Package ‘conformal’
March 7, 2016

Type Package
Title Conformal Prediction for Regression and Classification
Version 0.2
Date 2016-03-06
Author Isidro Cortes <isidrolauscher@gmail.com>
Maintainer Isidro Cortes <isidrolauscher@gmail.com>
Depends R (>= 2.12.0), caret, ggplot2, e1071, methods, grid
Imports randomForest
Suggests kernlab
Description Implementation of conformal prediction using caret models for classification and regression.
License GPL
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-03-07 07:59:51

R topics documented:

conformal ... 2
ConformalClassification ... 5
ConformalClassification-class 7
ConformalRegression .. 9
ConformalRegression-class .. 11
ErrorModel .. 13
expGrid ... 14
GetCVPreds .. 14
LogS ... 15
LogSDescsTest ... 16
LogSDescsTrain ... 16
LogSTest .. 17
LogSTrain .. 17
StandardMeasure .. 18
conformal: an R package to calculate prediction errors in the conformal prediction framework

Description

conformal permits the calculation of prediction errors in the conformal prediction framework: (i) p.values for classification, and (ii) confidence intervals for regression. The package is coded using R reference classes (OOP).

Details

Assessing the reliability of individual predictions is foremost in machine learning to determine the applicability domain of a predictive model, be it in the context of classification or regression. The applicability domain is usually defined as the amount (or the regions) of descriptor space to which a model can be reliably applied. Conformal prediction is an algorithm-independent technique, i.e. it works with any predictive method such as Support Vector Machines or Random Forests (RF), which outputs confidence regions for individual predictions in the case of regression, and p.values for categories in a classification setting [1,2].

Regression

In the conformal prediction framework [1,2], the datapoints in the training set are used to define how unlikely a new datapoint is with respect to the data presented to the model in the training phase. The unlikeness (conformity) for a given datapoint, \(x \), with respect to the training set is quantified with a nonconformity score, \(\alpha \), calculated with a nonconformity measure (e.g. StandardMeasure) [2], which here we define as:

\[
\alpha = \frac{|y - \tilde{y}|}{\tilde{\rho}}
\]

where \(\alpha \) is the nonconformity score, \(y \) and \(\tilde{y} \) are respectively the observed and the predicted value calculated with an e point prediction model, and \(\tilde{\rho} \) is the predicted error for \(x \) calculated with an error model.

In order to calculate confidence intervals, we need a point prediction model, to predict the response variable (\(y \)), and an error model, to predict errors in prediction (\(\tilde{\rho} \)). The point prediction and error models can be generated with any machine learning algorithm. Both the point prediction and error models need to be trained with cross-validation in order to calculate the vector of nonconformity scores for the training set, \(D_i = \{x_i\}_{i=1}^{N_{tr}} \) (Figure 1). The cross-validation predictions generated when training the point prediction model serve to calculate the errors in prediction for the datapoints in the training set, \(y_i - \tilde{y}_i \). The error model is then generated by training a machine learning model on the training set using these errors as the dependent variable. The (i) cross-validated predictions from the point prediction model, and (ii) the cross-validated errors in prediction from the error model, are used to generate the vector of nonconformity scores for the training set. This vector, after being sorted in increasing order, can be defined as:
\(\alpha_{tr} = \{\alpha_{tr,i}\}^{N_{tr}} \)

where \(N_{tr} \) is the number of datapoints in the training set.

To generate the confidence intervals for an external set, \(D_{ext} = \{x_{ext}\}^{N_{ext}} \), we have to define a confidence level, \(\epsilon \). The \(\alpha \) value associated to the user-defined confidence level, \(\alpha_\epsilon \), is calculated as:

\[
\alpha_\epsilon = \alpha_{tr,i} \text{ if } i \equiv |N_{tr} * \epsilon|
\]

where \(\equiv \) indicates equality. Next, the errors in prediction, \(\tilde{\rho}_{ext} \), and the value for the response variable, \(\tilde{y}_{ext} \), for the datapoints in the external dataset are predicted with the error and the point prediction models, respectively.

Individual confidence intervals (CI) for each datapoint in the external set are derived from:

\[
CI_{ext} j = |y_{ext} j - \tilde{y}_{ext} j| = \alpha_\epsilon \cdot \tilde{\rho}_{ext} j
\]

where \(y_{ext} \) corresponds to the true value (unknown for the external data) of \(y \) (i.e. the value of the dependent variable for those datapoints in the external dataset).

The confidence region (CR) is finally defined as:

\[
CR = \tilde{y}_{ext} j + / - CI_{ext} j
\]

The interpretation of the confidence regions is straightforward. For instance, it we choose a confidence level of 80% the true value for new datapoints will lie outside the predicted confidence regions in at most 20% of the cases.

![Diagram](image)

Figure 1. Scheme followed for the calculation of conformal prediction errors in regression.
Classification

Initially, a Random Forest classifier is trained on the training set using k-fold cross-validation.

In the case of classification, the nonconformity scores are calculated on a per class basis. These are calculated as the ratio between the number of trees in the forest voting for a given class divided by the total number of trees (label-wise Mondrian off-line inductive conformal prediction -MICP-) [3]. For instance, in a binary classification example, if 87 trees from a Random Forest model comprising 100 trees classify a datapoint as belonging to class A, the nonconformity score (or probability) for this class would be 0.87 (87%), whereas its value for class B would be 0.13. This process generates a matrix (nonconformity scores matrix) which rows correspond to the datapoints in the training set, and its columns to the number of distinct classes (two in the binary classification example) (Figure 1A). Here, we have implemented the pipeline proposed by Norinder et al. 2014 [2] using Random Forest models. Nevertheless, other ensemble methods could be used to calculate the nonconformity scores.

Figure 2. Calculation of conformal prediction errors (p.values) in a binary classification example considering a confidence level of 0.80.

Next, each column of the matrix is sorted in increasing order. These columns are called Mondrian class lists (MCL) (Figure 2A). As in regression, a confidence level, \(\epsilon \), needs to be specified. We define significance as \(1 - \epsilon \).

The model trained on the whole dataset is used to classify the datapoints comprised in the external dataset (Figure 2B). Let’s consider one datapoint from the external set, namely \(x_{ext} \). The number of trees in the Random Forest voting for each class is computed, which enables the calculation of the nonconformity scores or probabilities (\(p \)) for that point, \(x_{ext} \). In the binary case, this is defined as:

\[
p(x_{ext}; A) = \frac{N_{trees voting A}}{N_{trees}}
\]

; \[
p(x_{ext}; B) = \frac{N_{trees voting B}}{N_{trees}}
\]
To calculate the p.values for each class, the number of elements in the corresponding Mondrian class list smaller than the probability values, i.e. \(p(x_{ext \ j}; A) \) and \(p(x_{ext \ j}; B) \), is divided by the number of datapoints in the training set, \(N_{tr} \):

\[
p.value(x_{ext \ j}; A) = \frac{|\{MCL(A) < P(x_{ext \ j}; A)\}|}{N_{tr}}
\]

\[
p.value(x_{ext \ j}; B) = \frac{|\{MCL(B) < P(x_{ext \ j}; B)\}|}{N_{tr}}
\]

Finally, these p.values are compared to the significance level defined by the user \((1 - \epsilon)\). For a datapoint to be predicted to belong to a given class, the p.value needs to be higher than the significance level. For instance, if \(p.value(x_{ext \ j}; A) = 0.46 \) and \(p.value(x_{ext \ i}; B) = 0.18 \), with a significance level of 0.2, \(x_{ext \ j} \) would be predicted to belong to class A, but not to B. If both \(p.value(x_{ext \ j}; A) \) and \(p.value(x_{ext \ j}; B) \) were higher than the significance level, \(x_{ext \ j} \) would be predicted to belong to both classes. Similarly, if both p.values were smaller than the significance level, \(x_{ext \ j} \) would be predicted to belong to neither class A nor to class B.

Author(s)

Isidro Cortes <isidrolauscher@gmail.com>, conformal: an R package to calculate prediction errors in the conformal prediction framework.

References

Details

The reference class ConformalClassification contains the following fields:

- **ClassificationModel**: stores a classification Random Forest model.
- **confidence**: stores the user-defined confidence level.
- **data.new**: stores the descriptors corresponding to an external set.
- **NonconformityScoresMatrix**: stores the non conformity scores matrix.
- **ClassPredictions**: stores the class predictions calculated for the external set.
- **p.values**: a list storing
 - **P.values**: a data.frame containing the p.values calculated for the external set. Rows are indexed by datapoints, whereas columns are indexed by classes. The names of the rows correspond to the names of the rows in the external set.
 - **Significance_p.values**: a data.frame reporting the significance of the p.values (where 1 means significant, and 0 not significant), according to the user-defined confidence level, ϵ (the default value is 0.8). Rows are indexed by datapoints, whereas columns are indexed by classes. The names of the rows correspond to the names of the rows in the external set.

The class ConformalClassification contains the following methods:

- **initialize**: this method is called when you create an instance of the class. The default value for the confidence level is 0.8.
- **CalculateCVScores**: this method calculates the non conformity scores (or probabilities) matrix from the cross-validation predictions of the input randomForest model (trained with k-fold cross-validation). The non conformity scores matrix is stored in the field NonconformityScoresMatrix.
- **CalculatePValues**: this method calculates the p.values for the datapoints in a external set. The class predictions are stored in the field ClassPredictions, whereas the p.values and their significance, according to the user defined confidence level, are stored in the field p.values.

Author(s)

Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

References

See Also

ConformalRegression
Examples

```r
showClass("ConformalClassification")

# Optional for parallel training
library(doMC)
registerDoMC(cores=4)

data(LogS)

# convert data to categorical
LogSTrain[LogSTrain > -4] <- 1
LogSTrain[LogSTrain <= -4] <- 2
LogSTest[LogSTest > -4] <- 1
LogSTest[LogSTest <= -4] <- 2

LogSTrain <- factor(LogSTrain)
LogSTest <- factor(LogSTest)

# Remove part of the data to allow for quick training
LogSTrain <- LogSTrain[1:20]
LogSTest <- LogSTest[1:20]
LogSDescTrain <- LogSDescTrain[1:20,]
LogSDescTest <- LogSDescTest[1:20,]

algorithm <- "rf"

trControl <- trainControl(method = "cv", number=5,savePredictions=TRUE)
set.seed(3)

# number of trees
nb_trees <- 100
model <- train(LogSDescTrain, LogSTrain,
   algorithm,type="classification",
   trControl=trControl,predict.all=TRUE,
   keep.forest=TRUE,norm.votes=TRUE,
   ntree=nb_trees)

# Instantiate the class and get the p.values
example <- ConformalClassification$new()
example$CalculateCVScores(model=model)
example$CalculatePValues(new.data=LogSDescTest)
# we get the p.values:
example$p.values$p.values
# we get the significance of these p.values.
example$p.values$Significance_p.values
ConformalClassification-class

Class "ConformalClassification": Conformal Prediction for Classification

Description

R reference class to calculate p.values for individual predictions according to the conformal prediction framework.

Extends

All reference classes extend and inherit methods from "ConformalClassification".

Fields

ClassificationModel: stores a classification Random Forest model.
confidence: stores the user-defined confidence level.
data.new: stores the descriptors corresponding to an external set.
NonconformityScoresMatrix: stores the non conformity scores matrix.
ClassPredictions: stores the class predictions calculated for the external set.
p.values: p.values: a list storing the p.values and their significance (see section Details)

Methods

initialize(confi): this method is called when you create an instance of the class. The default value for the confidence level is 0.8.
CalculatePValues(new.data): this method calculates the p.values for the datapoints in a external set. The class predictions are stored in the field ClassPredictions, whereas the p.values and their significance, according to the user defined confidence level, are stored in the field p.values.
CalculateCVScores(model): this method calculates the non conformity scores (or probabilities) matrix from the cross-validation predictions of the input randomForest model (trained with k-fold cross-validation). The non conformity scores matrix is stored in the field NonconformityScoresMatrix.

Author(s)

Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

References


See Also

ConformalClassification ConformalRegression ConformalRegression-class
ConformalRegression

Class ConformalRegression: Conformal Prediction for Regression

Description

R reference class to create and visualize confidence intervals for individual predictions according to the conformal prediction framework.

Details

The reference class ConformalRegression contains the following fields:

- **PointPredictionModel**: stores a point prediction model.
- **ErrorModel**: stores an error model. Error models can be trained with the function `ErrorModel`.
- **confidence**: stores the level of confidence used to calculate the confidence intervals. This value is defined when instantiating a new class. Values are in the 0-1 range. Interpretation: for instance, a confidence level of 0.8 (80%) means that, at most, 20% of the confidence intervals will not contain the true value.
- **data.new**: stores the descriptors corresponding to an external set.
- **alphas**: stores the nonconformity scores for the datapoints used to train the point prediction model (PointPredictionModel) with the method `CalculateAlphas`.
- **errorPredictions**: errors in prediction for an external set predicted with an error model (stored in the field ErrorModel). These errors are generated when calling the method `GetConfidenceIntervals`. These errors serve to calculate the nonconformity scores (alphas) for the an external set. In the conformal prediction framework, the confidence intervals are derived from the nonconformity values (see methods `CalculateAlphas` and `GetConfidenceIntervals`).
- **pointPredictions**: point predictions for an external set calculated with the point prediction model (stored in the field PointPredictionModel). These predictions are generated with the method `GetConfidenceIntervals`.
- **intervals**: numeric vector with the errors in prediction for the external set (data.new) calculated in the conformal prediction framework (not with an error model). These intervals are calculated when calling the method `GetConfidenceIntervals`.
- **plot**: stores a correlation plot for the observed against the predicted values, with individual confidence intervals, for the datapoints in an external set. The plot is a ggplot2 object which can be further customized. The plot is generated with the method `CorrelationPlot`.

The class ConformalRegression contains the following methods:

- **initialize**: this method is called when you create an instance of the class. The default value for the confidence level is 0.8.
- **CalculateAlphas**: this method calculates the vector of nonconformity scores for the datapoints in the training set. These scores (or alphas) are stored in the field `alphas`. This method requires a point prediction model (argument model), an error model (argument `error_model`), and a nonconformity measure (argument `ConformityMeasure`), such as `StandardMeasure`. 


• GetConfidenceIntervals: this method calculates confidence intervals for individual predictions in the conformal prediction framework. The method requires an external set for which the confidence intervals will be calculated. The dimensionality of these descriptors must be the same as the one used for the datapoints used to train the point prediction and the error model. The method uses the point prediction and the error models stored in the fields PointPredictionModel and ErrorModel, respectively. Confidence intervals are calculated according to Norinder et al. 2014. Confidence intervals are defined as: point predictions (stored in the field pointPredictions) +/- the output of the method GetConfidenceIntervals, which is stored in the field intervals.

• CorrelationPlot: this method generates a correlation plot for the observed against the predicted values for an external set, along with individual confidence intervals. The plot is stored in the field plot. The default values for the arguments are: obs=NULL, pred=pointPredictions, intervals=Intervals, margin = NULL, main = "", ylab = "Predicted", xlab = "Observed", PointSize =3, ColMargin = "blue", ErrorBarCol= "red", ErrorBarSize = 0.5, ErrorBarWidth = 0.5, ErrorBarPosition= "identity", ErrorBarStat = "identity", TextSize = 15, TitleSize = 18, XAxisSize = 18, YAxisSize = 18, TitleAxesSize = 18, ErrorBarAlpha=0.8, tmar = 1, bmar = 1, rmar = 1, lmar = 1, AngleLabX = 0, PointColor = "black", PointAlpha = 1, PointShape = 15, MarginWidth = 1.

Author(s)
Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

References

See Also
ConformalRegression-class ConformalClassification ConformalClassification-class conformal

Examples

showClass("ConformalRegression")

### Example

#### NOTE: the model built in this example has low predictive power as only little fraction of the training data set is used in order to make the example quick to run.
#### Thus, the example merely intends to illustrate the code.

# Optional for parallel training
library(doMC)
registerDoMC(cores=4)

data(LogS)
ConformalRegression-class

Conformal Regression

Description

R reference class to create and visualize confidence intervals for individual predictions according to the conformal prediction framework.

Fields

PointPredictionModel: stores a point prediction model.
ErrorModel: stores an error model. Error models can be trained with the function ErrorModel.
confidence: stores the level of confidence used to calculate the confidence intervals. This value is defined when instantiating a new class. Values are in the 0-1 range. Interpretation: for instance, a confidence level of 0.8 (80%) means that, at most, 20% of the confidence intervals will not contain the true value.
data.new: stores the descriptors corresponding to an external set.
alphas: stores the nonconformity scores for the datapoints used to train the point prediction model (PointPredictionModel) with the method CalculateAlphas.
errorPredictions: errors in prediction for an external set predicted with an error model (stored in the field ErrorModel). These errors are generated when calling the method GetConfidenceIntervals. These errors serve to calculate the nonconformity scores (alphas) for the external set. In the conformal prediction framework, the confidence intervals are derived from the nonconformity values (see methods CalculateAlphas and GetConfidenceIntervals).
pointPredictions: point predictions for an external set calculated with the point prediction model (stored in the field PointPredictionModel). These predictions are generated with the method GetConfidenceIntervals.
Intervals: numeric vector with the errors in prediction for the external set (data.new) calculated in the conformal prediction framework (not with an error model). These intervals are calculated when calling the method GetConfidenceIntervals.
plot: stores a correlation plot for the observed against the predicted values, with individual confidence intervals, for the datapoints in an external set. The plot is a ggplot2 object which can be further customized. The plot is generated with the method CorrelationPlot.

Methods

initialize(confi): this method is called when you create an instance of the class. The default value for the confidence level is 0.8.
CalculateAlphas(model, error_model, ConformityMeasure): this method calculates the vector of nonconformity scores for the datapoints in the training set. These scores (or alphas) are stored in the field alphas. This method requires a point prediction model (argument model), an error model (argument error_model), and a nonconformity measure (argument ConformityMeasure), such as StandardMeasure.
GetConfidenceIntervals(new.data): this method calculates confidence intervals for individual predictions in the conformal prediction framework. The method requires an external set for which the confidence intervals will be calculated. The dimensionality of these descriptors must be the same as the one used for the datapoints used to train the point prediction and the error model. The method uses the point prediction and the error models stored in the fields PointPredictionModel and ErrorModel, respectively. Confidence intervals are calculated according to Norinder et al. 2014. Confidence intervals are defined as: point predictions (stored in the field pointPredictions) +/- the output of the method GetConfidenceIntervals, which is stored in the field intervals.
CorrelationPlot(): this method generates a correlation plot for the observed against the predicted values for an external set, along with individual confidence intervals. The plot is stored in the field plot.

Author(s)

Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

References

**ErrorModel**

**See Also**

ConformalRegression ConformalClassification ConformalClassification-class conformal

---

**Description**

This function permits the calculation of an error model from (i) a training set, and (ii) a caret model trained on this set to predict the response variable of interest using cross-validation (point prediction model). The cross-validation predictions are extracted from the point prediction model. The errors in prediction for the cross-validation predictions are then calculated. These errors which serve as the response variable for the error model (i.e. the error model predicts errors in prediction). The error model uses as descriptors the same descriptors used to train the point prediction model. These descriptors are input to the function ErrorModel through the argument "x.train".

**Usage**

```
ErrorModel(PointPredictionModel, x.train, algorithm = "svmRadial", ...)
```

**Arguments**

- **PointPredictionModel**
  
  Point prediction model from which the cross-validation predictions will be extracted.

- **x.train**
  
  Descriptors for the datapoints in the training set used to train the point prediction model, and which will also serve to train the error model.

- **algorithm**
  
  The machine learning algorithm to be used to train the error model. The default value is Support Vector Machine with radial kernel ("svmRadial").

- **...**
  
  Additional arguments that can be passed to the train function from the R package caret to train the error model.

**Value**

A list of class train containing the error model (caret model).

**Author(s)**

Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

**References**

http://caret.r-forge.r-project.org/training.html

Kuhn (2008), "Building Predictive Models in R Using the caret" (http://www.jstatsoft.org/v28/i05/)

**See Also**

ConformalRegression GetCVPreds
expGrid | Expontential Grid Definition

Description
The function defines an exponential series, which can be used, e.g. when defining the parameter space when training some models such as Support Vector Machines or Gaussian Processes.

Usage
expGrid(power.from, power.to, power.by, base)

Arguments
power.from | The starting exponential of the series.
power.to | The latest exponential of the series.
power.by | The exponential step of the series.
base | The base of the exponential series.

Value
A vector with the exponential series.

Author(s)
Isidro Cortes <isidrolauscher@gmail.com>

Examples
expGrid(power.from=-10,power.to=10,power.by=2,base=10)

GetCVPreds | Extract the cross-validation predictions for the datapoints in the training set

Description
This function extracts the cross-validation predictions from a caret model trained with cross-validation. If grid-search is used to optimize the hyperparameter values, the function GetCVPreds extracts the cross-validation predictions corresponding to the optimal hyperparameter values.

Usage
GetCVPreds(model)
LogS

**Arguments**

model A caret model trained with cross-validation.

**Value**

A data frame containing the observed and the predicted values for the datapoints in the training set, their index according to the training set, the optimal hyperparameter values, and the fold index.

**Author(s)**

Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

---

**LogS**

Small Molecule Solubility (LogS) Data

**Description**

Aqueous solubility data for 1,606 small molecules. PaDEL descriptors have been computed for these molecules. The data has been split into a training (70%) and a test (30%) set.

**Details**

This dataset comprises the aqueous solubility (S) values at a temperature of 20-25 Celsius degrees in mol/L, expressed as logS, for 1,708 small molecules reported by Wang et al. Compound structures were standardized with the function StandardiseMolecules from the R package camb using the default parameters: (i) all molecules were kept irrespective of the numbers of fluorines, iodines, chlorine, and bromines present in their structure, or (ii) of their molecular mass. 905 one-dimensional topological and physicochemical descriptors were calculated with the function GeneratePadelDescriptors from the R package camb which invokes the PaDEL-Descriptor Java library. Near zero variance and highly-correlated descriptors were removed with the functions (i) RemoveNearZeroVarianceFeatures (cut-off value of 30/1), and (ii) RemoveHighlyCorrelatedFeatures (cut-off value of 0.95) After applying these steps the dataset consists of 1,606 molecules encoded with 211 descriptors.

Using data(LogS) exposes 4 objects:

(i) LogSDescsTrain is a data frame with PaDEL descriptors for the datapoints in the training set (70% of the data). (ii) LogSTrain is a numeric vector containing the data solubility values for the datapoints in the training set. (iii) LogSDescsTest is a data frame with PaDEL descriptors for the datapoints in the test set (30% of the data). (iv) LogSTest is a numeric vector containing the data solubility values for the datapoints in the test set.

**References**

Examples

# To use the data
data(LogS)

---

**LogSDescsTest** | *Small Molecule Solubility (LogS) Data: PaDEL descriptors for the test set*

Description

PaDEL descriptors have been computed for the test set.

Details

LogSDescsTest is a data frame with PaDEL descriptors for the datapoints in the test set (30% of the LogS data).

References


See Also

LogS

---

**LogSDescsTrain** | *Small Molecule Solubility (LogS) Data: PaDEL descriptors for the training set*

Description

PaDEL descriptors have been computed for the training set.

Details

LogSDescsTrain is a data frame with PaDEL descriptors for the datapoints in the training set (30% of the LogS data).

References


See Also

LogS
**LogSTest**

*Small Molecule Solubility (LogS) Data: solubility values for the data-points in the test set*

**Description**

Solubility values for the datapoints in the test set.

**Details**

LogSTest is a vector containing the solubility values for the datapoints in the test set (30% of the LogS data).

**References**


**See Also**

LogS

---

**LogSTrain**

*Small Molecule Solubility (LogS) Data: solubility values for the data-points in the training set*

**Description**

Solubility values for the datapoints in the training set.

**Details**

LogSTrain is a vector containing the solubility values for the datapoints in the training set (30% of the LogS data).

**References**


**See Also**

LogS
StandardMeasure

Default Nonconformity measure used in regression (ConformalRegression class)

Description
Nonconformity measure used by default in the class ConformalRegression to calculate nonconformity scores (alpha). StandardMeasure implements the following nonconformity measure:

\[
\text{alpha} = \frac{\text{obs} - \text{pred}}{\text{pred\_error}}
\]

where alpha is the nonconformity measure, obs is the observed value, pred the predicted value with a point prediction model, and pred\_error is the error in prediction predicted with an error model. See conformal for further information about how to derive individual confidence intervals.

Usage

StandardMeasure(obs, pred, error)

Arguments

- obs: Observed values for the response variable.
- pred: Predicted values for the response variable.
- error: Predicted errors calculated with an error model.

Value

A numeric vector with the nonconformity scores (alpha).

Author(s)

Isidro Cortes-Ciriano <isidrolauscher@gmail.com>

References


See Also

ConformalRegression
Index

conformal, 2, 10, 13, 18
conformal-package (conformal), 2
ConformalClassification, 5, 8, 10, 13
ConformalClassification-class, 7, 10, 13
ConformalRegression, 6, 8, 9, 13, 18
ConformalRegression-class, 8, 10, 11

ErrorModel, 9, 11, 13
expGrid, 14

GetCVPreds, 13, 14

LogS, 15, 16, 17
LogSDescsTest, 16
LogSDescsTrain, 16
LogSTest, 17
LogSTrain, 17

StandardMeasure, 2, 9, 12, 18, 18