Package ‘conicfit’

October 5, 2015

Type Package

Title Algorithms for Fitting Circles, Ellipses and Conics Based on the Work by Prof. Nikolai Chernov

Version 1.0.4

Encoding UTF-8

Description Geometric circle fitting with Levenberg-Marquardt (a, b, R), Levenberg-Marquardt reduced (a, b), Landau, Spath and Chernov-Lesort. Algebraic circle fitting with Taubin, Kasa, Pratt and Fitzgibbon-Pilu-Fisher. Geometric ellipse fitting with ellipse LMG (geometric parameters) and conic LMA (algebraic parameters). Algebraic ellipse fitting with Fitzgibbon-Pilu-Fisher and Taubin.

License GPL (>= 3)

Depends R (>= 2.7.0), pracma, geigen

Author Jose Gama [aut, cre], Nikolai Chernov [aut, cph]

Maintainer Jose Gama <rxprtgama@gmail.com>

Repository CRAN

Repository/R-Forge/Project conicfit

Repository/R-Forge/Revision 10

Repository/R-Forge/DateTimeStamp 2015-10-05 15:19:30

Date/Publication 2015-10-05 22:57:57

NeedsCompilation no

R topics documented:

 AtoG ... 2
calculateCircle ... 3
calculateEllipse 4
CircleFitByKasa 6
CircleFitByLandau 7
CircleFitByPratt 8
CircleFitBySpath 9
AtoG

Conversion of algebraic parameters to geometric parameters

Description

AtoG converts algebraic parameters \((A, B, C, D, E, F)\) to geometric parameters \((\text{Center}(1:2), \text{Axes}(1:2), \text{Angle})\).

Usage

\[
\text{AtoG(ParA)}
\]

Arguments

\[
\text{ParA} \quad \text{vector or array with geometric parameters} \ (A, B, C, D, E, F)
\]

Format

code is: -1 - degenerate cases 0 - imaginary ellipse 4 - imaginary parell lines 1 - ellipse 2 - hyperbola 3 - parabola

Value

\[
\text{list(ParG, exitCode)}
\]

list with algebraic parameters \((\text{Center}(1:2), \text{Axes}(1:2), \text{Angle})\) and exit code

Author(s)

Jose Gama
calculateCircle

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```r
AtoG(c(0.0551,-0.0908,0.1588,0.0489,-0.9669,0.1620))
```

calculateCircle

Generate points from a circle

Description

calculateCircle generates points from a circle with many options, equally spaced, randomly spaced, with noise added to the radius or limited to a segment of angle alpha.

Usage

calculateCircle(x, y, r, steps=50, sector=c(0,360), randomDist=FALSE, randomFun=runif, noiseFun = NA, ...)

Arguments

- `x` center point x
- `y` center point y
- `r` radius
- `steps` number of points
- `sector` limited circular sector
- `randomDist` logical, TRUE = randomly spaced
- `randomFun` random function for the position of the points in the circle
- `noiseFun` random function for the noise
- `...` optional parameters to pass to randomFun

Value

- `points` array n x 2 of point coordinates.
Author(s)

Jose Gama

Examples

```r
## Not run:
# 100 points from a circle at c(0,0) with radius=200
a <- calculateCircle(0,0,200,100)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250))
par(new=T)
# 12 points from a circle at c(0,0) with radius=100, points between 0 and 90
#degrees
a <- calculateCircle(0,0,100,12,c(0,90))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='red')
par(new=T)
# 12 points from a circle at c(0,0) with radius=180, points between 0 and 180
#degrees, uniform random distribution
a <- calculateCircle(0,0,180,12,c(0,180),TRUE)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='green')
par(new=T)
# 12 points from a circle at c(0,0) with radius=170, points between 0 and 180
#degrees, normal random distribution
a <- calculateCircle(0,0,170,12,c(0,180),TRUE,rnorm)
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='blue')
par(new=T)
## Not run:
# 12 points from a circle at c(0,0) with radius=200, points between 0 and 180
#degrees, positioned by uniform random distribution, noise=normal random
#distribution with sd=10
a <- calculateCircle(0,0,200,12,c(180,360),TRUE,noiseFun=function(x)
(x+rnorm(1,mean=0,sd=10)))
plot(a[,1],a[,2],xlim=c(-250,250),ylim=c(-250,250),col='orange')
```

End(Not run)

calculateEllipse | Generate points from a ellipse

Description

calculateEllipse generates points from a ellipse with many options, equally spaced, randomly spaced, with noise added to the radius or limited to a segment of angle alpha.

Usage

calculateEllipse(x, y, a, b, angle = 0, steps = 50, sector = c(0, 360), randomDist = FALSE, randomFun = runif, noiseFun = NA, ...)
calculateEllipse

Arguments

- x: center point x
- y: center point y
- a: axis a
- b: axis b
- angle: tilt angle
- steps: number of points
- sector: limited circular sector
- randomDist: logical, TRUE = randomly spaced
- randomFun: random function for the position of the points in the ellipse
- noiseFun: random function for the noise
- ...: optional parameters to pass to randomFun

Value

- points: array n x 2 of point coordinates.

Author(s)

Jose Gama

Examples

```
# Not run:
# 50 points from an ellipse at c(0, 0) with axis (200, 100), angle 45 degrees
a <- calculateEllipse(0, 0, 200, 100, 45, 50)
plot(a[,1], a[,2], xlim=c(-250, 250), ylim=c(-250, 250))
par(new=T)

# 10 points from an ellipse at c(0, 0) with axis (200, 100), angle 45 degrees,
# points between 0 and 180 # degrees, normal random distribution
b <- calculateEllipse(0, 0, 200, 100, 45, 10, c(0, 90))
plot(b[,1], b[,2], xlim=c(-250, 250), ylim=c(-250, 250), col='red')
par(new=T)

# 50 points from an ellipse at c(0, 0) with axis (200, 100), angle 45 degrees
# points between 0 and 180 # degrees, randomDist=TRUE,noiseFun=norm(x)
# (x+norm(1,mean=0, sd=10))
plot(a[,1], a[,2], xlim=c(-250, 250), ylim=c(-250, 250), col='cyan')
```

End(Not run)
CircleFitByKasa

Algebraic circle fit (Kasa method)

Description

CircleFitByKasa applies the simple algebraic circle fit (Kasa method)

Usage

```
CircleFitByKasa(XY)
```

Arguments

- `XY` array of sample data

Value

- `vector(a, b, R)`
 vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```
xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c3 <- CircleFitByKasa(xy)
xyc3<-calculateCircle(c3[1],c3[2],c3[3])
plot(xyc3[,1],xyc3[,2],xlim=c(-250,250),ylim=c(-250,250),col='green',type='l');par(new=TRUE)
```
CircleFitByLandau

Description

CircleFitByLandau applies the Geometric circle fit (minimizing orthogonal distances) by Landau algorithm.

Usage

```r
CircleFitByLandau(XY, ParIni = NA, epsilon = 1e-06, IterMAX = 50)
```

Arguments

- `XY` array of sample data
- `ParIni` initial guess (a, b, R)
- `epsilon` tolerance (small threshold)
- `IterMAX` maximal number of iterations, with a bad initial guess it may take >100 iterations

Value

```r
typevector(a, b, R)
```

vector with the values for the circle: center (a, b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```r
cy <- calculateCircle(0, 0, 200, 50, randomDist = TRUE, noiseFun = function(x) (x + rnorm(1, mean = 0, sd = 50)))
plot(xy[, 1], xy[, 2], xlim = c(-250, 250), ylim = c(-250, 250)); par(new = TRUE)
c6 <- CircleFitByLandau(xy)
xyc6 <- calculateCircle(c6[1], c6[2], c6[3])
plot(xyc6[, 1], xyc6[, 2], xlim = c(-250, 250), ylim = c(-250, 250), col = 'purple', type = 'l'); par(new = TRUE)
```

CircleFitByPratt

Algebraic circle fit by Pratt

Description

CircleFitByPratt applies the Algebraic circle fit by Pratt

Usage

```r
CircleFitByPratt(XY)
```

Arguments

`XY`
array of sample data

Value

`vector(a, b, R)`

vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
CircleFitBySpath

Examples

```r
xy<--calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0, sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c2 <- CircleFitByPratt(xy)
xyc2<-calculateCircle(c2[1],c2[2],c2[3])
plot(xyc2[,1],xyc2[,2],xlim=c(-250,250),ylim=c(-250,250),col='blue',type='l');par(new=TRUE)
```

Description

CircleFitBySpath applies the Geometric circle fit by Spath

Usage

```
CircleFitBySpath(XY, ParIni = NA, epsilon = 1e-06, IterMAX = 50)
```

Arguments

- `XY`: array of sample data
- `ParIni`: initial guess (a, b, R)
- `epsilon`: tolerance (small threshold)
- `IterMAX`: maximal number of iterations, with a bad initial guess it may take >100 iterations

Value

- `vector(a, b, R)`: vector with the values for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
Examples

```r
xy <- calculateCircle(0, 0, 200, 50, randomDist=TRUE, noiseFun=function(x) (x+rnorm(1, mean=0, sd=50)))
plot(xy[,1],xy[,2], xlim=c(-250,250), ylim=c(-250,250)); par(new=TRUE)
c5 <- CircleFitByTaubin(xy)
xyc5 <- calculateCircle(c5[1], c5[2], c5[3])
plot(xyc5[,1], xyc5[,2], xlim=c(-250,250), ylim=c(-250,250), col='magenta', type='l'); par(new=TRUE)
```

CircleFitByTaubin
Algebraic circle fit (Taubin method)

Description

CircleFitByTaubin applies the simple algebraic circle fit (Taubin method).

Usage

```r
CircleFitByTaubin(XY)
```

Arguments

- **XY**
 array of sample data

Value

- vector(a, b, R)
 vector with the values for the circle: center (a, b) and radius R

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares
http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares
Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares
http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares
Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
EllipseDirectFit

Examples

```r
xy<calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c1 <- CircleFitByTaubin(xy)
xyc1<calculateCircle(c1[1],c1[2],c1[3])
plot(xyc1[,1],xyc1[,2],xlim=c(-250,250),ylim=c(-250,250),col='red',type='l');par(new=TRUE)
```

EllipseDirectFit
Algebraic ellipse fit method by Fitzgibbon-Pilu-Fisher

Description

EllipseDirectFit applies the algebraic ellipse fit method by Fitzgibbon-Pilu-Fisher

Usage

```r
EllipseDirectFit(XY)
```

Arguments

- **XY**
 array of sample data

Value

```r
vector(A,B,C,D,E,F)
```

vector of algebraic parameters of the fitting ellipse: $ax^2 + bxy + cy^2 + dx + ey + f = 0$

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/c1/

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Examples

xy<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta');par(new=TRUE)

ellipDirect <- EllipseDirectFit(xy)
ellipDirectG <- atog(ellipDirect)$ParG
xyDirect<-calculateEllipse(ellipDirectG[1], ellipDirectG[2], ellipDirectG[3],
ellipDirectG[4], 180/pi*ellipDirectG[5])
plot(xyDirect[,1],xyDirect[,2],xlim=c(-250,250),ylim=c(-250,250),type='l',
col='cyan');par(new=TRUE)

EllipseFitByTaubin Algebraic ellipse fit by Taubin

Description

EllipseFitByTaubin applies the Algebraic ellipse fit by Taubin

Usage

EllipseFitByTaubin(XY)

Arguments

XY array of sample data

Value

vector(A,B,C,D,E,F)

vector with the values for the ellipse

Author(s)

Jose Gama
ellipticity

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```r
xy<-calculateEllipse(0,0,200,100,45,50, randomDist=TRUE, noiseFun=function(x) (x+rt(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250),col='magenta');par(new=TRUE)

elliptaubin <- EllipseFitByTaubin(xy)
elliptaubing <- Atog(elliptaubin)$ParG
xyTaubin<-calculateEllipse(elliptaubinG[1], elliptaubinG[2], elliptaubinG[3], elliptaubinG[4], 180/pi*elliptaubinG[5])
plot(xyTaubin[,1],xyTaubin[,2],xlim=c(-250,250),ylim=c(-250,250),type='l', col='red');par(new=TRUE)
```

| ellipticity | Formulas for the ellipse |

Description

ellipticity ellipticity = flattening factor ellipseEccentricity eccentricity of the ellipse ellipseFocus focus of the ellipse ellipseRa radius at apoapsis (the farthest distance) ellipseRp radius at periapsis (the closest distance) ellipse.l semi-latus rectum l

Usage

```r
ellipticity(minorAxis,majorAxis)
```

Arguments

- `minorAxis` minor ellipse axis
- `majorAxis` major ellipse axis

Value

scalar result
estimateInitialGuessCircle

Estimate Initial Guess Circle values

Description

estimateInitialGuessCircle estimates initial guess values for the center and radius of the circle.

Usage

`estimateInitialGuessCircle(XY)`

Arguments

`XY` array of sample data

Value

vector(a, b, R)

vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama

Examples

```r
xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
estimateInitialGuessCircle(xy)
```
fit.conicLMA

Fitting a conic to a given set of points (Implicit method)

Description

fit.conicLMA fits a conic to a given set of points (Implicit method) using algebraic parameters. Conic: \(Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 \)

Usage

```r
fit.conicLMA(XY, ParAini, LambdaIni, epsilonP = 1e-10, epsilonF = 1e-13,
IterMAX = 2e+06)
```

Arguments

- **XY**: array of sample data
- **ParAini**: initial parameter vector \(c(A,B,C,D,E,F) \)
- **LambdaIni**: initial value of the control parameter Lambda
- **epsilonP**: tolerance (small threshold)
- **epsilonF**: tolerance (small threshold)
- **IterMAX**: maximum number of (main) iterations, usually 10-20 will suffice

Value

- list(ParA, RSS, iters)
 - list with algebraic parameters (Center(1:2), Axes(1:2), Angle), Residual Sum of Squares and number of iterations

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/c1/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```r
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParAini <- matrix(c(0.2500,0, 1.0000, 0, 0, -1.0000),ncol=1)
LambdaIni=0.1
fit.conicLMA(XY,ParAini,LambdaIni)
```

fit.ellipseLMG

Fitting an ellipse using Implicit method

Description

fit.ellipseLMG Fits an ellipse to a given set of points (Implicit method) using geometric parameters. Conic:

Usage

```r
fit.ellipseLMG(XY,ParGini,LambdaIni = 1, epsilon = 1e-06, IterMAX = 200, L = 200)
```

Arguments

- `XY` array of sample data
- `ParGini` initial parameter vector c(Center(1:2), Axes(1:2), Angle)
- `LambdaIni` initial value of the control parameter Lambda
- `epsilon` tolerance (small threshold)
- `IterMAX` maximum number of (main) iterations, usually 10-20 will suffice
- `L` boundary for major/minor axis

Value

```r
list(ParG,RSS,Iters,TF)
```

list with geometric parameters (A,B,C,D,E,F), Residual Sum of Squares, number of iterations and TF==TRUE if the method diverges

Author(s)

Jose Gama
fitbookstein

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```r
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParGini <- matrix(c(0,0,2,1,0),ncol=1)
LambdaIni=0.1
fit.ellipseLMG(XY,ParGini,LambdaIni)
```

Description

fitbookstein Linear ellipse fit using bookstein constraint

conic2parametric Diagonalise A - find Q, D such at A = Q' * D * Q

fitggk Linear least squares with the Euclidean-invariant constraint Trace(A) = 1

Usage

```r
fitbookstein(x)
```

Arguments

- `x` array of sample data

Value

- `list(z, a, b, alpha)` list with fitted ellipse parameters
Author(s)
José Gama

Source

References

GtoA
Conversion of geometric parameters to algebraic parameters

Description
GtoA converts geometric parameters (A, B, C, D, E, F) to algebraic parameters (Center(1:2), Axes(1:2), Angle).

Usage
GtoA(ParG)

Arguments

<table>
<thead>
<tr>
<th>ParG</th>
</tr>
</thead>
<tbody>
<tr>
<td>list with geometric parameters (A, B, C, D, E, F)</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>ParA</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector or array with algebraic parameters (Center(1:2), Axes(1:2), Angle)</td>
</tr>
</tbody>
</table>

Author(s)
José Gama

Source
Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/
Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

GtoA(c(0,0,20,60,45))

\begin{verbatim}
JmatrixLMA
Compute the Jacobian matrix using algebraic parameters
\end{verbatim}

Description

\texttt{JmatrixLMA} Computes the Jacobian matrix (Implicit method) using algebraic parameters

Usage

\texttt{JmatrixLMA(XY,ParA,XYproj)}

Arguments

- \texttt{XY} array of sample data
- \texttt{ParA} initial parameter vector c(Center(1:2), Axes(1:2), Angle)
- \texttt{XYproj} corresponding n projection points on the conic

Value

\texttt{list(Res,J)} list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
Examples

```r
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParA <- matrix(c(0.25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),ncol=1)
XYproj=matrix(c(0.394467220216675,0.390356518335872,0.333315950425981,
               0.90963326557293,1.40466123643977,0.711850899213363,
               1.78601340510202,0.52189957274429,1.89925244997324,0.313384799914835,
               1.06482258038841,0.846485805004280,1.95308457257492,
               0.215325713960169,1.91319150256275,0.291418282297698),8,2,byrow=TRUE)
JmatrixLMA(XY,ParA,XYproj)
```

Description

JmatrixLMG Computes the Jacobian matrix (Implicit method) using geometric parameters

Usage

```r
JmatrixLMG(XY,A,XYproj)
```

Arguments

- **XY**: array of sample data
- **A**: initial parameter vector c(Xc,Yc,a,b,alpha)
- **XYproj**: corresponding n projection points on the conic

Value

- list(Res,J) list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/c1/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/c1/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
Examples

```r
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
A <- matrix(c(0,0,2,1,0),ncol=1)
XYproj=matrix(c(0.394467220216675,0.980356518335872,0.833315950425981,
   0.9096326557293,1.40466123643977,0.711850899213363,
   1.78601340510202,0.521899957274429,1.89925244997324,0.313384799914835,
   1.06482258038841,0.846485805004280,1.95308457257492,
   0.215325713960169,1.91319150256275,0.291418202297698),8,2,byrow=TRUE)
JmatrixLMG(XY,A,XYproj)
```

LMcircleFit

Geometric circle fit (minimizing orthogonal distances) based on the Levenberg-Marquardt method

Description

LMcircleFit applies a Geometric circle fit (minimizing orthogonal distances) based on the standard Levenberg-Marquardt scheme

Usage

```r
LMcircleFit(XY, ParIni, LambdaIni = 1, epsilon = 1e-06, IterMAX = 50)
```

Arguments

- **XY**: array of sample data
- **ParIni**: initial guess (a, b, R)
- **LambdaIni**: initial value for the correction factor lambda
- **epsilon**: tolerance (small threshold)
- **IterMAX**: maximum number of (main) iterations, usually 10-20 will suffice

Value

- vector(a, b, R): vector with the estimates for the circle: center (a,b) and radius R

Author(s)

- Jose Gama

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117
References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```r
xy <- calculateCircle(0, 0, 200, 50, randomDist=TRUE, noiseFun=function(x) (x+rnorm(1, mean=0, sd=50)))
plot(xy[,1], xy[,2], ylim=c(-250,250), xlim=c(-250,250)); par(new=TRUE)
c4 <- LMcircleFit(xy)
xyc4 <- calculateCircle(c4[1], c4[2], c4[3])
plot(xyc4[,1], xyc4[,2], ylim=c(-250,250), xlim=c(-250,250), col='cyan', type='l')
```

```
LMreducedCircleFit  Geometric circle fit (minimizing orthogonal distances) based on
                    the Levenberg-Marquardt method

Description

LMreducedCircleFit applies a Geometric circle fit (minimizing orthogonal distances) based on
the standard Levenberg-Marquardt scheme in the "reduced" (a,b) parameter space

Usage

LMreducedCircleFit(XY, ParIni, LambdaIni = 1, epsilon = 1e-06, 
IterMAX = 50)

Arguments

XY                  array of sample data
ParIni              initial guess (a, b)
LambdaIni           initial value for the correction factor lambda
epsilon             tolerance (small threshold)
IterMAX             maximum number of (main) iterations, usually 10-20 will suffice

Value

vector(a, b, R)

vector with the estimates for the circle: center (a,b) and radius R

Author(s)

Jose Gama
Residuals.ellipse

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

Nikolai Chernov, 2010 Circular and linear regression: Fitting circles and lines by least squares Chapman & Hall/CRC, Monographs on Statistics and Applied Probability, Volume 117

Examples

```r
xy<-calculateCircle(0,0,200,50,randomDist=TRUE,noiseFun=function(x) (x+rnorm(1,mean=0,sd=50)))
plot(xy[,1],xy[,2],xlim=c(-250,250),ylim=c(-250,250));par(new=TRUE)
c7 <- LMreducedCircleFit(xy)
xyc7<-calculateCircle(c7[1],c7[2],c7[3])
plot(xyc7[,1],xyc7[,2],xlim=c(-250,250),ylim=c(-250,250),col='pink',type='l')
```

---

Residuals.ellipse

Projecting a given set of points onto an ellipse

Description

Residuals.ellipse projects a given set of points onto an ellipse and computing the distances from the points to the ellipse

Usage

Residuals.ellipse(XY,ParG)

Arguments

- **XY** array of sample data
- **ParG** vector 5x1 of the ellipse parameters (Center(1:2), Axes(1:2), Angle)

Value

- list(Res,J) list with the Residual Sum of Squares and the Jacobian matrix

Author(s)

Jose Gama
Residuals.hyperbola

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```r
XY <- matrix(c(1,7,2,6,5,8,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
Residuals.ellipse(XY,ParG)
```

---

Residuals.hyperbola  *Projecting a given set of points onto an hyperbola*

Description

Residuals.hyperbola projects a given set of points onto an hyperbola and computing the distances from the points to the hyperbola.

Usage

```r
Residuals.hyperbola(XY,ParG)
```

Arguments

- `XY`: array of sample data
- `ParG`: vector 5x1 of the hyperbola parameters (Center(1:2), Axes(1:2), Angle)

Value

- `list(RSS, XYproj)`: list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

Jose Gama
Residuals.parabola

Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

\[
\begin{align*}
XY & \leftarrow \text{matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)} \\
ParG & \leftarrow \text{matrix(c(0,0,2,1,0),ncol=1)} \\
\text{Residuals.hyperbola(XY,ParG)} \\
\end{align*}
\]

Residuals.parabola Projecting a given set of points onto an parabola

Description

Residuals.parabola projects a given set of points onto an parabola and computing the distances from the points to the parabola

Usage

Residuals.parabola(XY,ParG)

Arguments

XY array of sample data
ParG vector 4x1 of the parabola parameters (Vertex(1:2), p, Angle)

Value

list(RSS, XYproj)

list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)

Jose Gama
ResidualsG

Source
Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/
N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References
Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/
N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
Residuals.parabola(XY,ParG)

ResidualsG PROJECTING A GIVEN SET OF POINTS ONTO AN ELLipse

Description
ResidualsG projects a given set of points onto an ellipse and computing the distances from the points to the ellipse

Usage
ResidualsG(XY,ParG)

Arguments
XY array of sample data
ParG vector 5x1 of the ellipse parameters (Center(1:2), Axes(1:2), Angle)

Value
list(RSS, XYproj)
list with the Residual Sum of Squares and the array of coordinates of projections

Author(s)
Jose Gama


Source

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

References

Nikolai Chernov, 2014 Fitting ellipses, circles, and lines by least squares http://people.cas.uab.edu/~mosya/cl/

N. Chernov, Q. Huang, and H. Ma, 2014 Fitting quadratic curves to data points British Journal of Mathematics & Computer Science, 4, 33-60.

Examples

```r
XY <- matrix(c(1,7,2,6,5,8,7,7,9,5,3,7,6,2,8,4),8,2,byrow=TRUE)
ParG <- matrix(c(0,0,2,1,0),ncol=1)
ResidualsG(XY,ParG)
```
Index

*Topic datasets
  AtoG, 2
  CircleFitByKasa, 6
  CircleFitByLandau, 7
  CircleFitByPratt, 8
  CircleFitBySpath, 9
  CircleFitByTaubin, 10
  EllipseDirectFit, 11
  EllipseFitByTaubin, 12
  ellipticity, 13
  estimateInitialGuessCircle, 14
  fit.conicLMA, 15
  fit.ellipseLMG, 16
  fitbookstein, 17
  GtoA, 18
  JmatrixLMA, 19
  JmatrixLMG, 20
  LMcircleFit, 21
  LMreducedCircleFit, 22
  Residuals.ellipse, 23
  Residuals.hyperbola, 24
  Residuals.parabola, 25
  ResidualsG, 26

*Topic programming
  calculateCircle, 3
  calculateEllipse, 4
  ellipseEccentricity (ellipticity), 13
  EllipseFitByTaubin, 12
  ellipseFocus (ellipticity), 13
  ellipseRa (ellipticity), 13
  ellipseRp (ellipticity), 13
  ellipticity, 13
  estimateInitialGuessCircle, 14
  fit.conicLMA, 15
  fit.ellipseLMG, 16
  fitbookstein, 17
  fitggk (fitbookstein), 17
  GtoA, 18
  JmatrixLMA, 19
  JmatrixLMG, 20
  LMcircleFit, 21
  LMreducedCircleFit, 22
  Residuals.ellipse, 23
  Residuals.hyperbola, 24
  Residuals.parabola, 25
  ResidualsG, 26

AtoG, 2

calculateCircle, 3
calculateEllipse, 4
CircleFitByKasa, 6
CircleFitByLandau, 7
CircleFitByPratt, 8
CircleFitBySpath, 9
CircleFitByTaubin, 10
conic2parametric (fitbookstein), 17

eclipse.l (ellipticity), 13
EllipseDirectFit, 11