Package ‘conover.test’

April 9, 2024

Version 1.1.6
Date 2024-04-09
Title Conover-Iman Test of Multiple Comparisons Using Rank Sums
Author Alexis Dinno
Maintainer Alexis Dinno <alexis.dinno@pdx.edu>
Description Computes the Conover-Iman test (1979) for 0th-order stochastic dominance and reports the results among multiple pairwise comparisons after a Kruskal-Wallis omnibus test for 0th-order stochastic dominance among k groups (Kruskal and Wallis, 1952). conover.test makes k(k-1)/2 multiple pairwise comparisons based on Conover-Iman t-test-statistic of the rank differences. The null hypothesis for each pairwise comparison is that the probability of observing a randomly selected value from the first group that is larger than a randomly selected value from the second group equals one half; this null hypothesis corresponds to that of the Wilcoxon-Mann-Whitney rank-sum test. Like the rank-sum test, if the data can be assumed to be continuous, and the distributions are assumed identical except for a difference in location, Conover-Iman test may be understood as a test for median difference and for mean difference. conover.test accounts for tied ranks. The Conover-Iman test is strictly valid if and only if the corresponding Kruskal-Wallis null hypothesis is rejected.
License GPL-2
LazyData true
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2024-04-09 20:40:07 UTC

R topics documented:

conover.test .. 2
homecare .. 6

Index 7
conover.test

Conover-Iman Test

Description

Performs the Conover-Iman test of multiple comparisons using rank sums

Usage

```r
conover.test (x, g=NA, method=p.adjustment.methods, kw=TRUE, label=TRUE,
             wrap=FALSE, table=TRUE, list=FALSE, rmc=FALSE, alpha=0.05, altp=FALSE)
```

p.adjustment.methods
c("none", "bonferroni", "sidak", "holm", "hs", "hochberg", "bh", "by")

Arguments

- `x` a numeric vector, or a list of numeric vectors. Missing values are ignored. If the former, then groups must be specified using `g`.
- `g` a factor variable, numeric vector, or character vector indicating group. Missing values are ignored.
- `method` adjusts the p-value for multiple comparisons using the Bonferroni, Šidák, Holm, Holm-Šidák, Hochberg, Benjamini-Hochberg, or Benjamini-Yekutieli adjustment (see Details). The default is no adjustment for multiple comparisons.
- `kw` if ‘TRUE’ then the results of the Kruskal-Wallis test are reported.
- `label` if ‘TRUE’ then the factor labels are used in the output table.
- `wrap` does not break up tables to maintain nicely formatted output. If ‘FALSE’ then output of large tables is broken up across multiple pages.
- `table` outputs results of the Conover-Iman test in a table format, as qualified by the `label` and `wrap` options.
- `list` outputs results of the Conover-Iman test in a list format.
- `rmc` if ‘TRUE’ then the reported test statistics and table are based on row minus column, rather than the default column minus row (i.e. the signs of the test statistic are flipped).
- `alpha` the nominal level of significance used in the step-up/step-down multiple comparisons procedures (Holm, Holm-Šidák, Hochberg, Benjamini-Hochberg, and Benjamini-Yekutieli).
- `altp` if ‘TRUE’ then express p-values in alternative format. The default is to express p-value = P(T \geq |t|), and reject Ho if p \leq \alpha/2. When the `altp` option is used, p-values are instead expressed as p-value = P(|T| \geq |t|), and reject Ho if p \leq \alpha. These two expressions give identical test results. Use of `altp` is therefore merely a semantic choice.
conover.test computes the Conover-Iman test (Conover and Iman, 1979; Conover, 1999) for 0th-order stochastic dominance and reports the results among multiple pairwise comparisons after a Kruskal-Wallis omnibus test for 0th-order stochastic dominance among k groups (Kruskal and Wallis, 1952). Pairwise comparison using the Conover-Iman test is valid if and only if the corresponding Kruskal-Wallis null hypothesis is rejected, but is strictly more powerful than Dunn’s (1964) post hoc multiple comparisons test. conover.test makes $m = k(k-1)/2$ multiple pairwise comparisons based on the Conover-Iman t-test-statistic for the rank-sum differences. The null hypothesis for each pairwise comparison is that the probability of observing a randomly selected value from the first group that is larger than a randomly selected value from the second group equals one half; this null hypothesis corresponds to that of the Wilcoxon-Mann-Whitney rank-sum test. Like the rank-sum test, if the data can be assumed to be continuous, and the distributions are assumed identical except for a difference in location, the Conover-Iman test may be understood as a test for median difference and for mean difference. conover.test accounts for tied ranks.

conover.test outputs both z-test-statistics for each pairwise comparison and the p-value = $P(T \geq |t|)$ for each. Reject Ho based on $p \leq \alpha/2$ (and in combination with p-value ordering for stepwise method options). If you prefer to work with p-values expressed as p-value = $P(|T| \geq |t|)$ use the altp=TRUE option, and reject Ho based on $p \leq \alpha$ (and in combination with p-value ordering for stepwise method options). These are exactly equivalent rejection decisions.

Several options are available to adjust p-values for multiple comparisons, including methods to control the family-wise error rate (FWER) and methods to control the false discovery rate (FDR):

- ‘none’ no adjustment is made. Those comparisons rejected without adjustment at the α level (two-sided test) are starred in the output table, and starred in the list when using the list=TRUE option.
- ‘bonferroni’ the FWER is controlled using Dunn’s (1961) Bonferroni adjustment, and adjusted p-values = max(1, pm). Those comparisons rejected with the Bonferroni adjustment at the α level (two-sided test) are starred in the output table, and starred in the list when using the list=TRUE option.
- ‘sidak’ the FWER is controlled using Šidák’s (1967) adjustment, and adjusted p-values = $\max(1, 1 - (1 - p)^m)$. Those comparisons rejected with the Šidák adjustment at the α level (two-sided test) are starred in the output table, and starred in the list when using the list=TRUE option.
- ‘holm’ the FWER controlled using Holm’s (1979) progressive step-up procedure to relax control on subsequent tests. p values are ordered from smallest to largest, and adjusted p-values = $\max[1, p(m+1-i)]$, where i indexes the ordering. All tests after and including the first test to not be rejected are also not rejected.
- ‘hs’ the FWER is controlled using the Holm-Šidák adjustment (Holm, 1979): another progressive step-up procedure but assuming dependence between tests. p values are ordered from smallest to largest, and adjusted p-values = $\max[1, 1 - (1 - p)^{(m+1-i)}]$, where i indexes the ordering. All tests after and including the first test to not be rejected are also not rejected.
‘hochberg’ the FWER is controlled using Hochberg’s (1988) progressive step-down procedure to increase control on successive tests. p values are ordered from largest–smallest, and adjusted p-values $= \max[1, p^i]$, where i indexes the ordering. All tests after and including the first to be rejected are also rejected.

‘bh’ the FDR is controlled using the Benjamini-Hochberg adjustment (1995), a step-down procedure appropriate to independent tests or tests that are positively dependent. p-values are ordered from largest to smallest, and adjusted p-values $= \max[1, pm/(m+1-i)]$, where i indexes the ordering. All tests after and including the first to be rejected are also rejected.

‘by’ the FDR is controlled using the Benjamini-Yekutieli adjustment (2011), a step-down procedure appropriate to dependent tests. p-values are ordered from largest to smallest, and adjusted p-values $= \max[1, pmC/(m+1-i)]$, where i indexes the ordering, and the constant $C = 1 + 1/2 + \ldots + 1/m$. All tests after and including the first to be rejected are also rejected.

Because the sequential step-up/step-down tests rejection decisions depend on both the p-values and their ordering, rejection decisions cannot be made solely by comparing adjusted p-values to α. Those tests correctly rejected using ‘holm’, ‘hs’, ‘hochberg’, ‘bh’, or ‘by’ at the indicated α level are starred in the output table, and starred in the list when using the ‘list=TRUE’ option.

Value

conover.test returns:

- `chi2` a scalar of the Kruskal-Wallis test statistic adjusted for ties.
- `T` a vector of all m of the Conover-Iman t test statistics.
- `P` a vector of p-values corresponding to T.
- `P.adjust` a vector of p-values corresponding to T, but adjusted for multiple comparisons as per method (P = P.adjust if method='none').
- `comparisons` a vector of strings labeling each pairwise comparison, as qualified by the rmc option, using either the variable values, or the factor labels or (or factor values if unlabeled). These labels match the corresponding position in the T, P, and $P.adjust$ vectors.

Author(s)

Alexis Dinno (<alexis.dinno@pdx.edu>)

Please contact me with any questions, bug reports or suggestions for improvement. Fixing bugs will be facilitated by sending along:

1. a copy of the data (de-labeled or anonymized is fine),
2. a copy of the command syntax used, and
3. a copy of the exact output of the command.
References

Examples

```r
## Example cribbed and modified from the kruskal.test documentation
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
# Kruskal & Wallis (1952)
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
conover.test(x=list(x,y,z))

# Kruskal & Wallis (1952)
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),
labels = c("Normal",
"COPD",
"Asbestosis"))
conover.test(x, g)

## Example based on home care data from Dunn (1964)
data(homecare)
attach(homecare)
conover.test(occupation, eligibility, method="hs", list=TRUE)
detach(homecare)
```
Air quality data set illustrates differences in different multiple comparisons adjustments

attach(airquality)
conover.test(Ozone, Month, kw=FALSE, method="bonferroni")
conover.test(Ozone, Month, kw=FALSE, method="hs")
conover.test(Ozone, Month, kw=FALSE, method="bh")
detach(airquality)

homecare

Occupation and Home Care Eligibility

Description

Occupation and home care eligibility for 383 patients medically eligible for home care.

Usage

homecare

Format

A data frame containing two variables, occupation and eligibility, over 383 observations.

Source

References

The data have been adapted from a study of a group of patients entering the Los Angeles County General Hospital during the years 1959-61.
Index

* Conover-Iman test
 conover.test, 2

* datasets
 homecare, 6

* htest
 conover.test, 2

* nonparametric pairwise multiple comparisons
 conover.test, 2

* nonparametric
 conover.test, 2

* stats
 conover.test, 2

Conover-Iman test (conover.test), 2
conover.test, 2

homecare, 6

p.adjustment.methods (conover.test), 2