Package ‘convdistr’

May 5, 2024

Type Package
Title Convolute Probabilistic Distributions
Version 1.6.2
Description Convolute probabilistic distributions using the random generator function of each distribution. A new random number generator function is created that perform the mathematical operation on the individual random samples from the random generator function of each distribution. See the documentation for examples.
License GPL (>= 3)
Encoding UTF-8
Suggests spelling, testthat, knitr, rmarkdown
Imports stats, graphics, pryr, extraDistr, dplyr, tidyr, ggplot2, RColorBrewer, SHELF, MASS, shiny
RoxygenNote 7.3.1
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Aponte John [aut, cre] (<https://orcid.org/0000-0002-3014-3673>)
Maintainer Aponte John <john.j.aponte@gmail.com>
Repository CRAN
Date/Publication 2024-05-05 13:20:02 UTC

R topics documented:

add_total ... 2
BETA ... 3
BETABINOMIAL ... 4
BINOMIAL .. 6
cinqnum ... 6
Description

This function returns a DISTRIBUTION with a new dimension created by row sum of the dimensions of the distribution.

Usage

add_total(p_distribution, p_totalname = "TOTAL")
BETA

Arguments

- **p_distribution**: an object of class DISTRIBUTION
- **p_totalname**: the name of the new dimension

Details

Only works with multidimensional distributions.

Value

- a DISTRIBUTION

Author(s)

John J. Aponte

Examples

```r
  d1 <- new_DIRICHLET(c(0.2,0.5,0.3))
  d2 <- add_total(d1)
```

BETA

Factory for a BETA distribution object

Description

Returns an BETA distribution object that produce random numbers from a beta distribution using the `rbeta` function

Usage

```r
  new_BETA(p_shape1, p_shape2, p_dimnames = "rvar")

  new_BETA_lci(p_mean, p_lci, p_uci, p_dimnames = "rvar")

  new_BETA_lci2(p_mean, p_lci, p_uci, p_dimnames = "rvar")
```

Arguments

- **p_shape1**: non-negative parameters of the Beta distribution
- **p_shape2**: non-negative parameters of the Beta distribution
- **p_dimnames**: A character that represents the name of the dimension
- **p_mean**: A numeric that represents the expected value of the proportion
- **p_lci**: A numeric for the lower 95% confidence interval
- **p_uci**: A numeric for the upper 95% confidence interval
Value

An object of class DISTRIBUTION, BETA

Functions

- `new_BETA_lci()`: Constructor based on confidence intervals. Preserve expected value.
- `new_BETA_lci2()`: Constructor based on ML confidence intervals

Note

When using confidence intervals, the shape parameters are obtained using the following formula:

\[
\text{varp} = \frac{(p_{u}ci - p_{l}ci)}{4^2} \\
\text{shape1} = \frac{p_{m}ean * (p_{m}ean * (1 - p_{m}ean) / \text{varp} - 1)}{\text{varp}} \\
\text{shape2} = \frac{(1 - p_{m}ean) * (p_{m}ean * (1 - p_{m}ean) / \text{varp} - 1)}{\text{varp}} \\
\]

`new_BETA_lci2` estimate parameters using maximum likelihood

```r
myDistr <- new_BETA_lci2(0.30,0.25,0.35)
myDistr$rfunc(10)
```

Author(s)

John J. Aponte

Examples

```r
myDistr <- new_BETA(1,1)
myDistr$rfunc(10)
myDistr <- new_BETA_lci(0.30,0.25,0.35)
myDistr$rfunc(10)
```

BETABINOMIAL

Factory for a BETABINOMIAL distribution object

Description

Returns an BETABINOMIAL distribution object that produce random numbers from a betabinomial distribution using the `rbbinom` function

Usage

```r
new_BETABINOMIAL(p_size, p_shape1, p_shape2, p_dimnames = "rvar")
new_BETABINOMIAL_od(p_size, p_mu, p_od, p_dimnames = "rvar")
new_BETABINOMIAL_icc(p_size, p_mu, p_icc, p_dimnames = "rvar")
```
Arguments

- `p_size` a non-negative parameter for the number of trials
- `p_shape1` non-negative parameters of the Betabinomial distribution
- `p_shape2` non-negative parameters of the Betabinomial distribution
- `p_dimnames` A character that represents the name of the dimension
- `p_mu` mean proportion for the binomial part of the distribution
- `p_od` over dispersion parameter
- `p_icc` intra-class correlation parameter

Value

An object of class `DISTRIBUTION, BETADISTRIBUTION`

Functions

- `new_BETABINOMIAL_od()`: parametrization based on dispersion
- `new_BETABINOMIAL_icc()`: parametrization based on intra-class correlation

Note

There are several parametrization for the betabinomial distribution. The one based on shape1 and shape2 are parameters alpha and beta of the beta part of the distribution, but it can be parametrized as mu, and od where mu is the expected mean proportion and od is a measure of the overdispersion.

\[
\begin{align*}
 p_{mu} &= p_{shape1}/(p_{shape1} + p_{shape2}) \\
 p_{od} &= p_{shape1} + p_{shape2} \\
 p_{shape1} &= p_{mu} \times p_{od} \\
 p_{shape2} &= -(1 - p_{mu}) \times p_{od}
\end{align*}
\]

Another parametrization is based on mu and the icc where mu is the mean proportion and icc is the intra-class correlation.

\[
\begin{align*}
 p_{mu} &= p_{shape1}/(p_{shape1} + p_{shape2}) \\
 p_{icc} &= 1/(p_{shape1} + p_{shape2} + 1) \\
 p_{shape1} &= p_{mu} \times (1 - p_{icc})/p_{icc} \\
 p_{shape2} &= (1 - p_{mu}) \times (1 - p_{icc})/p_{icc}
\end{align*}
\]

Author(s)

John J. Aponte

Examples

```r
myDistr <- new_BETABINOMIAL(10, 1, 1) 
myDistr$rfunc(10)
```
BINOMIAL Factory for a BINOMIAL distribution object

Description

Returns a BINOMIAL distribution object that produce random numbers from a binomial distribution using the rbinom function.

Usage

new_BINOMIAL(p_size, p_prob, p_dimnames = "rvar")

Arguments

- p_size: integer that represent the number of trials
- p_prob: probability of success
- p_dimnames: A character that represents the name of the dimension

Value

An object of class DISTRIBUTION, BINOMIAL

Author(s)

John J. Aponte

Examples

myDistr <- new_BINOMIAL(1000,0.3)
myDistr$rfunc(10)

Description

Produce 5 numbers of the distribution (mean_, sd_, lci_, uci_, median_).
CONVOLUTION

Usage

cinqnum(x, ...)

S3 method for class 'DISTRIBUTION'
cinqnum(x, n, ...)

S3 method for class 'NA'
cinqnum(x, n, ...)

S3 method for class 'DIRAC'
cinqnum(x, n, ...)

Arguments

- **x**: an object of class DISTRIBUTION
- **...**: further parameters
- **n**: number of drawns

Details

Uses the stored seed to have the same sequence always and produce the same numbers. This is an internal function for the summary function.

Value

- a vector with the mean, sd, lci, uci and median values

Methods (by class)

- cinqnum(DISTRIBUTION): Generic method for a DISTRIBUTION
- cinqnum(`NA`): Generic method for optimized for a NA distribution
- cinqnum(DIRAC): Generic method optimized for a DIRAC distribution

Author(s)

- John J. Aponte

CONVOLUTION Make the convolution of two or more DISTRIBUTION objects

Description

The convolution of the simple algebraic operations is made by the operation of individual drawns of the distributions. The DISTRIBUTION objects must have the same dimensions.
Usage

new_CONVOLUTION(listdistr, op, omit_NA = FALSE)

new_SUM(..., omit_NA = FALSE)

S3 method for class 'DISTRIBUTION'
e1 + e2

new_SUBTRACTION(..., omit_NA = FALSE)

S3 method for class 'DISTRIBUTION'
e1 - e2

new_MULTIPLICATION(..., omit_NA = FALSE)

S3 method for class 'DISTRIBUTION'
e1 * e2

new_DIVISION(..., omit_NA = FALSE)

S3 method for class 'DISTRIBUTION'
e1 / e2

Arguments

- **listdistr**: a list of DISTRIBUTION objects
- **op**: a function to convolute ‘+’, ‘-’, ‘*’, ‘\’
- **omit_NA**: if TRUE, NA distributions will be omitted
- **...**: DISTRIBUTION objects or a list of distribution objects
- **e1**: object of class DISTRIBUTION
- **e2**: object of class DISTRIBUTION

Details

If any of the distributions is of class NA (NA_DISTRIBUTION) the result will be a new distribution of class NA unless the omit_NA option is set to TRUE

Value

and object of class CONVOLUTION, DISTRIBUTION

Functions

- `new_SUM()`: Sum of distributions
- `new_SUBTRACTION()`: Subtraction for distributions
- `new_MULTIPLICATION()`: Multiplication for distributions
- `new_DIVISION()`: DIVISION for distributions
Author(s)
John J. Aponte

Examples

\[
\begin{align*}
 x_1 &\leftarrow \text{new_NORMAL}(0,1) \\
 x_2 &\leftarrow \text{new_UNIFORM}(1,2) \\
 \text{new_CONVOLUTION}\left(\text{list}(x_1,x_2),^{+}\right) \\
 \text{new_SUM}(x_1,x_2) \\
 x_1 + x_2 \\
 \text{new_SUBTRACTION}(x_1,x_2) \\
 x_1 - x_2 \\
 \text{new_MULTIPLICATION}\left(\text{list}(x_1,x_2)\right) \\
 x_1 \times x_2 \\
 \text{new_DIVISION}\left(\text{list}(x_1,x_2)\right) \\
 x_1 / x_2
\end{align*}
\]

Description

In case of different dimensions of the distribution this function perform the operation on the common distributions and add without modifications the other dimensions of the distribution.

Usage

\[
\begin{align*}
 \text{new_CONVOLUTION_assoc}(\text{dist}1, \text{dist}2, \text{op}) \\
 \text{new_SUM_assoc}(\text{dist}1, \text{dist}2) \\
 \text{new_SUBTRACTION_assoc}(\text{dist}1, \text{dist}2) \\
 \text{new_MULTIPLICATION_assoc}(\text{dist}1, \text{dist}2) \\
 \text{new_DIVISION_assoc}(\text{dist}1, \text{dist}2)
\end{align*}
\]

Arguments

\[
\begin{align*}
 \text{dist}1 &\quad \text{an object of class DISTRIBUTION} \\
 \text{dist}2 &\quad \text{an object of class DISTRIBUTION} \\
 \text{op} &\quad \text{one of }^{+},^{\cdot},^{\times},^{/} \\
\end{align*}
\]

Details

If distribution A have dimensions a and b and distribution B have dimensions b and c, the A + B would produce a distribution with dimensions a, c, b+b,
CONVOLUTION_comb

Value

an object of class DISTRIBUTION

Functions

- new_SUM_assoc(): Sum of distributions
- new_SUBTRACTION_assoc(): Subtraction of distributions
- new_MULTIPLICATION_assoc(): Multiplication of distributions
- new_DIVISION_assoc(): Division of distributions

Author(s)

John J. Aponte

Examples

```r
x1 <- new_MULTINORMAL(c(0,1), matrix(c(1,0.5,0.5,1),ncol=2), p_dimnames = c("A","B"))
x2 <- new_MULTINORMAL(c(10,1), matrix(c(1,0.4,0.4,1),ncol=2), p_dimnames = c("B","C"))
new_CONVOLUTION_assoc(x1,x2, '+')
new_SUM_assoc(x1,x2)
new_SUBTRACTION_assoc(x1,x2)
new_MULTIPLICATION_assoc(x1,x2)
new_DIVISION_assoc(x1,x2)
```

Description

In case of different dimensions of the distribution this function perform the operation on the combination of the distributions of both distribution.

Usage

```r
new_CONVOLUTION_comb(dist1, dist2, op, p_dimnames)
new_SUM_comb(dist1, dist2)
new_SUBTRACTION_comb(dist1, dist2)
new_MULTIPLICATION_comb(dist1, dist2)
new_DIVISION_comb(dist1, dist2)
```
CONVOLUTION_comb

Arguments

dist1 an object of class DISTRIBUTION
dist2 an object of class DISTRIBUTION
op one of '+','-','*','/'
p_dimnames a character vector with the name of the dimensions. If missing the combination of the individual dimensions will be used

Details

If distribution A have dimensions a and b and distribution B have dimensions b and c, the A + B would produce a distribution with dimensions a_b,a_c,b_b, b_c

Value

an object of class DISTRIBUTION

Functions

• new_SUM_comb(): Sum of distributions
• new_SUBTRACTION_comb(): Subtraction of distributions
• new_MULTIPLICATION_comb(): Multiplication of distributions
• new_DIVISION_comb(): Division of distributions

Note

In case of the same dimensions, only the first combination is taken

Author(s)

John J. Aponte

Examples

x1 <- new_MULTINORMAL(c(0,1), matrix(c(1,0.5,0.5,1),ncol=2), p_dimnames = c("A","B"))
x2 <- new_MULTINORMAL(c(10,1), matrix(c(1,0.4,0.4,1),ncol=2), p_dimnames = c("B","C"))
new_CONVOLUTION_comb(x1,x2, '+')
new_SUM_comb(x1,x2)
new_SUBTRACTION_comb(x1,x2)
new_MULTIPLICATION_comb(x1,x2)
new_DIVISION_comb(x1,x2)
DIRAC
Factory for a DIRAC distribution object

Description
Returns an DIRAC distribution object that always return the same number, or the same matrix of numbers in case multiple dimensions are setup

Usage
new_DIRAC(p_scalar, p_dimnames = "rvar")

Arguments
- p_scalar
 A numeric that set the value for the distribution
- p_dimnames
 A character that represents the name of the dimension

Value
An object of class DISTRIBUTION, DIRAC

Author(s)
John J. Aponte

Examples
myDistr <- new_DIRAC(1)
myDistr$rfunc(10)

DIRICHLET
Factory for a DIRICHLET distribution object

Description
Returns an DIRICHLET distribution object that draw random numbers generated by the function rdirichlet

Usage
new_DIRICHLET(p_alpha, p_dimnames)

Arguments
- p_alpha
 k-value vector for concentration parameter. Must be positive
- p_dimnames
 A vector of characters for the names of the k-dimensions
Details

A name can be provided for the dimensions. Otherwise rvar1, rvar2, ..., rvark will be assigned

Value

An object of class DISTRIBUTION, p_distribution$distribution, TRUNCATED

Author(s)

John J. Aponte

Examples

myDistr <- new_DIRICHLET(c(0.3, 0.2, 0.5), c("a", "b", "c"))
myDistr$rfunc(10)

Description

Returns an DISCRETE distribution object that sample from the vector p_supp of options with probability the vector of probabilities p_prob.

Usage

new_DISCRETE(p_supp, p_prob, p_dimnames = "rvar")

Arguments

p_supp A numeric vector of options
p_prob A numeric vector of probabilities.
p_dimnames A character that represents the name of the dimension

Value

An object of class DISTRIBUTION, DISCRETE

Note

If the second argument is missing, all options will be sample with equal probability. If provided, the second argument would add to 1 and must be the same length that the first argument

Author(s)

John J. Aponte
Examples

```r
myDistr <- new_DISCRETE(p_supp=c(1,2,3,4), p_prob=c(0.40,0.30,0.20,0.10))
myDistr$rfunc(10)
```

Description

`DISTRIBUTION` is a kind of abstract class (or interface) that the specific constructors should implement.

Details

It contains 4 fields

- `distribution` A character with the name of the distribution implemented
- `seed` A numerical that is used for details to produce reproducible details of the distribution
- `oval` Observed value. Is the value expected. It is used as a number for the mathematical operations of the distributions as if they were a simple scalar
- `rfunc` A function that generate random numbers from the distribution. Its only parameter `n` is the number of draws of the distribution. It returns a matrix with as many rows as `n`, and as many columns as the dimensions of the distributions

The `DISTRIBUTION` objects could support multidimensional distributions for example `DIRICHLET`. The names of the dimensions should coincides with the names of the `oval` vector. If only one dimension, the default name is `rvar`.

It is expected that the `rfunc` is included in the creation of new distributions by convolution so the environment should be carefully controlled to avoid reference leaking that is possible within the R language. For that reason, `rfunc` should be created within a `restrict_environment` function.

Once the object is instanced, the fields are immutable and should not be changed. If the seed needs to be modified, a new object can be created using the `set_seed` function.

Objects are defined for the following distributions:

- `UNIFORM`
- `NORMAL`
- `BETA`
- `TRIANGULAR`
- `POISSON`
- `EXPONENTIAL`
- `DISCRETE`
- `DIRAC`
- `DIRICHLET`
- `TRUNCATED`
- `NA_DISTRIBUTION`
Value

a DISTRIBUTION object

Author(s)

John J. Aponte

DISTRIBUTION_factory
A factory of DISTRIBUTION classes

Description

Generate a function that creates DISTRIBUTION objects

Usage

DISTRIBUTION_factory(distname, rfunction, ovalfunc)

Arguments

- `distname`
 name of the distribution. By convention they are upper case
- `rfunction`
 a function to generate random numbers from the distribution
- `ovalfunc`
 a function that calculate the oval value, should used only the same arguments that the rfunction

Value

A function that is able to create DISTRIBUTION objects.

Note

The function return a new function, that have as arguments the formals of the rfunction plus a new argument dimnames for the dimension names. If the distribution is unidimensional, the default value dimnames = "rvar" will works well, but if not, the dimnames argument should be specified when the generated function is used as in the example for the new MyDIRICHLET

Author(s)

John J. Aponte
Examples

```r
new_MYDISTR <- DISTRIBUTION_factory("MYDISTR", rnorm, function(){mean})
d1 <- new_MYDISTR(0,1)
summary(d1)
require(extraDistr)
new_MyDIRICHLET <- DISTRIBUTION_factory(quotesingle.Var rdirichlet, rdirichlet, function() {
salpha = sum(alpha)
alpha / salpha
})
d2 <- new_MyDIRICHLET(c(10, 20, 70), dimnames = c("A", "B", "C"))
summary(d2)
```

Description

Returns an EXPONENTIAL distribution object that produce random numbers from an exponential distribution using the `rexp` function

Usage

```r
new_EXPONENTIAL(p_rate, p_dimnames = "rvar")
```

Arguments

- `p_rate` A numeric that represents the rate of events
- `p_dimnames` A character that represents the name of the dimension

Value

An object of class `DISTRIBUTION`, EXPONENTIAL

Author(s)

John J. Aponte

Examples

```r
myDistr <- new_EXPONENTIAL(5)
myDistr$rfunc(10)
```
fitbeta

Fits a beta distribution based on quantiles

Description

Fits a beta distribution based on quantiles

Usage

fitbeta_ml(point, lci, uci)

fitbeta(point, lci, uci)

Arguments

point Point estimates corresponding to the median
lci Lower limit (quantile 0.025)
uci Upper limit (quantile 0.975)

Value

parameters shape1 and shape2 of a beta distribution

Functions

• fitbeta_ml(): using ML to estimate parameters
• fitbeta(): preserve the expected value

Note

This is a wrap of the fitdist to obtain the best parameters for a beta distribution based on quantiles.
When using confidence intervals (not ML), the shape parameters are obtained using the following formula:

\[\text{varp} = (p_u ci - p_l ci)/4^2 \]
\[\text{shape1} = p_{mean} * (p_{mean} * (1 - p_{mean})/\text{varp} - 1) \]
\[\text{shape2} = (1 - p_{mean}) * (p_{mean} * (1 - p_{mean})/\text{varp} - 1) \]

Author(s)

John J. Aponte

See Also

fitdist
fitdirichlet

Fits a Dirichlet distribution

Description
Fits a Dirichlet distribution based on the parameters of Beta distributions

Usage
fitdirichlet(..., plotBeta = FALSE, n.fitted = "opt")

Arguments
... named vectors with the distribution parameters shape1, shape2
plotBeta if TRUE a ggplot of the densities are plotted
n.fitted Method to fit the values

Details
Each one of the arguments is a named vector with values for shape1, shape2. Values from fitbeta are suitable for this. This is a wrap of fitDirichlet

Value
a vector with the parameters for a Dirichlet distribution

Author(s)
John J. Aponte

See Also
fitDirichlet

Examples
a <- fitbeta(0.3, 0.2, 0.4)
c <- fitbeta(0.2, 0.1, 0.3)
b <- fitbeta(0.5, 0.4, 0.6)
fitdirichlet(cat1=a, cat2=b, cat3=c)
ggDISTRIBUTION

Plot of DISTRIBUTION objects using ggplot2

Description

Plot of DISTRIBUTION objects using ggplot2

Usage

ggDISTRIBUTION(x, n = 10000)

Arguments

x an object of class DISTRIBUTION
n number of observation

Value

a ggplot object with the density of the distribution

Examples

x <- new_NORMAL(0,1)
ggDISTRIBUTION(x)
y <- new_DIRICHLET(c(10,20,70))
ggDISTRIBUTION(x)

LOGNORMAL

Factory for a LOGNORMAL distribution object

Description

Returns a LOGNORMAL distribution object that produce random numbers from a log normal distribution using the rlnorm function

Usage

new_LOGNORMAL(p_meanlog, p_sdlog, p_dimnames = "rvar")

Arguments

p_meanlog mean of the distribution on the log scale
p_sdlog A numeric that represents the standard deviation on the log scale
p_dimnames A character that represents the name of the dimension
Value
An object of class DISTRIBUTION, LOGNORMAL

Author(s)
John J. Aponte

Examples
myDistr <- new_LOGNORMAL(0,1)
myDistr$rfunc(10)

Description
Shows the distribution and the oval values of a DISTRIBUTION object

Usage
metadata(x)

S3 method for class 'DISTRIBUTION'
metadata(x)

Default S3 method:
metadata(x)

Arguments
x a DISTRIBUTION object

Value
A data.frame with the metadata of the distributions

Methods (by class)
• metadata(DISTRIBUTION): Metadata for DISTRIBUTION objects
• metadata(default): Metadata for other objects

Note
The number of columns depends on the dimensions of the distribution. There will be one column distribution with the name of the distribution and one column for each dimension with the names from the oval field.

Metadata for a DISTRIBUTION
NA_DISTRIBUTION

Author(s)

John J. Aponte

Description

Returns an NA distribution object that always return `NA_real_`. This is useful to handle `NA`. By default only one dimension `rvar` is produced, but if several names are provided more columns will be added to the return matrix.

Usage

```
new_NA(p_dimnames = "rvar")
```

Arguments

- `p_dimnames` A character that represents the the names of the dimensions. By default only one dimension with name `rvar`.

Value

An object of class DISTRIBUTION, NA

Author(s)

John J. Aponte

Examples

```
myDistr <- new_NA(p_dimnames = "rvar")
myDistr$rfunc(10)
```

new_MIXTURE

Mixture of DISTRIBUTION objects

Description

Produce a new distribution that obtain random drawns of the mixture of the DISTRIBUTION objects.

Usage

```
new_MIXTURE(listdistr, mixture)
```
new_MULTINORMAL

Arguments

| listdistr | a list of DISTRIBUTION objects |
| mixture | a vector of probabilities to mixture the distributions. Must add 1 If missing the drawns are obtained from the distributions with the same probability |

Value

an object of class MIXTURE, DISTRIBUTION

Author(s)

John J. Aponte

Examples

```r
x1 <- new_NORMAL(0,1)
x2 <- new_NORMAL(4,1)
x3 <- new_NORMAL(6,1)
new_MIXTURE(list(x1,x2,x3))
```

new_MULTINORMAL Multivariate Normal Distribution

Description

Return a DISTRIBUTION object that draw random numbers from a multivariate normal distribution using the mvrnorm function.

Usage

```r
new_MULTINORMAL(p_mu, p_sigma, p_dimnames, tol = 1e-06, empirical = FALSE)
```

Arguments

p_mu	a vector of means
p_sigma	a positive-definite symmetric matrix for the covariance matrix
p_dimnames	A character that represents the name of the dimension
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in p_sigma.
empirical	logical. If true, mu and Sigma specify the empirical not population mean and covariance matrix.

Value

An object of class DISTRIBUTION, MULTINORMAL
Factory for a NORMAL distribution object

Description

Returns a NORMAL distribution object that produce random numbers from a normal distribution using the `rnorm` function.

Usage

```r
new_NORMAL(p_mean, p_sd, p_dimnames = "rvar")
```

Arguments

- `p_mean`: A numeric that represents the mean value
- `p_sd`: A numeric that represents the standard deviation
- `p_dimnames`: A character that represents the name of the dimension

Value

An object of class DISTRIBUTION, NORMAL

Author(s)

John J. Aponte

Examples

```r
myDistr <- new_NORMAL(0,1)
myDistr$rfunc(10)
```
omit_NA

Omit NA distributions from a list of distributions

Description

Omit NA distributions from a list of distributions

Usage

omit_NA(listdistr)

Arguments

- listdistr: a list of DISTRIBUTION objects

Value

the list without the NA_DISTRIBUTION

Author(s)

John J. Aponte

plot.DISTRIBUTION

plot of DISTRIBUTION objects

Description

Plot an histogram of the density of the distribution using random numbers from the distribution

Usage

S3 method for class 'DISTRIBUTION'
plot(x, n = 10000, ...)

Arguments

- x: an object of class DISTRIBUTION
- n: number of observations
- ...: other parameters to the hist function

Value

No return value. Side effect plot the histogram.
Examples

```r
x <- new_NORMAL(0,1)
plot(x)
y <- new_DIRICHLET(c(10,20,70))
plot(x)
```

POISSON

Factory for a POISSON distribution using confidence intervals

Description

Returns an POISSON distribution object that produce random numbers from a Poisson distribution using the `rpois` function.

Usage

```r
new_POISSON(p_lambda, p_dimnames = "rvar")
```

Arguments

- `p_lambda`: A numeric that represents the expected number of events
- `p_dimnames`: A character that represents the name of the dimension

Value

An object of class DISTRIBUTION, POISSON

Author(s)

John J. Aponte

Examples

```r
myDistr <- new_POISSON(5)
myDistr$rfunc(10)
```
restrict_environment

Build a new function with a smaller environment

Description
As standard feature, R include in the environment of a function all the variables that are available when the function is created. This, however is prompt to leak reference when you have a factory of function and they are created within a list. it will include all the component of the list in the function environment. To prevent that, the random generator functions are encapsulated with a restricted environment where only the variables that the function requires to work are included

Usage

restrict_environment(f, ...)

Arguments

f
input function

...
define the set of variables to be included as variable = value.

Value

new function with a restricted environment

Author(s)

John J. Aponte

Examples

```r
a = 0
b = 1
myfunc <- restrict_environment(
  function(n) {
    rnorm(meanvalue, sdvalue)
  },
  meanvalue = a, sdvalue = b)

myfunc(10)
ls(envir=environment(myfunc))
```
rfunc

rfunc

*Generate random numbers from a** DISTRIBUTION **object*

Description

This is a generic method that calls the rfunc slot of the object

Usage

```
rfunc(x, n)
```

Arguments

- `x`: an object
- `n`: the number of random samples

Value

A matrix with as many rows as n and as many columns as dimensions have distribution

Author(s)

John J. Aponte

rfunc.default

Default function

Description

Default function

Usage

```
## Default S3 method:
rfunc(x, n)
```

Arguments

- `x`: an object of class different from DISTRIBUTION
- `n`: the number of random samples

Value

No return value. Raise an error message.

Author(s)

John J. Aponte
rfunc.DISTRIBUTION

Generic function for a DISTRIBUTION object

Description

Generic function for a DISTRIBUTION object

Usage

S3 method for class 'DISTRIBUTION'
rfunc(x, n)

Arguments

x an object of class DISTRIBUTION
n the number of random samples

Value

a matrix with as many rows as n and as many columns as

Author(s)

John J. Aponte

same_dimensions Check the dimensions of a list of distributions

Description

Check the dimensions of a list of distributions

Usage

same_dimensions(listdistr)

Arguments

listdistr a list of DISTRIBUTION objects

Value

return TRUE if all the dimensions are the same
set_seed

Modify a the seed of a Distribution object

Description

This create a new DISTRIBUTION object but with the specified seed.

Usage

set_seed(distribution, seed)

Arguments

distribution a DISTRIBUTION object
seed the new seed

Value

a DISTRIBUTION object of the same class

Author(s)

John J. Aponte

summary.DISTRIBUTION Summary of Distributions

Description

Summary of Distributions

Usage

S3 method for class 'DISTRIBUTION'
summary(object, n = 10000, ...)

Arguments

object object of class DISTRIBUTION
n the number of random samples from the distribution
... other parameters. Not used
Value

A `data.frame` with as many rows as dimensions had the distribution and with the following columns:

- distribution name
- varname name of the dimension
- oval value
- nsample number of random samples
- mean_ mean value of the sample
- sd_ standard deviation of the sample
- lci_ lower 95
- median_ median value of the sample
- uci_ upper 95

Note

The sample uses the seed saved in the object those it will provide the same values for an `n` value.

Author(s)

John J. Aponte

TRIANGULAR

Factory for a TRIANGULAR distribution object

Description

Returns an TRIANGULAR distribution object that produce random numbers from a triangular distribution using the `rtriang` function

Usage

`new_TRIANGULAR(p_min, p_max, p_mode, p_dimnames = "rvar")`

Arguments

- `p_min` A numeric that represents the lower limit
- `p_max` A numeric that represents the upper limit
- `p_mode` A numeric that represents the mode
- `p_dimnames` A character that represents the name of the dimension

Value

An object of class `DISTRIBUTION`, `TRIANGULAR`
Author(s)

John J. Aponte

Examples

myDistr <- new_TRIANGULAR(-1,1,0)
myDistr$rfunc(10)

Factory for a TRUNCATED distribution object

Description

Returns an TRUNCATED distribution object that limits the values that are generated by the distribution to be in the limits p_min, p_max

Usage

new_TRUNCATED(p_distribution, p_min = -Inf, p_max = Inf)

Arguments

p_distribution An object of class DISTRIBUTION to truncate
p_min A numeric that set the lower limit of the distribution
p_max A numeric that set the upper limit of the distribution

Value

An object of class DISTRIBUTION, p_distribution$distribution, TRUNCATED

Note

The expected value of a truncated distribution could be very different from the expected value of the unrestricted distribution. Be careful as the oval field is not changed and may not represent any more the expected value of the distribution.
If the distribution is multidimensional, the limits will apply to all dimensions.

Author(s)

John J. Aponte

Examples

myDistr <- new_TRUNCATED(p_distribution = new_NORMAL(0,1), p_min = -1, p_max = 1)
myDistr$rfunc(10)
UNIFORM

Factory for a UNIFORM distribution object

Description

Returns an UNIFORM distribution object that produce random numbers from a uniform distribution using the `runif` function

Usage

```r
new_UNIFORM(p_min, p_max, p_dimnames = "rvar")
```

Arguments

- `p_min`: A numeric that represents the lower limit
- `p_max`: A numeric that represents the upper limit
- `p_dimnames`: A character that represents the name of the dimension

Value

An object of class DISTRIBUTION, UNIFORM

Author(s)

John J. Aponte

Examples

```r
myDistr <- new_UNIFORM(0,1)
myDistr$rfunc(10)
```
Index

* DISTRIBUTION
 DISTRIBUTION_factory, 15
 *.DISTRIBUTION (CONVOLUTION), 7
 +.DISTRIBUTION (CONVOLUTION), 7
 -.DISTRIBUTION (CONVOLUTION), 7
 /.DISTRIBUTION (CONVOLUTION), 7

add_total, 2

BETA, 3, 14
BETABINOMIAL, 4
BINOMIAL, 6

cinqnum, 6
CONVOLUTION, 7
CONVOLUTION_assoc, 9
CONVOLUTION_comb, 10

data.frame, 20, 30
DIRAC, 12, 14
DIRICHLET, 12, 14
DISCRETE, 13, 14
DISTRIBUTION, 2, 3, 6–11, 14, 15, 19–24, 27–29
DISTRIBUTION_factory, 15

EXPONENTIAL, 14, 16

fitbeta, 17, 18
fitbeta_ml (fitbeta), 17
fitDirichlet, 18
fitdirichlet, 18
fitdist, 17

ggDISTRIBUTION, 19
ggplot, 19
ggplot2, 19

hist, 24

LOGNORMAL, 19

metadata, 20
mvrnorm, 22, 23

NA_DISTRIBUTION, 8, 14, 21, 24
new_BETA (BETA), 3
new_BETA_ic (BETA), 3
new_BETA_lci2 (BETA), 3
new_BETABINOMIAL (BETABINOMIAL), 4
new_BETABINOMIAL_icc (BETABINOMIAL), 4
new_BETABINOMIAL_od (BETABINOMIAL), 4
new_BINOMIAL (BINOMIAL), 6
new_CONVOLUTION (CONVOLUTION), 7
new_CONVOLUTION_assoc
 (CONVOLUTION_assoc), 9
new_CONVOLUTION_comb
 (CONVOLUTION_comb), 10
new_DIRAC (DIRAC), 12
new_DIRICHLET (DIRICHLET), 12
new_DISCRETE (DISCRETE), 13
new_DIVISION (CONVOLUTION), 7
new_DIVISION_assoc (CONVOLUTION_assoc), 9
new_DIVISION_comb (CONVOLUTION_comb), 10
new_EXPONENTIAL (EXPONENTIAL), 16
new_LOGNORMAL (LOGNORMAL), 19
new_MIXTURE, 21
new_MULTINORMAL, 22
new_MULTIPLICATION (CONVOLUTION), 7
new_MULTIPLICATION_assoc
 (CONVOLUTION_assoc), 9
new_MULTIPLICATION_comb
 (CONVOLUTION_comb), 10
new_NA (NA_DISTRIBUTION), 21
new_NORMAL (NORMAL), 23
new_POISSON (POISSON), 25
new_SUBTRACTION (CONVOLUTION), 7
new_SUBTRACTION_assoc
 (CONVOLUTION_assoc), 9
new_SUBTRACTION_comb
 (CONVOLUTION_comb), 10
new_SUM (CONVOLUTION), 7
new_SUM_assoc (CONVOLUTION_assoc), 9
new_SUM_comb (CONVOLUTION_comb), 10
new_TRIANGULAR (TRIANGULAR), 30
new_TRUNCATED (TRUNCATED), 31
new_UNIFORM (UNIFORM), 32
NORMAL, 14, 23

omit_NA, 24

plot.DISTRIBUTION, 24
POISSON, 14, 25

rbinom, 4
rbeta, 3
rbinom, 6
rdirichlet, 12
restrict_environment, 14, 26
rexp, 16
rfunc, 27
rfunc.default, 27
rfunc.DISTRIBUTION, 28
rlnorm, 19
rnorm, 23
rpois, 25
rtriang, 30
runif, 32

same_dimensions, 28
set_seed, 14, 29
summary.DISTRIBUTION, 29

TRIANGULAR, 14, 30
TRUNCATED, 14, 31

UNIFORM, 14, 32