” objects into hexadecimal strings.

Usage

```r
hex(from, gamma = NULL, fixup = FALSE)
```

Arguments

- `from`: The color object to be converted.
- `gamma`: Deprecated.
- `fixup`: Should the color be corrected to a valid RGB value before correction. The default is to convert out-of-gamut colors to the string "NA".

Details

The color objects are first converted to sRGB color objects. They are then multiplied by 255 and rounded to obtain an integer value. These values are then converted to hexadecimal strings of the form "#RRGGBB" and suitable for use as color descriptions for R graphics. Out of gamut values are either corrected to valid RGB values by translating the individual primary values so that they lie between 0 and 255.

Value

A vector of character strings.

Author(s)

Ross Ihaka

See Also

`hex2RGB`, `RGB`, `sRGB`, `HSV`, `XYZ`, `LAB`, `polarLAB`, `LUV`, `polarLUV`.

Examples

```r
hsv = HSV(seq(0, 360, length = 7)[-7], 1, 1)
hsv
hex(hsv)
barplot(rep(1:6), col = hex(hsv))
```
Descrition

This function takes a vector of strings of the form "#RRGGBB" (hexadecimal color descriptions) into RGB objects.

Usage

```
hex2RGB(x, gamma = FALSE)
```

Arguments

- `x`: a vector of hexadecimal color descriptions.
- `gamma`: Whether to apply gamma-correction.

Details

This function converts device dependent color descriptions of the form "#RRGGBB" into sRGB color descriptions (linearized if gamma is TRUE). The alpha channel will be ignored if given ("#RRGGBBAA").

Value

An RGB object describing the colors.

Author(s)

Ross Ihaka

See Also

hex, RGB, sRGB, HSV, XYZ, polarLAB, LUV, polarLUV.

Examples

```
hex2RGB(c("#FF0000","#00FF00", "#0000FF50"))
```
Create HLS Colors

Description

This function creates colors of class HLS; a subclass of the virtual “color” class.

Usage

HLS(H, L, S, names)

Arguments

H, L, S
These arguments give the hue, lightness, and saturation of the colors. The values can be provided in separate H, L and S vectors or in a three-column matrix passed as H.

names
A vector of names for the colors (by default the row names of H are used).

Details

This function creates colors in the HLS color space which corresponds to the standard sRGB color space (IEC standard 61966). The hues should lie between between 0 and 360, and the lightness and saturations should lie between 0 and 1.

Value

An object of class “HLS” which inherits from class “color.”

Author(s)

Ross Ihaka

References

www.srgb.com

See Also

RGB, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

A rainbow of full-intensity hues
HLS(seq(0, 360, length=13)[-13], 0.5, 1)
HSV

Create HSV Colors

Description

This function creates colors of class HSV; a subclass of the virtual “color” class.

Usage

```r
HSV(H, S, V, names)
```

Arguments

- `H, S, V` These arguments give the hue, saturation and value of the colors. The values can be provided in separate H, S and V vectors or in a three-column matrix passed as `H`.
- `names` A vector of names for the colors (by default the row names of `H` are used).

Details

This function creates colors in the HSV color space which corresponds to the standard sRGB color space (IEC standard 61966). The hues should lie between between 0 and 360, and the saturations and values should lie between 0 and 1.

Value

An object of class “HSV” which inherits from class “color.”

Author(s)

Ross Ihaka

References

www.srgb.com

See Also

- `rgb`, `xyz`, `polarLAB`, `LUV`, `polarLUV`.

Examples

```r
# A rainbow of full-intensity hues
HSV(seq(0, 360, length=13)[13], 1, 1)
```
Create LAB Colors

Description

This function creates colors of class “LAB”; a subclass of the virtual “color” class.

Usage

LAB(L, A, B, names)

Arguments

l, a, b
these arguments give the L, A and B coordinates of the colors. The values can be provided in separate L, A and B vectors or in a three-column matrix passed as L.

names
a vector of names for the colors (by default the row names of L are used).

Details

The L, A and B values give the coordinates of the colors in the CIE \(L^*a^*b^* \) space. This is a transformation of the 1931 CIE XYZ space which attempts to produce perceptually based axes. Luminance takes values between 0 and 100, and the other coordinates take values between -100 and 100. The \(a \) and \(b \) coordinates measure positions on green/red and blue/yellow axes.

Value

An object of class “LAB” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Show the LAB space
set.seed(1)
x <- RGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "LAB")
head(x)
head(y)
plot(y)
Create LUV Colors

Description
This function creates colors of class “LUV”; a subclass of the virtual “color” class.

Usage
LUV(L, U, V, names)

Arguments
L, U, V these arguments give the L, U and V coordinates of the colors. The values can be provided in separate L, U and V vectors or in a three-column matrix passed as L.

names a vector of names for the colors (by default the row names of L are used).

Details
The L, U and V values give the coordinates of the colors in the CIE (1976) L* u* v* space. This is a transformation of the 1931 CIE XYZ space which attempts to produce perceptually based axes. Luminance takes values between 0 and 100, and the other coordinates take values between -100 and 100. The a and b coordinates measure positions on green/red and blue/yellow axes.

Value
An object of class “LUV” which inherits from class “color.”

Author(s)
Ross Ihaka

See Also
RGB, HSV, XYZ, LAB, polarLAB, polarLUV.

Examples
Show the LUV space
set.seed(1)
x <- RGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "LUV")
head(x)
head(y)
plot(y)
mixcolor

Compute the convex combination of two colors

Description

This function can be used to compute the result of color mixing (it assumes additive mixing).

Usage

mixcolor(alpha, color1, color2, where = class(color1))

Arguments

alpha
The mixed color is obtained by combining an amount \(1-\alpha\) of \(\text{color1}\) with an amount \(\alpha\) of \(\text{color2}\).

color1
The first color.

color2
The second color.

where
The color space where the mixing is to take place.

Value

The mixed color. This is in the color space specified by where.

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

mixcolor(0.5, RGB(1, 0, 0), RGB(0, 1, 0))
Create polarLAB Colors

Description

This function creates colors of class “polarLAB”; a subclass of the virtual “color” class.

Usage

polarLAB(L, C, H, names)

Arguments

L, C, H these arguments give the L, C and H coordinates of the colors. The values can be provided in separate L, C and H vectors or in a three-column matrix passed as L.

names A vector of names for the colors (by default the row names of L are used).

Details

The polarLAB space is a transformation of the CIE \(L^*a^*b^* \) space so that the \(a \) and \(b \) values are converted to polar coordinates. The radial component \(C \) measures chroma and the angular coordinate \(H \) is measures hue.

Value

An object of class “polarLAB” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

```r
## Show the polarLAB space
set.seed(1)
x <- RGB(runif(1000), runif(1000), runif(1000))
y <- as(x, "polarLAB")
head(x)
head(y)
plot(y)
```
polarLUV

Create polarLUV Colors

Description

This function creates colors of class “polarLUV”; a subclass of the virtual “color” class.

Usage

```r
polarLUV(L, C, H, names)
```

Arguments

- **L, C, H**
 these arguments give the L, C and H coordinates of the colors. The values can be provided in separate L, C and H vectors or in a three-column matrix passed as L.

- **names**
 A vector of names for the colors (by default the row names of L are used).

Details

The polarLUV space is a transformation of the CIE $L^*u^*v^*$ space so that the u and v values are converted to polar coordinates. The radial component C measures chroma and the angular coordinate H is measures hue.

Value

An object of class “polarLUV” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

`rgb`, `hsv`, `xyz`, `lab`, `polarLAB`, `LUV`, `polarLUV`.

Examples

```r
## Show the polarLUV space
set.seed(1)
x <- rgb(runif(1000), runif(1000), runif(1000))
y <- as(x, "polarLUV")
head(x)
head(y)
plot(y)
```
Description

Color palettes based on the HCL and HSV color spaces.

Usage

```r
rainbow_hcl(n, c = 50, l = 70, start = 0, end = 360*(n-1)/n,
  gamma = NULL, fixup = TRUE, alpha = 1, ...)

sequential_hcl(n, h = 260, c. = c(80, 0), l = c(30, 90), power = 1.5,
  gamma = NULL, fixup = TRUE, alpha = 1, ...)

heat_hcl(n, h = c(0, 90), c. = c(100, 30), l = c(50, 90), power = c(1/5, 1),
  gamma = NULL, fixup = TRUE, alpha = 1, ...)

terrain_hcl(n, h = c(130, 0), c. = c(80, 0), l = c(60, 95), power = c(1/10, 1),
  gamma = NULL, fixup = TRUE, alpha = 1, ...)

diverge_hcl(n, h = c(260, 0), c = 80, l = c(30, 90), power = 1.5,
  gamma = NULL, fixup = TRUE, alpha = 1, ...)

diverge_hsv(n, h = c(240, 0), s = 1, v = 1, power = 1,
  gamma = NULL, fixup = TRUE, alpha = 1, ...)
```

Arguments

- `n` the number of colors (≥ 1) to be in the palette.
- `c`, `c.` chroma value in the HCL color description.
- `l` luminance value in the HCL color description.
- `start` the hue at which the rainbow begins.
- `end` the hue at which the rainbow ends.
- `h` hue value in the HCL or HSV color description, has to be in [0, 360] for HCL and in [0, 1] for HSV colors.
- `s` saturation value in the HSV color description.
- `v` value value in the HSV color description.
- `power` control parameter determining how chroma and luminance should be increased (1 = linear, 2 = quadratic, etc.).
- `gamma` Deprecated.
- `fixup` logical. Should the color be corrected to a valid RGB value before correction?
- `alpha` numeric vector of values in the range [0, 1] for alpha transparency channel (0 means transparent and 1 means opaque).
- `...` Other arguments passed to hex.
rainbow_hcl

Details

All functions compute palettes based on either the HCL (polarluv) or the HSV (hsv) color space. rainbow_hcl computes a rainbow of colors (qualitative palette) defined by different hues given a single value of each chroma and luminance. It corresponds to rainbow which computes a rainbow in HSV space.

sequential_hcl gives a sequential palette starting at the full color HCL(h, c[1], l[1]) through to a light color HCL(h, c[2], l[2]) by interpolation.

diverge_hcl and diverge_hsv, compute a set of colors diverging from a neutral center (gray or white, without color) to two different extreme colors (blue and red by default). This is similar to cm.colors. For the diverging HSV colors, two hues h are needed, a maximal saturation s and a fixed value v. The saturation is then varied to obtain the diverging colors. For the diverging HCL colors, again two hues h are needed, a maximal chroma c and two luminances l. The colors are then created by an interpolation between the full color HCL(h[1], c, l[1]), a neutral color HCL(h, 0, l[2]) and the other full color HCL(h[2], c, l[1]).

The palette heat_hcl gives an implementation of heat.colors in HCL space. By default, it goes from a red to a yellow hue, while simultaneously going to lighter colors (i.e., increasing luminance) and reducing the amount of color (i.e., decreasing chroma). The terrain_hcl palette simply calls heat_hcl with different parameters, providing colors similar in spirit to terrain.colors. The lighter colors are not strictly HCL colors, though.

Value

A character vector with (s)RGB codings of the colors in the palette.

Author(s)

Achim Zeileis

References

See Also

polarluv, hsv, hex

Examples

```r
## convenience demo functions
wheel <- function(col, radius = 1, ...) 
  pie(rep(1, length(col)), col = col, radius = radius, ...)
```
pal <- function(col, border = "light gray")
{
 n <- length(col)
 plot(0, 0, type="n", xlim = c(0, 1), ylim = c(0, 1), axes = FALSE, xlab = ",", ylab = ")
 rect(0:(n-1)/n, 0, 1:n/n, 1, col = col, border = border)
}

qualitative palette
wheel(rainbow_hcl(12))

a few useful diverging HCL palettes
par(mar = rep(0, 4), mfgrow = c(4, 1))
pal(diverge_hcl(7))
pal(diverge_hcl(7, h = c(246, 40), c = 96, l = c(65, 90))
pal(diverge_hcl(7, h = c(130, 43), c = 100, l = c(70, 90))
pal(diverge_hcl(7, h = c(180, 70), c = 70, l = c(90, 95))
pal(diverge_hcl(7, h = c(180, 330), c = 59, l = c(75, 95))
pal(diverge_hcl(7, h = c(128, 330), c = 98, l = c(65, 90))
pal(diverge_hcl(7, h = c(255, 330), l = c(40, 90))
pal(diverge_hcl(7, c = 100, l = c(50, 90), power = 1))

sequential palettes
pal(sequential_hcl(12))
pal(heat_hcl(12, h = c(0, -100), l = c(75, 40), c = c(40, 80), power = 1))
pal(terrain_hcl(12, c = c(65, 0), l = c(45, 95), power = c(1/3, 1.5))
pal(heat_hcl(12, c = c(80, 30), l = c(30, 90), power = c(1/5, 1.5))

compare base and colorspace palettes
(in color and desaturated)
par(mar = rep(0, 4), mfgrow = c(2, 2))
rainbow color wheel
wheel(rainbow_hcl(12))
wheel(rainbow(12))
wheel(desaturate(rainbow_hcl(12)))
wheel(desaturate(rainbow(12)))

diverging red-blue colors
pal(diverge_hsv(7))
pal(diverge_hcl(7, c = 100, l = c(50, 90)))
pal(desaturate(diverge_hsv(7)))
pal(desaturate(diverge_hcl(7, c = 100, l = c(50, 90))))

diverging cyan-magenta colors
pal(cm.colors(7))
pal(diverge_hcl(7, h = c(180, 330), c = 59, l = c(75, 95))
pal(desaturate(cm.colors(7)))
pal(desaturate(diverge_hcl(7, h = c(180, 330), c = 59, l = c(75, 95))))

heat colors
pal(heat.colors(12))
pal(heat_hcl(12))
pal(desaturate(heat.colors(12)))
pal(desaturate(heat_hcl(12)))

rainbow_hcl
Description

This function reads a set of hexadecimal color descriptions from a file and creates a color object containing the corresponding colors.

Usage

```
readhex(file = "", class = "RGB")
```

Arguments

- `file` The file containing the color descriptions.
- `class` The kind of color object to be returned.

Details

The file is assumed to contain hexadecimal color descriptions of the form `#RRGGBB`.

Value

An color object of the specified class containing the color descriptions.

Author(s)

Ross Ihaka.

See Also

`writehex`, `readRGB`, `hex2RGB`, `RGB`, `HSV`, `XYZ`, `LAB`, `polarLAB`, `LUV`, `polarLUV`.

Examples

```
## Not run:
rgb <- readhex("pastel.txt")
hsv <- readhex("pastel.txt", "HSV")

## End(Not run)
```
readRGB

Description

This function reads a set of RGB color descriptions (of the form written by gcolorSel) from a file and creates a color object containing the corresponding colors.

Usage

```r
readRGB(file = "", class = "RGB")
```

Arguments

- `file` The file containing the color descriptions.
- `class` The kind of color object to be returned.

Details

The file is assumed to contain RGB color descriptions consisting of three integer values in the range from 0 to 255 followed by a color name.

Value

An color object of the specified class containing the color descriptions.

Author(s)

Ross Ihaka.

See Also

- `writehex`, `readhex`, `hex2RGB`, `RGB`, `HSV`, `XYZ`, `LAB`, `polarLAB`, `LUV`, `polarLUV`.

Examples

```r
# Not run:
rgb <- readRGB("pastel.rgb")
hsv <- readRGB("pastel.rgb", "HSV")

# End(Not run)
```
Create RGB Colors

Description
This function creates colors of class RGB; a subclass of the virtual “color” class.

Usage
RGB(R, G, B, names)

Arguments
R, G, B
these arguments give the red, green and blue intensities of the colors (the values should lie between 0 and 1). The values can be provided in separate R, G and B vectors or in a three-column matrix passed as R.

names
A vector of names for the colors (by default the row names of R are used).

Details
This function creates colors in the linearized sRGB color space (IEC standard 61966).

Value
An object of class “RGB” which inherits from class “color.”

Author(s)
Ross Ihaka

References
www.srgb.com

See Also
sRGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples
Create a random set of colors
set.seed(1)
RGB(R = runif(20), G = runif(20), B = runif(20))
Description

Visualization of color palettes (given as hex codes) in RGB and/or HCL coordinates.

Usage

```r
specplot(x, rgb = TRUE, hcl = TRUE, fix = TRUE, cex = 1,
         type = "l", lwd = 2 * cex, lty = 1, pch = NULL,
         legend = TRUE, palette = TRUE, plot = TRUE)
```

Arguments

- `x` character vector containing color hex codes.
- `rgb` logical or color specification. Should the RGB spectrum be visualized? Can also be a vector of three colors for the R/G/B coordinates.
- `hcl` logical or color specification. Should the HCL spectrum be visualized? Can also be a vector of three colors for the H/C/L coordinates.
- `fix` logical. Should the hues be fixed to be on a smooth(er) curve? For details see below.
- `cex` numeric. Character extension for figure axes and labels.
- `type`, `lwd`, `lty`, `pch` plotting parameters passed to `lines` for drawing the RGB and HCL coordinates, respectively. Can be vectors of length 3.
- `legend` logical. Should legends for the coordinates be plotted?
- `palette` logical. Should the given palette `x` be plotted?
- `plot` logical. Should the RGB and/or HCL coordinates be plotted?

Details

The function `specplot` transforms a given color palette in hex codes into their RGB (`sRGB`) or HCL (`polarLUV`) coordinates. As the hues for low-chroma colors are not (or poorly) identified, by default a smoothing is applied to the hues (`fix = TRUE`). Also, to avoid jumps from 0 to 360 or vice versa, the hue coordinates are shifted suitably.

By default (`plot = TRUE`) the resulting RGB and HCL coordinates are visualized by simple line plots along with the color palette `x` itself.

Value

`specplot` invisibly returns a list with components

- `RGB` a matrix of sRGB coordinates,
- `HCL` a matrix of HCL coordinates,
- `hex` original color palette `x`.
sRGB

Author(s)
Reto Stauffer, Achim Zeileis

References

See Also
rainbow_hcl

Examples

```r
## spectrum of the (in)famous RGB rainbow palette
specplot(rainbow(100))

## spectrum of HCL-based palettes: qualitative/sequential/diverging
specplot(rainbow_hcl(100))
specplot(sequential_hcl(100))
specplot(diverge_hcl(100))

## return computed RGB and HCL coordinates
res <- specplot(rainbow(10), plot = FALSE)
print(res)
```

sRGB Create sRGB Colors

Description
This function creates colors of class sRGB; a subclass of the virtual “color” class.

Usage
sRGB(R, G, B, names)

Arguments

- **R, G, B**: these arguments give the red, green and blue intensities of the colors (the values should lie between 0 and 1). The values can be provided in separate R, G and B vectors or in a three-column matrix passed as R.
- **names**: A vector of names for the colors (by default the row names of R are used).
Details

This function creates colors in the standard sRGB color space (IEC standard 61966).

Value

An object of class “sRGB” which inherits from class “color.”

Author(s)

Ross Ihaka

References

www.srgb.com

See Also

RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

Create a random set of colors
set.seed(1)
sRGB(R = runif(20), G = runif(20), B = runif(20))

| USSouthPolygon | Polygon for County Map of US South States: Alabama, Georgia, and South Carolina |

Description

County polygons for Alabama, Georgia, and South Carolina plus an artificial variable used for coloring.

Usage

data("USSouthPolygon")

Format

A data frame with coordinates of the vertices of the county polygons (x, y) and an artificial variable z constructed for illustrating colored maps.

Source

writehex

Examples

generate color palette
pal <- diverge_hcl(9)
n <- length(pal)

draw shaded polygons
plot(0, 0, type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n",
 xlim = c(-88.5, -78.6), ylim = c(30.2, 35.2), asp = 1)
polygon(USSouthPolygon, col = pal[cut(na.omit(USSouthPolygon$z), breaks = 0:n/n)])

writehex Write Hexadecimal Color Descriptions

Description

Given a color object, this function writes a file containing the hexadecimal representation of the colors in the object.

Usage

writehex(x, file = "")

Arguments

x a color object.
file the name of the file to be written.

Details

This function converts the given color object to RGB and then writes hexadecimal strings (of the form \texttt{#RRGGBB}) representing the colors to the specified file.

Value

The name of the file is returned as the value of the function.

Author(s)

Ross Ihaka

See Also

readhex, readRGB, hex2RGB, RGB, HSV, XYZ, LAB, polarLAB, LUV, polarLUV.

Examples

set.seed(1)
x <- RGB(runif(10), runif(10), runif(10))
writehex(x, "random.txt")
Create XYZ Colors

Description

This function creates colors of class XYZ; a subclass of the virtual “color” class.

Usage

\[\text{XYZ}(X, Y, Z, \text{names}) \]

Arguments

- \(X, Y, Z \): these arguments give the X, Y and Z coordinates of the colors. The values can be provided in separate X, Y and Z vectors or in a three-column matrix passed as \(X \).
- \(\text{names} \): A vector of names for the colors (by default the row names of \(X \) are used).

Details

The X, Y and Z values are the levels of the CIE primaries. These are scaled so that the luminance of the display white-point is 100. The white-point is taken to be D65, which means that its coordinates are 95.047, 100.000, 108.883.

Value

An object of class “XYZ” which inherits from class “color.”

Author(s)

Ross Ihaka

See Also

\(\text{RGB}, \text{HSV}, \text{LAB}, \text{polarLAB}, \text{LUV}, \text{polarLUV} \).

Examples

```r
## Generate white in XYZ space
XYZ(95.047, 100.000, 108.883)
```
Index

*Topic classes
 color-class, 4

*Topic color
 coords, 5
desaturate, 6
hex, 7
hex2RGB, 8
HLS, 9
HSV, 10
LAB, 11
LUV, 12
mixcolor, 13
polarLAB, 14
polarLUV, 15
rainbow_hcl, 16
readhex, 19
readRGB, 20
RGB, 21
sRGB, 23
writehex, 25
XYZ, 26

*Topic datasets
 USSouthPolygon, 24

*Topic misc
 choose_palette, 2
 specplot, 22
 [,color-method (color-class), 4

choose_palette, 2
cm.colors, 17
coerce,color,HLS-method (color-class), 4
coerce,color,HSV-method (color-class), 4
color-class, 4
color,LAB-method (color-class), 4
color,LUV-method (color-class), 4
color,polarLAB-method (color-class), 4
color,polarLUV-method (color-class), 4
color,RGB-method (color-class), 4
color,sRGB-method (color-class), 4
col2rgb, 6
color-class, 4
colors, 6
coords, 5
coords,color-method (color-class), 4
desaturate, 6
dichromat, 3
diverge_hcl, 3
diverge_hcl (rainbow_hcl), 16
diverge_hsv (rainbow_hcl), 16
hclwizard (choose_palette), 2
heat.colors, 17
heat_hcl, 3
heat_hcl (rainbow_hcl), 16
hex, 6, 7, 8, 16, 17
hex2RGB, 6, 7, 8, 19, 20, 25
HLS, 5, 9
HLS-class (color-class), 4
HSV, 5, 7, 8, 10, 11–15, 17, 19–21, 24–26
HSV-class (color-class), 4
LAB, 5, 7, 9–11, 11, 12–15, 19–21, 24–26
LAB-class (color-class), 4
lines, 22
LUV, 5, 7–11, 12, 13–15, 19–21, 24–26
LUV-class (color-class), 4
mixcolor, 5, 13
plot,color-method (color-class), 4
polarLAB, 5, 7–14, 14, 15, 19–21, 24–26
polarLAB-class (color-class), 4
polarLUV, 3, 5–15, 15, 17, 19–22, 24–26
polarLUV-class (color-class), 4
rainbow, 17
rainbow_hcl, 3, 16, 23
readhex, 19, 20, 25
readRGB, 19, 20, 25
RGB, 5, 7–15, 19, 20, 21, 24–26
rgb, 6
RGB-class (color-class), 4

sequential_hcl, 3
sequential_hcl (rainbow_hcl), 16
show, color-method (color-class), 4
specplot, 22
sRGB, 7, 8, 21, 22, 23
sRGB-class (color-class), 4

terrain_hcl (rainbow_hcl), 16

USSouthPolygon, 24

writehex, 19, 20, 25

XYZ, 5, 7–15, 19–21, 24, 25, 26
XYZ-class (color-class), 4