Package ‘conogive’

October 12, 2022

Title Congeneric Normal-Ogive Model

Version 1.0.0

Description The congeneric normal-ogive model is a popular model for psychometric data (McDonald, R. P. (1997) <doi:10.1007/978-1-4757-2691-6_15>). This model estimates the model, calculates theoretical and concrete reliability coefficients, and predicts the latent variable of the model. This is the companion package to Moss (2020) <doi:10.31234/osf.io/nvg5d>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/JonasMoss/conogive

BugReports https://github.com/JonasMoss/conogive/issues

RoxygenNote 7.1.0

Imports psych, mvtnorm, checkmate, assertthat

Suggests testthat (>= 2.1.0), psychTools, covr

NeedsCompilation no

Author Jonas Moss [aut, cre] (<https://orcid.org/0000-0002-6876-6964>)

Maintainer Jonas Moss <jonas.gjertsen@gmail.com>

Repository CRAN

Date/Publication 2020-06-30 10:30:02 UTC

R topics documented:

 conogive .. 2
 massage_cuts ... 3
 predict.conogive ... 3
 reliability .. 4

Index 6
conogive

Estimate a Congeneric Normal-Ogive Model

Description

cogive is used to estimate congeneric normal-ogive models (McDonald, R. P. (1997)).

Usage

cogive(data, use = "complete.obs", ...)

Arguments

data A data frame of observations or a named list with elements lambda, sigma, and cuts. See the details.
use Passed to stats::cov; defaults to "complete.obs".
... Passed to psych::fa, where fm = "ml" by default.

Details

The data argument can be either a list containing the parameters of a normal-ogive model, or raw data. If actual data is passed to data, it is passed to psych::polychoric to estimate its polychoric correlation matrix and cutoffs. This is passed to psych::fa to do a barebones multivariate normal-ogive model. The ... arguments are passed to psych::fa, which is called with fm = "ml" by default.

Likert data should start with 1, not 0.

Value

An object of class cogive.

References

Examples

if(require("psychTools")) {
 extraversion = psychTools::bfi[c("E1", "E2", "E3", "E4", "E5")]
 extraversion[, "E1"] = 7 - extraversion[, "E1"] # Reverse-coded item.
 extraversion[, "E2"] = 7 - extraversion[, "E2"] # Reverse-coded item.
 fit = cogive(extraversion)
}
Description

Massage Cuts to the Desired Shape

Usage

```r
massage_cuts(cuts, k)
```

Arguments

- `cuts`: A matrix, list, or vector of cuts
- `k`: Optional k saying how many times the vector of cuts should be repeated. Only matters when `cuts` is a vector.

predict.conogive

Predict Method for Conogive Objects

Description

Predict the latent variable in a congeneric normal-ogive model using the formula of ((arxiv ref.))

Usage

```r
## S3 method for class 'conogive'
predict(object, newdata, weights = c("optimal", "equal"), ...)
```

Arguments

- `object`: An object of class "conogive".
- `newdata`: An optional data frame with variables to predict with. The fitted values are used if omitted.
- `weights`: Weights to use; choose between optimal weights and equal weights.
- `...`: Ignored.

Examples

```r
if(require("psychTools")) {
  extraversion = psychTools::bfi[c("E1", "E2", "E3", "E4", "E5")]
  extraversion[, "E1"] = 7 - extraversion[, "E1"] # Reverse-coded item.
  extraversion[, "E2"] = 7 - extraversion[, "E2"] # Reverse-coded item.
  object = conogive(extraversion)
  hist(predict(object, extraversion)) # Plot distribution of predictions.
}
```
Description

The function ordinal_r calculates the concrete ordinal reliability. The functions theoretical_ordinal_r and theoretical_ordinal_alpha calculates the theoretical ordinal reliability and alpha based on the polychoric correlation matrix.

Usage

\[
\text{ordinal_r}(
 \text{object},
 \text{xi} = \text{c("sample", "theoretical")},
 \text{weights} = \text{c("optimal", "equal")}
)\\
\]

\[
\text{theoretical_ordinal_r}(
 \text{object},
 \text{weights} = \text{c("optimal", "equal", "sigma")}
)\\
\]

\[
\text{theoretical_ordinal_alpha}(
 \text{object}
)\\
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An object of class conogive.</td>
</tr>
<tr>
<td>xi</td>
<td>How to calculate the Xi matrix. Option "theoretical" calculates the theoretical Xi matrix from rho, while "sample" calculates the sample Xi matrix.</td>
</tr>
<tr>
<td>weights</td>
<td>The weights used to calculate the ordinal reliability. Option "optimal" uses the optimal weights and "equal" the equal weights.</td>
</tr>
</tbody>
</table>

Details

The population value of theoretical ordinal alpha equals the theoretical ordinal reliability when the underlying multivariate normal is parallel. The concrete ordinal reliability is the squared correlation between the true latent variable and the best linear predictor of the observed Likert-type data. See ((ref)) for definitions.

Value

The concrete ordinal reliability, theoretical ordinal reliability, or theoretical ordinal alpha.

Examples

```r
if(require("psychTools")) {
  agreeableness[, "A1"] = 7 - agreeableness[, "A1"] # Reverse-coded item.
  object = conogive(agreeableness)
  ordinal_r(object, weights = "equal") # 0.6394087
}
theoretical_ordinal_alpha(object) # 0.7589922
theoretical_ordinal_r(object, weights = "equal") # 0.7689878
ordinal_r(object, weights = "optimal") # 0.6763742
theoretical_ordinal_r(object) # 0.8101108
}
Index

conogive, 2

massage_cuts, 3

ordinal_r (reliability), 4

predict.conogive, 3

reliability, 4

theoretical_ordinal_alpha
  (reliability), 4

theoretical_ordinal_r (reliability), 4