Package ‘condTruncMVN’

September 17, 2020

Version 0.0.2
Type Package
Title Conditional Truncated Multivariate Normal Distribution
Maintainer Paul M. Hargarten <hargartenp@vcu.edu>
Description Computes the density and probability for the conditional truncated multivariate normal (Horrace (2005) p. 4, <doi:10.1016/j.jmva.2004.10.007>). Also draws random samples from this distribution.
License GPL-3
Depends R(>= 3.5.0)
Imports condMVNorm(>= 2020.1), matrixNormal(>= 0.0.1), tmvmixnorm(>= 1.0.2), tmvtnorm(>= 1.4-10), trucnorm(>= 1.0-8)
Suggests formatR, knitr, rmarkdown, roxygen2, sessioninfo, spelling, testthat
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Language en-US
BugReports https://github.com/phargarten2/condTruncMVN/issues
VignetteBuilder knitr
NeedsCompilation no
Author Paul M. Hargarten [aut, cre]
Repository CRAN
Date/Publication 2020-09-17 12:50:11 UTC

R topics documented:

 condMVN ... 2
dcmvtruncnorm ... 4
pcmvtunrcnorm .. 5
rcmvtunrcnorm .. 7
condtMVN

Conditional Truncated Multivariate Normal Parameters

Description

Suppose that \(Z = (X,Y) \) is from a fully-joint multivariate normal distribution of dimension \(n \) with mean and covariance matrix \(\sigma \) truncated between \(\text{lower} \) and \(\text{upper} \). This function provides the parameters for the conditional mean and covariance matrix of \(Y \) given \(X \). See the vignette for more information.

Usage

condtMVN(
 mean,
 sigma,
 lower,
 upper,
 dependent.ind,
 given.ind,
 X.given,
 init = rep(0, length(mean))
)

Arguments

- **mean**: the mean vector for \(Z \) of length of \(n \)
- **sigma**: the symmetric and positive-definite covariance matrix of dimension \(n \times n \) of \(Z \).
- **lower**: a vector of lower bounds of length \(n \) that truncate \(Z \)
- **upper**: a vector of upper bounds of length \(n \) that truncate \(Z \)
- **dependent.ind**: a vector of integers denoting the indices of dependent variable \(Y \).
- **given.ind**: a vector of integers denoting the indices of conditioning variable \(X \). If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
- **X.given**: a vector of reals denoting the conditioning value of \(X \). This should be of the same length as \(\text{given.ind} \)
- **init**: initial value used for random generation of truncated multivariate normal in a Gibbs sampler. Default: A vector of zeros, equal to the number of components.

Details

The first four arguments are the parameters of multivariate normal and the truncation space. \(\text{dependent.ind}, \text{given.ind}, X.given \) are all arguments that determines the conditional truncated MVN.

Using the full data \(Z \), the conditional mean and conditional variance of \(Y|X \) are determined (Wang, 2006). Additionally, to reflect the reduced dimension of \(Y|X \), the truncation limits are also adjusted. See the vignette for more information.
condtMVN

Value

Returns a list of:

- condMean - conditional mean of \(Y \mid X \)
- condVar - conditional variance of \(Y \mid X \)
- condLower - the lower bound of \(Y \mid X \)
- condUpper - the upper bound of \(Y \mid X \)
- condInit - the initial values adjusted to match the dimension of \(Y \mid X \). These are used to randomly generate the truncated multivariate normal \(\text{rmvtruncnorm} \).

Note

This function is based on \(\text{condMVN} \) from the \(\text{condMVNorm} \) package.

References

See Also

\(\text{cmvnorm}, \text{pmvnorm}, \text{Mvnorm} \)

Examples

Suppose \(X_2, X_3, X_5 \mid X_2, X_4 \sim \text{N}_3(1, \Sigma) \) and truncated between \(-10\) and \(10\).
\[
\begin{align*}
\text{d} & \gets 5 \\
\text{rho} & \gets 0.9 \\
\text{Sigma} & \gets \text{matrix}(0, \text{nrow = d, ncol = d}) \\
\text{Sigma} & \gets \text{rho}^\text{abs(row(Sigma) - col(Sigma))}
\end{align*}
\]

Conditional Truncated Normal Parameters
\[
\text{condtMVN(mean = rep(1, d),} \\
\text{sigma = Sigma,} \\
\text{lower = rep(-10, d),} \\
\text{upper = rep(10, d),} \\
\text{dependent.ind = c(2, 3, 5),} \\
\text{given.ind = c(1, 4), X.given = c(1, -1))}
\]
Density of the Conditional Truncated Multivariate Normal

Description

Calculates the density of truncated conditional multivariate normal \(Y|X: f(Y = y|X = X.given) \). See the vignette for more information.

Usage

```r
dcmvtruncnorm(
  y,  
  mean,  
  sigma,  
  lower,  
  upper,  
  dependent.ind,  
  given.ind,  
  X.given,  
  log = FALSE
)
```

Arguments

- `y` vector or matrix of quantiles of \(Y \). If a matrix, each row is taken to be a quantile. This is the quantity that the density is calculated from.
- `mean` the mean vector for \(Z \) of length of \(n \).
- `sigma` the symmetric and positive-definite covariance matrix of dimension \(n \times n \) of \(Z \).
- `lower` a vector of lower bounds of length \(n \) that truncate \(Z \).
- `upper` a vector of upper bounds of length \(n \) that truncate \(Z \).
- `dependent.ind` a vector of integers denoting the indices of dependent variable \(Y \).
- `given.ind` a vector of integers denoting the indices of conditioning variable \(X \). If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
- `X.given` a vector of reals denoting the conditioning value of \(X \). This should be of the same length as `given.ind`.
- `log` logical; if `TRUE`, densities \(d \) are given as \(\log(d) \).

References

pcmvtruncnorm

Examples

Example 1: X2,X3,X5|X2,X4 ~ N_3(1, Sigma)
truncated between -10 and 10.
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)
Sigma <- rho^abs(row(Sigma) - col(Sigma))

Log-density of 0
dcmvtruncnorm(
 rep(0, 3),
 mean = rep(1, 5),
 sigma = Sigma,
 lower = rep(-10, 5),
 upper = rep(10, d),
 dependent.ind = c(2, 3, 5),
 given.ind = c(1, 4), X.given = c(1, -1),
 log = TRUE
)

pcmvtruncnorm

CDF for the Conditional Truncated Multivariate Normal

Description

Computes the distribution function for a conditional truncated multivariate normal random variate Y|X.

Usage

pcmvtruncnorm(
 lowerY,
 upperY,
 mean,
 sigma,
 lower,
 upper,
 dependent.ind,
 given.ind,
 X.given,
 ...
)

Arguments

lowerY the vector of lower limits for Y|X. Passed to tmvtnorm::ptmvnorm().
upperY the vector of upper limits for Y|X. Must be greater than lowerY. Passed to tmvtnorm::ptmvnorm().
pcmvtruncnorm

mean the mean vector for Z of length of n
sigma the symmetric and positive-definite covariance matrix of dimension n x n of Z.
lower a vector of lower bounds of length n that truncate Z
upper a vector of upper bounds of length n that truncate Z
dependent.ind a vector of integers denoting the indices of dependent variable Y.
given.ind a vector of integers denoting the indices of conditioning variable X. If specified
as integer vector of length zero or left unspecified, the unconditional density is returned.
X.given a vector of reals denoting the conditioning value of X. This should be of the
same length as given.ind
...
Additional arguments passed to tmvtnorm::ptmvnorm(). The CDF is calculated
using the Genz algorithm based on these arguments: maxpts, abseps, and releps.

Details
Calculates the probability that Y|X is between lowerY and upperY. Z = (X, Y) is the fully joint
multivariate normal distribution with mean equal mean and covariance matrix sigma, truncated
between lower and upper. See the vignette for more information.

Note
For one-dimension conditionals Y|X, this function uses the ptruncnorm() function in the truncnorm
package. Otherwise, this function uses tmvtnorm::ptmvnorm().

Examples
Example 1: Let X2,X3,X5|X2,X4 ~ N_3(1, Sigma)
truncated between -10 and 10.
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)
Sigma <- rho^abs(row(Sigma) - col(Sigma))
Find P(-0.5 < X2,X3,X5 < 0 | X2,X4)
pcmvtruncnorm(rep(-0.5, 3), rep(0, 3),
mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
upper = rep(10, d),
dependent.ind = c(2, 3, 5),
given.ind = c(1, 4), X.given = c(1, -1)
)

Example 2: Let X1| X2 = 1, X3 = -1, X4 = 1, X5 = -1 ~ N(1, Sigma) truncated
between -10 and 10. Find P(-0.5 < X1 < 0 | X2 = 1, X3 = -1, X4 = 1, X5 = -1).
pcmvtruncnorm(-0.5, 0,
mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
rcmvtruncnorm

```r
upper = rep(10, d),
dependent.ind = 1,
given.ind = 2:5, X.given = c(1, -1, 1, -1)
)
```

rcmvtruncnorm
Random Sample from Conditional Truncated Multivariate Normal

Description

Randomly samples from conditional truncated multivariate normal distribution variate, \(Y|X\), where \(Z = (X, Y)\) is the fully joint multivariate normal distribution with mean, covariance matrix \(\sigma\), and truncated between \(\text{lower}\) and \(\text{upper}\). See the vignette for more information.

Usage

```r
rcmvtruncnorm(
  n,
  mean,
  sigma,
  lower,
  upper,
  dependent.ind,
  given.ind,
  X.given,
  init = rep(0, length(mean)),
  burn = 10L,
  thin = 1
)
```

Arguments

- `n` number of random samples desired (sample size).
- `mean` the mean vector for \(Z\) of length of \(n\)
- `sigma` the symmetric and positive-definite covariance matrix of dimension \(n \times n\) of \(Z\).
- `lower` a vector of lower bounds of length \(n\) that truncate \(Z\)
- `upper` a vector of upper bounds of length \(n\) that truncate \(Z\)
- `dependent.ind` a vector of integers denoting the indices of dependent variable \(Y\).
- `given.ind` a vector of integers denoting the indices of conditioning variable \(X\). If specified as integer vector of length zero or left unspecified, the unconditional density is returned.
- `X.given` a vector of reals denoting the conditioning value of \(X\). This should be of the same length as \(\text{given.ind}\)
- `init` initial value used for random generation of truncated multivariate normal in a Gibbs sampler. Default: A vector of zeros, equal to the number of components. For details, see tmvmixnorm::rtmvn().
burn the burn-in, which is the number of initial iterations to be discarded. Default: 10. Passed to \texttt{rtmvn}().

\texttt{thin} thinning lag (default as 1).

\textbf{Note}

Uses \texttt{rtmvn} from the \texttt{tmvmixnorm} package to find the random variate.

\textbf{Examples}

\begin{verbatim}
Generate 2 random numbers from X2,X3,X5|X2,X4 ~ N_3(1, Sigma)
truncated between -10 and 10.

set.seed(2342)
rcmvtruncnorm(2,
 mean = rep(1, d),
 sigma = Sigma,
 lower = rep(-10, d),
 upper = rep(10, d),
 dependent.ind = c(2, 3, 5),
 given.ind = c(1, 4), X.given = c(1, -1))

Example 2: Generate two random numbers from
X1|X2, X3, X4, X5 ~ N(1, Sigma) truncated between -10 and 10.
set.seed(2342)
rcmvtruncnorm(2,
 mean = rep(1, d),
 sigma = Sigma,
 lower = rep(-10, d),
 upper = rep(10, d),
 dependent.ind = 1,
 given.ind = 2:5, X.given = c(1, -1, 1, -1))
\end{verbatim}
Index

cmvnorm, 3
condMVN, 3
condtMVN, 2
dcmvtruncnorm, 4
Mvnorm, 3
pcmvtruncnorm, 5
pmvnorm, 3
ptmvnorm, 5, 6
rcmvtruncnorm, 3, 7
rtmvn, 2, 7, 8