Package ‘comclim’

May 30, 2018

Type Package
Title Community Climate Statistics
Version 0.9.5
Date 2018-05-30
Author Benjamin Blonder
Maintainer Benjamin Blonder <bblander@gmail.com>
Description Computes community climate statistics for volume and mismatch using species’ climate niches either unscaled or scaled relative to a regional species pool. These statistics can be used to describe biogeographic patterns and infer community assembly processes. Includes a vignette outlining usage.
License GPL-3
Depends methods, R (>= 3.0.0)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-30 16:05:30 UTC

R topics documented:

comclim-package ... 2
climatedeviations ... 2
climatestatistics ... 3
communityclimate ... 4
CommunityClimateInput-class 5
CommunityClimateStatistics-class 6
generatedemodata ... 7
inputcommunitydata .. 8
plot.CommunityClimateInput 8
plot.CommunityClimateStatistics 9
summary.CommunityClimateInput 10
summary.CommunityClimateStatistics 11

Index 12
Description
Computes community climate statistics for volume and mismatch using species’ climate niches either unscaled or scaled relative to a regional species pool. These statistics can be used to describe biogeographic patterns and infer community assembly processes.

Author(s)
Benjamin Blonder <bblonder@gmail.com>

References

climatedeviations
Reports community climate deviations.

Description
Helper function to report community climate deviations. Deviations are calculated as standard effect sizes using a robust estimator as \((x - \text{quantile(null, 0.5)}) / (\text{quantile(null,0.75)} - \text{quantile(null,0.25)})\). Two-tailed p-values are also calculated by recentering the observed and null values to the null distribution mean, then determining the probability that the recentered observed value is either less than the null, or greater than the null.

Usage
climatedeviations(object)

Arguments
object A CommunityClimateStatistics object.

Value
A named list of deviations, with each element containing a standard effect size (ses) and two-tailed p-value (pvalue) for each deviation
deviation_volumeMagnitude
A two element vector for climate volume (delta)
deviation_mismatchMagnitude
A two element vector for climate mismatch (lambda)
climatestatistics

deviation_mismatchDirections
A two column data frame for climate mismatch along each climate axis (\(\lambda_i\)),
with row names corresponding to each axis

climatemismatch

Description
Helper function to report community climate statistics for the real community, i.e. not corrected for
any null model.

Usage
climatemismatch(object)

Arguments
object A CommunityClimateStatistics object

Value
A named list:

meanNiches A dataframe with columns corresponding to climate axes, and one row for each
species in the community. Each observation is the mean climate niche of that
species at \(t_{inf}\).

inferredClimate A vector with names corresponding to climate axes, representing the inferred
climate determined by overlapping niches of all species in the community at
\(t_{inf}\).

observedClimate A vector with names corresponding to climate axes, representing the observed
climate at \(t_{obs}\).

volumeMagnitude A number representing the climate volume at \(t_{inf}\) (\(\Delta\))

mismatchMagnitude A number representing the magnitude of the climate mismatch at \(t_{inf}\) relative to
the climate at \(t_{obs}\) (\(\Lambda\))

mismatchDirections A vector with names corresponding to climate axes, representing the climate
mismatch projected along each axis at \(t_{inf}\) relative to the climate at \(t_{obs}\).
Community climate analysis

Description

Performs a community climate analysis. The algorithm first computes the inferred climate at t\text{inf} based on sampling from the climate niches of the species in a community at t\text{inf} relative to the observed climate at t\text{obs}, and determines their volume at t\text{inf} (\text{Delta}) and mismatch at t\text{inf} relative to t\text{obs} (\text{Lambda}). The algorithm then repeats the process for a large set of null communities, performing a richness-preserving weighted sample with replacement from the regional pool, and creates a null distribution of Delta and Lambda. Finally, community climate deviations (delta and lambda) are computed as robust standard effect sizes based on the observed and null values.

Values of \text{delta} < 0 indicate environmental filtering at t\text{inf}, while values > 0 indicate environmental permissiveness at t\text{inf} and values = 0 indicate no difference between regional and local processes at t\text{inf}. Values of \text{lambda} < 0 indicate environmental equilibrium at t\text{inf} relative to climate at t\text{obs}, while values > 0 indicate environmental disequilibrium and values = 0 indicate no difference between regional and local processes for species at t\text{inf} relative to t\text{obs}.

Actual values of Delta and Lambda indicate the absolute levels of climate space occupancy (Delta) at t\text{inf}, or absolute mismatch between community composition at t\text{inf} and local climate at t\text{obs} (Lambda).

The function assumes that climate axes are on comparable (rescaled) axes, but does not test for this. You are responsible for inputting appropriate data.

Usage

```
communityclimate(object, climateaxes = NULL,
                  numreplicates = 100, numsamplesperspecies = 100, verbose = TRUE)
```

Arguments

- **object**: A CommunityClimateInput-class object describing the local species composition at t\text{inf}, the regional pool (and sampling weights, if provided) at t\text{inf}, the climate niches of all species at t\text{inf}, and the observed climate at t\text{obs}.
- **climateaxes**: A named vector with the climate axes to be considered, e.g. a subset of all of the axes.
- **numreplicates**: Number of null models to run. Larger values give more accurate p-values and effect sizes.
- **numsamplesperspecies**: Number of random samples from the climate niche of each species for each pass of the algorithm. Larger values give more accurate results.
- **verbose**: A logical flag. If true, prints output to track progress of the algorithm.

Value

A CommunityClimateStatistics object.
CommunityClimateInput-class

References
For more information, see the journal article described in comclim-package.

See Also
inputcommunitydata, climatedeviations, climatestatistics, CommunityClimateStatistics-class

Examples

three dimensional analysis
by construction of the example, should yield inferences of
delta < 0 (environmental filtering) and
lambda < 0 (environmental equilibrium)

(uncomment next five lines - not run for CRAN speed)

community_richness_5 <- generatedemodata()
result_community <- communityclimate(community_richness_5,
climateaxes=c("ClimateAxis1","ClimateAxis2","ClimateAxis3"),
numreplicates=25)
summary(result_community)

CommunityClimateInput-class

Class "CommunityClimateInput"

Description
A class used to compactly store input for community climate analysis. Can be plotted.

Objects from the Class
Objects can be created by calls of the form new("CommunityClimateInput", ...).

Slots

species_list_tinf: Object of class "character". The names of species in the local community at tinf.

regional_pool_tinf: Object of class "character". The names of species in the regional pool for the local community at tinf.

regional_pool_weights_tinf: Object of class "numeric". A numeric vector with same length as regional_pool_tinf, corresponding to sampling weights at tinf. Does not need to sum to one; will be normalized. If left empty, will be auto-filled with all 1s (i.e. uniform sampling).
climate_niches_tinf: Object of class "data.frame". A dataframe with climate niche information for all species in the local community and regional pool at tinf. Should have a taxon column, and then any number of other columns corresponding to climate axes. Each row represents an observation of the species with a given taxon name. Usually you will fill this dataframe by mapping geographic occurrences of species into climate space.

observed_climate_tobs: Object of class "numeric" A named numeric vector with names corresponding to the same climate axes as in climate_niches_tinf. Represents the observed climate at tobs.

See Also

plot.CommunityClimateInput

Examples

community_richness_5 <- generatedemodata()
summary(community_richness_5)

CommunityClimateStatistics-class

Class "CommunityClimateStatistics"

Description

A class used to compactly store output of community climate analysis. Can be summarized and plotted.

Objects from the Class

Objects can be created by calls of the form new("CommunityClimateStatistics", ...).

Slots

obsStats: Object of class "list" A list with elements reflecting community climate statistics. See climatestatistics for a helper function and more information.

nullStats: Object of class "list" A list of lists, corresponding to output similar to obsStats for each null community.

deviations: Object of class "list" A list with elements reflecting community climate deviations. See climatedeviations for a helper function and more information.
Simulation data for demonstration analyses.

Description

Creates a CommunityClimateInput-class object for usage in demos. Creates a regional pool of species with normally distributed climate niches within some region of climate space. Then chooses a subset of these species with climate niches closer to the origin to represent the local community, and defines an observed climate at another location in climate space.

Usage

generatedemodata(num_regionalpool = 50, num_community = 5, num_occurrences = 40, num_climateaxes = 3, observed = 0)

Arguments

num_regionalpool Number of species in the regional pool
num_community Number of species in the local community
num_occurrences Number of occurrences to simulate as the basis for each species’ climate niche
num_climateaxes Number of climate axes
observed The location of the observed climate. Must be a scalar; the function will copy the value to all axes.

Value

A CommunityClimateInput-class object.

Examples

a five-dimensional climate space with ten species in the local community
community_demo <- generatedemodata(num_community=10, num_climateaxes=5)
inputcommunitydata
Input data for community climate analysis

Description

A helper function to streamline data formatting

Usage

```r
inputcommunitydata(localcommunity, regionalpool, 
    regionalpoolweights = numeric(), climateniches, observedclimate)
```

Arguments

- `localcommunity`: The names of species in the local community at tinf.
- `regionalpool`: The names of species in the regional pool for the local community at tinf.
- `regionalpoolweights`: A numeric vector with same length as `regional_pool_tinf`, corresponding to sampling weights at tinf. Does not need to sum to one; will be normalized. If left empty, will be auto-filled with all 1s (i.e. uniform sampling).
- `climateniches`: A dataframe with climate niche information for all species in the local community and regional pool at tinf. Should have a `taxon` column, and then any number of other columns corresponding to climate axes. Each row represents an observation of the species with a given taxon name. Usually you will fill this dataframe by mapping geographic occurrences of species into climate space.
- `observedclimate`: A named numeric vector with names corresponding to the same climate axes as in `climate_niches_tinf`. Represents the observed climate at tobs.

Value

A `CommunityClimateInput-class` object.

plot.CommunityClimateInput
Pairs plot of species and regional pool in climate space

Description

Produces a pairs plot representing a multidimensional climate space. The species in the community are drawn in a contrasting fashion to the species in the regional pool.
plot.CommunityClimateStatistics

Usage

S3 method for class 'CommunityClimateInput'
plot(x, climateaxes = NULL, axisnames = NULL,
 cex.community = 0.5, cex.pool = 0.25,
 pch.community = 16, pch.pool = 16,
 colors = "rainbow", ...)

Arguments

- **x**: A CommunityClimateInput object to be plotted.
- **climateaxes**: A vector of climate axes to be plotted, usually a subset of the axes in `object`. If empty, defaults to all axes.
- **axisnames**: Label text for the climate axes.
- **cex.community**: Expansion factor for the local community’s species.
- **cex.pool**: Expansion factor for the regional pool’s species.
- **pch.community**: Plotting symbol for the local community’s species.
- **pch.pool**: Plotting symbol for the regional pool’s species.
- **colors**: The name of a function used to give a color each species.
- **...**: Other arguments to be passed to plot commands

Value

None. Used for the side-effect of producing a plot.

Examples

```r
community_richness_5 <- generatedemodata()

plot(community_richness_5)
```

Description

Produces either a deviations plot or a community climate diagram. The deviations plot compares null distributions (black) and observed values (red) for volume, mismatch, and mismatch along each axis, along with the interquartile range of null values. The community climate diagram shows the location of the community (red points) and null communities (black points) in climate space at `tinf`, and compares it to the observed climate at `tobs` (open black point). The climate volume for each is shown as a circle, and the climate mismatch is shown as a vector connecting the inferred climate at `tinf` to the observed climate at `tobs`.

Draws community climate diagram.
Usage

```r
## S3 method for class 'CommunityClimateStatistics'
plot(x, deviations = FALSE, axisnames = NULL,
nnull = 10, cex.axis = 0.7, cex.nullpoints = 0.3,
cex.obspoints = 0.5, cex.names = 1.5, ...)
```

Arguments

- `x`: A `CommunityClimateStatistics` object to be plotted.
- `deviations`: If `TRUE`, produces a deviations plot; if `FALSE`, produces a community climate diagram. All subsequent options are applicable only when `deviations=FALSE`.
- `axisnames`: Labels to be drawn for each climate axis.
- `nnull`: Number of null simulations to be drawn on the diagram; lower values may produce clearer plots.
- `cex.axis`: Expansion factor for the axis ticks.
- `cex.nullpoints`: Expansion factor for the null points.
- `cex.obspoints`: Expansion factor for the observed points.
- `cex.names`: Expansion factor for the climate axis labels.
- `...`: Other arguments to be passed to plot commands.

Value

None; used for the side-effect of producing a plot.

Examples

```r
# (uncomment next six lines - not run for CRAN speed)

# community_richness_5 <- generatedemodata()
# result_community <- communityclimate(community_richness_5,
# climateaxes=c("ClimateAxis1","ClimateAxis2","ClimateAxis3"),
# numreplicates=25)

# plot(result_community,deviations=TRUE)  # deviations plot
# plot(result_community,deviations=FALSE)  # community climate diagram
```

summary.CommunityClimateInput

Summarizes community climate input

Description

Summarizes community climate input
Usage

```r
## S3 method for class 'CommunityClimateInput'
summary(object, ...)
```

Arguments

- `object`
- `...`

Description

Summarizes community climate statistics

Usage

```r
## S3 method for class 'CommunityClimateStatistics'
summary(object, ...)
```

Arguments

- `object`
- `...`
Index

*Topic **classes**
 CommunityClimateInput-class, 5
 CommunityClimateStatistics-class, 6

*Topic **package**
 comclim-package, 2

climatedeviations, 2, 5, 6
climatetestistics, 3, 5, 6
comclim (comclim-package), 2
comclim-package, 2
communityclimate, 4
CommunityClimateInput-class, 5
CommunityClimateStatistics-class, 6

generatedemodata, 7

inputcommunitydata, 5, 8

plot.CommunityClimateInput, 6, 8
plot.CommunityClimateStatistics, 9

summary.CommunityClimateInput, 10
summary.CommunityClimateStatistics, 11