Package ‘copBasic’

January 8, 2019

Title General Bivariate Copula Theory and Many Utility Functions
Version 2.1.2
Date 2019-01-08
Author William Asquith

Description Extensive functions for bivariate copula (bicopula) computations and related operations for bicopula theory. The lower, upper, product, and select other bicopula are implemented along with operations including the diagonal, survival copula, dual of a copula, co-copula, and numerical bicopula density. Level sets, horizontal and vertical sections are supported. Numerical derivatives and inverses of a bicopula are provided through which simulation is implemented. Bicopula composition, convex combination, and products also are provided. Support extends to the Kendall Function as well as the Lmoments thereof. Kendall Tau, Spearman Rho and Footrule, Gini Gamma, Blomqvist Beta, Hoeffding Phi, Schweizer-Wolff Sigma, tail dependency, tail order, skewness, and bivariate Lmoments are implemented, and positive/negative quadrant dependency, left (right) increasing (decreasing) are available. Other features include Kullback-Leibler divergence, Vuong procedure, spectral measure, and Lcomoments for inference, maximum likelihood, and AIC, BIC, and RMSE for goodness-of-fit.

Maintainer William Asquith <william.asquith@ttu.edu>

Repository CRAN
Depends R (>= 2.10)
Imports lmomco, randtoolbox
Suggests copula
License GPL-2

Date/Publication 2019-01-08 18:40:07 UTC

R topics documented:
copBasic-package ... 4
aicCOP ... 13
AMHcop ... 14
asCOP ... 17
bicCOP ... 19
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilnoms</td>
<td>21</td>
</tr>
<tr>
<td>blomCOP</td>
<td>26</td>
</tr>
<tr>
<td>CLcop</td>
<td>28</td>
</tr>
<tr>
<td>coCOP</td>
<td>29</td>
</tr>
<tr>
<td>composite1COP</td>
<td>31</td>
</tr>
<tr>
<td>composite2COP</td>
<td>33</td>
</tr>
<tr>
<td>composite3COP</td>
<td>35</td>
</tr>
<tr>
<td>convex2COP</td>
<td>37</td>
</tr>
<tr>
<td>convexCOP</td>
<td>39</td>
</tr>
<tr>
<td>COP</td>
<td>41</td>
</tr>
<tr>
<td>copBasic.fitpara</td>
<td>44</td>
</tr>
<tr>
<td>COPinv</td>
<td>47</td>
</tr>
<tr>
<td>COPinv2</td>
<td>49</td>
</tr>
<tr>
<td>densityCOP</td>
<td>50</td>
</tr>
<tr>
<td>densityCOPplot</td>
<td>52</td>
</tr>
<tr>
<td>derCOP</td>
<td>55</td>
</tr>
<tr>
<td>derCOP2</td>
<td>57</td>
</tr>
<tr>
<td>derCOPinv</td>
<td>59</td>
</tr>
<tr>
<td>derCOPinv2</td>
<td>62</td>
</tr>
<tr>
<td>diagCOP</td>
<td>64</td>
</tr>
<tr>
<td>diagCOPatf</td>
<td>65</td>
</tr>
<tr>
<td>duCOP</td>
<td>67</td>
</tr>
<tr>
<td>EMPIRcop</td>
<td>71</td>
</tr>
<tr>
<td>EMPIRcopdf</td>
<td>75</td>
</tr>
<tr>
<td>EMPIRgrid</td>
<td>76</td>
</tr>
<tr>
<td>EMPIRgridder</td>
<td>80</td>
</tr>
<tr>
<td>EMPIRgridder2</td>
<td>81</td>
</tr>
<tr>
<td>EMPIRgridderinv</td>
<td>82</td>
</tr>
<tr>
<td>EMPIRgridderinv2</td>
<td>85</td>
</tr>
<tr>
<td>EMPIRmed.regress</td>
<td>86</td>
</tr>
<tr>
<td>EMPIRmed.regress2</td>
<td>86</td>
</tr>
<tr>
<td>EMPIRqua.regress</td>
<td>87</td>
</tr>
<tr>
<td>EMPIRqua.regress2</td>
<td>93</td>
</tr>
<tr>
<td>EMPIRsim</td>
<td>94</td>
</tr>
<tr>
<td>EMPIRsimv</td>
<td>96</td>
</tr>
<tr>
<td>FGMcop</td>
<td>98</td>
</tr>
<tr>
<td>footCOP</td>
<td>100</td>
</tr>
<tr>
<td>FRECHETcop</td>
<td>102</td>
</tr>
<tr>
<td>gEVcop</td>
<td>104</td>
</tr>
<tr>
<td>GHcop</td>
<td>105</td>
</tr>
<tr>
<td>giniCOP</td>
<td>112</td>
</tr>
<tr>
<td>GLcop</td>
<td>115</td>
</tr>
<tr>
<td>gridCOP</td>
<td>118</td>
</tr>
<tr>
<td>hoefCOP</td>
<td>119</td>
</tr>
<tr>
<td>HRcop</td>
<td>123</td>
</tr>
<tr>
<td>isCOP.LTD</td>
<td>124</td>
</tr>
<tr>
<td>isCOP.permsym</td>
<td>126</td>
</tr>
<tr>
<td>isCOP.PQD</td>
<td>127</td>
</tr>
</tbody>
</table>
R topics documented:

- isCOP.radsym .. 129
- isCOP.RTI ... 132
- isfuncCOP .. 133
- JOcopB5 ... 135
- joeskewCOP .. 136
- joint.curvesCOP ... 141
- joint.curvesCOP2 ... 144
- jointCOP .. 146
- kfuncCOP .. 151
- kfuncCOPinv ... 159
- kfuncCOPlmoms ... 160
- kullCOP ... 163
- lcomCOP ... 167
- lcomCOPpv .. 169
- lcomoms2.ABcop2parameter 172
- lcomoms2.ABKGcop2parameter 175
- level.curvesCOP .. 178
- level.curvesCOP2 ... 180
- level.setCOP ... 181
- level.setCOP2 ... 182
- M ... 183
- med.regressCOP .. 184
- med.regressCOP2 ... 187
- mleCOP .. 188
- N4212cop ... 193
- P .. 194
- PARETOcop .. 195
- PLACKETTcop .. 196
- PLACKETTpar ... 198
- PLACKETTsim .. 201
- prod2COP .. 202
- psepolar .. 204
- PSP .. 206
- qua.regressCOP ... 207
- qua.regressCOP.draw 209
- qua.regressCOP2 .. 211
- ReineckeWell266 .. 212
- ReineckeWells ... 213
- RFcop ... 214
- rhobevCOP .. 215
- rhoCOP ... 217
- rmseCOP .. 220
- sectionCOP ... 221
- semicorCOP ... 224
- simcomposite3COP .. 226
- simcompositeCOP ... 228
- simCOP ... 229
- simCOPmicro ... 232
Description

The copBasic package is oriented around bivariate copula theory and mathematical operations closely follow the standard texts by Nelsen (2006) and Joe (2014) as well as select other references. Another recommended text is Salvadori et al. (2007) and is cited herein, but about half of that excellent book concerns univariate applications. The primal objective of copBasic is to provide a basic application programming interface (API) to numerous results shown by authoritative texts on copulas. It is hoped in part that the package will help new copula students in their self study, potential course work, and applied circumstances.

Notes on copulas that are supported. The author has focused on pedagogical aspects of copulas, and this package is a diary of sorts in self-guided learning. Originally, the author did not implement many copulas in the copBasic in order to deliberately avoid redundancy to that support such as it exists on the R CRAN. Though as time has progressed, other copulas have been added occasionnally based on needs of the user community, need to show some specific concept in the general theory, or test algorithms. For example, the Clayton copula (CLcop) is a late arriving addition to the copBasic package (c.2017), which was added to assist a specific user.

Helpful Navigation of Copulas Implemented in the copBasic Package Some helpful pivot points into the copulas implemented are listed in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Function</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-bounds copula</td>
<td>W(u, v)</td>
<td>W</td>
<td>copula</td>
</tr>
<tr>
<td>Independence copula</td>
<td>Π(u, v)</td>
<td>P</td>
<td>copula</td>
</tr>
<tr>
<td>Upper-bounds copula</td>
<td>M(u, v)</td>
<td>M</td>
<td>copula</td>
</tr>
<tr>
<td>Fréchet Family copula</td>
<td>FF(u, v)</td>
<td>FRECHETcop</td>
<td>copula</td>
</tr>
<tr>
<td>Ali–Mikhail–Haq copula</td>
<td>AMH(u, v)</td>
<td>AMHCop</td>
<td>copula</td>
</tr>
<tr>
<td>Clayton copula</td>
<td>CL(u, v)</td>
<td>CLcop</td>
<td>copula</td>
</tr>
</tbody>
</table>
Farlie–Gumbel–Morgenstern (generalized) copula \(\text{FGM}(u, v) \) \textsc{FGMcop} copula

Galambos copula \(\text{GL}(u, v) \) \textsc{GLcop} copula

Gumbel–Hougaard copula \(\text{GH}(u, v) \) \textsc{GHcop} copula

Hüsler–Reiss copula \(\text{HR}(u, v) \) \textsc{HRcop} copula

Joe B5 copula \(\text{B5}(u, v) \) \textsc{J0copB5} copula

Nelsen eq.4-2-12 copula \(\text{N4212cop}(u, v) \) \textsc{N4212cop} copula

Pareto copula \(\text{PA}(u, v) \) \textsc{PLcop} copula

Plackett copula \(\text{PL}(u, v) \) \textsc{PLcop} copula

PSP copula \(\text{PSP}(u, v) \) \textsc{PSP} copula

Raftery copula \(\text{RF}(u, v) \) \textsc{RFcop} copula

g-EV copula (Gaussian extreme value) \(\text{gEV}(u, v) \) \textsc{gEVcop} copula

t-EV copula (t-distribution extreme value) \(\text{tEV}(u, v) \) \textsc{tEVcop} copula

The language and vocabulary of copulas is formidable. The author (Asquith) has often emphasized “vocabulary” words in italics, which is used extensively and usually near the opening of function-by-function documentation to identify vocabulary words, such as survival copula (see \textsc{surCOP}). This syntax tries to mimic and accentuate the word usage in Nelsen (2006) and Joe (2014). The \texttt{copBasic} package was started well before Joe (2014) so more citations to Nelsen (2006) are made. The italics then are used to draw connections between concepts. In conjunction with the summary of functions in \texttt{copBasic-package}, the extensive cross referencing to functions and expansive keyword indexing should be beneficial. The author had no experience with copulas prior to a chance happening upon Nelsen (2006) in c.2008. The \texttt{copBasic} package is a personal tour de force in self-guided learning. Hopefully, this package and user’s manual will be helpful to others.

A few comments on notation herein are needed. A bold math typeface is used to represent a copula such as \(\Pi \) (see \texttt{p}) for the independence copula. The syntax \(\mathcal{R} \times \mathcal{R} \equiv \mathcal{R}^2 \) denotes the orthogonal domain of two real numbers, and \([0, 1] \times [0, 1] \equiv \mathcal{I} \times \mathcal{I} \equiv \mathcal{I}^2 \) denotes the orthogonal domain on the unit square of probabilities. Limits of integration \([0, 1]\) or \([0, 1]^2\) involving copulas are thus shown as \(\mathcal{I} \) and \(\mathcal{I}^2 \), respectively.

The random variables \(X \) and \(Y \) respectively denote the horizontal and vertical directions in \(\mathcal{R}^2 \). Their probabilistic counterparts are uniformly distributed random variables on \([0, 1]\), are respectively denoted as \(U \) and \(V \), and necessarily also are the respective directions in \(\mathcal{I}^2 \) (\(U \) denotes the horizontal, \(V \) denotes the vertical). Often realizations of these random variables are respectively \(x \) and \(y \) for \(X \) and \(Y \) and \(u \) and \(v \) for \(U \) and \(V \).

There is an obvious difference between nonexceedance probability \(F \) and its complement—exceedance probability \(1 - F \). Both \(u \) and \(v \) herein are in “units” of nonexceedance probability. Arguments to many functions herein are \(u = u \) and \(v = v \) and are almost exclusively nonexceedance but there are instances for which the probability arguments are \(u = 1 - u = u' \) and \(v = 1 - v = v' \).

Helpful Navigation of the copBasic Package

Some helpful pivot points into the package are listed in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Function</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copula</td>
<td>(C(u, v))</td>
<td>\textsc{COP}</td>
<td>copula theory</td>
</tr>
<tr>
<td>Survival copula</td>
<td>(C(u', v'))</td>
<td>\textsc{surCOP}</td>
<td>copula theory</td>
</tr>
<tr>
<td>Joint survival function</td>
<td>(C(u, v))</td>
<td>\textsc{surfCOP}</td>
<td>copula theory</td>
</tr>
</tbody>
</table>
Several of the functions listed above are measures of “bivariate association.” Two of the measures (Kendall Tau, tauCOP; Spearman Rho, rhoCOP) are widely known. R provides native support for their sample estimation of course, but each function can be used to call the cor() function in R for parallelism to the other measures of this package. The other measures (Blomqvist Beta, Gini Gamma, Hoeffding Phi, Schweizer–Wolff Sigma, Spearman Footrule) support sample estimation by

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Package</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-copula</td>
<td>$C^*(u', v')$</td>
<td>coCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Dual of a copula</td>
<td>$\tilde{C}(u, v)$</td>
<td>duCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Primary copula diagonal</td>
<td>$\delta(t)$</td>
<td>diagCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Secondary copula diagonal</td>
<td>$\delta^*(t)$</td>
<td>diagCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Inverse copula diagonal</td>
<td>$\delta^(-1)(f)$</td>
<td>diagCOPatf</td>
<td>copula theory</td>
</tr>
<tr>
<td>Joint probability</td>
<td>δ</td>
<td>jointCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Bivariate L-moments</td>
<td>$\delta_{[\cdot]}$</td>
<td>bilmoms</td>
<td>bivariate moments</td>
</tr>
<tr>
<td>Bivariate L-comoments</td>
<td>$\tau_{[\cdot]}$</td>
<td>bilmoms</td>
<td>bivariate moments</td>
</tr>
<tr>
<td>Bivariate L-comoments</td>
<td>$\tau^*_{[\cdot]}$</td>
<td>lcomCOP</td>
<td>bivariate moments</td>
</tr>
<tr>
<td>Blomqvist Beta</td>
<td>β_C</td>
<td>blomCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Gini Gamma</td>
<td>γ_C</td>
<td>giniCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Hoeffding Phi</td>
<td>Φ_C</td>
<td>hoefCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Nu-Skew</td>
<td>ν_C</td>
<td>nuskewCOP</td>
<td>bivariate moments</td>
</tr>
<tr>
<td>Nu-Star (skew)</td>
<td>ν^*_C</td>
<td>nustarCOP</td>
<td>bivariate moments</td>
</tr>
<tr>
<td>Lp distance</td>
<td>$\Phi_C \rightarrow L_p$</td>
<td>lpcOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Kendall Tau</td>
<td>τ_C</td>
<td>tauCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Kendall Measure</td>
<td>$K_C(z)$</td>
<td>kmeasCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Kendall Function</td>
<td>$F_K(z)$</td>
<td>kfuncCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Inverse Kendall Function</td>
<td>$F^{(\cdot^{-1})}_K(z)$</td>
<td>kfuncCOPinv</td>
<td>copula theory</td>
</tr>
<tr>
<td>An L-moment of $F_K(z)$</td>
<td>$\lambda_r(F_K)$</td>
<td>kfuncCOP1mom</td>
<td>L-moment theory</td>
</tr>
<tr>
<td>L-moments of $F_K(z)$</td>
<td>$\lambda_r(F_K)$</td>
<td>kfuncCOP1moms</td>
<td>L-moment theory</td>
</tr>
<tr>
<td>Semi-correlations (negatives)</td>
<td>$\rho_N(a)$</td>
<td>semicorCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Semi-correlations (positives)</td>
<td>$\rho^*_N(a)$</td>
<td>semicorCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Spearman Footrule</td>
<td>ψ_C</td>
<td>footCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Spearman Rho</td>
<td>ρ_C</td>
<td>rhoCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Schweizer–Wolff Sigma</td>
<td>σ_C</td>
<td>wolfCOP</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Density of a copula</td>
<td>$c(u, v)$</td>
<td>densityCOP</td>
<td>copula density</td>
</tr>
<tr>
<td>Density visualization</td>
<td>\cdots</td>
<td>densityCOPplot</td>
<td>copula density</td>
</tr>
<tr>
<td>Empirical copula</td>
<td>$C_n(u, v)$</td>
<td>EMPIReCOP</td>
<td>copula</td>
</tr>
<tr>
<td>Empirical simulation</td>
<td>\cdots</td>
<td>EMPIReSim</td>
<td>copula simulation</td>
</tr>
<tr>
<td>Empirical simulation</td>
<td>\cdots</td>
<td>EMPIReSimv</td>
<td>copula simulation</td>
</tr>
<tr>
<td>Empirical copulatic surface</td>
<td>\cdots</td>
<td>EMPIReGrid</td>
<td>copulatic surface</td>
</tr>
<tr>
<td>Parametric copulatic surface</td>
<td>\cdots</td>
<td>gridCOP</td>
<td>copulatic surface</td>
</tr>
<tr>
<td>Parametric simulation</td>
<td>\cdots</td>
<td>simCOP or rCOP</td>
<td>copula simulation</td>
</tr>
<tr>
<td>Parametric simulation</td>
<td>\cdots</td>
<td>simCOPmicro</td>
<td>copula simulation</td>
</tr>
<tr>
<td>Maximum likelihood</td>
<td>$\mathcal{L}(\Theta_d)$</td>
<td>mleCOP</td>
<td>copula fitting</td>
</tr>
<tr>
<td>Akaike information criterion</td>
<td>AIC_C</td>
<td>aicCOP</td>
<td>goodness-of-fit</td>
</tr>
<tr>
<td>Bayesian information criterion</td>
<td>BIC_C</td>
<td>bicCOP</td>
<td>goodness-of-fit</td>
</tr>
<tr>
<td>Root mean square error</td>
<td>$RMSE_C$</td>
<td>rmseCOP</td>
<td>goodness-of-fit</td>
</tr>
<tr>
<td>Another goodness-of-fit</td>
<td>T_n</td>
<td>statTn</td>
<td>goodness-of-fit</td>
</tr>
</tbody>
</table>
specially formed calls to their respective functions: blomCOP, giniCOP, hoefCOP, wolfCOP, and footCOP. Gini Gamma (giniCOP) documentation (also joeskewCOP) shows extensive use of theoretical and sample computations for these and other functions.

Concerning goodness-of-fit and although not quite the same as copula properties (such as “correlation”) per se as the coefficients aforementioned in the prior paragraph, three goodness-of-fit metrics of a copula compared to the empirical copula, which are all based on mean square error (MSE), are aicCOP, bicCOP, and rmseCOP. This triad of functions is useful for making decisions on whether a copula is more favorable than another to a given dataset. However, because they are genetically related by using MSE and if these are used for copula fitting by minimization, the fits will be identical. A statement of “not quite the same” is made because the previously described copula properties are generally defined as types of deviations from other copulas (such as P). Another goodness-of-fit statistic is statTn, which is based on magnitude summation of fitted copula difference from the empirical copula. These four (aicCOP, bicCOP, rmseCOP, and statTn) collectively are relative simple and readily understood measures. These bulk sample statistics are useful, but generally thought to not capture the nuances of tail behavior (semicorCOP and taildepCOP might be useful).

Bivariate skewness measures are supported in the functions joeskewCOP (nuskeCOP and mustarCOP) and uvlmoms (uvskew). Extensive discussion and example computations of bivariate skewness are provided in the joeskewCOP documentation. Lastly, so-called bivariate L-moments and bivariate L-comoments of a copula are directly computable in bilmoms, and that function is the theoretical counterpart to the sample L-comoments long provided in the lmomco package.

Bivariate random simulation by several functions is identified in the previous table. The copBasic package explicitly uses only conditional simulation also known as the conditional distribution method for random variate generation following Nelsen (2006, pp. 40–41) (see also simCOPmicro, simCOP). The numerical derivatives (derCOP and derCOP2) and their inversions (derCOPinv and derCOPinv2) represent the foundation of the conditional simulation. There are other methods in the literature and available in other R packages, and a comparison of some methods is made in the Examples section of the Gumbel–Hougaard copula (GHcop).

Several functions in copBasic make the distinction between V with respect to (wrt) U and U wrt V, and a guide for the nomenclature involving wrt distinctions is listed in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Function</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copula inversion</td>
<td>V wrt U</td>
<td>COPinv</td>
<td>copula operator</td>
</tr>
<tr>
<td>Copula inversion</td>
<td>U wrt V</td>
<td>COPinv2</td>
<td>copula operator</td>
</tr>
<tr>
<td>Copula derivative</td>
<td>δC/δu</td>
<td>derCOP</td>
<td>copula operator</td>
</tr>
<tr>
<td>Copula derivative</td>
<td>δC/δv</td>
<td>derCOP2</td>
<td>copula operator</td>
</tr>
<tr>
<td>Copula derivative</td>
<td>V wrt U</td>
<td>derCOPinv</td>
<td>copula operator</td>
</tr>
<tr>
<td>Copula derivative</td>
<td>U wrt V</td>
<td>derCOPinv2</td>
<td>copula operator</td>
</tr>
<tr>
<td>Joint curves</td>
<td>t ↦ C(u = U, v)</td>
<td>joint.curvesCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Joint curves</td>
<td>t ↦ C(u, v = V)</td>
<td>joint.curvesCOP2</td>
<td>copula theory</td>
</tr>
<tr>
<td>Level curves</td>
<td>t ↦ C(u = U, v)</td>
<td>level.curvesCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Level curves</td>
<td>t ↦ C(u, v = V)</td>
<td>level.curvesCOP2</td>
<td>copula theory</td>
</tr>
<tr>
<td>Level set</td>
<td>V wrt U</td>
<td>level.setCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Level set</td>
<td>U wrt V</td>
<td>level.setCOP2</td>
<td>copula theory</td>
</tr>
<tr>
<td>Median regression</td>
<td>V wrt U</td>
<td>med.regressCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Median regression</td>
<td>U wrt V</td>
<td>med.regressCOP2</td>
<td>copula theory</td>
</tr>
<tr>
<td>Quantile regression</td>
<td>V wrt U</td>
<td>qua.regressCOP</td>
<td>copula theory</td>
</tr>
<tr>
<td>Quantile regression</td>
<td>U wrt V</td>
<td>qua.regressCOP2</td>
<td>copula theory</td>
</tr>
<tr>
<td>Copula section</td>
<td>t ↦ C(t, a)</td>
<td>sectionCOP</td>
<td>copula theory</td>
</tr>
</tbody>
</table>
The previous two tables do not include all of the myriad of special functions to support similar operations on empirical copulas. All empirical copula operators and utilities are prepended with `empir` in the function name. An additional note concerning package nomenclature is that an appended "2" to a function name indicates $U \ wrt \ V$ (e.g. `EMPIRgridderinv2` for an inversion of the partial derivatives $\delta C/\delta v$ across the grid of the empirical copula).

Some additional functions to compute often salient features or characteristics of copulas or bivariate data, including functions for bivariate inference or goodness-of-fit, are listed in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Function</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-tail decreasing</td>
<td>$V \ wrt \ U$</td>
<td>isCOP.LTD</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Left-tail decreasing</td>
<td>$U \ wrt \ V$</td>
<td>isCOP.LTD</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Right-tail increasing</td>
<td>$V \ wrt \ U$</td>
<td>isCOP.RTI</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Right-tail increasing</td>
<td>$U \ wrt \ V$</td>
<td>isCOP.RTI</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Pseudo-polar representation</td>
<td>(\hat{S}, \hat{W})</td>
<td>psepolar</td>
<td>extremal dependency</td>
</tr>
<tr>
<td>Tail concentration function</td>
<td>$q_C(t)$</td>
<td>tailConCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Tail (lower) dependency</td>
<td>λ_L^U</td>
<td>tailDepCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Tail (upper) dependency</td>
<td>λ_T^U</td>
<td>tailDepCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Tail (lower) order</td>
<td>κ_L^U</td>
<td>tailOrdCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Tail (upper) order</td>
<td>κ_T^U</td>
<td>tailOrdCOP</td>
<td>bivariate tail association</td>
</tr>
<tr>
<td>Neg’ly quadrant dependency</td>
<td>NQD</td>
<td>isCOP.PQD</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Pos’ly quadrant dependency</td>
<td>PQD</td>
<td>isCOP.PQD</td>
<td>bivariate association</td>
</tr>
<tr>
<td>Permutation symmetry</td>
<td>permsym</td>
<td>isCOP.permsym</td>
<td>copula symmetry</td>
</tr>
<tr>
<td>Radial symmetry</td>
<td>radsym</td>
<td>isCOP.radsym</td>
<td>copula symmetry</td>
</tr>
<tr>
<td>Skewness (Joe, 2014)</td>
<td>$\eta(p; \psi)$</td>
<td>uvskew</td>
<td>bivariate skewness</td>
</tr>
<tr>
<td>Kullback–Leibler divergence</td>
<td>KL(f</td>
<td>g)</td>
<td>kullCOP</td>
</tr>
<tr>
<td>KL sample size</td>
<td>n_{fg}</td>
<td>kullCOP</td>
<td>bivariate inference</td>
</tr>
<tr>
<td>Vuong’s Procedure</td>
<td>--</td>
<td>vuongCOP</td>
<td>bivariate inference</td>
</tr>
<tr>
<td>Spectral measure</td>
<td>$H(w)$</td>
<td>spectralmeas</td>
<td>extremal dependency inference</td>
</tr>
<tr>
<td>Stable tail dependence</td>
<td>$\hat{\ell}(x, y)$</td>
<td>stabTailDepF</td>
<td>extremal dependency inference</td>
</tr>
<tr>
<td>L-comoments (samp. distr.)</td>
<td>--</td>
<td>lcomCOPpv</td>
<td>experimental bivariate inference</td>
</tr>
</tbody>
</table>

The following Table of Probabilities lists important relations between various joint probability concepts, the copula, nonexceedance probabilities u and v, and exceedance probabilities u' and v'. A compact summary of these probability relations has obvious usefulness. The notation $[\ldots \ and \ \ldots]$ is to read as $[\ldots \ and \ \ldots]$, and the $[\ldots | \ldots]$ is to be read as $[\ldots \ given \ \ldots]$.

<table>
<thead>
<tr>
<th>Probability</th>
<th>Symbol Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr[U \leq u, V \leq v]$</td>
<td>$C(u, v)$</td>
</tr>
<tr>
<td>$\Pr[U > u, V > v]$</td>
<td>$C(u', v')$</td>
</tr>
<tr>
<td>$\Pr[U \leq u, V > v]$</td>
<td>$u - C(u, v')$</td>
</tr>
<tr>
<td>$\Pr[U > u, V \leq v]$</td>
<td>$v - C(u', v)$</td>
</tr>
<tr>
<td>$\Pr[U \leq u \mid V \leq v]$</td>
<td>$C(u, v)/v$</td>
</tr>
<tr>
<td>$\Pr[V \leq v \mid U \leq u]$</td>
<td>$C(u, v)/u$</td>
</tr>
</tbody>
</table>
\[\Pr\{U \leq u \mid V > v\} = \frac{(u - C(u, v))}{(1 - v)} \]
\[\Pr\{V \leq v \mid U > u\} = \frac{(v - C(u, v))}{(1 - u)} \]
\[\Pr\{U > u \mid V > v\} = \frac{\hat{C}(u', v')}{u'} = \frac{C(u, v)}{(1 - u)} \]
\[\Pr\{V > v \mid U > u\} = \frac{\hat{C}(u', v')}{v'} = \frac{C(u, v)}{(1 - v)} \]
\[\Pr\{V \leq v \mid U = u\} = \frac{C(u, v)}{\delta u} \]
\[\Pr\{U \leq u \mid V = v\} = \frac{C(u, v)}{\delta v} \]
\[\Pr\{U > u \text{ or } V > v\} = C'(u', v') = 1 - C(u', v') \]
\[\Pr\{U < u \text{ or } V < v\} = \tilde{C}(u, v) = u + v - C(u, v) \]

The function \texttt{jointCOP} has considerable demonstration in its \texttt{Note} section of the \texttt{joint} and \texttt{or} relations shown through simulation and counting scenarios. Also there is a demonstration in the \texttt{Note} section of function \texttt{duCOP} on application of the concepts of \texttt{joint} and \texttt{or} conditions, and importantly joint \texttt{mutually exclusive} or \texttt{or} conditions.

One, two, or more copulas can be “composited,” “combined,” or “multiplied” in interesting ways to create highly unique bivariate relations and as a result, complex dependence structures can be formed. \texttt{copBasic} provides three main functions for copula composition: \texttt{composite1COP} composites a single copula with two compositing parameters, \texttt{composite2COP} composites two copulas with two compositing parameters, and \texttt{composite3COP} composites two copulas with four compositing parameters. Also two copulas can be combined through a weighted convex combination using \texttt{convex2COP} with a single weighting parameter, and even \(N \) number of copulas can be combined by weights using \texttt{convexCOP}. Finally, multiplication of two copulas to form a third is supported by \texttt{prod2COP}. All six functions for compositing, combining, or multiplying copulas are compatible with joint probability simulation (\texttt{simCOP}), measures of association \((e.g., \rho_C)\), and presumably all other copula operations using \texttt{copBasic} features.

<table>
<thead>
<tr>
<th>No. of copulas</th>
<th>Combining Parameters</th>
<th>Function</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\alpha, \beta)</td>
<td>\texttt{composite1COP}</td>
<td>copula combination</td>
</tr>
<tr>
<td>2</td>
<td>(\alpha, \beta)</td>
<td>\texttt{composite2COP}</td>
<td>copula combination</td>
</tr>
<tr>
<td>2</td>
<td>(\alpha, \beta, \kappa, \gamma)</td>
<td>\texttt{composite3COP}</td>
<td>copula combination</td>
</tr>
<tr>
<td>2</td>
<td>(\alpha)</td>
<td>\texttt{convex2COP}</td>
<td>copula combination</td>
</tr>
<tr>
<td>(N)</td>
<td>(\omega_i \in N)</td>
<td>\texttt{convexCOP}</td>
<td>copula combination</td>
</tr>
<tr>
<td>2</td>
<td>((C_1 \ast C_2))</td>
<td>\texttt{prod2COP}</td>
<td>copula multiplication</td>
</tr>
</tbody>
</table>

Useful Copula Relations by Visualization

There are a myriad of relations amongst variables computable through copulas, and these were listed in the \texttt{Table of Probabilities} earlier in this \texttt{copBasic} documentation. There is a script located in the \texttt{inst/doc} directory of the \texttt{copBasic} sources titled \texttt{CopulaRelations_BaseFigure_inR.txt}. This script demonstrates, using the \texttt{PSP} copula, relations between the copula (\texttt{COP}), survival copula (\texttt{surCOP}), joint survival function of a copula (\texttt{surfuncCOP}), co-copula (\texttt{cocop}), and dual of a copula function (\texttt{duCOP}). The script performs simulation and manual counts observations meeting various criteria in order to compute their \texttt{empirical probabilities}. The script produces a “base figure,” which after extending in vector editing software, is suitable for educational description, and is provided within these help pages.

A Review of “Return Periods” using Copulas
Risk analyses of natural hazards are commonly expressed as annual return periods \(T \) in years, which are defined for a nonexceedance probability \(q \) as \(T = 1/(1 - q) \). In bivariate analysis, there immediately emerge two types of return periods representing \(T_{\text{q; coop}} \) and \(T_{\text{q; dual}} \) conditions between nonexceedances of the two hazard sources (random variables) \(U \) and \(V \). It is usual in many applications for \(T \) to be expressed equivalently as a probability \(q \) in common for both variables.

Incidently, the \(\text{Pr} \left[U > u \mid V > v \right] \) and \(\text{Pr} \left[V > v \mid U > u \right] \) probabilities also are useful for conditional return period computations following Salvadori et al. (2007, p. 159–160) but are not further considered here. Also the \(F_K(w) \) (Kendall Function or Kendall Measure of a copula) is the core tool for secondary return period computations (see kfuncCOP).

Let the copula \(C(u, v; \Theta) \) for nonexceedances \(u \) and \(v \) be set for some copula family (formula) by a parameter vector \(\Theta \). The copula family and parameters define the joint coupling (loosely meant the dependency/correlation) between hazards \(U \) and \(V \). If “failure” occurs if either or both hazards \(U \) and \(V \) are a probability \(q \) threshold \((u = v = 1 - 1/T = q)\) for \(T \)-year return period, then the real return period of failure is defined using either the copula \(C(q, q; \Theta) \) or the co-copula \(C^*(q', q'; \Theta) \) for exceedance probability \(q' = 1 - q \) is

\[
T_{q; \text{coop}} = \frac{1}{1 - C(q, q; \Theta)} = \frac{1}{C^*(1 - q, 1 - q; \Theta)} \quad \text{and} \quad T_{q; \text{coop}} \equiv \frac{1}{\text{cooperative risk}}.
\]

Or in words, the hazard sources collaborate or cooperate to cause failure. However, if failure only occurs if and only if both hazards \(U \) and \(V \) occur simultaneously (that is the hazards must “dually work together”), then the real return period is defined using either the dual of a copula (function) \(\tilde{C}(q, q; \Theta) \), the joint survival function \(\overline{C}(q, q; \Theta) \), or survival copula \(\hat{C}(q', q'; \Theta) \) as

\[
T_{q; \text{dual}} = \frac{1}{1 - \overline{C}(q, q; \Theta)} = \frac{1}{\overline{C}(q, q; \Theta)} = \frac{1}{\hat{C}(q', q'; \Theta)} \quad \text{and} \quad T_{q; \text{dual}} \equiv \frac{1}{\text{complement of dual protection}}.
\]

A numerical demonstration is informative. Salvadori et al. (2007, p. 151) show for a Gumbel–Hougaard copula (GHcop) having \(\Theta = 3.055 \) and \(T = 1,000 \) years \((q = 0.999)\) that \(T_{q; \text{coop}} = 797.1 \) years and that \(T_{q; \text{dual}} = 1,341.4 \) years, which means that average return periods between and “failures” are

\[
T_{q; \text{coop}} \leq T \leq T_{q; \text{dual}} \quad \text{and} \quad 797.1 \leq T \leq 1314.4 \text{ years.}
\]

With the following code, these values are readily computed and verified using the prob2T() function from the lmomco package along with copBasic functions COP (generic functional interface to a copula) and duCOP (dual of a copula):

\[
q <- T2prob(1000) \\
lmomco::prob2T(COP(q,q, cop=GHcop, para=3.055)) \# 797.110 \\
lmomco::prob2T(duCOP(q,q, cop=GHcop, para=3.055)) \# 1341.438
\]
An early source (in 2005) by some of those authors cited on p. 151 of Salvadori et al. (2007; their citation “[67]”) shows $T_{q;\text{dual}} = 798$ years—a rounding error seems to have been committed. Finally just for reference, a Gumbel–Hougaard copula having $\Theta = 3.055$ corresponds to an analytical Kendall’s τ (see \texttt{GHCop}) of $\tau \approx 0.673$, which can be verified through numerical integration available from \texttt{tauCop} as:

$$\text{tauCop} (\text{cop} = \text{GHCop}, \text{para} = 3.055, \text{brute} = \text{TRUE}) \# 0.6726542$$

Thus, a “better understanding of the statistical characteristics of [multiple hazard sources] requires the study of their joint distribution” (Salvadori et al., 2007, p. 150).

Interaction of copBasic to Copulas in Other Packages

As mentioned elsewhere, \texttt{copBasic} was not originally intended to be a port of the numerous bivariate copulas or over re-implementation other bivariate copulas available in \texttt{R}. (Though as the package passes its 10th year in 2018, this has gradually changed.) It is useful to point out a demonstration showing an implementation of the Gaussian copula from the \texttt{copula} package, which is shown in the Note section of \texttt{medNregresscop} in a circumstance of ordinary least squares linear regression compared to median regression of a copula as well as prediction limits of both regressions. Another demonstration in context of maximum pseudo-log-likelihood estimation of copula parameters is seen in the Note section \texttt{mleCop}, and also see “API to the copula package” or “package copula (comparison to)” entries in the Index.

Simulated value from parameterless “PSP” copula with a sample size of 1,000
The monospace typeface indicates commands in \texttt{R} using \texttt{copBasic} syntax
The slanted typeface indicates theoretical values from the copula and sample estimates from the data—For this example, the survival copula has probability $P(U > u \text{ and } V > v) = 0.262$ and the simulations have 258 occurrences in the respectively shown hatched region.
Author(s)

William Asquith <william.asquith@ttu.edu>

References

Examples

```r
# Not run:
# Nelsen (2006, p. 75, exer. 3.15b) provides for a nice test of copBasic features.

"mcdfuv" <- function(u,v, theta) {
  ifelse(u > theta & u < 1-theta & v > theta & v < 1 - theta,
    return(M(u,v) - theta), # Upper bounds copula with a shift
    return(W(u,v)))        # Lower bounds copula
}

"MCDURV" <- function(u,v, para=NULL) {
  if(is.null(para)) stop("need theta")
  if(para < 0 | para > 0.5) stop("theta ! in [0,1/2]"
  return(asCOP(u, v, f=mcdfuv, para))
}

"afunc" <- function(t) { # a sample size = 1,000 hard wired
  return(cov(simCOP(n=1000, cop=MCDURV, para=t, ploton=FALSE, points=FALSE)))[1,2])
}

set.seed(6234) # setup covariance based on parameter "t" and the "root" parameter
print(unroot(afunc, c(0,0.5))) # "t" by simulation = 0.1023742
# Nelsen reports that if theta approx. 0.103 then covariance of U and V is zero.
# So one will have mutually completely dependent uncorrelated uniform variables!

# Let us check some familiar measures of association:

rhoCOP( cop=MCDURV, para=0.1023742) # Spearman Rho = 0.005854481 (near zero)
tauCOP( cop=MCDURV, para=0.1023742) # Kendall Tau = 0.2648521
wolCOP(cop=MCDURV, para=0.1023742) # S & W Sigma = 0.4690174 (less familiar)
D <- simCOP(n=1000, cop=MCDURV, para=0.1023742) # Plot mimics Nelsen (2006, Fig. 3.11)
# Lastly, open research problem. L-comoments (matrices) measure high dimension of
# variable comovements (see lmomco package)----"method of L-comoments" for estimation?

# T2 (L-correlation), T3 (L-coskew), T4 (L-cokurtosis), and T5 matrices result. For
The Akaike Information Criterion between a Fitted Coupla and an Empirical Copula

Description

Compute the Akaike information criterion (AIC) $AIC_C$ (Chen and Guo, 2019, p. 29), which is computed using mean square error $MSE_C$ as

$$MSE_C = \frac{1}{n} \sum_{i=1}^{n} (C_n(u_i, v_i) - C_{\Theta_m}(u_i, v_i))^2$$

and

$$AIC_C = 2m + n \log(MSE_C),$$

where $C_n(u_i, v_i)$ is the empirical copula (empirical joint probability) for the $i$th observation, $C_{\Theta_m}(u_i, v_i)$ is the fitted copula having $m$ parameters in $\Theta$. The $C_n(u_i, v_i)$ comes from $EMPIRCop$. The $AIC_C$ is in effect saying that the best copula will have its joint probabilities plotting on a 1:1 line with the empirical joint probabilities, which is an $AIC_C = -\infty$. From the $MSE_C$ shown above, the root mean square error $rmseCOP$ and Bayesian information criterion (BIC) $bicCOP$ can be computed. These goodness-of-fits can assist in deciding one copula favorability over another, and another goodness-of-fit using the absolute differences between $C_n(u, v)$ and $C_{\Theta_m}(u, v)$ is found under $statTn$.

Usage

```
aicCOP(u,v, cop=NULL, para=NULL, m=NA, ...)
```

Arguments

- **u**: Nonexceedance probability $u$ in the $X$ direction;
- **v**: Nonexceedance probability $v$ in the $Y$ direction;
- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula;
- **m**: The number of parameters in the copula, which is usually determined by length of para if $m=NA$, but some complex compositions of copulas are difficult to authoritatively probe for total parameter lengths and mixing coefficients;
- **...**: Additional arguments to pass to either copula (likely most commonly to the empirical copula).
Value

The value for $\text{AIC}_C$ is returned.

Author(s)

W.H. Asquith

References


See Also

EMPIRcop, bicCOP, rmseCOP

Examples

```r
Not run:
S <- simCOP(Theta, cop=GHcop, para=5) # Simulate some probabilities, but we
must then treat these as data and recompute empirical probabilities.
U <- lmomco::pp(S$U, sort=FALSE); V <- lmomco::pp(S$V, sort=FALSE)
The parent distribution is Gumbel-Hougaard extreme value copula.
But in practical application we don't know that but say we speculate that
perhaps the Galambos extreme value might be the parent. Then maximum
likelihood is used to fit the single parameter.
pGL <- mleCOP(U, V, cop=GLcop, interval=c(3/4,2))$par

aics <- c(aicCOP(U, V, cop=GLcop, para=pGL),
 aicCOP(U, V, cop=P),
 aicCOP(U, V, cop=PSP))
print(aics) # We will see that the first AIC is the smallest as the
Galambos has the nearest overall behavior than the P and PSP copulas.
End(Not run)
```

---

**AMHcop**  
*The Ali–Mikhail–Haq Copula*

Description

The Ali–Mikhail–Haq copula (Joe, 2014, p. 168) is

$$C_\Theta(u, v) = \text{AMH}(u, v) = \frac{uv}{1 - \Theta(1 - u)(1 - v)},$$

where $\Theta \in [-1, +1]$, where the right boundary, $\Theta = 1$, can sometimes be considered valid according to Mächler (2014). The copula $\Theta \to 0$ becomes the independence copula $(1(u, v); P)$, and the parameter $\Theta$ is readily computed from Kendall’s Tau ($\tau_u$) by

$$\tau_u = \frac{3\Theta - 2}{3\Theta} - \frac{2(1 - \Theta)^2 \log(1 - \Theta)}{3\Theta^2},$$
and Spearman Rho (rhocop) by

$$\rho_C = 12 \left( \frac{\text{dilog}(1 - \Theta) \times (1 + \Theta) - 2\log(1 - \Theta) + 2\Theta \log(1 - \Theta) - 3\Theta}{\Theta^2} \right) - 3,$$

where \(\text{dilog}(x)\) is the dilogarithm function (Spence’s function):

$$\text{dilog}(x) = \int_{1}^{x} \frac{\log(t)}{1 - t} dt.$$

The support of \(\tau_C\) is \([\frac{(5 - 8 \log(2))/3}{1/3}, \approx -0.1817258, 0.3333333]\) and the \(\rho_C\) is \([33 - 48 \log(2), 4\pi^2 - 39] \approx [-0.2710647, 0.4784176]\), which shows that this copula has a limited range of dependency.

Usage

\texttt{AMHcop(u, v, para=NULL, tau=NULL, ...)}

Arguments

- \(u\) Nonexceedance probability \(u\) in the \(X\) direction;
- \(v\) Nonexceedance probability \(v\) in the \(Y\) direction;
- \(\text{para}\) A vector (single element) of parameters—the \(\Theta\) parameter of the copula. However, if a second parameter is present, it is treated as a logical to reverse the copula \((u + v - 1 + AMH(1 - u, 1 - v; \Theta))\);
- \(\tau\) Optional Kendall’s Tau; and
- \(\ldots\) Additional arguments to pass.

Value

Value(s) for the copula are returned. Otherwise if \(\tau\) is given, then the \(\Theta\) is computed and a list having

- \(\text{para}\) The parameter \(\Theta\), and
- \(\tau\) Kendall’s tau.

and if \(\text{para} = \text{NULL}\) and \(\tau = \text{NULL}\), then the values within \(u\) and \(v\) are used to compute Kendall Tau and then compute the parameter, and these are returned in the aforementioned list.

Note

Mächler (2014) reports on accurate computation of \(\tau_C\) and \(\rho_C\) for this copula for conditions of \(\Theta \to 0\) and in particular derives the following equation, which does not have \(\Theta\) in the denominator:

$$\rho_C = \sum_{k=1}^{\infty} \frac{3 \Theta^k}{(k+2)^2}.$$
copula::tauAMH(AMHcop(tau=0)$para) # theta = -2.313076e-07

It is seen that the numerical approaches yield quite similar results for small \( \tau_C \), and finally, a comparison to the \( \rho_C \) is informative:

\[
\text{rhoCOP}(\text{AMHcop}, \text{para}=1E-9) \quad \# 3.333333e-10 \quad \text{two nested integrations}
\]
\[
\text{copula:::rhoAmhCopula}(1E-9) \quad \# 3.333333e-10 \quad \text{cutoff based}
\]
\[
\text{theta} \leftarrow \text{seq}(0,1, \text{by}=0.001)
\]
\[
\text{RHOa} \leftarrow \text{sapply}(\text{theta}, \text{function(t) rhoCOP(AMHcop, para=t)})
\]
\[
\text{RHOb} \leftarrow \text{sapply}(\text{theta}, \text{function(t) copula:::rhoAmhCopula(t)})
\]
\[
\text{plot}(10^*\text{theta}, \text{RHOa-RHOb, type="l", col=2})
\]

The plot shows that the apparent differences are less than 1 part in 100 million—The \texttt{copBasic} computation is radically slower though, but \texttt{rhoCOP} was designed for generality of copula family.

**Author(s)**

W.H. Asquith

**References**


**See Also**

\texttt{p}

**Examples**

```r
Not run:
t <- 0.9 # The Theta of the copula and we will compute Spearman Rho.
di <- integrate(function(t) log(t)/(1-t), lower=1, upper=(1-t))$value
A <- di*(1+t) - 2*log(1-t) + 2*t*log(1-t) - 3*t
rho <- 12*A/t^2 - 3 # 0.4070369
rhocOP(AMHcop, para=t) # 0.4070369
sum(sapply(100:1, function(k) exp(log(3)+k*log(t)-2*log_choose(k+2,2))))
0.4070369 (see Note, very many tens of terms are needed)
End(Not run)

Not run:
layout(matrix(1:2,byrow=TRUE)) # Note Kendall's Tau same on reversal.
UVn <- simCOP(3560, cop=AMHcop, para=c(-0.9, "FALSE"), col=4)
mtext("Normal definition [default]") # '2nd' parameter could be skipped
UVr <- simCOP(3560, cop=AMHcop, para=c(-0.9, "TRUE"), col=2)
mtext("Reversed definition")
AMHcop(UVn[,1], UVn[,2])$tau # Should be about 0.1663313 because
AMHcop(UVr[,1], UVr[,2])$tau # tauCOP(AMHcop, para=-0.9) is theoretically.
End(Not run)
```
Description

This function is intended to document and then to extend a simple API to end users to aid in implementation of other copulas for use within the *copBasic* package. There is no need or requirement to use `ascOP` but for the mathematical definition of some copulas, the `ascOP` function might help considerably. There is a need for special treatment of \( u \) and \( v \) vectors of probability as each interacts with the vectorization implicit in \( \mathbb{R} \). The special treatment is needed because many copulas are based on the operators such as \( \min() \) and \( \max() \). When numerical integration used by the `integrate()` function in \( \mathbb{R} \) in some copula operators, such as `taucop` for the *Kendall’s Tau* of a copula, special accommodation is needed related to the inherent vectorization in \( \mathbb{R} \) and how `integrate()` works.

Basically, the problem is that one can not strictly rely in all circumstances on what \( \mathbb{R} \) does in terms of value recycling when \( u \) and \( v \) are of unequal lengths. The source code is straightforward. Simply put, if lengths of \( u \) and \( v \) are unity, then there is no concern, and even if the length of \( u \) (say) is unity and \( v \) is 21, then recycling of \( u \) would often be okay. The real danger is when \( u \) and \( v \) have unequal lengths and those lengths are each greater than unity—\( \mathbb{R} \)'s treatment can not be universally relied upon.

The example shows how a formula definition of a copula that is not a copula already implemented by *copBasic* is set into a function `deltacop` and then used inside another function `userscop` that will be the official copula that is compatible with a host of functions in *copBasic*. The use of `ascOP` provides the length check necessary on \( u \) and \( v \), and the argument \( \ldots \) provides optional parameter support should the user’s formula require more settings.

Usage

\[
\text{asCOP}(u, v, f=\text{NULL}, \ldots)
\]

Arguments

- \( u \) Nonexceedance probability \( u \) in the \( X \) direction;
- \( v \) Nonexceedance probability \( v \) in the \( Y \) direction;
- \( f \) A function for which the user desires to make as a copula; and
- \( \ldots \) Additional arguments to pass to the function \( f \) (such as parameters, if needed, for the copula in the form of a list).

Value

The value(s) for the copula are returned.

Author(s)

W.H. Asquith
References


See Also

COP

Examples

## Not run:

```r
Concerning Nelsen (2006, exer. 3.7, pp. 64–65)
"trianglecop" <- function(u,v, para=NULL, ...) {
 # If para is set, then the triangle is rotated 90d clockwise.
 if(! is.null(para) && para == 1) { t <- u; u <- v; v <- t }
 if(length(u) > 1 | length(v) > 1) stop("only scalars for this function")
 v2<-v/2; if(0 <= u & u <= v2 & v2 <= 1/2) { return(u) }
 else if(0 <= v2 & v2 <= u & u <= 1-v2) { return(v2) }
 else if(1/2 <= 1-v2 & 1-v2 <= u & u <= 1) { return(u+v-v1) }
 else { stop("should not be here in logic") }
}
"UsersCop" <- function(u,v, ...) { asCOP(u,v, f=trianglecop, ...) }

n=20000; UV <- sinCOP(n=n, cop=UsersCop)
The a-d elements of the problem now follow:
(a) Pr[V = 1 - |2xU -1|] = 1 and Cov(U,V) = 0; so that two random variables
can be uncorrelated but each is perfectly predictable from the other
mean(UVS- (1 - abs(2*UV$U -1))) # near zero; Nelsen says == 0
\text{cov}(UV$U, UVS) # near zero; Nelsen says == 0
(b) Cop(m,n) = Cop(n,m); so that two random variables can be identically
distributed, uncorrelated, and not exchangeable
EMPIRCop(0.95,0.17, para=UV) # = A
EMPIRCop(0.17,0.95, para=UV) # = B; then A != B
(c) Pr[V - U > 0] = 2/3; so that two random variables can be identically
distributed, but their difference need not be symmetric about zero
tmp <- (UV$V - UVS) > 0
length(tmp[tmp == TRUE])/n # about 2/3; Nelsen says == 2/3
the prior two lines yield about 1/2 for independence copula P()
(d) Pr[X + Y > 0] = 2/3; so that uniform random variables on (-1,1) can each
be symmetric about zero, but their sum need not be.
tmp <- ((2+UV$V - 1) + (2+UV$U - 1)) > 0
length(tmp[tmp == TRUE])/n # about 2/3; Nelsen says == 2/3

Concerning Nelsen (2006, exam. 3.10, p. 73)
"shufflecop" <- # assume scalar arguments for u and v
function(u,v, para, ...){
 m <- para$mixer; subcop <- para$subcop
 if(is.na(m) | m <= 0 | m >= 1) stop("m ! in [0,1]"
 if(u <= m) { return(subcop(1-m+u, v, para=para$subcop) -
 subcop(1-m, v, para=para$subcop))
 } else { return(v - subcop(1-m, v, para=para$subcop) +
 subcop(u-m, v, para=para$subcop))
 }
}
```

```r
```
bicCop

The Bayesian Information Criterion between a Fitted Coupla and an Empirical Copula

Description

Compute the Bayesian information criterion (BIC) \( BIC_C \) (Chen and Guo, 2019, p. 29), which is computed using mean square error \( MSE_C \) as

\[
MSE_C = \frac{1}{n} \sum_{i=1}^{n} (C_n(u_i, v_i) - C_{\Theta_m}(u_i, v_i))^2
\]

and

\[
BIC_C = m \log(n) + n \log(MSE_C),
\]

where \( C_n(u_i, v_i) \) is the empirical copula (empirical joint probability) for the \( i \)th observation, \( C_{\Theta_m}(u_i, v_i) \) is the fitted copula having \( m \) parameters in \( \Theta \). The \( C_n(u_i, v_i) \) comes from \texttt{EMPIRCop}. The \( BIC_C \) is in effect saying that the best copula will have its joint probabilities plotting on a 1:1 line with the empirical joint probabilities, which is an \( BIC_C = -\infty \). From the \( MSE_C \) shown above, the root mean square error \( \text{rmseCop} \) and Akaike information criterion (AIC) \( \text{aicCop} \) can be computed. These goodness-of-fits can assist in deciding one copula favorability over another, and another goodness-of-fit using the absolute differences between \( C_n(u, v) \) and \( C_{\Theta_m}(u, v) \) is found under \texttt{stattn}. 
Usage
bicCOP(u, v, cop=NULL, para=NULL, m=NA, ...)

Arguments
- **u**: Nonexceedance probability $u$ in the $X$ direction;
- **v**: Nonexceedance probability $v$ in the $Y$ direction;
- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula;
- **m**: The number of parameters in the copula, which is usually determined by length of `para` if `m=NA`, but some complex compositions of copulas are difficult to authoritatively probe for total parameter lengths and mixing coefficients;
- **...**: Additional arguments to pass to either copula (likely most commonly to the empirical copula).

Value
The value for $\text{BIC}_C$ is returned.

Author(s)
W.H. Asquith

References

See Also
`EMPIRcop`, `aicCOP`, `rmseCOP`

Examples
```r
Not run:
s <- simCOP(0, cop=GHCop, para=5) # Simulate some probabilities, but we
must then treat these as data and recompute empirical probabilities.
U <- lmomco::pp(S$U, sort=FALSE); V <- lmomco::pp(S$V, sort=FALSE)
The parent distribution is Gumbel-Hougaard extreme value copula.
In practical application we don't know that but say we speculate that
perhaps the Galambos extreme value might be the parent. Then maximum
likelihood is used on that copula to fit the single parameter.
pGL <- mleCOP(U,V, cop=GLcop, interval=c(0,20))$par

bics <- c(bicCOP(U,V, cop=GLcop, para=pGL),
 bicCOP(U,V, cop=P),
 bicCOP(U,V, cop=PSP))
print(bics) # We will see that the first BIC is the smallest as the
Galambos has the nearest overall behavior than the P and PSP copulas.
End(Not run)```
Description

Attention: This function is thought to be mostly deprecated in favor of `lcomCOP`, which uses only direct numerical integration on the integrals shown below. The `bilmoms` function is strictly based on Monte Carlo integration.

Compute the bivariate L-moments (ratios) \(\delta_{k;C}^{[12]} \) of a copula \(C(u, v; \Theta) \) and remap these into the L-comoment matrix counterparts (Serfling and Xiao, 2007; Asquith, 2011) including L-correlation (Spearman’s Rho), L-coskew, and L-cokurtosis. As described by Brahimi et al. (2015), the first four bivariate L-moments \(\delta_{k;C}^{[12]} \) for random variable \(X^{(1)} \) or \(U \) with respect to (wrt) random variable \(X^{(2)} \) or \(V \) are defined as

\[
\begin{align*}
\delta_{1;C}^{[12]} &= 2 \int \int_{I^2} C(u, v) \, du \, dv - 1/2, \\
\delta_{2;C}^{[12]} &= \int \int_{I^2} (12v - 6) C(u, v) \, du \, dv - 1/2, \\
\delta_{3;C}^{[12]} &= \int \int_{I^2} (60v^2 - 60v + 12) C(u, v) \, du \, dv - 1/2, \text{ and} \\
\delta_{4;C}^{[12]} &= \int \int_{I^2} (280v^3 - 420v^2 + 180v - 20) C(u, v) \, du \, dv - 1/2,
\end{align*}
\]

where the bivariate L-moments are related to the L-comoment ratios by

\[
6\delta_{k}^{[12]} = \tau_{k+1}^{[12]} \quad \text{and} \quad 6\delta_{k}^{[21]} = \tau_{k+1}^{[21]},
\]

where in otherwords, “the third bivariate L-moment \(\delta_3^{[12]} \) is one sixth the L-cokurtosis \(\tau_4^{[12]} \).” The first four bivariate L-moments yield the first five L-comoments. The terms and nomenclature are not easy and also the English grammar adjective “ratios” is not always consistent in the literature. The \(\delta_{k;C}^{[12]} \) are ratios, and the returned `bilcomoms` element by this function holds matrices for the marginal means, marginal L-scales and L-coscales, and then the ratio L-comoments.

Similarly, the \(\delta_{k}^{[21]} \) are computed by switching \(u \to v \) in the polynomials within the above integrals multiplied to the copula in the system of equations with \(u \). In general, \(\delta_{k}^{[12]} \neq \delta_{k}^{[21]} \) for \(k > 1 \) unless in the case of permutation symmetric (iscOP, permsym) copulas. By theory, \(\delta_{1}^{[12]} = \delta_{1}^{[21]} = \rho_{C}/6 \) where \(\rho_{C} \) is Spearman’s Rho `rhoCOP`.

The integral for \(\delta_{4;C}^{[12]} \) does not appear in Brahimi et al. (2015) but this and the other forms are verified in the Examples and discussion in Note. The four \(k \in \{1, 2, 3, 4\} \) for \(U \) wrt \(V \) and \(V \) wrt \(U \) comprise a full spectrum of system of seven (not eight) equations. One equation is lost because \(\delta_{1}^{[12]} = \delta_{1}^{[21]} \).

Usage

```r
bilmoms(cop=NULL, para=NULL, only.bilmoms=FALSE, n=1E5, sobol=TRUE, ...)
```
Arguments

cop
Vector of parameters or other data structure, if needed, to pass to the copula;

para
A logical to trigger return of the \(\delta_k \) and skip L-comoment computation;

only.bilmoms
The Monte Carlo integration size. The default seems to be at least an order of magnitude greater than needed for many applied problems;

sobol
A logical trigging Sobol sequences for the Monte Carlo integration instead of the bivariate uniform distribution (independence). The Sobol sequences are dependent on the sobol() function of the randtoolbox package, and the Sobol sequences canvas the \(I^2 \) domain for smaller \(n \) values than required if statistical independence is used for the Monte Carlo integration; and

... Additional arguments to pass to the densityCOP function.

Value

An \(\mathbb{R} \) list of the bivariate L-moments is returned.

bilmomUV
The bivariate L-moments \(\delta^{[12]}_k \) of \(U \) with respect to \(V \) for \(k \in [1, 2, 3, 4] \);

bilmomVU
The bivariate L-moments \(\delta^{[21]}_k \) of \(V \) with respect to \(U \) for \(k \in [1, 2, 3, 4] \);

error.rho
An “error” term in units of \(\delta^{[12+21]}_1 \) used to judge whether the sample size for the Monte Carlo integration is sufficient based on a comparison to Spearman’s Rho from direct numerical integration (not Monte Carlo based) using rhoCOP of the copula. Values for error.rho < \(1E^{-5} \) seem to be sufficient to judge whether \(n \) is large enough;

bilcomoms
If not only.bilmoms, another \(\mathbb{R} \) list holding the L-comoments (see Note) computed by simple remapping of the \(\delta^{[\cdots]}_k \) and parallel in structure to the lcomoms2() function of the lmomco package; and

source
An attribute identifying the computational source of the bivariate L-moments and bivariate L-comoments: “bilmoms.”

Note

The mapping of the bivariate L-moments to their L-comoment matrix counterparts is simple but nuances should be discussed and the meaning of the error.rho needs further description. The extra effort to form L-comoment matrices (Serfling and Xiao, 2007; Asquith, 2011) is made so that output matches the structure of the sample L-comoment matrices from the lcomoms2() function of the lmomco package.

Concerning the triangular or tent-shaped copula of Nelsen (2006, exer. 3.7, pp. 64–65) for demonstration, simulate from it a sample of size \(m = 20,000 \) and compute some sample L-comoments using the following CPU intensive code. The function ascOP completes the vectorization needed for non-Monte Carlo integration for rhoCOP.

```
"trianglecop" <- function(u,v, para=NULL, ...) {
  # If para is set, then the triangle is rotated 90d clockwise.
  if(! is.null(para) && para == 1) { t <- u; u <- v; v <- t }
```
if(length(u) > 1 | length(v) > 1) stop("only scalars for this function")
v2<-v/2; if(0 <= u & u <= v2 & v2 <= 1/2) { return(u)
} else if(0 <= v2 & v2 < u & u < 1-v2) { return(v2)
} else if(1/2 <= 1-v2 & 1-v2 <= u & u <= 1) { return(u+v-1)
} else { stop("should not be here in logic") }
"TriCop" <- function(u,v, ...){ asCOP(u,v, f=trianglecop, ...) }
m=20000; SampleUV <- simCOP(n=m, cop=UsersCop, graphics=FALSE)
samLC <- lmomco::lcomoms2(SampleUV, nmom=5)
theoLC <- bilmoms(TriCop)

The Error in Rho Computation—The ρ_C of the copula by numerical integration is computed internally to bilmoms as

$$\text{rhoC} <- \text{rhoCOP(cop=UsersCop)} \# -1.733858e-17$$

and used to compute the error.rho for bilmoms (see next code snippet). The ρ_C is obviously zero for this copula. Therefore, the bivariate association of TriCop is zero and thus is an example of a perfectly dependent situation yet of zero correlation. The bivariate L-moments and L-comoments of this copula are computed as

$$\text{mean(replicate(20, bilmoms(cop=TriCop)$error.rho))} \# 7.650723e-06$$

where the error.rho is repeated trials appears firmly <1e-5, which is near zero ($\epsilon_\rho \approx 0$). The error.rho term is defined by taking the first bivariate L-moment and numerically integrated ρ_C through rhoCOP and computing the terms

$$\epsilon_{12}^{[1]} = |\delta_{1;C}^{[12]} - (\rho_C/6)|,$$

$$\epsilon_{21}^{[2]} = |\delta_{1;C}^{[21]} - (\rho_C/6)|,$$

$$\epsilon_\rho = \frac{\epsilon_{12}^{[1]} + \epsilon_{21}^{[2]}}{2},$$

where the error.rho = ϵ_ρ, and values near zero are obviously favorable because this indicates that the Monte Carlo integration sample size n argument is sufficiently large to effectively canvas the I^2 domain. For the situation here, the theoretical $\rho_C = 0$, but for $n = n = 100$, the error.rho ≈ 0.006 (e.g. bilmoms(n=100, cop=TriCop)$error.rho) through a 20-unit replication, which is a hint that 100 samples are not large enough and that should be obvious.

The reasoning behind using the error.rho between conventional numerical integration and the Monte Carlo integration (error.rho) is that ρ_C is symmetrical. This choice of “convergence” assessment reduces somewhat the sample size needed for Monte Carlo integration into single number representing error.

Discussion of Theoretical L-comoments—The theoretical L-comoments in the format structure of the sample L-comoments by the lcomoms2() function of the lmomco package are formed by the bilmoms function, and the theoretical values are shown below in sequence with details listed by L-comoment. Now we extract the L-comoment matrices and show the first L-comoment matrix (the matrix of the means):
where the diagonal should be filled with $1/2$ if the n is suitably large because $1/2$ is the mean of the marginal uniform random variables. By definition the secondary diagonal has NAs. The values shown above are extremely close supporting the idea that default n is large enough. The matrix of means is otherwise uninformative.

The second L-comoment matrix (L-scales and L-coscales) is

where the diagonal should be filled with $1/6$ if the n is suitably large because $1/6$ is the univariate L-scale of the marginal uniform random variables. These values further support that default n is large enough. The diagonal is computed from the univariate L-moments of the margins of the Monte Carlo-generated edges and is otherwise uninformative. The secondary diagonal is a rescaling of the $\delta_i^{[univariate]}$ by the univariate L-moments of the margins to form L-coscales (nonratios). The copula is uncorrelated so the secondary diagonal has near zeros.

The second L-comoment ratio matrix (coefficient of L-variations and L-correlations) is

where the diagonal by definition has unities (correlation is unity for a variable on itself) but the secondary diagonal for the L-correlations has near zeros because the copula is uncorrelated, and the secondary diagonal is computed from the $\delta_i^{[univariate]}$. These L-correlations are Spearman’s Rho computed external to the algorithms within rhoCOP.

The third L-comoment ratio matrix (L-skews and L-coskews) is

where the diagonal by definition should have zero zeros because the univariate L-skew of a uniform variable is zero. These values further support that default n is large enough. The secondary diagonal holds L-coskews. The copula has L-coskew of U wrt V of numerically near zero (symmetry) but measurable asymmetry of L-coskew of V wrt U of $\tau_3^{[21]} \approx -0.75$.

The fourth L-comoment ratio matrix (L-kurtoses and L-cokurtoses) is
where the diagonal by definition should have zero zeros because the univariate L-kurtosis of a uniform variable is zero—it has no peakedness. These values further support that default n is large enough. The secondary diagonal holds L-cokurtoses and are near zero for this particular copula.

The fifth L-comoment ratio matrix (unnamed) is

$$\begin{bmatrix}
1 & -1.249700e-01
\end{bmatrix}$$

where the diagonal by definition should have zero zeros because the univariate L-kurtosis of a uniform variable is zero—such a random variable has no asymmetry. These values further support that default n is large enough. The secondary diagonal holds the fifth L-comoment ratios. The copula has $\tau_{5}^{[12]} = 0$ of U wrt V of numerically near zero (symmetry) but measurable fifth-order L-comoment asymmetry of V wrt U of $\tau_{5}^{[21]} \approx 0.125$.

Comparison of Sample and Theoretical L-comoments—The previous section shows theoretical values computed as $\tau_{3}^{[21]} \approx -0.75$ and $\tau_{5}^{[21]} \approx 0.125$ for the two L-comoments substantially away from zero. As sample L-comoments these values are $\text{samLC}\{2, 1\} = \hat{\tau}_{3}^{[21]} \approx -0.751$ and $\text{samLC}\{T5, 2, 1\} = \hat{\tau}_{5}^{[21]} \approx 0.123$. CONCLUSION: The sample L-comoment algorithms in the lmomco package are validated.

Author(s)
W.H. Asquith

References

See Also
lcomCOP, uvlmom
Examples

```r
## Not run:
para <- list(alpha=0.5, beta=0.93, para=4.5, cop=GLcop, cop2=PSP)
bilmoms(cop=composite2COP, n=10000, para=para, sobol=TRUE)$bilcomomsT3
# results: Tau[12]=0.155, Tau[21]=-0.0667 (Monte Carlo)
lcomCOP(cop=composite2COP, para=para, orders=3)
# results: Tau[12]=0.156, Tau[21]=-0.0668 (direct integration)
## End(Not run)

## Not run:
UVsim <- simCOP(n=20000, cop=composite2COP, para=para, graphics=FALSE)
samlcom <- lmomco::llmom2s(UVsim, nnom=5) # sample algorithm
# results: Tau[12]=0.1489, Tau[21]=-0.0679 (simulation)
## End(Not run)
```

The Blomqvist’s Beta of a Copula

Description

Compute the Blomqvist’s Beta β_C of a copula (Nelsen, 2006, p. 182), which is defined at the middle or center of I^2 as

$$ \beta_C = 4 \times C\left(\frac{1}{2}, \frac{1}{2}\right) - 1, $$

where the $u = v = 1/2$ and thus shows that β_C is based on the median joint probability. Blomqvist’s Beta is also called the medial correlation coefficient. Nelsen also reports that “although Blomqvist’s Beta depends only on the copula only through its value at the center of I^2, but that $[\beta_C]$ nevertheless often provides an accurate approximation to Spearman’s Rho ρ_{COP} and Kendall’s Tau τ_{COP}.” Kendall’s Tau τ_C, Gini’s Gamma γ_C, and Spearman’s Rho ρ_C in relation to β_C satisfy the following inequalities (Nelsen, 2006, exer. 5.17, p. 185):

$$ \frac{1}{4}(1 + \beta_C)^2 - 1 \leq \tau_C \leq 1 - \frac{1}{4}(1 - \beta_C)^2, $$

$$ \frac{3}{16}(1 + \beta_C)^3 - 1 \leq \rho_C \leq 1 - \frac{3}{16}(1 - \beta_C)^3, $$

and

$$ \frac{3}{8}(1 + \beta_C)^2 - 1 \leq \tau_C \leq 1 - \frac{3}{8}(1 - \beta_C)^2. $$

A curious aside (Joe, 2014, p. 164) about the Gaussian copula is that Blomqvist’s Beta (blomCOP) is equal to Kendall’s Tau (τ_{COP}): $\beta_C = \tau_C$ (see Note in med.regressCOP for a demonstration).

Usage

```r
blomCOP(cop=NULL, para=NULL, as.sample=FALSE, ...)
```
Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
as.sample A logical controlling whether an optional R data.frame in para is used to compute the \(\hat{\beta}_C \) (see Note); and
... Additional arguments to pass to the copula.

Value

The value for \(\beta_C \) is returned.

Note

The sample \(\hat{\beta} \) is most efficiently computed (Joe, 2014, p. 57) by

\[
\hat{\beta} = \frac{2}{n} \sum_{i=1}^{n} 1([r_{i1} - (1 + n)/2][r_{i2} - (1 + n)/2] \geq 0) - 1,
\]

where \(r_{i1}, r_{i2} \) are the ranks of the data for \(i = 1, \ldots, n \), and \(1(.) \) is an indicator function scoring 1 if condition is true otherwise zero.

Author(s)

W.H. Asquith

References

See Also

footCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP, joeskewCOP, uvlmoms

Examples

blomCOP(cop=PSP) # 1/3 precisely
Not run:
Nelsen (2006, exer. 5.17, p. 185) : All if(...) are TRUE
B <- blomCOP(cop=N4212cop, para=2.2); a1pB <- 1 + B; a1mB <- 1 - B
G <- giniCOP(cop=N4212cop, para=2.2); a <- 1/4; b <- 3/16; c <- 3/8
R <- rhoCOP(cop=N4212cop, para=2.2)
K <- tauCOP(cop=N4212cop, para=2.2, brute=TRUE) # numerical issues without brute
if(a*Bp1^2 - 1 <= K & K <= 1 - a*Bm1^2) print("TRUE") #
if(b*Bp1^3 - 1 <= R & R <= 1 - b*Bm1^3) print("TRUE") #
if(c*Bp1^2 - 1 <= G & G <= 1 - c*Bm1^2) print("TRUE") #
End(Not run)

Not run:
A demonstration of a special feature of blomCop for sample data.
Joe (2014, p. 60; table 60) has 0.749 for GhCop(tau=0.5); n*var(hatB) as n-->infinity
theta <- GhCop(tau=0.5)$para; B <- blomCop(cop=GhCop, para=theta); n <- 1000
H <- sapply(1:1000, function(i) { # Let us test that with pretty large sample size:
 blomCop(para=rCop(n=n, cop=GhCop, para=theta), as.sample=TRUE) })
print(n*var(B-H)) # For 1,000 simulations of size n : 0.747, which matches Joe's result
End(Not run)
Not run:
Joe (2014, p. 57) says that sqrt(n)(B-HatBeta) is Norm(0, 1 - B^2)
n <- 10000; B <- blomCop(cop=PSP) # Beta = 1/3
H <- sapply(1:100, function(i) { message(i,"-", appendLF=FALSE)
 blomCop(para=rCop(n=n, cop=PSP), as.sample=TRUE) })
lmomco::parnor(lmomco::lmoms(sqrt(n)*(H-B))) # mu = 0.042; sigma = 0.973
Joe (2014) : sqrt(1-B^2) == standard deviation (sigma) : (1-(1/3)^2) approx 0.973
End(Not run)

CLcop
The Clayton Copula

Description

The *Clayton copula* (Joe, 2014, p. 168) is

\[
C_\Theta(u, v) = CL(u, v) = \max(0, u^{-\Theta} + v^{-\Theta} - 1)^{-1/\Theta},
\]

where \(\Theta \in [-1, \infty), \Theta \neq 0\). The copula, as \(\Theta \rightarrow -1^+\) limits, to the *countermonotonicity copula* \((W(u, v); W)\), as \(\Theta \rightarrow 0\) limits to the *independence copula* \((\Pi(u, v); P)\), and as \(\Theta \rightarrow \infty\), limits to the *comonotonicity copula* \((M(u, v); M)\). The parameter \(\Theta\) is readily computed from Kendall’s *Tau* \((\tau_{CO})\) by \(\tau_C = \Theta/(\Theta + 2)\).

Usage

`CLcop(u, v, para=NULL, tau=NULL, ...)`

Arguments

- **u**: Nonexceedance probability \(u\) in the \(X\) direction;
- **v**: Nonexceedance probability \(v\) in the \(Y\) direction;
- **para**: A vector (single element) of parameters—the \(\Theta\) parameter of the copula;
- **tau**: Optional Kendall’s Tau; and
- **...**: Additional arguments to pass.
Value

Value(s) for the copula are returned. Otherwise if tau is given, then the \(\Theta \) is computed and a list having

- para: The parameter \(\Theta \), and
- tau: Kendall’s tau.

and if para=NULL and tau=NULL, then the values within \(u \) and \(v \) are used to compute Kendall’s Tau and then compute the parameter, and these are returned in the aforementioned list.

Author(s)

W.H. Asquith

References

See Also

M, P, W

Examples

Lower tail dependency of Theta = pi --> 2^(-1/pi) = 0.8020089 (Joe, 2014, p. 168)
taildepCOP(cop=Clcop, para=pi)$lambdaL # 0.80201

The Co-Copula Function

Description

Compute the co-copula (function) from a copula (Nelsen, 2006, pp. 33–34), which is defined as

\[
\Pr[U > u \text{ or } V > v] = C^*(u', v') = 1 - C(u', v'),
\]

where \(C^*(u', v') \) is the co-copula and \(u' \) and \(v' \) are exceedance probabilities and are equivalent to \(1 - u \) and \(1 - v \) respectively. The co-copula is the expression for the probability that either \(U > u \) or \(V > v \) when the arguments to \(C^*(u', v') \) are exceedance probabilities, which is unlike the dual of a copula (function) (see \texttt{duCOP}) that provides \(\Pr[U \leq u \text{ or } V \leq v] \).

The co-copula is a function and not in itself a copula. Some rules of copulas mean that \(C(u, v) + C^*(u', v') \equiv 1 \) or in \texttt{copBasic} syntax that the functions \texttt{COP(u,v)} + \texttt{coCOP(u,v)} equal unity if the exceedance argument to \texttt{coCOP} is set to FALSE.

The function \texttt{coCOP} gives “risk” against failure if failure is defined as either hazard source \(U \) or \(V \) occurring by themselves or if both occurred at the same time. Expressing this in terms of an annual probability of occurrence \((q) \), one has

\[
q = 1 - \Pr[U > u \text{ or } V > v] = C^*(u', v') \] or
in R code q <- coCOP(u, v, exceedance=FALSE, ...). So in yet other words and as a mnemonic: A co-copula is the probability of exceedance if the hazard sources collaborate or cooperate to cause failure. Also q can be computed by q <- coCOP(1-u, 1-v, exceedance=TRUE, ...)

Usage

cocop(u, v, cop=NULL, para=NULL, exceedance=TRUE, ...)

Arguments

u
Exceedance probability \(u' = 1 - u \) in the \(X \) direction;

v
Exceedance probability \(v' = 1 - v \) in the \(Y \) direction;

cop
A copula function;

para
Vector of parameters or other data structure, if needed, to pass to the copula;

exceedance
A logical controlling the probability direction. Are \(u \) and \(v \) values given really \(u' \) and \(v' \), respectively? If FALSE, then the complements of the two are made internally and the nonexceedances can thus be passed; and

... Additional arguments to pass to the copula.

Value

The value(s) for the co-copula are returned.

Note

The author (Asquith) finds the use of exceedance probabilities delicate in regards to Nelsen’s notation having grown up in a strictly nonexceedance world. The coCOP function and surCOP have the exceedance argument to serve as a reminder that the co-copula as defined in the literature uses exceedance probabilities as its arguments, although the arguments as code u and v do not mimic the overline nomenclature (\(\overline{u} \)) of the exceedance (survival) probabilities.

Author(s)

W.H. Asquith

References

See Also

copa, surCOP, duCOP
Examples

```r
u <- 1 - runif(1); v <- 1 - runif(1) # as exceedance, in order to reinforce the
# change to exceedance instead of nonexceedance that otherwise dominates this package
message("Exceedance probabilities u' and v' are ", u, " and ", v)
coCOP(u,v/cop=PLACKETTcop, para=10) # Positive association Plackett

# computation using manual manipulation to nonexceedance probability
1 - COP(cop=PSP,(1-u),(1-v))
# computation using internal manipulation to nonexceedance probability
coCOP(cop=PSP,   u,   v)

# Next demonstrate COP + coCOP = unity.
"MOcop.formula" <- function(u,v, para=para, ...) { # Marshall-Olkin copula
  alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
}
"MOcop" <- function(u,v, ...) { asCOP( u, v, f=MOcop.formula, ... ) }
u <- 0.2; v <- 0.75; ab <- c(1.5, 0.3)
COP(u,v, cop=MOcop, para=ab) + coCOP(1-u,1-v, cop=MOcop, para=ab) # UNITY
```

composite1COP

Composition of a Single Symmetric Copula with Two Compositing Parameters

Description

The composition of a single copula (Salvadori et al., 2006, p. 266, prop. C.3) is created by the following result related to “composition of copulas” in that reference. Suppose \(C(u, v) \) is a symmetric copula (see \(\text{COP} \)) with parameters \(\Theta \) and \(C \neq \Pi \) (for \(\Pi \) see \(\text{P} \)), then a family of generally asymmetric copulas \(C_{\alpha,\beta}\Theta \) with two compositing parameters \(0 < \alpha, \beta < 1 \) and \(\alpha \neq \beta \), which also includes just the copula \(C(u, v) \) as a limiting case for \(\alpha = \beta = 0 \) and is given by

\[
C_{\alpha,\beta}(u, v) = u^\alpha v^\beta \cdot C(u^{1-\alpha}, v^{1-\beta}).
\]

The composite1COP function provides the means for permutation asymmetry from a permutation symmetric copula as also described by Joe (2017, p. 124) but in a more general way by providing for two and not just one parameter. Joe’s description is supported herein if one of the \(\alpha \) or \(\beta \) are held at zero. Very loosely, the \(\alpha > 0 \) kicks probability density down towards the lower right corner, whereas \(\beta > 0 \) kicks density up towards the upper left corner. Finally, the composite2COP function is based on a slightly more general result (see composite2COP for further details of copula composition).

Usage

```r
composite1COP(u,v, para, ...)
```
Arguments

u Nonexceedance probability u in the X direction;

v Nonexceedance probability v in the Y direction;

para A special parameter list (see Note); and

... Additional arguments to pass to the copula.

Value

Value(s) for the composited copula are returned.

Note

The following descriptions list in detail the structure and content of the para argument:

alpha — The α compositing parameter;

beta — The β compositing parameter;

cop1 — Function of the copula $C(u, v)$; and

para1 — Vector of parameters Θ_C for $C(u, v)$.

For the para argument, the same nomenclature as used for composite2COP is used with obviously cop2 and para2 dropped for composite1COP. The cop1 and para1 names remain enumerated for composite1COP so that the para argument of the more general composite2COP function could be used directly in composite1COP. Albeit, the second copula and its parameters would not be used. A more complex (extended) composition in composite3COP extends this basic parameter structure.

Author(s)

W.H. Asquith

References

See Also

COP, composite2COP, composite3COP

Examples

alpha <- 0.24; beta <- 0.23; Theta1 <- NA;
W() does not use a parameter, but show how a parameter would be set if needed.
para <- list(alpha=alpha, beta=beta, cop1=W, para1=Theta1)
t <- composite1COP(0.4,0.6,para)
if(t != W(0.4,0.6)) message("Not equal as expected")
Next use this as a chance to check logic flow through
the various "compositing" operators and their as needed
dispatch to COP()
my.para <- list(cop1=Hcop, cop2=exp(+1.098612)+1,
 alpha=.5, beta=0.25,
 kappa=.1, gamma=.1,
 weights=c(.95, .05))
uses cop1/2, para=1/2, only weights
nustarCOP(cop=convexCOP, para=my.para)
uses cop1/2, para=1/2, only alpha
nustarCOP(cop=convex2COP, para=my.para)
uses cop1, para=1, only alpha/beta
nustarCOP(cop=composite1COP, para=my.para)
uses cop1/2, para=1/2, only alpha/beta
nustarCOP(cop=composite2COP, para=my.para)
uses cop1/2, para=1/2, only alpha/beta, kappa, gamma
nustarCOP(cop=composite3COP, para=my.para)

Composition of Two Copulas with Two Compositing Parameters

Description

The *composition of two copulas* (Salvadori et al., 2007, p. 266, prop. C.3) provides for more sophisticated structures of dependence between variables than many single parameter copula can provide. Further, *asymmetrical copulas* are readily obtained from *symmetrical copulas*. Let A and B be copulas with respective parameters \(\Theta_A \) and \(\Theta_B \), then

\[
C_{\alpha, \beta}(u, v) = A(u^\alpha, v^\beta) \cdot B(u^{1-\alpha}, v^{1-\beta}),
\]

defines a family of copulas \(C_{\alpha, \beta; \Theta_A, \Theta_B} \) with two *compositing parameters* \(\alpha, \beta \in \mathcal{I} : [0, 1] \). In particular if \(\alpha = \beta = 1 \), then \(C_{1,1} = A \), and if \(\alpha = \beta = 0 \), then \(C_{0,0} = B \). For \(\alpha \neq \beta \), the \(C_{\alpha, \beta} \) is in general asymmetric that is \(C(u, v) \neq C(v, u) \) for some \((u, v) \in \mathcal{I}^2 \).

It is important to stress that copulas \(A_{\Theta_A} \) and \(B_{\Theta_B} \) can be of different families and each copula parameterized accordingly by the vector of parameters \(\Theta_A \) and \(\Theta_B \). This is an interesting feature in the context of building complex structures when pursuing asymmetric measures of dependency such as the *L-comoments*. The author (Asquith) does not know whether the copulas A and B need be symmetric as the Salvadori reference makes no stated restriction to that effect. (Symmetry of the copula C is required for the situation that follows, however.)

It is possible to simplify the construction of an asymmetric copula from a symmetric copula by the following. Let \(C(u, v) \) be a symmetric copula, \(C \neq \Pi \) (for \(\Pi \) see P). A family of asymmetric
copulas $C_{\alpha,\beta}$ with two composition parameters $0 < \alpha, \beta < 1$, and $\alpha \neq \beta$ that also includes $C(u, v)$ as a limiting case and is given by

$$C_{\alpha,\beta}(u, v) = u^\alpha v^\beta \cdot C(u^{1-\alpha}, v^{1-\beta}).$$

The composite2COP function is based on the more general result given in the former rather than the later mathematical definition to provide more flexibility. For simpler case of composition involving only one copula, composite1COP is available, and a more complex (extended) composition is available in composite3COP.

Usage

```
composite2COP(u, v, para, ...)
```

Arguments

- `u` Nonexceedance probability u in the X direction;
- `v` Nonexceedance probability v in the Y direction;
- `para` A special parameter list (see **Note**); and
- `...` Additional arguments to pass to the copulas.

Value

Value(s) for the composited copula is returned.

Note

The following descriptions list in detail the structure and content of the `para` argument:

- `alpha` — The α compositing parameter;
- `beta` — The β compositing parameter;
- `cop1` — Function of the first copula A;
- `cop2` — Function of the second copula B;
- `para1` — Vector of parameters Θ_A for A; and
- `para2` — Vector of parameters Θ_B for B.

The `para` argument of this function also can be passed to composite1COP. Albeit, the second copula and its parameters would not be used. A more complex (extended) composition in composite3COP extends this basic parameter structure.

Author(s)

W.H. Asquith

References

See Also

COP, composite1COP, composite3COP

Examples

```r
alpha <- 0.24; beta <- 0.23; Theta1 <- NA; Theta2 <- NA
# The W() and PSP() copulas do not take parameters, but example shows how the
# parameters would be set should either or both of the copulas require parameters.
pars <- list(alpha=alpha, beta=beta, cop1=W, cop2=PSP, para1=Theta1, para2=Theta2)
print(composite2COP(0.4,0.6,par)) # 0.2779868

# In this example, the N4212cop uses "3" as its parameter value.
pars <- list(alpha=alpha, beta=beta, cop1=W, cop2=N4212cop, para1=Theta1, para2=3)
print(composite2COP(0.4,0.6,par)) # 0.3387506

## Not run:
# This example does a great job of showing a composited copula with a near singularity,
# but with leakage of chance to the upper left. The example is also critical because
# it shows that gridCOP is returning a matrix in the proper orientation relative to
# the level.curvesCOP and simCOP functions. Example is cross-ref'ed from gridCOP() docs.
layout(matrix(1:2, byrow=TRUE))
pars <- list(alpha=0.5, beta=0.90, cop1=M, cop2=N4212cop, para1=NA, para2=1.4)
image(gridCOP(cop=composite2COP, para=pars, delta=0.01), col=terrain.colors(30),
      xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
D <- simCOP(n=2000, cop=composite2COP, para=pars, ploton=FALSE, pch=4, col=4, cex=0.75)
level.curvesCOP(cop=composite2COP, para=pars, ploton=FALSE, delt = 0.05)
mtext("Theoretical composited copula, level curves, and simulation")

emp <- EMPIRgrid(para=0, deluv = 0.05)       # CPU heavy
image(emp$empcop, col=terrain.colors(30) )  # image orientation is correct!
# Depending on balance between sample size, deluv, delu, and delt, one or more:
# Error in uniroot(func, interval = c(0, 1), u = u, LHS = t, cop = cop, :
#   f() values at end points not of opposite sign
# warnings might be triggered. This is particularly true because of the flat derivative
# above the near singularity in this example composited copula.
points(D$U, D$V, pch=4, col=4, cex=0.75)
level.curvesCOP(cop=EMPIRCop, para=0, ploton=FALSE, delu=0.02, delt = 0.05)
mtext("Empirical copula from n=2000 simulation") #
## End(Not run)
```

Description

The (extended) composition of two copulas (Salvadori et al., 2006, p. 266, prop. C.4) provides for
even more sophisticated structures of dependence between variables than two-copula composition
in `composite2COP`. Let A and B be copulas with respective parameters \(\Theta_A \) and \(\Theta_B \), then
defines a family of copulas \(C_{\alpha,\beta,\kappa,\gamma}(u,v) \) with four compositing parameters \(\alpha, \beta, \kappa, \gamma \in [0,1] \).

It is important to stress that copulas \(A_{\Theta_A} \) and \(B_{\Theta_B} \) can be of different families and each parameterized accordingly by the vectors of parameters \(\Theta_A \) and \(\Theta_B \).

Usage

```
composite3COP(u,v,para,...)
```

Arguments

- \(u \) Nonexceedance probability \(u \) in \(X \) direction;
- \(v \) Nonexceedance probability \(v \) in \(Y \) direction;
- \(para \) A special parameter list (see **Note**); and
- \(...\) Additional arguments to pass to composite2COP.

Value

A value for the composited copula is returned.

Note

The following descriptions list in detail the structure and content of the \(para \) argument:

- \(alpha \) — The \(\alpha \) compositing parameter;
- \(beta \) — The \(\beta \) compositing parameter;
- \(kappa \) — The \(\kappa \) compositing parameter;
- \(gamma \) — The \(\gamma \) compositing parameter;
- \(cop1 \) — Function of the first copula \(A \);
- \(cop2 \) — Function of the second copula \(B \);
- \(para1 \) — Vector of parameters \(\Theta_A \) for \(A \); and
- \(para2 \) — Vector of parameters \(\Theta_B \) for \(B \).

The first example produces two plots. These are extremely informative for many nuances of copula theory. Whereas it is difficult in prose to describe, users are strongly encouraged that once full understanding of connection of red and green between the easier to understand bivariate plot and the plot showing the sections and derivatives of the sections is achieved that much of copula theory will be mastered—get a copy of Nelsen (2006) and (or) Salvadori et al. (2007).

Author(s)

W.H. Asquith
References

See Also

`simCOP, composite1COP, composite2COP, simcomposite3COP`

Examples

```r
## Not run:
para <- list(cop1=PLACKETTcop, cop2=N4212cop,
        para1=10*runif(1,min=-5,max=5), para2=runif(1,min=1,max=100),
        alpha=runif(1), beta=runif(1), kappa=runif(1), gamma=runif(1))
txts <- c("Alpha=" , round(para$alpha, digits=4),
        "; Beta=" , round(para$beta, digits=4),
        "; Kappa=" , round(para$kappa, digits=4),
        "; Gamma=" , round(para$gamma, digits=4),
        "; Theta1=" , round(para$para1[1], digits=5),
        "; Theta2=" , round(para$para2[1], digits=2))
layout(matrix(1:2,byrow=TRUE))
D <- simCOP(n=300, cop=composite3COP, para=para, cex=0.5, col=rgb(0,0,0.2), pch=16)
mtext(paste(txts,collapse=""))

f <- round(runif(1),digits=2)
ftxt <- c("Sectionals (thick) and derivatives (thin) at f=","f," nonexceedance prob.")
segments(f,0,f,1, col=3, lwd=2); segments(0,f,1,f, col=2, lwd=2)
t <- sectionCOP(f,cop=composite3COP,para=para, dercop=TRUE, ploton=FALSE, col=3)
t <- sectionCOP(f,cop=composite3COP,para=para, wrtv=TRUE, ploton=FALSE, col=2,lwd=4)
t <- sectionCOP(f,cop=composite3COP,para=para, wrtv=TRUE, ploton=FALSE, col=2, dercop=TRUE)
mtext(paste(ftxt, collapse=""))
## End(Not run)
```

Convex Combination of Two Copulas

Description

The convex composition of two copulas (Joe, 2014, p. 155) provides for some simple complexity extension between copula families. Let \mathbf{A} and \mathbf{B} be copulas with respective vectors of parameters $\Theta_\mathbf{A}$ and $\Theta_\mathbf{B}$, then the convex combination of these copulas is

$$ C_\alpha^\times(u,v) = \alpha \mathbf{A}(u,v; \Theta_\mathbf{A}) - (1 - \alpha) \mathbf{B}(u,v; \Theta_\mathbf{B}) $$

where $0 \leq \alpha \leq 1$. The generalization of this function for N number of copulas is provided by `convexCOP`.
Usage

`convex2COP(u, v, para, ...)`

Arguments

- `u` Nonexceedance probability u in the X direction;
- `v` Nonexceedance probability v in the Y direction;
- `para` A special parameter list (see Note); and
- `...` Additional arguments to pass to the copula.

Value

Value(s) for the convex combination copula is returned.

Note

The following descriptions list in detail the structure and content of the `para` argument:

- `alpha` — The α compositing parameter;
- `cop1` — Function of the first copula A;
- `cop2` — Function of the second copula B;
- `para1` — Vector of parameters Θ_A for A; and
- `para2` — Vector of parameters Θ_B for B.

Author(s)

W.H. Asquith

References

See Also

`composite2COP, convexCOP, FRECHETcop`

Examples

```r
para <- list(alpha=0.24, cop1=FRECHETcop, para1=c(0.4, .56),
              cop2=PSP, para2=NA)
convex2COP(0.87, 0.35, para=para) # 0.3188711
## Not run:
# Suppose we have a target Kendall Tau of 1/3 and a Gumbel-Hougaard copula seems
# attractive but the GH has just too much upper tail dependency for comfort. We
# think from data analysis that an upper tail dependency that is weaker and near
# 2/10 is the better. Let us convex mix in a Plackett copula and optimize.
TargetTau <- tauCOP(cop=GHcop, para=1.5) # 1/3 (Kendall's Tau)
tailDepCOP(cop=GHcop, para=1.5, plot = TRUE)$lambdaU # 0.4126
TargetUpperTailDep <- 2/10
```
convexCOP

Convex Combination of an Arbitrary Number of Copulas

Description

The convex composition of N number of copulas (Salvadori et al., p. 132, 2007) provides for complexity extension between coupla families. Let C_i be a copula with respective vector of parameters Θ_i, then the convex combination of these copulas is

$$C^C_\omega(u, v) = \sum_{i=1}^{N} \omega_i C_i(u, v; \Theta_i),$$

where $\sum_{i=1}^{N} \omega_i = 1$ for N number of copulas. The weights ω are silently treated as $1/N$ if the weights element is absent in the R list argument `para`.

Usage

```r
convexCOP(u, v, para, ...)
```

Arguments

- **u** Nonexceedance probability u in the X direction;
- **v** Nonexceedance probability v in the Y direction;
- **para** A special parameter list (see Note); and
- **...** Additional arguments to pass to the copula.
Value

Value(s) for the convex combination copula is returned.

Note

The following descriptions list in detail the structure and content of the para argument but please reference the Examples to see the i notation:

- \(\text{cop}_i \) — The \(i \)th copula;
- \(\text{para}_i \) — Vector of parameters \(\Theta_i \); and
- \(\text{weights} \) — Optional vector of weights whose sum will be rescaled to unity, default is \(1/N \) for each weight.

Author(s)

W.H. Asquith

References

See Also

convex2COP

Examples

```r
# The copulas and parameters are named by sequence number appended to cop and para.
para1 <- list(cop1=GHcop, cop2=PLcop, para1=8, para2=0.03, weights=c(0.8, 2))
para2 <- list(cop1=GHcop, cop2=PLcop, para1=8, para2=0.03, alpha=0.8)
H <- convexCOP(0.6, 0.4, para=para1)
G <- convexCOP(0.6, 0.4, para=para2)
if( abs(H-G) <= 1e-6 ) message("They are equal.")

## Not run:
# A convex combination of three copulas. A GHcop with strong positive association and
# a Plackett with strong negative association, and independence. The weights favor the
# GHcop but a little outlier and expansive spread is superimposed on the core trend.
para <- list(cop1=GHcop, cop2=PLcop, cop3=P,
            para1=8, para2=0.03, para3=NA, weights=c(40, 7, 10))
UV <- simCOP(1000, cop=convexCOP, para=para, lwd=0.8) #
## End(Not run)
```
The Copula

Description

Compute the copula or joint distribution function through a copula as shown by Nelsen (2006, p. 18) is the joint probability

$$\Pr[U \leq u, V \leq v] = C(u,v).$$

The copula is an expression of the joint probability that both $U \leq u$ and $V \leq v$. A radially symmetric or permutation symmetric copula is one such that $C(u,v) = C(v,u)$ otherwise the copula is asymmetric. A copula is a type of dependence function that permits straightforward characterization of dependence from independence. Joe (2014, p. 8) comments that “copula families are usually given as cdfs [cumulative distribution functions].”

The copula inversions $t = C(u,U,v)$ or $t = C(u,v,V)$ for a given t and U or V are provided by COPinv and COPinv2, respectively. A copula exists in the domain of the unit square ($I^2 = [0,1] \times [0,1]$) and is a grounded function meaning that

$$C(u,0) = 0 = C(0,v)$$

and other properties of a copula are that

$$C(u,1) = u$$

$$C(1,v) = v$$

$$C(1,1) = 1.$$

Copulas can be combined with each other (convex2COP, composite1COP, composite2COP, and composite3COP) to form more complex and sophisticated dependence structures. Also copula multiplication—a special product of two copulas—yields another copula (see prod2COP).

Usage

```r
COP(u, v, cop=NULL, para=NULL,
    reflect=c("cop", "surv", "acute", "grave",
             "1", "2", "3", "4"), ...)
```

Arguments

- **u** Nonexceedance probability u in the X direction;
- **v** Nonexceedance probability v in the Y direction;
- **cop** A copula function with vectorization as in asCOP;
- **para** Vector of parameters or other data structures, if needed, to pass to the copula;
- **reflect** The reflection of the copula form (see Note) and the default "cop" or "1" is the usual copula definition (also see simCOPmicro). The numbered values correspond, respectively, to the named values; and
- **...** Additional arguments to pass to the copula.
Value

Value(s) for the copula are returned.

Note

REFLECTIONS OF VARIABLES (ROTATIONS OF THE COPULA)—The copula of \((1-U, 1-V)\) is the survival copula \((\hat{C}(u, v); \text{sur}COP)\) and is defined as

\[
\text{Pr}[U > u, V > v] = \hat{C}(u, v) = u + v - 1 + C(1 - u, 1 - v) \rightarrow \text{"surv"},
\]

whereas, following the notation of Joe (2014, p. 271), the copula of \((1 - U, V)\) is defined as

\[
\text{Pr}[U > u, V \leq v] = \acute{C}(u, v) = v - C(1 - u, v) \rightarrow \text{"acute"},
\]

the copula of \((U, 1 - V)\) is defined as

\[
\text{Pr}[U \leq u, V > v] = \grave{C}(u, v) = u - C(u, 1 - v) \rightarrow \text{"grave"}.
\]

Here it is useful to stress the probability aspects that change with the reflections, but this section ends with the reflections themselves being graphically highlighted. The **Examples** stress simple variations on the probability aspects.

To clarify the seemingly clunky nomenclature—Joe (2014) does not provide "names" for \(\hat{C}(u, v)\) or \(\acute{C}(u, v)\)—the following guidance is informative:

1. "surv" or \(\hat{C}(u, v)\) is a reflection of \(U\) and \(V\) on the horizontal and vertical axes, respectively,
2. "acute" or \(\acute{C}(u, v)\) is a reflection of \(U\) on the horizontal axis, and
3. "grave" or \(\grave{C}(u, v)\) is a reflection of \(V\) on the vertical axis.

The names "acute" and "grave" match those used in the Rd-format math typesetting instructions.

Users are directed to the documentation of **simCOP** for further discussion because the COP function is expected to be an early entry point for new users interested in the **copBasic** API.

For the **copBasic** package and in order to keep some logic brief and code accessible for teaching and applied circumstances, reflections of copulas using analogs to the reflect argument are only natively supported in the COP and the **simCOP** functions. The interfaces of **copBasic** should already be flexible enough for users to adapt and (or) specially name reflections of copulas for deployment.

An example is warranted. Although the Gumbel–Hougaard copula (GHcop) can be reflected by COP and **simCOP** and testing is made in the **Note** section of **simCOP**. micro, it is suggested that a user generally requiring say a horizontal reflection ru (or vertical reflection rv) of the Gumbel–Hougaard copula write a function named perhaps ruGHcop (or rvGHcop).

Such functions, consistent with the mathematics at the beginning of this **Note**, can be used throughout functions of **copBasic** using the cop arguments. The author (Asquith) eschews implementing what is perceived as too much flexibility and overhead for the package to support the three reflection permutations universally across all copula functions of the package. This being said, COP can take an **R** list for the para argument for rotation/reflection:

```r
set.seed(14)
UV3 <- simCOP(20, cop=COP, pch=16, col=3,
               para=list(cop=GLcop, para=pi+1, reflect="3"))
set.seed(14)
```
UV2 <- simCOP(20, cop=COP, pch=16, col=4, ploton=FALSE, para=list(cop=GLcop, para=pi+1, reflect="2"))
arrows(x0=UV3[,1], y0=UV3[,2], x=UV2[,1], y=UV2[,2])

and this type of interface is similar to `composite1COP` as the following rotation and then asymmetric construction shows:

UV <- simCOP(1000, cop=composite1COP,
 para=list(cop1=COP,
 paral=c(cop=GHcop, para=pi+1, reflect="4"),
 alpha=0.1, beta=0.3))

Author(s)

W.H. Asquith

References

See Also

`coCOP`, `duCOP`, `surCOP`, `surfCOP`

Examples

```r
u <- runif(1); v <- runif(1)
COP(cop=W,u,v); COP(cop=P,u,v); COP(cop=M,u,v); COP(cop=PSP,u,v)
```

```r
F <- 0.75 # 75th percentile, nonexceedance
G <- 0.20 # 25th percentile, nonexceedance
bF <- 1 - F; bG <- 1 - G # exceedance
# What is the probability that both X and Y are less than
# 75th and 20th percentiles, respectively?
COP(cop=P,F,G) # 0.15
# What is the probability that both X and Y are greater than
# 75th and 20th percentiles, respectively?
surCOP(cop=P,bF,bG) # 0.20
# What is the probability that either X or Y are less than
# the 75th and 20th percentiles, respectively?
duCOP(cop=P,F,G) # 0.8
# What is the probability that either X or Y are greater than
# the 75th and 20th percentiles, respectively?
coCOP(cop=P,bF,bG) # 0.85
```

Repeat for the PSP copula:
What is the probability that both X and Y are less than
75th and 20th percentiles, respectively?
COP(cop=PSP,F,G) # 0.1875
What is the probability that both X and Y are greater than
75th and 20th percentiles, respectively?
surCOP(cop=PSP, bf, bg) # 0.2375
What is the probability that either X or Y are less than
the 75th and 20th percentiles, respectively?
duCOP(cop=PSP, F, G) # 0.7625
What is the probability that either X or Y are greater than
the 75th and 20th percentiles, respectively?
coCOP(cop=PSP, bf, bg) # 0.8125
Both of these summations equal unity
COP(cop=PSP, F, G) + coCOP(cop=PSP, bf, bg) # 1
surCOP(cop=PSP, bf, bg) + duCOP(cop=PSP, F, G) # 1

F <- 0.99 # 99th percentile, nonexceedance
G <- 0.50 # 50th percentile, nonexceedance
bF <- 1 - F # nonexceedance
bG <- 1 - G # nonexceedance
What is the probability that both X and Y are less than
99th and 50th percentiles, respectively?
COP(cop=P, f, g) # 0.495
What is the probability that both X and Y are greater than
99th and 50th percentiles, respectively?
surCOP(cop=P, bf, bg) # 0.005
What is the probability that either X or Y are less than
the 99th and 50th percentiles, respectively?
duCOP(cop=P, F, G) # 0.995
What is the probability that either X or Y are greater than
the 99th and 50th percentiles, respectively?
coCOP(cop=P, bf, bg) # 0.505

Description

An example of a general implementation of a parameter optimization scheme using core features of the **copBasic** package. Because of the general complexity of the objectives for this function, the interface shown here is considered an “beta version” and nomenclature is subject to dramatic changes in the future.

Usage

copBasic.fitpara.beta(uv=NULL, popstat=NULL, statf=NULL, cop=NULL,
paradim=1, interval=NULL, par.init=NULL, ...)

Arguments

- **uv**: An R two column matrix or data.frame of a sample of nonexceedance probabilities u and v;
- **popstat**: The population statistic(s) that will be used if uv is NULL;
A function responsible at the minimum for computation of the theoretical values of the population statistic(s) that the optimization will revolve around; This function, if supporting an as.sample interface (e.g. hoefCOP) and if uv has been provided, will be dispatched to compute the population statistic(s);

A copula function that is passed along to statf though of course the statf function can decide whether to use this argument or not;

The dimension of the parameters. In reality, the default triggers uni-dimensional root solving using the uniroot() function in R or otherwise the optim() function in R is used for multi-dimensional minimization with subtle changes in setup (see source code). Alternative logic could be have been used but it is felt that this is the most logical for future adaptations;

The interval argument by the same name for the uniroot() function;

The initial parameter vector for the optim() function; and

Additional arguments to pass.

A vector of the values for the parameter variable is returned

One-Parameter Optimization—A demonstration of one-dimensional parameter optimization using Gini’s Gamma (giniCOP), which is a measure of bivariate association. There is no native support for Gini’s Gamma (and most of the other measures of association) in regards to being a parameter estimator at the copula function interface level in copBasic. (A converse example is one provided internally by the GHcop copula.)

```
set.seed(24); n <- 230  # sample size to draw from Galambos copula but a # different copula was chosen for the fitting.
sampleUV <- simCOP(n=n, cop=GLcop, para=1.5)  # a random sample
para <- copBasic.fitpara.beta(uv=sampleUV, statf=giniCOP,
    interval=c(.1,200), cop=HRcop)  # 1.959521
```

Three-Parameter Optimization—A demonstration of multi-dimensional parameter optimization using Gini’s Gamma (giniCOP), Joe Nu-Skew (nuskewCOP), and Joe Nu-Skew-Star (nustarCOP). This is substantially more complicated to implement. The Hüsler-Reiss copula (HRcop) is chosen both as part of the sample simulation for the study as well as the copula as part of the modeling. Using composition by the composite1COP, first establish a parent three parameter copula and simulate from it to create a bivariate sample in sampleUV that will be used for demonstration. A standard normal variate graphic of the simulation is generated by simCOP as well—later, additional results will be superimposed.

```
n <- 610; set.seed(1999)  # Seed value will be used again (see below)
pop.para <- list(cop1=HRcop, para1=4, alpha=0.14, beta=0.35)
sampleUV <- simCOP(n=n, cop=composite1COP, para=pop.para, col=3, snv=TRUE)
```
A custom objective function `objfunc` to serve as the `statf` for the `copBasic.fitpara` call. The objective function has the `as.sample` interface (e.g. `giniCOP`) implemented for sample estimation. The most subtle feature of function presumably is the use of the `pnorm()` function in R for the \(\alpha \) and \(\beta \) parameters to keep each parameter in the range \(\alpha, \beta \in (0, 1) \). Another subtly, which affects the choice of other copulas from HRCop, is how the parameter range of \(\Theta \) (the \(par[1] \) variable) is controlled—here the parameter remains untransformed but the lower domain edge is truncated by the return of infinity (return(Inf)). The `getstat` argument is only for short circuiting the objective so that `objfunc` can be used to compute the three statistics after the optimal parameters are found.

```r
"objfunc" <- function(para, stat=NA, as.sample=FALSE, getstat=FALSE, ...) {
  if(as.sample) {
    return(c(giniCOP( para=para, as.sample=TRUE),
            nuskewCOP(para=para, as.sample=TRUE),
            nustarcOP(para=para, as.sample=TRUE)))
  }
  para[1] <- ifelse(para[1] < 0, return(Inf), para[1]) # edge check
  para[2:3] <- pnorm(para[2:3]) # detransform
  para <- list(cop=HRCop, paral=para[1], alpha=para[2], beta=para[3])
  hp <- c(giniCOP( compositeCOP, para),
         nuskewCOP(compositeCOP, para),
         nustarcOP(compositeCOP, para))
  if(getstat) return(hp) # short circuit to get the statistics out
  dv <- stat; dv[dv == 0] <- 1 # changing dv "adapts" the error to
  return(sqrt(sum(((stat-hp)/dv)^2))) # trap division by zero }
```

The parameter estimation proceeds in the following code. The sample statistics (or `target.stats`) are computed and subsequently passed to the optimization using the `popstat` argument. Note the use of the `qnorm()` function in R to transform the initial guess \(\alpha = \beta = 1/2 \) into a domain more easily handled by the optimizer (`optim()` function in R). The transformed optimal parameters are computed, and then the values of the three statistics for the fit are computed. Lastly, a `copBasic` parameter object `fit_para` is created, which can be used for later comparisons.

```r
txt <- c("GiniGamma", "JoeNuSkew", "JoeNuSkewStar")
target.stats <- objfunc(sampleUV, as.sample=TRUE); names(target.stats) <-txt
raw.fit para <- copBasic.fitpara.beta(popstat=target.stats, statf=objfunc,
  par.init=c(1,qnorm(.5),qnorm(.5)), cop=compositeCOP, paradigm=3)
fit.stats <- objfunc(raw.fit para, getstat=TRUE); names(fit.stats) <-txt
fit.para <- list(cop=HRCop, paral=raw.fit.para[1],
  alpha=pnorm(raw.fit.para[2]), beta=pnorm(raw.fit.para[3]))
```

The optimization is completed. It can be informative to see what the simulation of the fitted copula looks like. Note that this particular example suffers from identifiability problems between the parameters—meaning that local minima exist or that satisfactory solutions using different parameters than used to generate the random sample can occur. The same seed is used so that one-to-one comparison of points can visually be made with the `simCOP` function call.

```r
set.seed(1999) # This value will be used again (see below)
```
The visual comparison is qualitative. The tabular comparison of the sample statistics to those of the fitted model shows that perhaps an acceptable local minima has been attained in terms of “fit” but the subsequent comparison of the parameters of the population used to generate the sample and those of the fitted model seemingly depart substantially in the $\alpha \to 0$ parameter of the copula composition. The tail dependency parameters are similar, but further goodness-of-fit check is not made.

<table>
<thead>
<tr>
<th>#</th>
<th>GiniGamma</th>
<th>JoeNuSkew</th>
<th>JoeNuSkewStar</th>
</tr>
</thead>
<tbody>
<tr>
<td>target.stats</td>
<td>0.52190271</td>
<td>-0.0121417</td>
<td>0.01219315</td>
</tr>
<tr>
<td>fit.stats</td>
<td>0.49442298</td>
<td>-0.01198534</td>
<td>0.01051656</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop para</td>
<td>4.00</td>
<td>0.14</td>
</tr>
<tr>
<td>fit para</td>
<td>2.48</td>
<td>2.25e-08</td>
</tr>
</tbody>
</table>

The demonstration ends with the comparison of the two asymmetrical density contours.

densityCOPplot(cop=composite1COP, para=pop.para, contour.col=3)
densityCOPplot(cop=composite1COP, para=fit.para, contour.col=2, ploten=FALSE)

Author(s)

W.H. Asquith

Examples

See the Note section

COPinv

The Inverse of a Copula for V with respect to U

Description

Compute the inverse of a copula for V with respect to U given t or

$$t = C(u=U, v) \to C^{-1}(u=U, t) = v,$$

and solving for v. Nelsen (2006, p. 12) does not so name this function as an “inverse.” The COPinv function is internally used by level.curvesCOP. A common misapplication that will puzzle the user (including the author after long breaks from use) is that the following call and error message are often seen:
COPinv(.2, .25, cop=PSP)
Error in uniroot(func, interval = c(lo, 1), u = u, LHS = t, cop = cop, :
f() values at end points not of opposite sign
[1] NA

This is a harmless error in the sense that COPinv is functioning properly. One can not invert a copula for \(u < t \) and for \(u = t \) the \(v = 1 \) because of fundamental copula properties. Also because of fundamental theory being involved, the author perceives that it is better to not silently trap the error but let errors cascade up the chain in a user’s application. This might represent suboptimal design and suggestions for improvement are invited.

Usage
COPinv(cop=NULL, u, t, para=NULL, ...)

Arguments
cop A copula function;
u Nonexceedance probability \(u \) in the \(X \) direction;
t Nonexceedance probability level \(t \);
para Vector of parameters or other data structures, if needed, to pass to the copula; and
... Additional arguments to pass.

Value
Value(s) for \(v \) are returned.

Author(s)
W.H. Asquith

References

See Also
COP, COPinv2, level.curvesCOP

Examples
COPinv(cop=N4212cop, para=2, u=0.5, t=0.2)
The Inverse of a Copula for U with respect to V

Description

Compute the inverse of a copula for U with respect to V given t or

\[t = C(u, v=V) \rightarrow C^{-1}(v=V, t) = u, \]

and solving for u. Nelsen (2006, p. 12) does not so name this function as an “inverse.” The COPinv2 function is internally used by level.curvesCOP2. A common misapplication that will puzzle the user (including the author after long breaks from use) is that the following call and error message are often seen:

```r
COPinv2(.2, .25, cop=PSP)
Error in uniroot(func, interval = c(lo, 1), u = u, LHS = t, cop = cop, : f() values at end points not of opposite sign
[1] NA
```

This is a harmless error in the sense that COPinv2 is functioning properly. One can not invert a copula for \(v < t \) and for \(v = t \) the \(u = 1 \) because of fundamental copula properties. Also because of fundamental theory being involved, the author perceives that it is better to not silently trap the error but let errors cascade up the chain in a user’s application. This might represent suboptimal design and suggestions for improvement are invited.

Usage

```r
COPinv2(cop=NULL, v, t, para=NULL, ...)
```

Arguments

- **cop**: A copula function;
- **v**: Nonexceedance probability \(v \) in the \(Y \) direction;
- **t**: Nonexceedance probability in \(t \);
- **para**: Vector of parameters or other data structures, if needed, to pass to the copula; and
- **...**: Additional arguments to pass to the copula.

Value

Value(s) for \(u \) are returned.

Author(s)

W.H. Asquith
References

See Also

COP, COPinv, level.curvesCOP

Examples

See those for COPinv as they are the same by analogy.

densityCOP

Density of a Copula

Description

Numerically estimate the copula density for a sequence of \(u \) and \(v \) probabilities for which each sequence has equal steps that are equal to \(\Delta(uv) \). The density \(c(u, v) \) of a copula \(C(u, v) \) is numerically estimated by

\[
c(u, v) = \frac{[C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1)]}{\Delta(uv) \times \Delta(uv)},
\]

where \(c(u, v) \geq 0 \) (see Nelsen, 2006, p. 10; densityCOPplot). The joint density can be defined by the copula density for continuous variables and is the ratio of the joint density function \(f(x, y) \) for random variables \(X \) and \(Y \) to the product of the marginal densities \((f_x(x) \) and \(f_y(y))\):

\[
c(F_x(x), F_y(y)) = \frac{f(x, y)}{f_x(x)f_y(y)},
\]

where \(F_x(x) \) and \(F_y(y) \) are the respective cumulative distribution functions of \(X \) and \(Y \), and lastly \(u = F_x(x) \) and \(v = F_y(y) \).

Usage

densityCOP(u, v, cop=NULL, para=NULL, deluv=Machine$double.eps^0.25, truncate.at.zero=TRUE, the.zero=0, sumlogs=FALSE, ...)

Arguments

- \(u \): Nonexceedance probability \(u \) in the \(X \) direction;
- \(v \): Nonexceedance probability \(v \) in the \(Y \) direction;
- \(cop \): A copula function;
- \(para \): Vector of parameters or other data structure, if needed, to pass to the copula;
- \(deluv \): The change in the sequences \(\{u, v\} \rightarrow \delta, \ldots, 1 - \delta; \delta = \Delta(uv) \) probabilities;
A density must be \(c(u, v) \geq 0 \), but because this computation is based on a rectangular approximation and not analytical, there exists a possibility that very small rectangles could result in numerical values in \(\mathbb{R} \) that are less than zero. This usually can be blamed on rounding. This logical if TRUE truncates computed densities to zero, and the default assumes that the user is providing a proper copula. A FALSE value is used by the function \texttt{isfuncCOP};

The value for “the zero” where a small number might be useful for pseudo-maximum likelihood estimation using \texttt{sumlogs};

Return the \[\sum \log c(u, v; \Theta) \] where \(\Theta \) are the parameters in \texttt{para}; and

Additional arguments to pass to the copula function.

Value

Value(s) for \(c(u, v) \) are returned.

Note

The \texttt{copBasic} package does not currently have copula densities as analytical solutions. This is because initial design decisions were entirely on cumulative distribution function (CDF) representations of the copula.

Author(s)

W.H. Asquith

References

See Also

\texttt{simCOP, densityCOPplot, kullCOP}

Examples

```
# Joe (2014, p. 164) shows the closed form copula density for the Plackett.
“dPLACKETTcop” <- function(u,v,para) {
   uv <- u*v; upv <- u + v; eta <- para - 1
   A <- para*(1+eta*(upv - 2*uv)); B <- ((1+eta*upv)^2 - 4*para*eta*uv)^(3/2)
   return(A/B)
}
dPLACKETTcop(0.32, 0.74, para=1.3) # 0.9557124
densityCOP( 0.32, 0.74, cop=PLcop, para=1.3) # 0.9557153

## Not run:
# Joe (2014, p. 165) shows the corner densities of the Plackett as Theta.
# copBasic uses numerical density estimation and not analytical formula.
eps <- .Machine$double.eps
```
densityCOPplot

Contour Density Plot of a Copula

Description

Generate a contour density plot after the advocation of Joe (2014, pp. 9–15). Such graphics are plots of scaled copula densities \((c^*(u,v))\), bivariate herein, that are copula densities scaled to the standard normal distribution \(\sim \mathcal{N}(0,1)\) margins. Joe (2014) repeatedly emphasizes such plots in contrast to the uniform distribution \(\sim \mathcal{U}(0,1)\) margins. Nelsen (2006) does not discuss such scaling but seemingly Nelsen’s objectives for his book were different.

The density of copula \(C(u,v)\) is numerically estimated by

\[
c(u,v) = \frac{[C(u_2,v_2) - C(u_2,v_1) - C(u_1,v_2) + C(u_1,v_1)]}{[\Delta(uv) \times \Delta(uv)]},
\]

where \(c(u,v) \geq 0\) (see Nelsen, 2006, p. 10; densityCOP). Given a numerically estimated quantity \(c^*(u,v) = c(u,v) \times \phi(\Phi^{-1}(u)) \times \phi(\Phi^{-1}(v))\) for copula density \(c(u,v)\), a grid of the \(c^*(u,v)\) values can be contoured by the contour() function in R. The density function of the \(N(0,1)\) is \(\phi(z)\) for standard normal variate \(z\) and the quantile function of the \(N(0,1)\) is \(\Phi^{-1}(t)\) for nonexceedance probability \(t\).

A grid (matrix) of \(c(u,v)\) or \(c^*(u,v)\) is defined for sequence of \(u\) and \(v\) probabilities for which each sequence has equal steps that are equal to \(\Delta(uv)\). This function has as focus on plotting of the contour lines of \(c^*(u,v)\) but the \(R\) matrix of either \(c(u,v)\) or \(c^*(u,v)\) can be requested on return. For either matrix, the colnames() and rownames() (the \(R\) functions) are set equal to the sequence of \(u\) and \(v\), respectively. Neither the column or row names are set to the standard normal variates for the matrix of \(c^*(u,v)\), the names remain in terms of nonexceedance probability.

For plotting and other uses of normal scores of data, Joe (2014, p. 245) advocates that one should use the plotting position formula \(u_i = (i - 1/2)/n\) (Hazen plotting position) for normal scores.
\[z_i = \Phi^{-1}(u_i) \text{ in preference to } i/(n + 1) \text{ (Weibull plotting position)} \] because \(n^{-1} \sum_{i=1}^{n} z_i^2 \) is closer to unity. Other places of Joe’s advocation for the Hazen plotting positions are available (Joe, 2014, pp. 9, 17, 245, 247–248).

Usage

```r
densityCOPplot(cop=NULL, para=NULL, deluv=0.002, origins=TRUE,
    getmatrix=c("none", "cdenzz", "cden"), n=0,
    ploton=TRUE, contour.col=1, contour.lwd=1.5, ...)
```

Arguments

- `cop`: A copula function;
- `para`: Vector of parameters or other data structure, if needed, to pass to the copula;
- `deluv`: The change in the sequences \(\{u, v\} \mapsto \delta, \ldots, 1 - \delta; \delta = \Delta(uv) \) probabilities;
- `origins`: A logical to plot the origin lines;
- `getmatrix`: A trigger on whether the density matrix is to be returned. The option `cdenzz` returns the density scaled by the two standard normal densities \(c^{\times}(u, v) \), whereas the option `cden` returns simply the copula density \(c(u, v) \);
- `ploton`: A logical to toggle on the plot;
- `contour.col`: The color of the contour lines, which corresponds to the `col` argument of the `contour` function in \(R \);
- `contour.lwd`: The width of the contour lines, which corresponds to the `lwd` argument of the `contour` function in \(R \);
- `n`: An optional sample size for which simulation of this many values from the copula will be made by `simCOP` and drawn; and
- `...`: Additional arguments to pass to the copula function and to the `contour` function in \(R \) (e.g. to turn off labeling of contours add `drawlabels=FALSE`).

Value

This is a high-level function used for its side effects; an \(R \) matrix can be triggered, however, as a returned value.

Note

Joe (2014, p. 244) says “if [density] plots show multimodality, then multivariate techniques of mixture models, cluster analysis[,] and nonparametric functional data analysis might be more appropriate” than relatively straightforward parametric copula models.

Author(s)

W.H. Asquith

References

See Also

`simCOP`, `densityCOP`

Examples

```
## Not run:
# Joe (2014, p. 5) names rMTCJ = reflected Mardia-Takahasi-Cook-Johnson copula
rMTCJ <- function(u,v,para, ...) {
  u + v - 1 + ((1-u)^(-para) + (1-v)^(-para) - 1)^(-1/para)
}
# Survival Copula ("reflected" in Joe's terms)
densityCOPplot(cop=rMTCJ, para=1.0706, n=9000)
# The density plot matches that shown by Joe (2014, p. 11, fig. 1.2, lower left plot)
# for a Spearman's Rho equaling 0.5. Let us compute then Rho:
rhocop(cop=rMTCJ, para=1.070675) # 0.4999958

# Now let us get really wild with a composition with TWO modes!
# This example also proves that the grid orientation is consistent with respect
# to the orientation of the simulations.
para <- list(alpha=0.15, beta=0.90, kappa=0.06, gamma=0.96, 
  cop1='GHcop, cop2=PLACKETTcop, para1=5.5, para2=0.07)
densityCOPplot(cop=compositeRcop, para=para, n=9000)

# Now let us hack back to a contour density plot with U(0,1) and not N(0,1) margins
# just so show that capability exists, but emphasis of densityCOPplot is clearly
# on Joe's advocation so it does not have a trigger to use U(0,1) margins.
set.seed(12)
HH <- densityCOPplot(cop=PLACKETTcop, para=41.25, getmatrix="cden", n=1000)
set.seed(12)
UV <- simCOP(cop=PLACKETTcop, para=41.25, n=1000, col=8)
U <- as.numeric(colnames(H)); V <- as.numeric(rownames(H))
contour(x=U, y=V, z=t(H), lwd=1.5, cex=2, add=TRUE, col=2) #
## End(Not run)

## Not run:
UV <- rCOP(400, cop=PSP, pch=16, col=8, n=400)
CL <- mleCOP(UV, cop=CLcop, interval=c(1,28))
JO <- mleCOP(UV, cop=JOCopBS, interval=c(.1,20))
PL <- mleCOP(UV, cop=PLcop, interval=c(.1,20))

AICs <- c(CL$AIC, JO$AIC, PL$AIC)
names(AICs) <- c("Clayton", "Joe(B5)", "Plackett")
print(round(AICs, digits=2))
# Clayton   Joe(B5)   Plackett
# -167.15   -36.91   -131.35
# So we conclude Clayton must be the best fit of the three.
plot(qnorm(UV[,1]), qnorm(UV[,2]), pch=16, col=8, 
  xlim=c(-3,3), ylim=c(-3,3), cex=0.5, 
  xlab="Standard normal variate of V", 
  ylab="Standard normal variate of U")
densityCOPplot(cop=PSP, contour.col=grey(0.5), lty=2, 
  contour.lwd=3.5, ploton=FALSE)
```
Numerical Derivative of a Copula for V with respect to U

Description

Compute the numerical partial derivative of a copula, which is a conditional distribution function, according to Nelsen (2006, pp. 13, 40–41) with respect to u:

$$0 \leq \frac{\delta}{\delta u} C(u, v) \leq 1,$$

or

$$\Pr[V \leq v \mid U = u] = C_{2|1}(v \mid u) = \lim_{\Delta u \to 0} \frac{C(u + \Delta u, v) - C(u, v)}{\Delta u},$$

which is to read as the probability that $V \leq v$ given that $U = u$ and corresponds to the derdir="left" mode of the function. For derdir="right", we have

$$\Pr[V \leq v \mid U = u] = \lim_{\Delta u \to 0} \frac{C(u, v) - C(u - \Delta u, v)}{\Delta u},$$

and for derdir="center" (the usual method of computing a derivative), the following results

$$\Pr[V \leq v \mid U = u] = \lim_{\Delta u \to 0} \frac{C(u + \Delta u, v) - C(u - \Delta u, v)}{2\Delta u}.$$

The “with respect to V” versions are available under derCOP2.

Copula derivatives ($\delta C/\delta u$ or say $\delta C/\delta v$ derCOP2) are non-decreasing functions meaning that if $v_1 \leq v_2$, then $C(u, v_2) - C(u, v_1)$ is a non-decreasing function in u, thus

$$\frac{\delta (C(u, v_2) - C(u, v_1))}{\delta u}$$

is non-negative, which means

$$\frac{\delta C(u, v_2)}{\delta u} \geq \frac{\delta C(u, v_1)}{\delta u}$$

for $v_2 \geq v_1$.

Usage

derCOP(cop=NULL, u, v, delu=.Machine$double.eps*0.5, derdir=c("left", "right", "center"), ...)
Arguments

- **cop**
 A copula function;

- **u**
 Nonexceedance probability \(u \) in the \(X \) direction. If the length of \(u \) is unity, then the length of \(v \) can be arbitrarily long. If the length of \(u \) is not unity, then the length of \(v \) should be the same, and if not, then only the first value in \(v \) is silently used;

- **v**
 Nonexceedance probability \(v \) in the \(Y \) direction (see previous comment on \(u \));

- **delu**
 The \(\Delta u \) interval for the derivative;

- **derdir**
 The direction of the derivative as described above. Default is left but internally any setting can be temporarily suspended to avoid improper computations (see source code); and

- **...**
 Additional arguments to pass such as the parameters often described in para arguments of other copula functions. (The lack of para=NULL for derCOP and derCOP2 was either design oversight or design foresight but regardless it is too late to enforce package consistency in this matter.)

Value

Value(s) for the partial derivative are returned.

Note

A known caveat of the current implementation of the copula derivative is that there is a chance that the \(\Delta u \) will span a singularity or discontinuous (or nearly so) portion of a copula should it have a property of singularity (or nearly so). The \(\Delta u \) is chosen small so the chance is mitigated to a small value. It is not decided whether a derivative from the positive side (dir="left"), when failing should switch over to a computation from the negative side (dir="right"). The distinction is important for the computation of the inverse of the derivative derCOPinv because the solution finder needs a sign reversal to work.

Author(s)

W.H. Asquith

References

See Also

derCOPinv, derCOP2

Examples

derCOP(cop=W, 0.4, 0.6); derCOP(cop=P, 0.4, 0.6); derCOP(cop=M, 0.4, 0.6)

lf <- derCOP(cop=PSP, 0.4, 0.6, derdir="left")
rgt <- derCOP(cop=PSP, 0.4, 0.6, derdir="right")
cnt <- derCOP(cop=PSP, 0.4, 0.6, derdir="center")
cat(c(lft,rgt,cnt,"\n")) #stopifnot(all.equal(lft,rgt), all.equal(lft,cnt))

Let us contrive a singularity through this NOT A COPULA in the function "afunc".
"afunc" <- function(u,v,...) return(ifelse(u <= 0.5, sqrt(u^2+v^2), P(u,v,...)))
lft <- derCOP(cop=afunc, 0.5, 0.67, derdir="left")
rgt <- derCOP(cop=afunc, 0.5, 0.67, derdir="right")
cnt <- derCOP(cop=afunc, 0.5, 0.67, derdir="center")
cat(c(lft,rgt,cnt,"\n")) # The "right" version is correct.

derCOP2
Numerical Derivative of a Copula for U with respect to V

Description

Compute the numerical partial derivative of a copula, which is a *conditional distribution function*, according to Nelsen (2006, pp. 13, 40–41) with respect to v:

$$0 \leq \frac{\delta}{\delta v} C(u,v) \leq 1,$$

or

$$\Pr[U \leq u \mid V = v] = C_{1|2}(u|v) = \lim_{\Delta v \to 0} \frac{C(u,v + \Delta v) - C(u,v)}{\Delta v},$$

which is to read as the probability that $U \leq u$ given that $V = v$ and corresponds to the derdir="left" mode of the function. For derdir="right", the following results

$$\Pr[U \leq u \mid V = v] = \lim_{\Delta v \to 0} \frac{C(u,v) - C(u,v - \Delta v)}{\Delta v},$$

and for derdir="center" (the usual method of computing a derivative), the following results

$$\Pr[U \leq u \mid V = v] = \lim_{\Delta v \to 0} \frac{C(u,v + \Delta v) - C(u,v - \Delta v)}{2\Delta v}.$$

The “with respect to U” versions are under derCOP.

Copula derivatives ($\delta C/\delta v$ or say $\delta C/\delta u$ derCOP) are non-decreasing functions meaning that if $u_1 \leq u_2$, then $C(u_2,v) - C(u_1,v)$ is a non-decreasing function in v, thus

$$\frac{\delta}{\delta v} \left(C(u_2,v) - C(u_1,v) \right)$$

is non-negative, which means

$$\frac{\delta C(u_2,v)}{\delta v} \geq \frac{\delta C(u_1,v)}{\delta v} \text{ for } u_2 \geq u_1.$$
Usage

derCOP2(cop=NULL, u, v, delv=Machine$double.eps^0.50,
derdir=c("left", "right", "center"), ...)

Arguments

cop A copula function;
u Nonexceedance probability \(u \) in the \(X \) direction. If the length of \(u \) is unity, then the length of \(v \) can be arbitrarily long. If the length of \(u \) is not unity, then the length of \(v \) should be the same and if not only the first value in \(v \) will be silently used;
v Nonexceedance probability \(v \) in the \(Y \) direction (see previous comment on \(u \));
delv The \(\Delta v \) interval for the derivative;
derdir The direction of the derivative as described above. Default is left but internally any setting can be temporarily suspended to avoid improper computations (see source code); and
... Additional arguments to pass such as the parameters often described in para arguments of other copula functions. (The lack of para=NULL for derCOP and derCOP2 was either design oversight or design foresight but regardless it is too late to enforce package consistency in this matter.)

Value

Value(s) for the partial derivative are returned.

Note

A known caveat of the current implementation of the copula derivative is that there is a chance that the \(\Delta v \) will span a singularity or discontinuous (or nearly so) portion of a copula should it have a property of singularity (or nearly so). The delv is chosen small so the chance is mitigated to a small value. It is not decided whether a derivative from the positive side (dir="left"), when failing should switch over to a computation from the negative side (dir="right"). The distinction is important for the computation of the inverse of the derivative derCOPinv2 because the solution finder needs a sign reversal to work.

Author(s)

W.H. Asquith

References

See Also

derCOPinv2, derCOP
Examples

derCOP2(cop=P,0.4,0.6); derCOP2(cop=P,0.4,0.6); derCOP2(cop=M,0.4,0.6)

lft <- derCOP2(cop=P, 0.4, 0.6, derdir="left")
rgt <- derCOP2(cop=P, 0.4, 0.6, derdir="right")
cnt <- derCOP2(cop=P, 0.4, 0.6, derdir="center")
cat(c(lft,rgt,cnt,"\n"))
stopifnot(all.equal(lft,rgt), all.equal(lft,cnt))

Let us contrive a singularity though this NOT A COPULA in the function "afunc".
"afunc" <- function(u,v,...) return(ifelse(u <= 0.5, sqrt(u^2+v^2), P(u,v,...)))
lft <- derCOP2(cop=afunc, 0.67, 0.5, derdir="left")
rgt <- derCOP2(cop=afunc, 0.67, 0.5, derdir="right")
cnt <- derCOP2(cop=afunc, 0.67, 0.5, derdir="center")
cat(c(lft,rgt,cnt,"\n")) # For this example, all are correct (see derCOP examples)

derCOPinv Numerical Derivative Inverse of a Copula for V with respect to U

Description

Compute the inverse of a numerical partial derivative for V with respect to U of a copula, which is a conditional quantile function for nonexceedance probability \(t \), or

\[
 t = c_u(v) = C_{2|1}^{-1}(v|u) = \frac{\partial C(u,v)}{\partial u},
\]

and solving for \(v \). Nelsen (2006, pp. 13, 40–41) shows that this inverse is quite important for random variable generation using the conditional distribution method. This function is not vectorized and will not be so.

Usage

derCOPinv(cop=NULL, u, t, trace=FALSE,
 delu=Machine$double.eps*0.50, para=NULL, ...)

Arguments

cop A copula function;
u A single nonexceedance probability \(u \) in the \(X \) direction;
t A single nonexceedance probability level \(t \);
trace A logical controlling a message on whether the signs on the uniroot are the same—this is helpful in exploring the numerical derivative limits of a given implementation of a copula.
delu The \(\Delta u \) interval for the derivative;
para Vector of parameters or other data structures, if needed, to pass to cop; and
... Additional arguments to pass to the copula.
Value

Value(s) for the derivative inverse are returned.

Note

AN EDUCATIONAL OPPORTUNITY—The Farlie-Gumbel-Morgenstern copula $F_{GM}(u, v)$ (Joe, 2014, p. 213) is

$$F_{GM}(u, v; \Theta) = uv[1 + \Theta(1 - u)(1 - v)],$$

where $-1 \leq \Theta \leq 1$ has analytical solutions to the conditional cumulative distribution function (CDF) $C_{2|1}(v|u)$ as

$$C_{2|1}(v|u) = v[1 + \Theta(1 - v)(1 - 2u)],$$

and the inverse of the conditional CDF as

$$C_{2|1}^{-1}(v|u) = \left[1 + \Theta(1 - 2u)\right]^{-1} \sqrt{1 + \Theta(1 - 2u)^2 - 4t(1 - 2u)}$$

These three functions for the copula can be defined in R by

```r
"FGMcop" <- function(u, v, para=NULL, ...) { u*v*(1 + para*(1-u)*(1-v) )
"joeFGMder" <- function(u, v, para=NULL, ...) { v*(1 + para*(1-v)*(1-2*u))
"joeFGMderinv" <- function(u, t, para=NULL, ...) {
  K <- (1-2*u)
  ((1 + para*K) - sqrt((1 + para*K)^2 - 4*t*K))/(2*para*K)
}
```

The $C_{2|1}^{-1}(v|u)$ is critical for simulation by the conditional simulation method. Although copBasic exclusively for simulation uses inversion of the numerical derivative, the F_{GM} copula has three representations of supposedly the same analytical algorithm for simulation in the literature (Durante, 2007; Johnson, 1987; Nelsen, 2006). An educational opportunity for comparison is thus available.

The three analytical algorithms for nonexceedance probability t given u by mathematics and code, following Durante (2007, p. 245), are

$$A = \Theta(1 - 2u) - 1,$$

$$B = \sqrt{A^2 - 4t(A + 1)},$$

and $v = 2t/(B - A),$ and in R, this “Durante algorithm” is

```r
"durFGMderinv" <- function(u, t, para=NULL, ...) { # Durante (2007, p. 245)
  A <- para*(1-2*u) - 1; B <- sqrt(A^2 - 4*t*(A+1)); return(2*t/(B - A))
}
```

and, letting $K = (2u - 1),$ following Johnson (1987, p. 185)

$$A = K\Theta - 1,$$

$$B = \sqrt{1 - 2K\Theta + (K\Theta)^2 + 4tK\Theta},$$

and in R, this “Johnson algorithm” is

```r
"johFGMderinv" <- function(u, t, para=NULL, ...) { # Johnson (1987, p. 185)
  A <- para*(1-2*u) - 1; B <- sqrt(A^2 - 4*t*(A+1)); return(2*t/(B - A))
}
and finally following Nelsen (2006, p. 87)
\[ A = 1 + \theta(1 - 2u), \]
\[ B = \sqrt{A^2 - 4t(A - 1)}, \]
and in R, this “Nelsen algorithm” is

```r
"nelsFGMderinv" <- function(u, t, para=NULL, ...) {
 A <- 1 + para*(1-2*u); B <- sqrt(A^2 - 4*t*(A-1)); return(2*t/(B + A))
}
```

With appropriate code now available, two comparisons can be made in the following sections.

**CONDITIONAL DISTRIBUTION FUNCTION**—A comparison of the analytical \( FGM(u, v) \) derivative shows that Joe’s equation is congruent with the numerical derivative of \( \text{copBasic} \):

```
joeFGMder(0.8, 0.44, para=0.78) # 0.3246848 (Joe, 2014)
derCOP(0.8, 0.44, para=0.78, cop=FGMcop) # 0.3246848 (copBasic)
```

and the result will be used in the computations that follow.

A comparison for \( t = 0.3246848 \) of the analytical inverse and the numerical optimization of the numerical derivative of \( \text{copBasic} \) is

```
joeFGMderinv(0.8, 0.3246848, para=0.78) # 0.5327603
derCOPinv(0.8, 0.3246848, para=0.78, cop=FGMcop) # 0.4399934 --> 0.44
```

where obviously, the two results are not in agreement—so something is amiss. Because many examples in this documentation clearly demonstrate numerical reliability, a tentative conclusion is that Joe’s listed equation must be in error. Let us check this hypothesis against the three other sources:

```
durFGMderinv(0.8, 0.3246848, para=0.78) # 0.2074546 (Durante, 2007)
jonFGMderinv(0.8, 0.3246848, para=0.78) # 0.44 (Johnson, 1987)
nelfFGMderinv(0.8, 0.3246848, para=0.78) # 0.44 (Nelsen, 2006)
```

The result from Durante (2007) is different from both Joe (2014) and from \( \text{copBasic} \). However, the Johnson (1987) and Nelsen (2006) versions are equivalent and congruent with the distinctly different numerical methods of \( \text{derCOPinv} \). These incongruent results demonstrate that care is needed when navigating the copula literature and the usefulness of the \( \text{copBasic} \)-style implementation of copula theory. In words, these computations show that the \( t \approx 32 \text{nd} \) percentile of the \( FGM \) copula given that the 80th percentile in \( U \) is about the 44th percentile of \( V \).
derCOPinv

Author(s)
W.H. Asquith

References

See Also
derCOP

Examples
u <- runif(1); t <- runif(1)
derCOPinv(u, t, cop="W") # perfect negative dependence
derCOPinv(u, t, cop="P") # independence
derCOPinv(u, t, cop="M") # perfect positive dependence
derCOPinv(u, t, cop="PSP") # a parameterless copula example
# Not run:
# Simulate 500 values from product (independent) copula
plot(NA,NA, type="n", xlim=c(0,1), ylim=c(0,1), xlab="U", ylab="V")
for(i in 1:500) {
  u <- runif(1); t <- runif(1)
  points(u,derCOPinv(cop="P", u, t), cex=0.5, pch=16) # black dots
}
# Now simulate 500 from the Nelsen 4.2.12 copula.
for(i in 1:500) {
  u <- runif(1); t <- runif(1)
  points(u,derCOPinv(cop="N4212cop", para=9.3, u, t), cex=2, pch=16, col=2) # red dots
} #
## End(Not run)

---

**derCOPinv2**  
Numerical Derivative Inverse of a Copula for U with respect to V

Description

Compute the inverse of a numerical partial derivative for U with respect to V of a copula, which is a conditional quantile function for nonexceedance probability t, or

\[
  t = c_v(u) = C^{(-1)}_{1|2}(u|v) = \frac{\delta C(u, v)}{\delta v},
\]

and solving for u. Nelsen (2006, pp. 13, 40–41) shows that this inverse is quite important for random variable generation using the conditional distribution method. This function is not vectorized and will not be so.
Usage

derCOPinv2(cop=NULL, v, t, trace=FALSE,
       delv=.Machine$double.eps^0.50, para=NULL, ...)

Arguments

cop A copula function;
v A single nonexceedance probability v in the Y direction;
t A single nonexceedance probability level t;
trace A logical controlling a message on whether the signs on the uniroot are the same—this is helpful in exploring the numerical derivative limits of a given implementation of a copula.
delv The ∆v interval for the derivative;
para Vector of parameters or other data structure, if needed, to pass to cop; and
... Additional arguments to pass to the copula.

Value

Value(s) for the derivative inverse are returned.

Author(s)

W.H. Asquith

References


See Also

derCOP2

Examples

u <- runif(1); t <- runif(1)
derCOPinv2(u, t, cop=M) # perfect negative dependence
derCOPinv2(u, t, cop=P) # independence
derCOPinv2(u, t, cop=P) # perfect positive dependence
derCOPinv2(u, t, cop=P) # a parameterless copula example

## Not run:
# Simulate 500 values from product (independent) copula
plot(NULL, type="n", xlim=c(0,1), ylim=c(0,1), xlab="U", ylab="V")
for(i in 1:500) {
   v <- runif(1); t <- runif(1)
   points(derCOPinv2(cop=P, v, t), v, cex=0.5, pch=16) # black dots
}
# Simulate 500 of a Frechet Family copula and note crossing singularities.
for(i in 1:500) {
   v <- runif(1); t <- runif(1)
The Diagonals of a Copula

Description

Compute the primary diagonal or alternatively the secondary diagonal (Nelsen, 2006, pp. 12 and 16) of copula \( C(u, v) \). The primary diagonal is defined as

\[
\delta_C(t) = C(t, t),
\]

and the secondary diagonal is defined as

\[
\delta^*_C(t) = C(t, 1 - t).
\]

Plotting is provided by this function because the diagonals are such important visual attributes of a copula. This function computes whole diagonals. If individual values are desired, then users are asked to use function calls along the diagonal such as \( \text{COP}(0.25, 0.25, \text{cop}=\text{P}) \) for the primary diagonal and \( \text{COP}(0.25, 1-0.25, \text{cop}=\text{P}) \) for the secondary diagonal, where for both examples the independence copula \( (w = \Pi; p) \) was chosen for purposes of clarification.

The \( \delta_C(t) \) is related to order statistics of the multivariate sample (here bivariate) (Durante and Sempi, 2015, p. 68). The probability for the maxima is \( \Pr[\max(u, v) \leq t] = C(t, t) = \delta_C(t) \) and the probability for the minima is \( \Pr[\min(u, v) \leq t] = 2t - \delta_C(t) \).

Usage

```r
diagCOP(cop=NULL, para=NULL, secondary=FALSE, ploton=TRUE, lines=TRUE, delt=0.005, ...)
```

Arguments

- `cop` A copula function;
- `para` Vector of parameters, if needed, to pass to the copula;
- `secondary` A logical to toggle the secondary diagonal;
- `ploton` A logical to toggle on the plot;
- `lines` Draw the lines of diagonal to the current device;
- `delt` The increment of the diagonal curve to plot, defaults to 0.5-percent intervals, which should be small enough to resolve fine curvature for many copulas in practice; and
- Additional arguments to pass to the `plot()` and `lines()` functions in \( \mathbb{R} \).
**diagCOPatf**

**Description**

Compute a numerical root along the primary diagonal (Nelsen, 2006, pp. 12 and 16) of copula \( C(u, v) \) having joint probability \( F \). The diagonals treat the nonexceedance probabilities \( u \) and \( v \) as equals \( (u = v = t) \). The primary diagonal is defined for a joint nonexceedance probability \( t \) as

\[
F = C(t, t) \to t = \delta_C^{(-1)}(f),
\]

**Value**

An \( R \) list of the \( t \) values, \( \delta_C(t, t) \) (primary) or \( \delta_C^{\star}(t, 1 - t) \) (secondary diagonal), along with a tag as to which diagonal is returned.

**Author(s)**

W.H. Asquith

**References**


**See Also**

diagCOPatf, COP, sectionCOP

**Examples**

```r
Not run:
The primary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2)
D <- diagCOP(cop="P", lty=2, ploton=FALSE)
D <- diagCOP(cop="M", col=2, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, ploton=FALSE)
mtext("PRIMARY DIAGONAL OF SIMPLE COPULAS") # four primary diagonals
```

```r
Not run:
The secondary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2, secondary=TRUE)
D <- diagCOP(cop="P", lty=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="M", col=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, secondary=TRUE, ploton=FALSE)
mtext("SECONDARY DIAGONAL OF SIMPLE COPULAS") # four secondary diagonals
```

---

**Value**

An \( R \) list of the \( t \) values, \( \delta_C(t, t) \) (primary) or \( \delta_C^{\star}(t, 1 - t) \) (secondary diagonal), along with a tag as to which diagonal is returned.

**Author(s)**

W.H. Asquith

**References**


**See Also**

diagCOPatf, COP, sectionCOP

**Examples**

```r
Not run:
The primary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2)
D <- diagCOP(cop="P", lty=2, ploton=FALSE)
D <- diagCOP(cop="M", col=2, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, ploton=FALSE)
mtext("PRIMARY DIAGONAL OF SIMPLE COPULAS") # four primary diagonals
```

```r
Not run:
The secondary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2, secondary=TRUE)
D <- diagCOP(cop="P", lty=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="M", col=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, secondary=TRUE, ploton=FALSE)
mtext("SECONDARY DIAGONAL OF SIMPLE COPULAS") # four secondary diagonals
```

---

**Value**

An \( R \) list of the \( t \) values, \( \delta_C(t, t) \) (primary) or \( \delta_C^{\star}(t, 1 - t) \) (secondary diagonal), along with a tag as to which diagonal is returned.

**Author(s)**

W.H. Asquith

**References**


**See Also**

diagCOPatf, COP, sectionCOP

**Examples**

```r
Not run:
The primary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2)
D <- diagCOP(cop="P", lty=2, ploton=FALSE)
D <- diagCOP(cop="M", col=2, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, ploton=FALSE)
mtext("PRIMARY DIAGONAL OF SIMPLE COPULAS") # four primary diagonals
```

```r
Not run:
The secondary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2, secondary=TRUE)
D <- diagCOP(cop="P", lty=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="M", col=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, secondary=TRUE, ploton=FALSE)
mtext("SECONDARY DIAGONAL OF SIMPLE COPULAS") # four secondary diagonals
```

---

**Value**

An \( R \) list of the \( t \) values, \( \delta_C(t, t) \) (primary) or \( \delta_C^{\star}(t, 1 - t) \) (secondary diagonal), along with a tag as to which diagonal is returned.

**Author(s)**

W.H. Asquith

**References**


**See Also**

diagCOPatf, COP, sectionCOP

**Examples**

```r
Not run:
The primary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2)
D <- diagCOP(cop="P", lty=2, ploton=FALSE)
D <- diagCOP(cop="M", col=2, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, ploton=FALSE)
mtext("PRIMARY DIAGONAL OF SIMPLE COPULAS") # four primary diagonals
```

```r
Not run:
The secondary diagonal of the W, P, M, and PSP copulas on the same plot
D <- diagCOP(cop="W", lwd=2, secondary=TRUE)
D <- diagCOP(cop="P", lty=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="M", col=2, secondary=TRUE, ploton=FALSE)
D <- diagCOP(cop="PSP", col=3, secondary=TRUE, ploton=FALSE)
mtext("SECONDARY DIAGONAL OF SIMPLE COPULAS") # four secondary diagonals
```
where the function solves for $t$. Examples using the concept behind diagCOPatf are available under ducOP and jointCOP, thus the diagCOPatf function can be also called by either jointCOP and joint.curvesCOP. Internally, the function uses limits of the root finder that are not equal to the anticipated interval $[0, 1]$, but equal to “small” (see description for argument interval). The function does trap for $f = 0$ by returning zero and $f = 1$ by returning unity.

Usage

```r
diagCOPatf(f, cop=NULL, para=NULL, verbose=FALSE, interval=NULL,
 tol=Machine$double.eps/10, ...)
```

```r
diagCOPinv(f, cop=NULL, para=NULL, verbose=FALSE, interval=NULL,
 tol=Machine$double.eps/10, ...)
```

Arguments

- **f**: Joint probability values as a nonexceedance probability $F$ for which to compute the root $t$;
- **cop**: A copula function;
- **para**: Vector of parameters, if needed, to pass to the copula;
- **verbose**: If TRUE then the whole output of the numerical root is returned using only the first value provided by argument $f$;
- **interval**: An optional interval for the root search. The default is $interval=c(lo, 1-lo)$ for $lo=Machine$double.eps because of difficulties for an interval on $[0, 1]$; and
- **tol**: The tolerance to pass to uniroot. The default here is much smaller than the default of the uniroot() function in R because of possibility that diagCOPatf would be used at extremely large nonexceedance probabilities; and
- **...**: Additional arguments to pass.

Value

An R list of the root by the uniroot() function in R is returned if verbose is TRUE, otherwise the roots (diagonal inverses) for $t$ are returned, and if an individual inverse operation fails, then a NA is returned instead.

Author(s)

W.H. Asquith

References


See Also

diagCOP, jointCOP, joint.curvesCOP
Examples

diagCOPatf(0.67, cop=PSP) # 0.8023879
diagCOPatf(0.99, cop=M) # 0.99 (now see the example below)
## Not run:
# Several functions from the lmomco package are needed.
# Suppose we have two phenomena with these log10 L-moments:
lmrA <- lmomco::vec2lmom(c(3.97, 0.485, -0.1178, 0.06857))
lmrB <- lmomco::vec2lmom(c(3.77, 0.475, -0.1377, 0.08280))
# Suppose we think that the Gumbel-Hougaard copula is appropriate with a Tau=0.45 Tau <- 0.45 # Kendall’s Tau between A and B.
# Suppose that the F=0.99 for either A and B provides a common risk level when they # are considered in isolation. But what if A and B are rivers that join and joint # F=0.99 at their union is of interest?
F <- 0.99
parA <- lmomco::lmmom2par(lmrA, type="kap")
parB <- lmomco::lmmom2par(lmrB, type="kap")
EventA <- lmomco::qlmomco(F, parA)
EventB <- lmomco::qlmomco(F, parB)
ApB <- 10^(EventA) + 10^(EventB) # Purely an additive conceptualization
# The F=0.99 event is assumed to occur simultaneously on both streams, which is # equivalent to saying that the correlation between the two is absolute 1-to-1.

# Now consider including the association as measured by Kendall Tau:
Fjoint <- diagCOPatf(F, cop=GHcop, para=GHcop(tau=Tau)$para)
EventAj <- lmomco::qlmomco(Fjoint, parA)
EventBj <- lmomco::qlmomco(Fjoint, parB)
AcB <- 10^(EventAj) + 10^(EventBj) # Joint probability 0.99 at the union

# Now consider the association if the streams are INDEPENDENT:
Fjoint <- diagCOPatf(F, cop=GHcop, para=GHcop(tau=0)$para)
EventAj <- lmomco::qlmomco(Fjoint, parA)
EventBj <- lmomco::qlmomco(Fjoint, parB)
AiB <- 10^(EventAj) + 10^(EventBj) # Joint probability 0.99 at the union

# ApB = 312,000 # The perfectly simultaneous addition makes too little.
# AcB = 323,000 # The copula preserves at least the known association.
# AiB = 330,000 # The independence conceptualization makes too much.
## End(Not run)

---

**duCOP**

*The Dual of a Copula Function*

---

**Description**

Compute the dual of a copula (function) from a copula (Nelsen, 2006, pp. 33–34), which is defined as

\[
\Pr[U \leq v \text{ or } V \leq v] = \tilde{C}(u, v) = u + v - C(u, v),
\]
where $\hat{C}(u, v)$ is the dual of a copula and $u$ and $v$ are nonexceedance probabilities. The dual of a copula is the expression for the probability that either $U \leq u$ or $V \leq v$, which is unlike the co-
copula (function) (see coCOP) that provides $\Pr[U > u \lor V > v]$. The dual of a copula is a function
and not in itself a copula. The dual of the survival copula (surCOP) is the co-copula (function)
(coCOP). Some rules of copulas mean that

$$
\hat{C}(u', v') + \hat{C}(u, v) = 1,
$$

where $\hat{C}(u', v')$ is the survival copula in terms of exceedance probabilities $u'$ and $v'$ or in copBasic
code that the functions surCOP + duCOP equal unity.

The function duCOP gives “protection” against simultaneous (concurrent or dual) risk by failure if
and only if failure is caused (defined) by both hazard sources $U$ and $V$ occurring at the same time.
Expressing this in terms of an annual probability of occurrence ($q$), one has

$$
q = 1 - \Pr[U \leq v \lor V \leq v] = 1 - \hat{C}(u, v)
$$

in R code $q \leftarrow 1 - \text{duCOP}(u, v)$. So as a mnemonic: A dual of a copula is the probability of
nonexceedance if the hazard sources must dual (concur, link, pair, twin, twain) to cause failure. An
informative graphic is shown within copBasic-package.

Usage

duCOP(u, v, cop=NULL, para=NULL, ...)

Arguments

- $u$: Nonexceedance probability $u$ in the $X$ direction;
- $v$: Nonexceedance probability $v$ in the $Y$ direction;
- $cop$: A copula function;
- $para$: Vector of parameters or other data structure, if needed, to pass to the copula; and
- $...$: Additional arguments to pass (such as parameters, if needed, for the copula in
the form of a list.

Value

Value(s) for the dual of a copula are returned.

Note

There can be confusion in the interpretation and implementation of the or condition of joint prob-
ability provided by $C(u, v)$. Two types of or’s seemingly exist depending on one’s concept of the
meaning of “or.” To start, there is the “either or both” conceptualization (join or) that encompasses
either “event” (say a loss) of importance for random variables $U$ and $V$ as well as the joint and
conditions where both variables simultaneously are generating an event of importance.

Let us continue by performing a massive simulation for the PSP($u, v$) copula (PSP) and set an
either event standard on the margins as 10 percent for an arbitrary starting point. The PSP has
positive association with lower tail dependency, and the example here considers the left tail as the
risk tail.
Next, let us step through counting and then make theoretical comparisons using copula theory. The **joint and** condition as nonexceedances is

\[
\text{ANDs} = \frac{\text{length}(\text{UV} \& \text{UV})}{\text{nn}} - \text{COP}(\text{Event}, \text{Event}, \text{cop=PSP})
\]

message("Joint AND by simulation = ", round(\text{ANDs}, digits=5),
"Joint AND by theory = ", round(\text{ANDt}, digits=5))
# \text{ANDs} = 0.05348 and \text{ANDt} = 0.05263 (numerical congruence)

where it is obvious that the simulations and theory estimate about the same **joint and** condition.

Now, the **joint or** condition as nonexceedances is

\[
\text{ORs} = \frac{\text{length}(\text{UV} \text{OR} \text{UV})}{\text{nn}} - \text{duCOP}(\text{Event}, \text{Event}, \text{cop=PSP})
\]

message("Joint OR by simulation = ", round(\text{ORs}, digits=5),
"Joint OR by theory = ", round(\text{ORt}, digits=5))
# \text{ORs} = 0.14779 and \text{ORt} = 0.14737 (numerical congruence)

where it is obvious that the simulations and theory estimate about the same **joint or** condition. Finally, the joint **mutually exclusive or** condition as nonexceedances is

\[
\text{eORs} = \frac{\text{length}(\text{UV} \text{OR} \text{UV} \text{OR} \text{UV})}{\text{nn}} - \text{duCOP}(\text{Event}, \text{Event}, \text{cop=PSP})
\]

message("Joint exclusive OR by simulation = ", round(\text{eORs}, digits=5),
"Joint exclusive OR by theory = ", round(\text{eORt}, digits=5))
# \text{eORs} = 0.09431 and \text{eORt} = 0.09474 (numerical congruence)

where it is obvious that the simulations and theory estimate about the same joint **mutually exclusive or** condition, and where it is shown that the prior two theoretical joint probabilities can be subtracted from each to yield the **mutually exclusive or** condition.

Let us then play out a scenario in which it is judged that of the events causing damage that the simultaneous occurrence is worse but that engineering against about 5 percent of events not occurring at the same time represents the most funding available. Using numerical methods, it is possible to combine \(\text{C}\) and \(\text{C}\) and assume equal marginal risk in \(U\) and \(V\) as the following list shows:

```
\text{"designf" = function(t) \{ # a one-off function just for this example}
 \text{duCOP(t, t, cop=PSP) - COP(t, t, cop=PSP) - 5/100 # 5 percent}
\text{\}}
\text{dThres = uniroot\text{(designf, c(Machine\$double.eps,0.5))}\$root}
```

where the \text{uniroot} function performs the optimization and the \text{Machine\$double.eps} value is used because the \text{PSP} is NaN for zero probability. (It is unity for unity marginal probabilities.)

The design threshold on the margins then is \text{dThres} \approx 0.05135. In other words, the \text{designThres} is the marginal probability that results in about 5 percent of events not occurring at the same time. Then considering the simulated sample and counting the nonexceedances by code one achieves:
Damage <- length( UV$U[ UV$U <= dThres | UV$V <= dThres ])
SimDamage <- length( UV$U[ UV$U <= dThres & UV$V <= dThres ])
NonSimDamage <- length((UV$U <= dThres | UV$V <= dThres) &
                          ! (UV$U <= dThres & UV$V <= dThres)) )

message( "\nDamage = ", Damage,
"SimDamage = ", SimDamage,
"NonSimDamage = ", NonSimDamage)

but also the theoretical expectations are readily computed using copula theory:

tDamage <- as.integer(duCOP(dThres, dThres, cop=PSP) * nn)
tSimDamage <- as.integer( COP(dThres, dThres, cop=PSP) * nn)
tNonSimDamage <- tDamage - tSimDamage
message( "\nDamage (theory) = ", tDamage,
"SimDamage (theory) = ", tSimDamage,
"NonSimDamage (theory) = ", tNonSimDamage)

The counts from the former listing are 7,670; 2,669; and 5,001, whereas the respective counts from
the later listing are 7,635; 2,635; and 5,000. Numerical congruency in the counts thus exists.
The bivariate empirical copula (Nelsen, 2006, p. 219) for a bivariate sample of length $n$ is defined for random variables $X$ and $Y$ as

$$C_n\left(\frac{i}{n}, \frac{j}{n}\right) = \frac{\text{number of pairs } (x, y) \text{ with } x \leq x_{(i)} \text{ and } y \leq y_{(j)}}{n},$$

where $x_{(i)}$ and $y_{(j)}$, $1 \leq i, j \leq n$ or expressed as

$$C_n\left(\frac{i}{n}, \frac{j}{n}\right) = \frac{1}{n} \sum_{i=1}^{n} 1\left(\frac{R_i}{n} \leq u_i, \frac{S_i}{n} \leq v_i\right),$$

where $R_i$ and $S_i$ are ranks of the data for $U$ and $V$, and $1(.)$ is an indicator function scoring 1 if condition is true otherwise zero. Using more generic notation, the empirical copula can be defined by

$$C_n(u, v) = \frac{1}{n} \sum_{i=1}^{n} 1\left(u_{i}^{\text{obs}} \leq u_i, v_{i}^{\text{obs}} \leq v_i\right),$$

where $u_{i}^{\text{obs}}$ and $v_{i}^{\text{obs}}$ are thus sometype of nonparametric nonexceedance probabilities based on counts of the underlying data expressed in probabilities.

**Hazen Empirical Copula**—The “Hazen form” of the empirical copula is

$$C^H_n(u, v) = \frac{1}{n} \sum_{i=1}^{n} 1\left(\frac{R_i - 0.5}{n} \leq u_i, \frac{S_i - 0.5}{n} \leq v_i\right),$$

which can be triggered by `ctype="hazen"`. This form is named for this package because of directly similarity of the Hazen plotting position to the definition. Joe (2014, pp. 247–248) uses this form. Joe continues by saying “[the] adjustment of the uniform score [(R - 0.5)/n] could be done in an alternative form, but there is [asymptotic] equivalence[.] and that] $C^H_n$ puts mass of $n^{-1}$ at the tuples $([r_{i1} - 0.5/n, \ldots, [r_{id} - 0.5]/n)$ for $i = 1, \ldots, n$.” A footnote by Joe (2014) says that “the conversion $[R/(n+1)]$ is commonly used for the empirical copula.” This later form is the “Weibull form” described next. Joe’s preference for the Hazen form is so that the sum of squared normal scores is closer to unity for large $n$ than attained by the Weibull form.

**Weibull Empirical Copula**—The “Weibull form” of the empirical copula is

$$C^W_n(u, v) = \frac{1}{n} \sum_{i=1}^{n} 1\left(\frac{R_i}{n+1} \leq u_i, \frac{S_i}{n+1} \leq v_i\right),$$

which can be triggered by `ctype="weibull"`. This form is named for this package because of direct similarity of the Hazen plotting position to the definition, and this form is the default (see argument description).
**Bernstein Empirical Copula**—The empirical copula can be extended nonparametrically as the *Bernstein empirical copula* (Hernández-Maldonado, Díaz-Viera, and Erdely, 2012) and is formulated as

\[
C_n^B(u; v; \eta) = \sum_{i=1}^{n} \sum_{j=1}^{n} C_n^i \left( \frac{i}{n}, \frac{j}{n} \right) \times \eta(i, j; u, v),
\]

where the individual *Bernstein weights* \(\eta(i, j; u, v)\) for the \(k\)th paired value of the \(u\) and \(v\) vectors are

\[
\eta(i, j; u, v) = \binom{n}{i} u^i (1-u)^{n-i} \times \binom{n}{j} v^j (1-v)^{n-j}.
\]

The Bernstein extension, albeit conceptually pure in its shuffling by binomial coefficients and left- and right-tail weightings, is CPU intensive as inspection of the equations above indicates a nest of four for(·) loops in R. (The native R code of `copBasic` uses the `sapply()` function in R liberally for substantial but not a blazing fast speed increase.) The Bernstein extension results in a somewhat smoother surface of the empirical copula and can be triggered by `ctype="bernstein"`. Finally, the *empirical copula frequency* can be defined (Nelson, 2006, p. 219) as

\[
c_n(u, v) = C_n \left( \frac{i}{n}, \frac{j}{n} \right) - C_n \left( \frac{i-1}{n}, \frac{j}{n} \right) - C_n \left( \frac{i}{n}, \frac{j-1}{n} \right) + C_n \left( \frac{i-1}{n}, \frac{j-1}{n} \right).
\]

**Usage**

`EMPIRcop(u, v, para=NULL, ctype=c("weibull", "hazen", "1/n", "bernstein"), bernprogress=FALSE, ...)`

**Arguments**

- **u** Nonexceedance probability \(u\) in the \(X\) direction;
- **v** Nonexceedance probability \(v\) in the \(Y\) direction;
- **para** A vector (single element) of parameters—the U-statistics of the data (see *Examples*). Alternatively, `para` can be a list holding a `para` as would be done if it were a vector, but arguments Bernstein and bernprogress can be optionally included—this feature is provided so that the Bernstein refinement can be controlled within the context of other functions calling `EMPIRcop` such as by `level.curvescop`;
- **ctype** An alternative means for triggering the definition of \(C_n^H\) (default), \(C_n^W\), \(C_n\), or \(C_n^G\);
- **bernprogress** The Bernstein copula extension is CPU intensive(!), so a splash counter is pushed to the console via the `message()` function in R so as to not discourage the user; and
- **...** Additional arguments to pass.

**Value**

Value(s) for the copula are returned.
EMPIRcop

Note

Not all theoretical measures of copula dependence (both measures of association and measures of asymmetry), which use numerical integration by the integrate() function in R, can be used for all empirical copulas because of “divergent” integral errors; however, examples using Hoeffding’s Phi (ΦC: hoefCOP) and shown under Examples. Other measures of copula dependence include blomCOP, footCOP, giniCOP, rhoCOP, tauCOP, wolfCOP, joeskewCOP, and uvlmoms. Fortunately, each of these measures has a built-in sample estimator.

It is important to distinguish between a sample estimator and the estimation of the measure using the empirical copula itself via the EMPIRcop function. The sample estimators (triggered by the as.sample arguments for the measures) are reasonably fast and numerically preferred over using the empirical copula. Further, the generally slow numerical integrations for the theoretical definitions of these copula measures might have difficulties. Limited testing, however, suggests prevalence of numerical integration not erroring using the Bernstein extension of the empirical copula, which must be by-product of enhanced and sufficient smoothness for R’s default numerical integration to succeed. Many of the measures have brute option for a brute-force numerical integration on a regular grid across the empirical copula—these are slow but should not trigger errors—still use the sample estimators instead.

Author(s)

W.H. Asquith

References


See Also

diagCOP, level.curvesCOP, simCOP

Examples

## Not run:
EMPIRcop(8.321,0.78, para=simCOP(n=90, cop=N4212cop, para=2.32, graphics=FALSE))
N4212cop(8.321,0.78, para=2.32)#
## End(Not run)

## Not run:
set.seed(62) # See note below about another seed to try.
pssp <- simCOP(n=34, cop=PSP, ploton=FALSE, points=FALSE) * 150
# Pretend pssp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls. Although the Weibull
EMPIRcop

# plotting positions are chosen, internally EMPIRcop uses ranks, but the model
# here is to imagine one having a sample in native units of the random variables
# and then casting them into probabilities for other purposes.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position i/(n+1)

uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics

# The next four values should be very close if n above were say 1000, but the
# ctypes="bernstein" should not be used if n >> 34 because of inherently long runtime.
PSP(0.4,0.6) # 0.3157895 (compare to listed values below)

# Two seeds are shown so that the user can see that depending on the distribution
# of the values given by para that different coincidences of which method is
# equivalent to another exist.
# For set.seed(62) --- "hazen" == "weibull" by coincidence
# "hazen" --> 0.3529412
# "weibull" --> 0.3529412
# "1/n" --> 0.3235294
# "bernstein" --> 0.3228916
# For set.seed(85) --- "1/n" == "hazen" by coincidence
# "hazen" --> 0.3529412
# "weibull" --> 0.3823529
# "1/n" --> 0.3529412
# "bernstein" --> 0.3440387

# For set.seed(62) --- not all measures of association can be used for all
# empirical copulas because of 'divergent' integral errors, but this is an example
# for Hoeffding's Phi.
hoefCOP(as.sample=TRUE, para=uv) # (sample estimator is fast) # 0.4987755
hoefCOP(cop=EMPIRcop, para=uv, ctype="hazen") # 0.5035348
hoefCOP(cop=EMPIRcop, para=uv, ctype="weibull") # 0.4977145
hoefCOP(cop=EMPIRcop, para=uv, ctype="1/n") # 0.4003646
hoefCOP(cop=EMPIRcop, para=uv, ctype="bernstein") # 0.4563724

# All other example suites shown below are dependent on the pseudo-data in the
# variable uv. It is suggested to not run with a sample size much larger than the
# above n=34 if the Bernstein comparison is intended (wanted) simply because of
# lengthy(!) run times, but the n=34 does provide a solid demonstration how the
# level curves for Bernstein weights are quite smooth.

## Not run:
# TODO: Now let us construct as many as three sets of level curves
level.curvesCOP(cop=PSP); # TRUE, parametric, fast, BLACK CURVES

# Empirical copulas can consume lots of CPU.
# RED CURVES, if n is too small, uniroot() errors might be triggered and likely
# will be using the sample size of 34 shown above.
level.curvesCOP(cop=EMPIRcop, para=uv, delu=0.03, col=2, ploton=FALSE)

# GREEN CURVES (large CPU committment)
# Bernstein progress is uninformative because level.curvesCOP() has taken over control.
# bpara <- list(para=uv, ctype="bernstein", bernprogress=FALSE)
EMPIRcopdf

Dataframe of the Bivariate Empirical Copula

Description

Generate an R data.frame representation of the bivariate empirical copula (Salvadori et al., 2007, p. 140) using the coordinates as preserved in the raw data in the parameter object of the bivariate empirical copula.

Usage

EMPIRcopdf(para=NULL, ...)

Arguments

para A vector (single element) of parameters—the U-statistics of the data (see example) to pass to EMPIRcop; and

... Additional arguments to pass to EMPIRcop.

Value

An R data.frame of \( u \), \( v \), and \( C_n(u, v) \) values of the bivariate empirical copula is returned.

Author(s)

W.H. Asquith
## EMPIRgrid

### Grid of the Bivariate Empirical Copula

**Description**

Generate a gridded representation of the bivariate empirical copula (see EMPIRcop, Salvadori et al., 2007, p. 140). This function has the primary intention of supporting 3-D renderings or 2-D images of the copulatic surface, but many empirical copula functions in copBasic rely on the grid of the empirical copula—unlike the functions support parametric copulas.

**Usage**

```r
EMPIRgrid(para=NULL, deluv=0.05, verbose=FALSE, ...)
```

**Arguments**

- `para` A vector (single element) of parameters—the U-statistics of the data (see example);
- `deluv` A delta value of the both the \( u \) and \( v \) axes for copula estimation from EMPIRcop;
- `verbose` A logical controlling whether the progress during grid building is to be shown; and
- `...` Additional arguments to pass.

### Examples

```r
Not run:
psp <- simCOP(n=39, cop=PSP, ploton=FALSE, points=FALSE) * 150
Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

The sort=FALSE is critical in the following two calls to pp() from lmomco.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position i/(n+1)

uv <- data.frame(U=fakeU, V=fakeV) # our U-statistics

empcop <- EMPIRcopdf(para=uv)
plot(empcop$u, empcop$v, cex=1.75*empcop$empcop, pch=16,
xlab="U NONEXCEEDANCE PROBABILITY", ylab="V NONEXCEEDANCE PROBABILITY")
Dot size increases with joint probability (height of the copulatic surface).
points(empcop$u, empcop$v, col=2) # red circles
End(Not run)
```

---

**References**


**See Also**

EMPIRcop
**Value**

An R list of the gridded values of $u$, $v$, and $C_n(u,v)$ values of the bivariate empirical copula is returned. (Well only $C_n(u,v)$ is in the form of a grid as an R matrix.) The deluv used to generated the grid is also returned.

**Note**

The extensive suite of examples is included here because the various ways that algorithms involving empirical copulas can be tested. The figures also provide excellent tools for education on copulas.

**Author(s)**

W.H. Asquith

**References**


**See Also**

EMPIRcop, EMPIRcopdf

**Examples**

```r
Not run:
EXAMPLE 1:
psp <- simCOP(n=490, cop=PSP, ploton=FALSE, points=FALSE) * 150
Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

The sort=FALSE is critical in the following two calls to pp() from lmomco.
fakeu <- lmomco::pp(psp[,]1, sort=FALSE) # Weibull plotting position i/(n+1)
fakev <- lmomco::pp(psp[,]2, sort=FALSE) # Weibull plotting position i/(n+1)

uv <- data.frame(U=fakeu, V=fakev) # our U-statistics

The follow function is used to make 3-D --> 2-D transformation
From R Graphics by Murrell (2005, p.112)
"trans3d" <- function(x,y,z, pmat) {
 tmat <- cbind(x,y,z,1) %*% pmat; return(tmat[,1:2] / tmat[,4])
}

the.grid <- EMPIRgrid(para=uv)
cop.diag <- diagCOP(cop=EMPIRcop, para=uv, ploton=FALSE, lines=FALSE)
empcopc <- EMPIRcopdf(para=uv) # data.frame of all points

EXAMPLE 1: PLOT NUMBER 1
the.persp <- persp(the.grid$empcop, theta=-25, phi=20,
 xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
)

EXAMPLE 1: PLOT NUMBER 2 (see change in interaction with variable 'the.grid')
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=-25, phi=20,
```
```r

An asymmetric example to demonstrate that the grid is populated with the correct orientation---meaning U is the horizontal and V is the vertical.

```R
"MOcop" <- function(u,v, para=NULL) {
  alpha <- para[1]; beta <- para[2]; return(min(v*u*(1-alpha), u*v*(1-beta))
}
```

```r

## EXAMPLE 2: PLOT NUMBER 1 # Note the asymmetry!

uv <- simCOP(1000, cop=MOcop, para=c(0.4,0.9)) # The parameters cause asymmetry.
mtext("Simulation from a defined Marshall-Olkin Copula")
the.grid <- EMPIRgridder(uv) # Example R

## EXAMPLE 2: PLOT NUMBER 2

# The second plot by image() will show a "hook" of sorts along the singularity.
image(the.grid$empcop, col=terrain.colors(40)) # Second plot is made
mtext("Image of gridded Empirical Copula")

unEmpcop <- EMPIRcopdf # data.frame of all points

## EXAMPLE 2: PLOT NUMBER 3

# The third plot is the 3-D version overlain with the data points.
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=240, phi=40, xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)")
points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
       col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16)
mtext("3-D representation of gridded empirical copula with data points")
```

```r

xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"

the.diag <- trans3d(cop.diag$t, cop.diag$t, cop.diag$diagcop, the.persp)
lines(the.diag, lwd=4, col=3, lty=2)

points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
       col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16)
# the sqrt() is needed to darken or enhance the colors

S <- sectionCOP(cop=PSP, 0.2, ploton=FALSE, lines=FALSE)
the.lines <- trans3d(rep(0.2, length(S$t)), S$t, S$seccop, the.persp)
lines(the.lines, lwd=2, col=6)

S <- sectionCOP(cop=PSP, 0.2, ploton=FALSE, lines=FALSE, dercop=TRUE)
the.lines <- trans3d(rep(0.2, length(S$t)), S$t, S$seccop, the.persp)
lines(the.lines, lwd=2, col=6, lty=2)

S <- sectionCOP(cop=PSP, 0.85, ploton=FALSE, lines=FALSE, wrtV=TRUE)
the.lines <- trans3d(S$t, rep(0.85, length(S$t)), S$t, S$seccop, the.persp)
lines(the.lines, lwd=2, col=2)

S <- sectionCOP(cop=PSP, 0.85, ploton=FALSE, lines=FALSE, dercop=TRUE)
the.lines <- trans3d(S$t, rep(0.85, length(S$t)), S$t, S$seccop, the.persp)
lines(the.lines, lwd=2, col=2, lty=2)

empder <- EMPIRgridder(empgrid=the.grid)
the.lines <- trans3d(rep(0.2, length(the.grid$v)), the.grid$v, empder[3,], the.persp)
lines(the.lines, lwd=4, col=6) #

```

```r

## Not run:

# EXAMPLE 2:

# An asymmetric example to demonstrate that the grid is populated with the correct orientation---meaning U is the horizontal and V is the vertical.

"MOcop" <- function(u,v, para=NULL) {
  alpha <- para[1]; beta <- para[2]; return(min(v*u*(1-alpha), u*v*(1-beta))
}
```

```
# EXAMPLE 2: PLOT NUMBER 4
# The fourth plot shows a simulation and the quasi-emergence of the singularity
# that of course the empirical perspective "knows" nothing about. Do not use
# the Kumaraswamy smoothing because in this case the singularity because
# too smoothed out relative to the raw empirical, but of course the sample size
# is large enough to see such things. (Try kumaraswamy=TRUE)
empsim <- EMPIRsim(n=1000, empgrid = the.grid, kumaraswamy=FALSE)
mtext("Simulations from the Empirical Copula") #
## End(Not run)

## Not run:
## EXAMPLE 3:
psp <- simCOP(n=4900, cop=PSP, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls to pp() from lmomco.
fakeU <- lmomco::pp(psp[,1], sort=FALSE) # Weibull plotting position 1/(n+1)
fakeV <- lmomco::pp(psp[,2], sort=FALSE) # Weibull plotting position 1/(n+1)
uv <- data.frame(U=fakeU, V=fakeV) # our U-statistics

## EXAMPLE 3: # PLOT NUMBER 1
deluv <- 0.0125 # going to cause long run time with large n
# The small deluv is used to explore solution quality at U=0 and 1.
the.grid <- EMPIRgrid(parauv, deluv=deluv)
the.persp <- persp(x=the.grid$u, y=the.grid$v, z=the.grid$empcop, theta=-25, phi=20,
                xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
               )

S <- sectionCOP(cop=PSP, 1, ploton=FALSE, lines=FALSE)
thelines <- trans3d(rep(1, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2)

S <- sectionCOP(cop=PSP, 0, ploton=FALSE, lines=FALSE)
thelines <- trans3d(rep(0, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2)

S <- sectionCOP(cop=PSP, 1, ploton=FALSE, lines=FALSE, dercop=TRUE)
thelines <- trans3d(rep(1, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2, lty=2)

S <- sectionCOP(cop=PSP, 2*deluv, ploton=FALSE, lines=FALSE, dercop=TRUE)
thelines <- trans3d(rep(2*deluv, length(S$t)), S$t, S$seccop, the.persp)
lines(thelines, lwd=2, col=2, lty=2)

empder <- EMPIRgridder(empgrid=the.grid)
thelines <- trans3d(rep(2*deluv, length(the.grid$v)), the.grid$v, empder[3,], the.persp)
lines(thelines, lwd=4, col=5, lty=2)

pdf("conditional_distributions.pdf")
ix <- 1:length(attributes(empder)$rownames)
for(i in ix) {
  u <- as.numeric(attributes(empder)$rownames[i])
  S <- sectionCOP(cop=PSP, u, ploton=FALSE, lines=FALSE, dercop=TRUE)
  ...
EMPIRgridder

Derivatives of the Grid of the Bivariate Empirical Copula for \( V \) with respect to \( U \)

Description

Generate derivatives of \( V \) with respect to \( U \) of a gridded representation of the bivariate empirical copula (see \texttt{EMPIRcop}). This function is the empirical analog to \texttt{derCOP}.

Usage

\texttt{EMPIRgridder(empgrid=NULL, \ldots)}

Arguments

\texttt{empgrid} The grid from \texttt{EMPIRgrid}; and

\ldots Additional arguments to pass.

Value

The gridded values of the derivatives of the bivariate empirical copula.

Author(s)

W.H. Asquith

See Also

\texttt{EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgridder2}

Examples

\texttt{# Not run:}
\texttt{para <- list(alpha=0.15, beta=0.65, cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.005, para2=1000)}
\texttt{uv <- simCOP(n=1000, cop=composite2COP, para=para)}
\texttt{fakeU <- lmomco::pp(uv[,1], sort=FALSE)}
\texttt{fakeV <- lmomco::pp(uv[,2], sort=FALSE)}
\texttt{uv <- data.frame(U=fakeU, V=fakeV)}

# The red line is the true.
plot(NULL, \$secop, lwd=2, col=2, lty=2, type="l", xlim=c(0,1), ylim=c(0,1),
xlab="V. NONEXCEEDANCE PROBABILITY", ylab="V. VALUE")
lines(the.grid$ув, empder[i,], lwd=4, col=5, lty=2) # empirical
mtext(paste("Conditioned on U="", u, " nonexceedance probability"))
}
dev.off()#
## End(Not run)
"trans3d" <- function(x,y,z, pmat) {
  tmat <- cbind(x,y,z) %*% pmat; return(tmat[,1:2] / tmat[,4])
}

the.grid <- EMPIRgridder2()
the.diag <- diagCOP(cop=EMPIRcop, para=uv, ploton=FALSE, lines=FALSE)
empcop <- EMPIRcopdf(para=uv) # data.frame of all points

the.persp <- persp(the.grid$empcop, theta=-25, phi=20,
    xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
    points(trans3d(empcop$u, empcop$v, empcop$empcop, the.persp),
        col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16, cex=0.75)

# Now extract the copula sections
some.lines <- trans3d(rep(0.2, length(the.grid$v)), the.grid$v, the.grid$empcop[3,], the.persp)
lines(some.lines, lwd=2, col=2)
some.lines <- trans3d(the.grid$u, rep(0.6, length(the.grid$u)),
    the.grid$empcop[7,], the.persp)
lines(some.lines, lwd=2, col=3)
some.lines <- trans3d(rep(0.7, length(the.grid$v)), the.grid$v, the.grid$empcop[8,], the.persp)
lines(some.lines, lwd=2, col=6)

# Now compute some derivatives or conditional cumulative
# distribution functions
empder <- EMPIRgridder(copgrid=the.grid)
some.lines <- trans3d(rep(0.2, length(the.grid$v)), the.grid$v, empder[3,], the.persp)
lines(some.lines, lwd=4, col=2)

empder <- EMPIRgridder2(copgrid=the.grid)
some.lines <- trans3d(the.grid$u, rep(0.6, length(the.grid$u)), empder[7,], the.persp)
lines(some.lines, lwd=4, col=3)

empder <- EMPIRgridder(copgrid=the.grid)
some.lines <- trans3d(rep(0.7, length(the.grid$v)), the.grid$v, empder[8,], the.persp)
lines(some.lines, lwd=4, col=6)

# Demonstrate conditional quantile function extraction for
# the 70th percentile of U and see how it plots on top of
# the thick purple line
empinv <- EMPIRgridderinv(copgrid=the.grid)
some.lines <- trans3d(rep(0.7, length(the.grid$v)), empinv[8,], attributes(empinv)$colnames, the.persp)
lines(some.lines, lwd=4, col=5, lty=2)
## End(Not run)

---

EMPIRgridder2  Derivatives of the Grid of the Bivariate Empirical Copula for U with respect to V
Description

Generate derivatives of \( U \) with respect to \( V \) of a gridded representation of the \textit{bivariate empirical copula} (see \texttt{EMPIRcop}). This function is the empirical analog to \texttt{derCOP2}.

Usage

\texttt{EMPIRgridder2(empgrid=NULL, ...)}

Arguments

\begin{itemize}
  \item \texttt{empgrid} The grid from \texttt{EMPIRgrid}; and
  \item \texttt{...} Additional arguments to pass.
\end{itemize}

Value

The gridded values of the derivatives of the bivariate empirical copula.

Author(s)

W.H. Asquith

See Also

\texttt{EMPIRcop,EMPIRcopdf,EMPIRgrid,EMPIRgridder}

Examples

\begin{verbatim}
# See examples under EMPIRgridder
\end{verbatim}

---

\texttt{EMPIRgridderinv} \hspace{1cm} \textit{Derivative Inverses of the Grid of the Bivariate Empirical Copula for \( V \) with respect to \( U \)}

Description

Generate a gridded representation of the inverse of the derivatives of the \textit{bivariate empirical copula} of \( V \) with respect to \( U \). This function is the empirical analog to \texttt{derCOPinv}.

Usage

\texttt{EMPIRgridderinv(empgrid=NULL, kumaraswamy=FALSE, ...)}

Arguments

\begin{itemize}
  \item \texttt{empgrid} The grid from \texttt{EMPIRgrid};
  \item \texttt{kumaraswamy} A logical to trigger Kumaraswamy smoothing of the conditional quantile function; and
  \item \texttt{...} Additional arguments to pass.
\end{itemize}
Value
The gridded values of the inverse of the derivative of \(V\) with respect \(U\).

Author(s)
W.H. Asquith

See Also
EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgrider2

Examples
```r
Not run:
uv <- simCOP(n=10000, cop=PSP, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=.1) # CPU hungry
uv.inv1 <- EMPIRgriderinv(empgrid=uv.grid)

plot(uv, pch=16, col=rgb(0,0,0,.1),.xlim=c(0,1), ylim=c(0,1),
 xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=PSP), col=2)
lines(qua.regressCOP(f=0.2, cop=PSP), col=2)
lines(qua.regressCOP(f=0.7, cop=PSP), col=2)
lines(qua.regressCOP(f=0.1, cop=PSP), col=2)
lines(qua.regressCOP(f=0.9, cop=PSP), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.2, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.7, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.1, cop=PSP), col=4)
lines(qua.regressCOP2(f=0.9, cop=PSP), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
```
EMPIRgridderinv

```r
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
End(Not run)

Not run:
Now try a much more complex shape
para <- list(alpha=0.15, beta=0.65, cop1=PLACKETTcop, cop2=PLACKETTcop,
 para1=0.005, para2=1000)
uv <- simCOP(n=30000, cop=composite2COP, para=para)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.05) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)
uv.inv2 <- EMPIRgridderinv2(empgrid=uv.grid)
plot(uv, pch=16, col=rgb(0,0,0,1), xlim=c(0,1), ylim=c(0,1),
 xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCOP(f=0.5, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.2, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.7, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.1, cop=composite2COP, para=para), col=2)
lines(qua.regressCOP(f=0.9, cop=composite2COP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=composite2COP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=composite2COP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
```
EMPIRgridderinv2

EMPIRgridderinv2 Derivative Inverses of the Grid of the Bivariate Empirical Copula for U with respect to V

Description

Generate a gridded representation of the inverse of the derivatives of the bivariate empirical copula of U with respect to V. This function is the empirical analog to derCOPinv2.

Usage

EMPIRgridderinv2(empgrid=NULL, kumaraswamy=FALSE, ...)

Arguments

empgrid The grid from EMPIRgrid;
kumaraswamy A logical to trigger Kumaraswamy smoothing of the conditional quantile function; and
... Additional arguments to pass.

Value

The gridded values of the inverse of the derivative of U with respect to V.

Author(s)

W.H. Asquith

See Also

EMPIRcop, EMPIRcopdf, EMPIRgrid, EMPIRgridder2, EMPIRgridderinv, EMPIRgridderinv2

Examples

# See examples under EMPIRgridderinv
**EMPIRmed.regress**

*Median Regression of the Grid of the Bivariate Empirical Copula for V with respect to U*

**Description**

Perform *median regression* from the gridded inversion of the *bivariate empirical copula* of \( V \) with respect to \( U \).

**Usage**

```r
EMPIRmed.regress(...)
```

**Arguments**

... Arguments to pass to `EMPIRqua.regress`.

**Value**

The gridded values of the median regression of \( V \) with respect to \( U \).

**Author(s)**

W.H. Asquith

**See Also**

`EMPIRgriddervinv`, `EMPIRqua.regress`, `EMPIRmed.regress2`, `EMPIRmed.regress2`

**Examples**

# See examples under `EMPIRqua.regress`

---

**EMPIRmed.regress2**

*Median Regression of the Grid of the Bivariate Empirical Copula for U with respect to V*

**Description**

Perform *median regression* from the gridded inversion of the *bivariate empirical copula* of \( U \) with respect to \( V \).

**Usage**

```r
EMPIRmed.regress2(...)
```
Arguments

... Arguments to pass to EMPIRqua.regress.

Value

The gridded values of the median regression of \( U \) with respect to \( V \).

Author(s)

W.H. Asquith

See Also

EMPIRgridderinv2, EMPIRqua.regress, EMPIRMed.regress, EMPIRMed.regress2

Examples

# See examples under EMPIRqua.regress

**EMPIRqua.regress**

*Quantile Regression of the Grid of the Bivariate Empirical Copula for V with respect to U*

Description

Perform *quantile regression* from the gridded inversion of the *bivariate empirical copula* of \( V \) with respect to \( U \).

Usage

```r
EMPIRqua.regress(f=0.5, u=seq(0.01,0.99, by=0.01), empinv=NULL,
 lowess=FALSE, f.lowess=1/5, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( f )</td>
<td>The nonexceedance probability ( F ) to perform regression at and defaults to median regression ( F = 1/2 );</td>
</tr>
<tr>
<td>( u )</td>
<td>A vector of ( u ) nonexceedance probabilities;</td>
</tr>
<tr>
<td>empinv</td>
<td>The grid from EMPIRgridderinv;</td>
</tr>
<tr>
<td>lowess</td>
<td>Perform lowess smooth on the quantile regression using the smooth factor of f.lowess;</td>
</tr>
<tr>
<td>f.lowess</td>
<td>Smooth factor of almost the same argument name fed to the lowess() function in R; and</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments to pass.</td>
</tr>
</tbody>
</table>
Value

The gridded values of the quantile regression of $V$ with respect to $U$.

Author(s)

W.H. Asquith

See Also

EMPIRgridderinv, EMPIRqua.regress2, EMPIRmed.regress, EMPIRmed.regress2

Examples

```r
Not run: # EXAMPLE 1
theta <- 25
uv <- simCOP(n=1000, cop=PLACKETTcop, para=theta, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)

uv.grid <- EMPIRgrid(para=uv, deluv=0.05) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)

plot(uv, pch=16, col=rgb(0,0,0,.1), xlim=c(0,1), ylim=c(0,1),
 xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(qua.regressCop(f=0.5, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCop(f=0.2, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCop(f=0.7, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCop(f=0.1, cop=PLACKETTcop, para=theta), lwd=2)
lines(qua.regressCop(f=0.9, cop=PLACKETTcop, para=theta), lwd=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(med.wrtu, col=2, lwd=4)

qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)

qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=2)

qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtu, col=2, lwd=2, lty=4)

library(quantreg) # Quantile Regression by quantreg
U <- seq(0.01, 0.99, by=0.01)
rlm <- rq(V~U, data=uv, tau=0.1)
rlm <- rq(V~U, data=uv, tau=0.2)
rlm <- rq(V~U, data=uv, tau=0.5)
rlm <- rq(V~U, data=uv, tau=0.7)
rlm <- rq(V~U, data=uv, tau=0.9)
```
rq.9 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U

lines(U, rq.1, col=4, lwd=2, lty=4)
lines(U, rq.2, col=4, lwd=2, lty=2)
lines(U, rq.5, col=4, lwd=4)
lines(U, rq.7, col=4, lwd=2, lty=2)
lines(U, rq.9, col=4, lwd=2, lty=4)
## End(Not run)

## Not run: # EXAMPLE 2
# Start again with the PSP copula
uv <- simCOP(n=10000, cop=PSP, ploton=FALSE, points=FALSE)
fakeU <- lmomco:::pp(uv[,1], sort=FALSE)
fakeV <- lmomco:::pp(uv[,2], sort=FALSE)

uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.05) # CPU hungry
uv.inv1 <- EMPIRgridinv(empgrid=uv.grid)

plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),
     xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")

lines(qua.regressCOP(f=0.5, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.2, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.7, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.1, cop=PSP), lwd=2)
lines(qua.regressCOP(f=0.9, cop=PSP), lwd=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)

lines(med.wrtu, col=2, lwd=4)

qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)

lines(qua.wrtu, col=2, lwd=2, lty=2)

qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)

lines(qua.wrtu, col=2, lwd=2, lty=2)

qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)

lines(qua.wrtu, col=2, lwd=2, lty=4)

qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE, f.lowess=0.1)

lines(qua.wrtu, col=2, lwd=2, lty=4)

library(quantreg) # Quantile Regression by quantreg
U <- seq(0.01, 0.99, by=0.01)
rqlm <- rq(Y~U, data=uv, tau=0.1)

rq.2 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rq.5 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rq.7 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U
rq.9 <- rqlm$coefficients[1] + rqlm$coefficients[2]*U

lines(U, rq.1, col=4, lwd=2, lty=4)
lines(U, rq.2, col=4, lwd=2, lty=2)
lines(U, rq.5, col=4, lwd=4)
lines(U, rq.7, col=4, lwd=2, lty=2)
lines(U, rq.9, col=4, lwd=4)
EMPIRqua.regress

```r
cpu hungry

Not run: # EXAMPLE 3
uv <- simCOP(n=10000, cop=PSP, ploton=FALSE, points=FALSE)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)
uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.1) # CPU hungry
uv.inv1 <- EMPIRgridderinv(empgrid=uv.grid)

plot(uv, pch=16, col=rgb(0,0,0,.1), xlim=c(0,1), ylim=c(0,1),
 xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines(quas.regressCOP(f=0.5, cop=PSP), col=2)
lines(quas.regressCOP(f=0.2, cop=PSP), col=2)
lines(quas.regressCOP(f=0.7, cop=PSP), col=2)
lines(quas.regressCOP(f=0.1, cop=PSP), col=2)
lines(quas.regressCOP(f=0.9, cop=PSP), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines(med.wrtu, col=2, lwd=4)
quas.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines(quas.wrtu, col=2, lwd=2, lty=2)
quas.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines(quas.wrtu, col=2, lwd=2, lty=2)
quas.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines(quas.wrtu, col=2, lwd=2, lty=4)
quas.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines(quas.wrtu, col=2, lwd=2, lty=4)
lines(quas.regressCOP2(f=0.5, cop=PSP), col=4)
lines(quas.regressCOP2(f=0.2, cop=PSP), col=4)
lines(quas.regressCOP2(f=0.7, cop=PSP), col=4)
lines(quas.regressCOP2(f=0.1, cop=PSP), col=4)
lines(quas.regressCOP2(f=0.9, cop=PSP), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines(med.wrtv, col=4, lwd=4)
quas.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines(quas.wrtv, col=4, lwd=2, lty=2)
quas.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines(quas.wrtv, col=4, lwd=2, lty=2)
quas.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines(quas.wrtv, col=4, lwd=2, lty=4)
quas.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines(quas.wrtv, col=4, lwd=2, lty=4)
```

## Not run: # EXAMPLE 4
# Now try a much more complex shape
# lowess smoothing on quantile regression is possible,
# see next example
para <- list(alpha=0.15, beta=0.65, cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.005, para2=1000)

uv <- simCOP(n=20000, cop=composite2COP, para=para)
fakeU <- lmomco::pp(uv[,1], sort=FALSE)
fakeV <- lmomco::pp(uv[,2], sort=FALSE)

uv <- data.frame(U=fakeU, V=fakeV)

uv.grid <- EMPIRgrid(para=uv, deluv=0.025) # CPU hungry
uv.inv1 <- EMPIRgridlinv(empgrid=uv.grid)

plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),
     xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILTITY")
lines qua.regressCop(f=0.5, cop=composite2COP, para=para), col=2)
lines qua.regressCop(f=0.2, cop=composite2COP, para=para), col=2)
lines qua.regressCop(f=0.7, cop=composite2COP, para=para), col=2)
lines qua.regressCop(f=0.1, cop=composite2COP, para=para), col=2)
lines qua.regressCop(f=0.9, cop=composite2COP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1)
lines med.wrtu, col=2, lwd=4)
qua.wrtu <- EMPIRqua.regress(f=0.2, empinv=uv.inv1)
lines qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.7, empinv=uv.inv1)
lines qua.wrtu, col=2, lwd=2, lty=2)
qua.wrtu <- EMPIRqua.regress(f=0.1, empinv=uv.inv1)
lines qua.wrtu, col=2, lwd=2, lty=4)
qua.wrtu <- EMPIRqua.regress(f=0.9, empinv=uv.inv1)
lines qua.wrtu, col=2, lwd=2, lty=4)
lines qua.regressCop2(f=0.5, cop=composite2COP, para=para), col=4)
lines qua.regressCop2(f=0.2, cop=composite2COP, para=para), col=4)
lines qua.regressCop2(f=0.7, cop=composite2COP, para=para), col=4)
lines qua.regressCop2(f=0.1, cop=composite2COP, para=para), col=4)
lines qua.regressCop2(f=0.9, cop=composite2COP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2)
lines med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2)
lines qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2)
lines qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2)
lines qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2)
lines qua.wrtv, col=4, lwd=2, lty=4)

## Not run: # EXAMPLE 5
plot(uv, pch=16, col=rgb(0,0,0,0.1), xlim=c(0,1), ylim=c(0,1),
     xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
lines qua.regressCop(f=0.5, cop=composite2COP, para=para), col=2)
lines qua.regressCop(f=0.2, cop=composite2COP, para=para), col=2)
EMPIRqua.regress

```r
lines(qua.regressCOP(f=0.7, cop=compositeCOP, para=para), col=2)
lines(qua.regressCOP(f=0.1, cop=compositeCOP, para=para), col=2)
lines(qua.regressCOP(f=0.9, cop=compositeCOP, para=para), col=2)

med.wrtu <- EMPIRqua.regress(f=0.5, empinv=uv.inv1, lowess=TRUE)
lines(med.wrtu, col=2, lwd=4)
qu.qua <- EMPIRqua.regress(f=0.2, empinv=uv.inv1, lowess=TRUE)
lines(qu.qua, col=2, lwd=2, lty=2)
qu.qua <- EMPIRqua.regress(f=0.7, empinv=uv.inv1, lowess=TRUE)
lines(qu.qua, col=2, lwd=2, lty=2)
qu.qua <- EMPIRqua.regress(f=0.1, empinv=uv.inv1, lowess=TRUE)
lines(qu.qua, col=2, lwd=2, lty=4)
qu.qua <- EMPIRqua.regress(f=0.9, empinv=uv.inv1, lowess=TRUE)
lines(qu.qua, col=2, lwd=2, lty=4)

lines(qua.regressCOP2(f=0.5, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=compositeCOP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2, lowess=TRUE)
lines(med.wrtv, col=4, lwd=4)
qu.qua <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2, lowess=TRUE)
lines(qu.qua, col=4, lwd=2, lty=2)
qu.qua <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2, lowess=TRUE)
lines(qu.qua, col=4, lwd=2, lty=2)
qu.qua <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2, lowess=TRUE)
lines(qu.qua, col=4, lwd=2, lty=4)
qu.qua <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2, lowess=TRUE)
lines(qu.qua, col=4, lwd=2, lty=4)

End(Not run)
```
EMPIRqua.regress2

Quantile Regression of the Grid of the Bivariate Empirical Copula for $U$ with respect to $V$

Description

Generate quantile regression from the gridded inversion of the bivariate empirical copula of $U$ with respect to $V$.

Usage

EMPIRqua.regress2(f=0.5, v=seq(0.01, 0.99, by=0.01), empinv=NULL, lowess=FALSE, f.lowess=1/5, ...)

Arguments

- **f**  
  The nonexceedance probability $F$ to perform regression at and defaults to median regression $F = 1/2$;
- **v**  
  A vector of $v$ nonexceedance probabilities;
- **empinv**  
  The grid from EMPIRgriderinv;
- **lowess**  
  Perform lowess smooth on the quantile regression using the smooth factor of $f$;
- **f.lowess**  
  Smooth factor of almost the same argument name fed to the lowess() function in R;
- ...  
  Additional arguments to pass.

Value

The gridded values of the quantile regression of $U$ with respect to $V$. 

```r
lines(qua.regressCOP2(f=0.5, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.2, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.7, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.1, cop=compositeCOP, para=para), col=4)
lines(qua.regressCOP2(f=0.9, cop=compositeCOP, para=para), col=4)

med.wrtv <- EMPIRqua.regress2(f=0.5, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(med.wrtv, col=4, lwd=4)
qua.wrtv <- EMPIRqua.regress2(f=0.2, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.7, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=2)
qua.wrtv <- EMPIRqua.regress2(f=0.1, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=4)
qua.wrtv <- EMPIRqua.regress2(f=0.9, empinv=uv.inv2, lowess=TRUE, f.lowess=0.1)
lines(qua.wrtv, col=4, lwd=2, lty=4)#
End(Not run)
```
EMPIRsim

Author(s)

W.H. Asquith

See Also

EMPIRgridderinv2, EMPIRqua.regress, EMPIRmed.regress, EMPIRmed.regress2

Examples

# See examples under EMPIRqua.regress

---

**EMPIRsim**

*Simulate a Bivariate Empirical Copula*

**Description**

EXPERIMENTAL—Perform a simulation on a *bivariate empirical copula* to produce the random variates $U$ and $V$ and return an R data.frame of them. The method is more broadly known as *conditional simulation method*. This function is an empirical parallel to simCOP that is used for parametric copulas. If circumstances require conditional simulation of $V|U$, then function EMPIRsimv, which produces a vector of $V$ from a fixed $u$, should be used.

For the usual situation in which an individual $u$ during the simulation loops is not a value aligned on the grid, then the bounding conditional quantile functions are solved for each of the $n$ simulations and the following interpolation is made by

$$
v = \frac{v_1/w_1 + v_2/w_2}{1/w_1 + 1/w_2},
$$

which states that the weighted mean is computed. The values $v_1$ and $v_2$ are ordinates of the conditional quantile function for the respective grid lines to the left and right of the $u$ value. The values $w_1 = u - u_{\text{left grid}}$ and $w_2 = u_{\text{right grid}} - u$.

**Usage**

```r
EMPIRsim(n=100, empgrid=NULL, kumaraswamy=FALSE, na.rm=TRUE, keep=FALSE,
 graphics=TRUE, ploton=TRUE, points=TRUE, snv=FALSE,
 infsnv.rm=TRUE, trapinfsnv=.Machine$double.eps, ...)
```

**Arguments**

- `n` A sample size, default is 100;
- `empgrid` Gridded empirical copula from EMPIRgrid;
- `kumaraswamy` A logical to trigger Kumaraswamy distribution smoothing of the conditional quantile function that is passed to EMPIRgridderinv. The Kumaraswamy distribution is a distribution having support $[0,1]$ with an explicit quantile function and takes the place of a Beta distribution (see lmomco function quakur for more details);
EMPIRsim

na.rm A logical to toggle the removal of NA entries on the returned data.frame;
keep A logical to toggle the removal of NA entries on the returned data.frame;
graphics A logical that will disable graphics by setting ploton and points to FALSE and overriding whatever their settings were;
ploton A logical to toggle on the plot;
points A logical to actually draw the simulations by the points() function in R;
A logical to convert the \{u, v\} to standard normal scores (variates) both for the optional graphics and the returned data.frame. Joe (2014) advocates extensively for use of normal scores, which is in contrast to Nelsen (2006) who does not;
infsnv.rm A logical that will quietly strip out any occurrences of u = \{0, 1\} or v = \{0, 1\} from the simulations because these are infinity in magnitude when converted to standard normal variates is to occur. Thus, this logical only impacts logic flow when snv is TRUE. The infsnv.rm is mutually exclusive from trapinfsnv;
A logical that will quietly strip out any occurrences of u = \{0, 1\} or v = \{0, 1\} from the simulations because these are infinity in magnitude when converted to standard normal variates is to occur. Thus, this logical only impacts logic flow when snv is TRUE. The infsnv.rm is mutually exclusive from trapinfsnv;
trapinfsnv If TRUE and presumably small, the numerical value of this argument (\(\eta\)) is used to replace \(u = \{0, 1\}\) and \(v = \{0, 1\}\) with \(u(0) = v(0) = \eta\) or \(u(1) = v(1) = 1 - \eta\) as appropriate when conversion to standard normal variates is to occur. The setting of trapinfsnv only is used if snv is TRUE and infsnv.rm is FALSE;
and
Additional arguments to pass to the points() function in R.

Value
An R data.frame of the simulated values is returned.

Author(s)
W.H. Asquith

See Also
EMPIRgrid, EMPIRgridderinv, EMPIRsimv

Examples
```r
Not run:
pdf("EMPIRsim_experiment.pdf")
nsim <- 5000
para <- list(alpha=0.15, beta=0.65,
 cop1=PLACKETTcop, cop2=PLACKETTcop, paral=0.005, para2=1000)
set.seed(1)
uv <- simCOP(n=nsim, cop=composite2COP, para=para, snv=TRUE,
 pch=16, col=rgb(0,0,0,.2))
mtext("A highly complex simulated bivariate relation")
set.seed(1) # try not resetting the seed
uv.grid <- EMPIRgrid(para=uv, deluv=0.025)
```
Simulate a Bivariate Empirical Copula For a Fixed Value of \( u \)

**Description**

**EXPERIMENTAL**—Perform a simulation on a bivariate empirical copula to extract the random variates \( V \) from a given and fixed value for \( u = \text{constant} \). The purpose of this function is to return a simple vector of the \( V \) simulations. This behavior is similar to `simCOPmicro` but differs from the general 2-D simulation implemented in the other functions: `EMPISImv` and `simCOP`—these two functions generate \( R \) data frames of simulated random variates \( U \) and \( V \) and optional graphics as well.

For the usual situation in which \( u \) is not a value aligned on the grid, then the bounding conditional quantile functions are solved for each of the \( n \) simulations and the following interpolation is made by

\[
v = \frac{v_1/w_1 + v_2/w_2}{1/w_1 + 1/w_2},
\]

which states that that the weighted mean is computed. The values \( v_1 \) and \( v_2 \) are ordinates of the conditional quantile function for the respective grid lines to the left and right of the \( u \) value. The values \( w_1 = u - u_{\text{grid left}} \) and \( w_2 = u_{\text{grid right}} - u \).

**Usage**

`EMPISImv(u, n=1, empgrid=NULL, kumaraswamy=FALSE, ...)`
**Arguments**

- **u**: The fixed probability \( u \) on which to perform conditional simulation for a sample of size \( n \);
- **n**: A sample size, default is 1;
- **empgrid**: Gridded empirical copula from `EMPIRgrid`;
- **kumaraswamy**: A logical to trigger Kumaraswamy distribution smoothing of the conditional quantile function that is passed to `EMPIRgridderinv`. The Kumaraswamy distribution is a distribution having support \([0, 1]\) with an explicit quantile function and takes the place of a Beta distribution (see `lmomco` function `quakur` for more details); and
- **...**: Additional arguments to pass.

**Value**

A vector of simulated \( V \) values is returned.

**Author(s)**

W.H. Asquith

**See Also**

`EMPIRgrid`, `EMPIRsim`

**Examples**

```r
Not run:
nsim <- 3000
para <- list(alpha=0.15, beta=0.65,
 cop1=PLACKETTcop, cop2=PLACKETTcop, para1=.005, para2=1000)
set.seed(10)
uv <- simCOP(n=nsim, cop=composite2COP, para=para, pch=16, col=rgb(0,0,0,0.2))
uv.grid <- EMPIRgrid(para=uv, deluv=.1)
set.seed(1)
V1 <- EMPIRsimv(u=0.6, n=nsim, empgrid=uv.grid)
set.seed(1)
V2 <- EMPIRsimv(u=0.6, n=nsim, empgrid=uv.grid, kumaraswamy=TRUE)
plot(V1,V2)
abline(0,1)

invgrid1 <- EMPIRgridderinv(empgrid=uv.grid)
invgrid2 <- EMPIRgridderinv(empgrid=uv.grid, kumaraswamy=TRUE)
att <- attributes(invgrid2); kur <- att$kumaraswamy
Now draw random variates from the Kumaraswamy distribution using
rlmomco() and vec2par() provided by the lmomco package.
set.seed(1)
kurpar <- lmomco::vec2par(c(kur$Alpha[7], kur$Beta[7]), type="kur")
Vsim <- lmomco::rlmomco(nsim, kurpar)

print(summary(V1)) # Kumaraswamy not core in QDF reconstruction
```
The Generalized Farlie–Gumbel–Morgenstern Copula

Description

The generalized Farlie–Gumbel–Morgenstern copula \( (Bekrizade \textit{et al.}, 2012) \) is

\[
C_{\Theta,\alpha,n}(u, v) = \text{FGM}(u, v) = uv[1 + \Theta (1 - u^{\alpha})(1 - v^{\alpha})]^n,
\]

where \( \Theta \in [-\min\{1, 1/(n\alpha^2)\}, 1/(n\alpha)] \), \( \alpha > 0 \), and \( n \in 0, 1, 2, \cdots \). The copula \( \Theta = 0 \) or \( \alpha = 0 \) or \( n = 0 \) becomes the independence copula \((\Pi(u, v); P)\). When \( \alpha = n = 1 \), then the well-known, single-parameter Farlie–Gumbel–Morgenstern copula results, and \textit{Spearman Rho} \((\rho\text{Cop})\) is \( \rho_C = \Theta/3 \) but in general

\[
\rho_C = 12 \sum_{r=1}^{n} \binom{n}{r} \Theta^r \left[ \frac{\Gamma(r + 1)\Gamma(2/\alpha)}{\alpha\Gamma(r + 1 + 2/\alpha)} \right]^2.
\]

The support of \( \rho_C(\cdots; \Theta, 1, 1) \) is \([-1/3, 1/3]\) but extends via \( \alpha \) and \( n \) to \( \approx [-0.50, 0.43] \), which shows that the generalization of the copula increases the range of dependency.

Usage

\[
\text{FGMcop}(u, v, \text{para}=c(\text{NA}, 1, 1), \ldots)
\]

### FGMcop

The Generalized Farlie–Gumbel–Morgenstern Copula

The Generalized Farlie–Gumbel–Morgenstern copula \((Bekrizade \textit{et al.}, 2012)\) is

\[
C_{\Theta,\alpha,n}(u, v) = \text{FGM}(u, v) = uv[1 + \Theta (1 - u^{\alpha})(1 - v^{\alpha})]^n,
\]

where \( \Theta \in [-\min\{1, 1/(n\alpha^2)\}, 1/(n\alpha)] \), \( \alpha > 0 \), and \( n \in 0, 1, 2, \cdots \). The copula \( \Theta = 0 \) or \( \alpha = 0 \) or \( n = 0 \) becomes the independence copula \((\Pi(u, v); P)\). When \( \alpha = n = 1 \), then the well-known, single-parameter Farlie–Gumbel–Morgenstern copula results, and \textit{Spearman Rho} \((\rho\text{Cop})\) is \( \rho_C = \Theta/3 \) but in general

\[
\rho_C = 12 \sum_{r=1}^{n} \binom{n}{r} \Theta^r \left[ \frac{\Gamma(r + 1)\Gamma(2/\alpha)}{\alpha\Gamma(r + 1 + 2/\alpha)} \right]^2.
\]

The support of \( \rho_C(\cdots; \Theta, 1, 1) \) is \([-1/3, 1/3]\) but extends via \( \alpha \) and \( n \) to \( \approx [-0.50, 0.43] \), which shows that the generalization of the copula increases the range of dependency.

Usage

\[
\text{FGMcop}(u, v, \text{para}=c(\text{NA}, 1, 1), \ldots)
\]
FGMcop

Arguments

- **u**
  - Nonexceedance probability \( u \) in the \( X \) direction;

- **v**
  - Nonexceedance probability \( v \) in the \( Y \) direction;

- **para**
  - A vector of parameters—the \( \Theta, \alpha, \) and \( n \) of the copula where the default argument shows the need to include the \( \Theta \). However, if a fourth parameter is present, it is treated as a logical to reverse the copula \((u + v - 1 + FGM(1 - u, 1 - v; \Theta, \alpha, n))\). Also if a single parameter is given, then the \( \alpha = n = 1 \) are automatically set to produce the single-parameter Farlie–Gumbel–Morgenstern copula;

- **...**
  - Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References


See Also

p, mlecop

Examples

```r
Not run:
Bekrizade et al. (2012, table 1) report for a=2 and n=3 that range in
theta = [-0.1667; 0.1667] and range in rho = [-0.1806641; 0.4036458]. However,
we see that they have made an error in listing the lower bounds of theta:
rhoCOP(FGMcop, para=c(1/6, 2, 3)) # 0.4036458
rhoCOP(FGMcop, para=c(-1/6, 2, 3)) # Following error results
In cop(u, v, para = para, ...) : parameter Theta < ~0.083333333333333
rhoCOP(FGMcop, para=c(-1/12, 2, 3)) # ~0.1806641
End(Not run)
```

```r
Not run:
Maximum likelihood estimation near theta upper bounds for a=3 and n=2.
set.seed(832)
UV <- simCOP(300, cop=FGMcop, para=c(+.16,3,2))
Define a transform function for parameter domain, though mleCOP does
provide some robustness anyway---not forcing n into the positive
domain via as.integer(exp(p[3])) seems to not always be needed.
FGMfunc <- function(p) {
 d <- p[1]; a <- exp(p[2]); n <- as.integer(exp(p[3]))
 lwr <- -min(c(1,1/(n*a^2))); upr <- 1/(n*a)
 ...}
```
The Spearman Footrule of a Copula

Description

Compute the measure of association known as Spearman Footrule \( \psi_C \) (Nelsen et al., 2001, p. 281), which is defined as

\[
\psi_C = \frac{3}{2} Q(C, M) - \frac{1}{2},
\]

where \( C(u, v) \) is the copula, \( M(u, v) \) is the Fréchet–Hoeffding upper bound \( \Psi \), and \( Q(a, b) \) is a concordance function (Nelsen, 2006, p. 158), which is implemented by a specially formed call to \texttt{concordCOP}. The \( \psi_C \) in terms of a single integration pass on the copula is

\[
\psi_C = 6 \int_0^1 C(u, u) \, du - 2.
\]

Note that Nelsen et al. (2001) use \( \phi_C \) but that symbol is taken in \texttt{copBasic} for Hoeffding's Phi \( \texttt{hoefCOP} \), and Spearman's Footrule does not seem to appear in Nelsen (2006).

Usage

\texttt{footCOP(cop=NULL, para=NULL, by.concordance=FALSE, as.sample=FALSE, \ldots)}

Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
by.concordance Instead of using the single integral to compute \( \psi_C \), use the concordance function method implemented through \texttt{concordCOP}; and
as.sample A logical controlling whether an optional \texttt{data.frame} in \texttt{para} is used to compute the \( \psi \) (see \texttt{Note}); and
\ldots Additional arguments to pass, which are dispatched to the copula function \texttt{cop} and possibly \texttt{concordCOP}, such as \texttt{brute} or \texttt{delta} used by that function.
Value

The value for $\psi_C$ is returned.

Note

Conceptually, the sample Spearman Footrule is a standardized sum of the absolute difference in the ranks (Genest et al., 2010). The sample $\hat{\psi}$ is

$$\hat{\psi} = 1 - \frac{\sum_{i=1}^{n} |R_i - S_i|}{n^2 - 1},$$

where $R_i$ and $S_i$ are the respective ranks of $X$ and $Y$ and $n$ is sample size. The sampling variance of $\hat{\psi}$ under assumption of independence between $X$ and $Y$ is

$$\text{var}(\hat{\psi}) = \frac{2n^2 + 7}{5(n + 1)(n - 1)^2}.$$ 

Genest et al. (2010) present additional equations for estimation of the distribution $\hat{\psi}$ variance for conditions of dependence based on copulas.

Author(s)

W.H. Asquith

References


See Also

blomCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP

Examples

```r
footCOP(cop=PSP) # 0.3177662
footCOP(cop=PSP, by.concordance=TRUE) # 0.3178025

Not run:
n <- 2000; UV <- simCOP(n=n, cop=GHcop, para=2.3, graphics=FALSE)
footCOP(para=UV, as.sample=TRUE) # 0.5594364 (sample version)
footCOP(cop=GHcop, para=2.3) # 0.5513380 (copula integration)
footCOP(cop=GHcop, para=2.3, by.concordance=TRUE) # 0.5513562 (concordance function)
where the later issued warnings on the integration
End(Not run)
```
The Fréchet Family Copula

Description

The Fréchet Family copula (Durante, 2007, pp. 256–259) is

\[ C_{\alpha,\beta}(u,v) = \mathbb{F}(u,v) = \alpha \mathbb{M}(u,v) + (1 - \alpha - \beta)\mathbb{I}(u,v) + \beta \mathbb{W}(u,v), \]

where \( \alpha, \beta \geq 0 \) and \( \alpha + \beta \leq 1 \). The Fréchet Family copulas are convex combinations of the fundamental copulas \( \mathbb{W} \) (Fréchet–Hoeffding lower bound copula; \( \mathbb{W} \)), \( \mathbb{I} \) (independence; \( \mathbb{P} \)), and \( \mathbb{M} \) (Fréchet–Hoeffding upper bound copula; \( \mathbb{M} \)). The copula is comprehensive because both \( \mathbb{W} \) and \( \mathbb{M} \) can be obtained. The parameters are readily estimated using Spearman Rho (\( \rho_C; \rho_{\text{cop}} \)) and Kendall’s Tau (\( \tau_C; \tau_{\text{cop}} \)) by

\[ \tau_C = \frac{(\alpha - \beta)(\alpha + \beta + 2)}{3} \quad \text{and} \quad \rho_C = \alpha - \beta. \]

The Fréchet Family copula virtually always has a visible singular component unless \( \alpha, \beta = 0 \).

The copula has respective lower- and upper-tail dependency parameters of \( \lambda^L = \alpha \) and \( \lambda^U = \alpha \) (\( \text{taildepCOP} \)). Durante (2007, p. 257) reports that the Fréchet Family copula can approximate any bivariate copula in a “unique way” and the error bound can be estimated.

Usage

FRECHETcop(u,v, para=NULL, rho=NULL, tau=NULL, par2rhotau=FALSE, ...)

Arguments

- \( u \): Nonexceedance probability \( u \) in the \( X \) direction;
- \( v \): Nonexceedance probability \( v \) in the \( Y \) direction;
- para: A vector (two element) of parameters \( \alpha \) and \( \beta \);
- rho: Spearman’s \( \rho_C \) from which to estimate the parameters;
- tau: Kendall’s \( \tau_C \) from which to estimate the parameters;
- par2rhotau: A logical that if TRUE will return an \( R \) list of the \( \rho \) and \( \tau \) for the parameters; and
- ... Additional arguments to pass.

Details

The function will check the consistency of the parameters whether given by argument or computed from \( \rho_C \) and \( \tau_C \). The term “Family” is used with this particular copula in \texttt{copBasic} so as to draw distinction to the Fréchet lower and upper bound copulas as the two limiting copulas are called.

For no other reason than that it can be easily done and makes a nice picture, loop through a nest of \( \rho \) and \( \tau \) for the Fréchet Family copula and plot the domain of the resulting parameters:
ops <- options(warn=-1) # warning supression because "loops" are dumb
taus <- rhos <- seq(-1,1, by=0.01)
plot(NA, NA, type="n", xlim=c(0,1), ylim=c(0,1),
     xlab="Frechet Copula Parameter Alpha",
     ylab="Frechet Copula Parameter Beta")
for(tau in taus) {
    for(rho in rhos) {
        fcop <- FRECHETcop(rho=rho, tau=tau)
        if(! is.na(fcop$para[1])) points(fcop$para[1], fcop$para[2])
    }
}
options(ops)

Value

Value(s) for the copula are returned using the $\alpha$ and $\beta$ as set by argument para; however, if para=NULL and rho and tau are set and compatible with the copula, then $\{\rho_C, \tau_C\} \rightarrow \{\alpha, \beta\}$, parameter estimation made, and an R list is returned.

Note

A convex combination (convex2COP) of $\Pi$ and $M$, which is a modification of the Fréchet Family, is the Linear Spearman copula:

$$C_\alpha(u,v) = (1 - \alpha)\Pi(u,v) + \alpha M(u,v),$$

for $0 \leq \alpha \leq 1$, and the parameter is equal to $\rho_C$. When the convex combination is used for construction, the complement of the parameter is equal to $\rho_C$ (e.g. $1 - \alpha = \rho_C$; rhoCOP), which can be validated by

```r
rhoCOP(cop=convex2COP, para=list(alpha=1-0.48, cop1=P, cop2=M)) # 0.4799948
```

Author(s)

W.H. Asquith

References


See Also

M, P, W

Examples

```r
ppara <- c(0.25, 0.50)
fcop <- FRECHETcop(para=ppara, par2rhotau=TRUE)
RHO <- fcop$rho; TAU <- fcop$tau
```
The Gaussian-based (Extreme Value) Copula

Description

The \textit{g-EV copula} (Joe, 2014, p. 105) is a limiting form of the \textit{Gaussian copula}:

\[ C_\rho(u, v) = \text{gEV}(u, v; \rho) = \exp\left(-A(x, y; \rho)\right), \]

where \( x = -\log(u), y = -\log(v) \), and

\[ A(x, y; \rho) = \begin{cases} y, & \text{for } 0 \leq x/(x + y) \leq \rho^2/(1 + \rho^2), \\ (x + y - 2\rho\sqrt{xy})/(1 - \rho^2), & \text{for } \rho^2/(1 + \rho^2) \leq x/(x + y) \leq 1/(1 + \rho^2), \\ x, & \text{for } 1/(1 + \rho^2) \leq x/(x + y) \leq 1 \end{cases} \]

and \( \rho \in [0, 1] \). A somewhat curious observation is that this copula has relative hard boundaries into the upper-left and lower-right corners when compared to the other copulas supported by the \texttt{copBasic} package. In otherwords, the hull defined by the copula has hard (not fuzzy) curvilinear boundaries that adjust with the parameter.

Usage

\begin{verbatim}
gevcop(u, v, para=NULL, ...)
\end{verbatim}

Arguments

\begin{itemize}
  \item \texttt{u} Nonexceedance probability \( u \) in the \textit{X} direction;
  \item \texttt{v} Nonexceedance probability \( v \) in the \textit{Y} direction;
  \item \texttt{para} The parameter \( \rho \); and
  \item \ldots Additional arguments to pass.
\end{itemize}
Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References


See Also

tEVcop

Examples

```r
Not run:
UV <- simCOP(200, cop=gEVcop, para=0.8) #
End(Not run)

Not run:
Joe (2014, p. 105) has brief detail indicating rho = [0,1] and though it seems
rho would be a Pearson correlation, this does not seem to be the case. The Rho
seems to start with that of the Gaussian and then through the extreme-value
transform, it just assumes the role of a parameter?
rho <- 0.8
UV <- simCOP(2000, cop=gEVcop, para=rho)
P <- cor(UV[,1], UV[,2], method="pearson")
if(abs(P-0.8) < 0.001) {
 print("Yet same")
} else { print("nope not") } # Should they be?
End(Not run)

Not run:
r <- seq(0.01,1, by=.01)
R <- sapply(rhos, function(k) rhoCOP(cop=gEVcop, para=k))
#
End(Not run)
```

The Gumbel–Hougaard Extreme Value Copula

Description

SYMMETRIC GUMBEL-HOUGAARD—The Gumbel–Hougaard copula (Nelsen, 2006, pp. 118 and 164) is

\[
C_\Theta(u, v) = \text{GH}(u, v) = \exp\{\{-\log u\}^\Theta + \{-\log v\}^{\Theta^{1/\Theta}}\},
\]
where \( \Theta \in [1, \infty) \). The copula here is a bivariate extreme value copula (BEV). The parameter \( \Theta \) is readily estimated using Kendall’s Tau (say a sample version \( \tau \)) where the \( \tau \) of the copula (\( \tau_C \)) is defined as

\[
\tau_C = \frac{\Theta - 1}{\Theta} \rightarrow \Theta = \frac{1}{1 - \tau}.
\]

The copula is readily extended into \( d \) dimensions by

\[
C_{\Theta}(u, v) = \exp\{-(\log u_1)^{\Theta} + \cdots + (\log u_d)^{\Theta}\}^{1/\Theta}.
\]

However, such an implementation is not available in the \texttt{copBasic} package.

Every Gumbel–Hougaard copula is a multivariate extreme value (MEV) copula, and hence useful in analysis of extreme value distributions. The Gumbel–Hougaard copula is the only Archimedean \textit{MEV} (Salvadori et al., 2007, p. 192). The Gumbel–Hougaard copula has respective lower- and upper-tail dependency parameters of \( \lambda_L = 0 \) and \( \lambda_U = 2 - 2^{1/\Theta} \), respectively. Nelsen (2006, p. 96) shows that \( C_{\Theta}(u^{1/\tau}, v^{1/\tau}) = C_{\Theta}(u, v) \) so that every Gumbel–Hougaard copula is \textit{max-stable}. A \textit{dependence measure} uniquely defined for BEV copulas is shown under \texttt{rhobevCOP}.

A comparison through simulation between Gumbel–Hougaard implementations by the \texttt{R} packages \texttt{acopula}, \texttt{copBasic}, \texttt{copula}, and \texttt{Gumbel} is shown in the \textit{Examples} section. At least three divergent techniques for random variate generation are used amongst those packages. The simulations also use \texttt{copBasic}-style random variate generation (conditional simulation) using an analytical-numerical hybrid solution to conditional inverse described in the \textit{Note} section.

\textbf{TWO-PARAMETER GUMBEL–HOUGAARD}—A permutation symmetric (\texttt{iscop.perm sym}) but almost certainly radial asymmetric (\texttt{iscop.radsym}) version of the copula is readily constructed (Brahimi et al., 2015) into a two-parameter version:

\[
C(u; v; \beta_1, \beta_2) = \left[ \left( (u^{-\beta_2} - 1)^{\beta_1} + (v^{-\beta_2} - 1)^{\beta_1} \right)^{1/\beta_1} + 1 \right]^{-1/\beta_2},
\]

where \( \beta_1 \geq 1 \) and \( \beta_2 > 0 \). Both parameters controls the general level of association, whereas parameter \( \beta_2 \) can be thought of as controlling left-tail dependency (\texttt{taildepCOP}, \( \lambda_{(U,L)}^{(1,0.5)} \), e.g. \( \lambda_{(1,5,0.2)} = 0.413 \) for all \( \beta_2 \) but \( \lambda_{(1.5,0.2)} = 0.811 \) and \( \lambda_{(1.5,2.2)} = 0.099 \). Brahimi et al. (2015) report a \textit{Spearman’s Rho} (\texttt{rhocOP}) for a \texttt{GH}(1.5,0.2)(u, v) is 0.5, which is readily confirmed in \texttt{copBasic} by the function call \texttt{rhocOP(cop=GHcop, para=c(1.5,0.2))}. The two-parameter \texttt{GH} is triggered if the length of the \texttt{para} argument is exactly 2.

\textbf{ASYMMETRIC GUMBEL–HOUGAARD}—An asymmetric version of the copula is readily constructed (Joe, 2014, p. 185–186) into a three-parameter version with \textit{Marshall–Olkin} copulas on the boundaries:

\[
C(u; v; \Theta, \pi_2, \pi_3) = \exp[-A(-\log u, -\log v; \Theta, \pi_2, \pi_3)],
\]

where \( \Theta \geq 1 \) as before, \( 0 \leq \pi_2, \pi_3 \leq 1 \), and

\[
A(x, y; \Theta, \pi_2, \pi_3) = \left[ (\pi_2 x)^{\Theta} + (\pi_3 y)^{\Theta} \right]^{1/\Theta} + (1 - \pi_2) x + (1 - \pi_3) y.
\]

The asymmetric \texttt{GH} is triggered if the length of the \texttt{para} argument is exactly 3. The \texttt{GHcop} function provides no mechanism for estimation of the parameters for the asymmetric version. Reviewing simulations, the bounds on the \( \pi \) parameters in Joe (2014, p. 185) “\( 0 \leq \pi_2 < \pi_3 \leq 1 \)” might be incorrect—by Joe’s own back reference to Joe (2014, eq. 4.35, p. 183) the \( \pi \)-limits as stated for \texttt{copBasic} are shown. An algorithm for parameter estimation for the asymmetric \texttt{GH} using two different measures of bivariate skewness as well as an arbitrary measure of association is shown in section \textit{Details} in \texttt{joeskewCOP}.
Usage

GHcop(u, v, para=NULL, tau=NULL, tau.big=0.985, cor=NULL, ...)

Arguments

u  Nonexceedance probability \( u \) in the \( X \) direction;
v  Nonexceedance probability \( v \) in the \( Y \) direction;
para A vector (single element or triplet) of parameters—the \( \Theta \) parameter of the copula;
tau Kendall’s Tau \( \tau \) from which to estimate the parameter \( \Theta \);
tau.big The largest value for \( \tau_C \) prior to switching to the \( M \) copula applicable to the the symmetric version of this copula;
cor A \texttt{copBasic} syntax for “the correlation coefficient” suitable for the copula—a synonym for tau; and
... Additional arguments to pass.

Details

Numerical experiments seem to indicate for \( \tau_C > 0.985 \) that failures in the numerical partial derivatives in \texttt{derCOP} and \texttt{derCOP2} result—a \( \tau_C \) this large is indeed large. As \( \Theta \to \infty \) the Gumbel–Hougaard copula becomes the Fréchet–Hoeffding upper bound copula \( M \) (see \( M \)). A \( \tau_C \approx 0.985 \) yields \( \Theta \approx 66 + \frac{2}{3} \), then for \( \Theta > \frac{1}{1-\tau_C} \) flips over to the \( M \) copula with a warning issued.

Value

Value(s) for the copula are returned using the \( \Theta \) as set by argument \texttt{para}. Alternative returned values are possible: (1) If \texttt{para=NULL} and \texttt{tau} is set, then \( \tau_C \to \Theta \) and an \texttt{R} list is returned. (2) If \texttt{para=NULL} and \texttt{tau=NULL}, then an attempt to estimate \( \Theta \) from the \texttt{u} and \texttt{v} is made by \( \texttt{cor(u,v)} \to \tau_C \to \Theta \) by either trigger using \( \texttt{cor(u,v, method=“kendall“)} \) in \texttt{R}, and an \texttt{R} list is returned. The possibly returned list has the following elements:

\texttt{para} The computed \( \Theta \) from the given bivariate data in \texttt{para}; and
\texttt{tau} The sample estimate of \( \tau \).

Note

\texttt{SYMmetric GUMBEl–HOUGAARD}—A function for the derivative of the copula (Joe, 2014, p. 172) given \( u \) is

```r
"GHcop.derCOP" <- function(u, v, para=NULL, ...) {
 x <- -log(u); y <- -log(v)
 A <- exp(-(x*para + y*para)^*(1/para)) * (1 + (y/x)^para)^*(1/para - 1)
 return(A/u)
}
```

that can be tested by the following
Theta <- 1/(1-.15) # a Kendall's Tau of 0.15
GHcop.derCOP( 0.5, 0.75, para=Theta) # 0.7787597
derCOP(cop=GHcop, 0.5, 0.75, para=Theta) # 0.7787597

# The next two nearly return same value but conversion to GRVs
# (Gumbel Reduced Variates) to magnify the numerical differences.
# The GHcop.derCOP is expected to be the more accurate of the two.
lmomco:::prob2grv(GHcop.derCOP( 0.5, 0.9999999, para=Theta)) # 18.83349
lmomco:::prob2grv(derCOP(cop=GHcop, 0.5, 0.9999999, para=Theta)) # 18.71497
lmomco:::prob2grv(derCOP(cop=GHcop, 0.5, 0.9999999, para=Theta,
delu=.Machine$double.eps*.25)) # 18.83341

where the last numerical approximation shows that tighter tolerance is needed. A function for the
inverse of the derivative (Joe, 2014, p. 172) given \( u \) by an analytical-numerical hybrid is

```r
"GHcop.derCOPinv" <- function(u,t, para=NULL, verbose=FALSE,
 tol=.Machine$double.eps, ...) {
 if(length(u) > 1) warning("only the first value of u will be used")
 if(length(t) > 1) warning("only the first value of t will be used")
 if(is.null(para)) { warning("para can not be NULL"); return(NA) }
 u <- u[1]; t <- t[1]; rt <- NULL
 x <- -log(u); A <- (x + (para - 1)*log(x) - log(t))
 hz <- function(z) { z + (para - 1)*log(z) - A }
 zmax <- x; i <- 0; hofz.lo <- hz(zmax)
 if(sign(hofz.lo) != -1) warning("sign for h(z) is not negative!")
 while(1) {
 i <- i + 1
 if(i > 100) { warning("maximum iterations looking for zmax reached"); break }
 # increment zmax by 1/2 log cycle, sign(hofz.lo) should be negative!
 if(sign(hz(zmax <- zmax + 1/2)) != sign(hofz.lo)) break
 }
 try(rt <- uniroot(hz, c(x, zmax), tol=tol, ...), silent=FALSE)
 if(verbose) print(rt)
 if(is.null(rt)) {
 warning("NULL on the inversion of the GH copula derivative")
 return(NA)
 }
 zo <- rt$root
 y <- (zo*para - x*para)^(1/para)
 names(y) <- NULL
 return(exp(-y))
}
```

that can be tested by the following, which also shows how to increase the tolerance on the numerical
implementation

```
u <- 0.999; p <- 0.999
GHcop.derCOPinv(u, p, para=1.56) # 0.999977
```
ASYMMETRIC GUMBEL–HOUGAARD

— Set $\tau_C = 0.35$ then for a symmetric and then reflection on the 1:1 line of the asymmetric Gumbel–Hougaard copula and compute the primary parameter $\Theta$, and lastly, compute three bivariate $\nu_C$ skewnesses ($nuskewCOP$):

\[
\Theta_Q \leftarrow \text{unroot}(function(t) \{ 
0.35 \text{ - tauCOP}(\text{cop=GHCop, para=c(t)}), c(1,10)) \right)
\]
\[
\Theta_R \leftarrow \text{unroot}(function(t) \{ 
0.35 \text{ - tauCOP}(\text{cop=GHCop, para=c(t, 0.6, 0.9)}), c(1,30)) \right)
\]
\[
\Theta_S \leftarrow \text{unroot}(function(t) \{ 
0.35 \text{ - tauCOP}(\text{cop=GHCop, para=c(t, 0.9, 0.6)}), c(1,30)) \right)
\]

Because the Tau's are all similar, there is nothing to learn from the
L-correlation, so let us inspect the L-coskew:

\[
\text{coT3.1<}-\text{momco::comoms2(simCOP(n=8000, cop=GHCop, para=c(Theta1 ))))}$
\[
\text{coT3.2<}-\text{momco::comoms2(simCOP(n=8000, cop=GHCop, para=c(Theta2,.6,.9))})$
\[
\text{coT3.3<}-\text{momco::comoms2(simCOP(n=8000, cop=GHCop, para=c(Theta3,.9,.6))}$

Thus, the $L$-comoments (Asquith, 2011) using their sample values measure something fundamental about the bivariate association between the three copulas choosen. The $L$-coskews for the symmetrical case are about equal and are

\[
\tau^{GH}_{3[12]} \approx \tau^{GH}_{3[21]} \rightarrow (0.0533 + 0.0679)/2 = 0.0606,
\]

whereas the $L$-coskew for the curvature to the upper left are

\[
\tau^{GH}_{3[12]} = 0.1055 \text{ and } \tau^{GH}_{3[12]}= 0.0112.
\]
whereas the L-coskew for the curvature to the lower right are

\[ \gamma_{GH}^{(3,0.9,0.6)} = 0.0021 \text{ and } \gamma_{GH}^{(3,0.6,0.9)} = 0.1154. \]

Thus, the \( \pi_2 \) and \( \pi_3 \) parameters as chosen add about \( \left( (0.1154 + 0.1055) / 2 - 0.0606 \right) \rightarrow 0.1105 - 0.0606 = 0.05 \) L-coskew units to the bivariate distribution.

Author(s)

W.H. Asquith

References


See Also

\texttt{M.GLcop}, \texttt{HRcop}, \texttt{tEVcop}, \texttt{rhobevCOP}

Examples

\begin{verbatim}
Theta <- 2.2 # Let’s see if the numerical and analytical tail deps are the same.
del.lamU <- abs(taildepCOP(cop=GHcop, para=Theta)$lambdaU - (2-2^(1/Theta)))
as.logical(del.lamU < 1E-6) # TRUE
## Not run:
# The simulations match Joe (2014, p. 72) for Gumbel–Hougaard
nen <- 600; nsim <- 1000; set.seed(946) # see for reproducibility
SM <- sapply(1:nsim, function(i) { rs <- semicorCOP(cop=GHcop, para=1.35, n=n)
    c(rs$minus.semicor, rs$plus.semicor) })
RhoM <- round(mean(SM[1,]), digits=3)
RhoP <- round(mean(SM[2,]), digits=3)
SE.RhoM <- round(sd(SM[1,]), digits=3)
SE.RhoP <- round(sd(SM[2,]), digits=3)
SE.RhoMP <- round(sd(SM[2,] - SM[1,]), digits=3)
# Semi-correlations (sRho) and standard errors (SEs)
message("# sRho[\-]=", RhoM, " (SE[\-]=", SE.RhoM, ") Joe’s=0.132 (SE[-]=0.08)")
message("# sRho[+]=", RhoP, " (SE[+]=", SE.RhoP, ") Joe’s=0.415 (SE[+]0.07)")
message("# SE(sRho[-] - sRho[+])=", SE.RhoMP, ") Joe’s SE=0.10")
# sRho[-]=0.134 (SE[-]=0.076) Joe’s=0.132 (SE[-]=0.08)
\end{verbatim}
# sRho[+] 0.407 (SE[+] 0.074) Joe's 0.415 (SE[+] 0.07) # SE(sRho[-] - sRho[+]) 0.107 Joe's SE 0.10 # Joe (2014, p. 72) reports the values 0.132, 0.415, 0.08, 0.07, 0.10, respectively. ## End(Not run)## Not run:file <- "Lcomom_study_of_GHcopPLACKETTcop.txt"x <- data.frame(tau=NA, trho=NA, srho=NA, PLtheta=NA, PLT2=NA, PLT3=NA, PLT4=NA,GHtheta=NA, GHT2=NA, GHT3=NA, GHT4=NA)n <- 250 # Make a large number for very long CPU run but seems stablefor(tau in seq(0.08, by=0.005)){thetag <- GHcop(u=NULL, v=NULL, tau=tau)$theta rho <- simCOP(cop=GHcop, para=thetag)G <- simCOP(n=n, cop=GHcop, para=thetag, points=FALSE, ploton=FALSE)srho <- cor(GH$U, GH$V, method="spearman")thetapar <- PLACKETTpar(rho=trho)PL <- simCOP(n=n, cop=PLACKETTcop, para=thetapar, points=FALSE, ploton=FALSE)GHL <- lmcomoms:::lcomoms2(GH, ncom=4); PLL <- lmcomoms:::lcomoms2(PL, ncom=4)x <- data.frame(tau=tau, trho=trho, srho=srho,GHtheta=thetag, PLtheta=thetapar,GHT2=mean(c(GH$T[1,2], GH$T[2,1])), GHT3=mean(c(GH$T[1,2], GH$T[2,1])), GHT4=mean(c(GH$T[1,2], GH$T[2,1])), PLT2=mean(c(PL$T[1,2], PL$T[2,1])), PLT3=mean(c(PL$T[1,2], PL$T[2,1])), PLT4=mean(c(PL$T[1,2], PL$T[2,1])))write.table(x, file=file, row.names=FALSE, quote=FALSE)n <- read.table(file, header=TRUE, dcom=TRUE)plot(D$tau, D$GHT3, ylim=c(-0.08,0.08), type="n",xlab="KENDALL TAU", ylab="L-COSKREW OR NEGATED L-COKURTOSIS")points(D$tau, D$GHT3, col=2); points(D$tau, -D$GHT4, col=4, pch=2); points(D$tau, -D$PLT4, col=1, pch=2)LML <- lm(D$GHT3~I(D$tau^1)+I(D$tau^2)+I(D$tau^4)-1)LML <- lm(D$GHT4~I(D$tau^1)+I(D$tau^2)+I(D$tau^4)-1)LML <- LM$coe; LM4c <- LM$coeT <- seq(0.1, by=0.1); abline(0,0, lty=2, col=3)lines(Tau, 0 + LM3c[1]*T1 + LM3c[2]*T2 + LM3c[3]*T*4, col=4, lwd=3)lines(Tau, -(0 + LM4c[1]*T1 + LM4c[2]*T2 + LM4c[3]*T*4), col=2, lwd=3)## End(Not run)## Not run:# Let us compare the conditional simulation method of copBasic by numerics and by the# above analytical solution for the Gumbel-Hougaard copula to two methods implemented# by package gumbel, a presumed Archimedean technique by package acopula, and an# Archimedean technique by package copula. Setting seeds by each "method" below does# not appear diagnostic because of the differences in which the simulations are made.nsim <- 10000; kn <- "kendall" # The theoretical KENDALL TAU is (1.5-1)/1.5 = 1/3# Simulate by conditional simulation using numerical derivative and then inversion# A <- cor(copBasic::simCOP(nsim, cop=GHcop, para=1.5, graphics=FALSE), method=kn)[1,2]
U <- runif(nsims) # GHcop.derCOPinv() comes from earlier in this documentation.
V <- sapply(1:nsims, function(i) (GHcop.derCOPinv(U[i], runif(1), para=1.5))))
# Simulate by conditional simulation using exact analytical solution
B <- cor(U, y=V, method=kn); rm(U, V)
# Simulate by the "common frailty" technique
C <- cor(gumbel::rgumbel(nsims, 1.5, dim=2, method=1), method=kn)[1,2]
# Simulate by "K function" (Is the K function method, Archimedean?)
D <- cor(gumbel::rgumbel(nsims, 1.5, dim=2, method=2), method=kn)[1,2]
# Simulate by an Archimedean implementation (presumably)
E <- cor(acopula::rcopula(nsims, pars=1.5), method=kn)[1,2]
# Simulate by an Archimedean implementation
G <- cor(copula::rcopula(nsims, copula::gumbelCopula(1.5)), method=kn)[1,2]
K <- round(c(A, B, C, D, E, G), digits=5); rm(A, B, C, D, E, G, kn); tx <- "","message("Kendall's Tau: ", K[1], tx, K[2], tx, K[3], tx, K[4], tx, K[5], tx, K[6])
# Kendall's Tau: 0.32909, 0.32474, 0.33060, 0.32805, 0.32874, 0.33986 -- run 1
# Kendall's Tau: 0.33357, 0.32748, 0.33563, 0.32913, 0.32732, 0.32416 -- run 2
# Kendall's Tau: 0.34311, 0.33415, 0.33815, 0.33224, 0.32961, 0.33008 -- run 3
# Kendall's Tau: 0.32830, 0.33573, 0.32756, 0.33481, 0.33567, 0.33182 -- nsims=50000!
# All solutions are near 1/3 and it is unknown without further study which of the
# six methods would result in the least bias and (or) sampling variability.
## End(Not run)

giniCOP

The Gini Gamma of a Copula

Description

Compute the measure of association known as *Gini Gamma* $\gamma_C$ (Nelsen, 2006, pp. 180–182), which is defined as

$$\gamma_C = Q(C, M) + Q(C, W),$$

where $C(u, v)$ is the copula, $M(u, v)$ is the $M$ function, and $W(u, v)$ is the $W$ function. The function $Q(a, b)$ (concordCOP) is a concordance function (Nelsen, 2006, p. 158). Nelsen also reports that “Gini Gamma measures a concordance relation of “distance” between $C(u, v)$ and monotone dependence, as represented by the Fréchet–Hoeffding lower bound and Fréchet–Hoeffding upper bound copulas $[M(u, v), M$ and $W(u, v), W$ respectively]”

A simpler method of computation and the default for giniCOP is to compute $\gamma_C$ by

$$\gamma_C = 4 \left[ \int_I C(u, u) \, du + \int_I C(u, 1-u) \, du \right] - 2,$$

or in terms of the *primary diagonal* $\delta(t)$ and *secondary diagonal* $\delta^*(t)$ (see diagCOP) by

$$\gamma_C = 4 \left[ \int_I \delta(t) \, dt + \int_I \delta^*(t) \, dt \right] - 2.$$

The simpler method is more readily implemented because single integration is fast. Lastly, Nelsen et al. (2001, p. 281) show that $\gamma_C$ also is computable by

$$\gamma_C = 2 Q(C, A),$$
where $A$ is a convex combination (convex2COP, using $\alpha = 1/2$) of the copulas $M$ and $W$ or $A = (M + W)/2$. However, integral convergence errors seem to trigger occasionally, and the first definition by summation $Q(C, M) + Q(C, W)$ thus is used. The convex combination is demonstrated in the Examples section.

Usage

```r
giniCOP(cop=NULL, para=NULL, by.concordance=FALSE, as.sample=FALSE, ...)
```

Arguments

- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `by.concordance` Instead of using the single integrals (Nelsen, 2006, pp. 181–182) to compute $\gamma_C$, use the concordance function method implemented through concordCOP;
- `as.sample` A logical controlling whether an optional R data.frame in `para` is used to compute the $\hat{\gamma}_C$ (see Note); and
- `...` Additional arguments to pass, which are dispatched to the copula function `cop` and possibly concordCOP if `by.concordance=TRUE`, such as `delta` used by that function.

Value

The value for $\gamma_C$ is returned.

Note

Conceptually, the sample Gini Gamma ($\hat{\gamma}$; Genest et al., 2010) is

$$\hat{\gamma} = \frac{2}{n^2} \sum_{i=1}^{n} \left| \frac{(n + 1 - R_i) - S_i}{n^2 - 1} \right|,$$

where $R_i$ and $S_i$ are the respective ranks of $X$ and $Y$ and $n$ is sample size. The sampling variance of $\hat{\gamma}$ under assumption of independence between $X$ and $Y$ is

$$\text{var}(\hat{\gamma})_{n \text{ even}} = \frac{2(n^2 + 2)}{3(n - 1)n^2} \text{ and}$$

$$\text{var}(\hat{\gamma})_{n \text{ odd}} = \frac{2(n^2 + 3)}{3(n - 1)(n^2 - 1)}.$$

Genest et al. (2010) present additional equations for estimation of the distribution $\hat{\gamma}$ variance for conditions of dependence based on copulas.

Author(s)

W.H. Asquith
References


See Also

blomCOP, footCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP, joeskewCOP, uvlmoms

Examples

ginicop(cop= PSP) # = 0.3819757
# Not run:
ginicop(cop= PSP, by.concordance=TRUE) # Q(C,M) + Q(C,W) = 0.3820045
# use convex combination ---triggers integration warning but returns anyway
cxpara <- list(alpha=1/2, cop1=M, cop2=W) # parameters for convex2COP()
2*taucop(cop= PSP, cop2=convex2COP, para2=cxpara) # 2*Q(C,A) = 0.3819807
# where the later issued warnings on the integration
## End(Not run)

# Not run:
n <- 2000; UV <- simCOP(n=n, cop=N4212cop, para=9.3, graphics=FALSE)
ginicop(para=UV, as.sample=TRUE) # 0.9475900 (sample version)
ginicop(cop=N4212cop, para=9.3) # 0.9479528 (copula integration)
ginicop(cop=N4212cop, para=9.3, by.concordance=TRUE) # 0.9480267 (concordance function)
# where the later issued warnings on the integration
## End(Not run)

# Not run:
# The canonical example of theoretical and sample estimators of bivariate
# association for the package: Blomqvist Beta, Spearman Footrule, Gini Gamma,
# Hoeffding Phi, Kendall Tau, Spearman Rho, and Schweizer-Wolff Sigma
# and comparison to L-correlation via lmomco::lmomco2().
n <- 5000; set.seed(56)
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=1.45, para2=21.9,
alpha=0.41, beta=0.08)
D <- simCOP(n=n, cop=composite2COP, para=para, cex=0.5, col=rgb(0,0,0,0.2), pch=16)
blomCOP(cop=composite2COP, para=para) # 0.4037908 (theoretical)
blomCOP(para=D, as.sample=TRUE) # 0.4008889 (sample)
footCOP(cop=composite2COP, para=para) # 0.3721555 (theoretical)
footCOP(para=D, as.sample=TRUE) # 0.3703623 (sample)
ginicop(cop=composite2COP, para=para) # 0.4334687 (theoretical)
ginicop(para=D, as.sample=TRUE) # 0.4311698 (sample)
taucop(cop=composite2COP, para=para) # 0.3806909 (theoretical)
taucop(para=D, as.sample=TRUE) # 0.3788139 (sample)
rhocop(cop=composite2COP, para=para) # 0.5257662 (theoretical)
rhocop(para=D, as.sample=TRUE) # 0.5242380 (sample)
lmomco::lmomco2(D)$T2 # 1 # 0.5242388 (sample matrix)
The Galambos Extreme Value Copula (with Gamma Power Mixture [Joe/BB4] and Lower Extreme Value Limit)

Description

The Galambos copula (Joe, 2014, p. 174) is

\[ C_{\Theta}(u, v) = \text{GL}(u, v) = uv \exp \left[ (x - \Theta + y - \Theta)^{-1/\Theta} \right], \]

where \( \Theta \in [0, \infty) \), \( x = -\log u \), and \( y = -\log v \). As \( \Theta \to 0^+ \), the copula limits to independence \((\Pi; \text{P})\) and as \( \Theta \to \infty \), the copula limits to perfect association \((\text{M}; \text{M})\). The copula here is a bivariate extreme value copula \((\text{BEV})\), and parameter estimation requires for \( \Theta \) numerical methods.

There are two other genetically related forms. Joe (2014, p. 197) describes an extension of the Galambos copula as a Galambos gamma power mixture \((\text{GLPM})\), which is Joe’s \( \text{BB4 copula} \), with the following form

\[ C_{\Theta, \delta}(u, v) = \text{GLPM}(u, v) = \left( x + y - 1 - \left[ (x - 1)^{-\delta} + (y - 1)^{-\delta} \right]^{-1/\delta} \right)^{-1/\Theta}, \]

where \( x = u^{-\Theta}, y = v^{-\Theta}, \) and \( \Theta \geq 0, \delta \geq 0 \). (Joe shows \( \delta > 0 \), but zero itself seems to work without numerical problems in practical application.) As \( \delta \to 0^+ \), the “MTCJ family” results (implemented internally with \( \Theta \) as the incoming parameter). As \( \Theta \to 0^+ \) the Galambos above results with \( \delta \) as the incoming parameter.

This second copula in turn has a lower extreme value limit form that leads to a min-stable bivariate exponential having Pickand’s dependence function of

\[ A(x, y; \Theta, \delta) = x + y - \left[ x^{-\Theta} + y^{-\Theta} - (x^{\Theta \delta} + y^{\Theta \delta})^{-1/\delta} \right]^{-1/\Theta}, \]

where this third copula is

\[ C_{\Theta, \delta}^{\text{LEV}}(u, v) = \text{GLEV}(u, v) = \exp \left[ -A(-\log u, -\log v; \Theta, \delta) \right], \]

for \( \Theta \geq 0, \delta \geq 0 \) and is known as the two-parameter Galambos. (Joe shows \( \delta > 0 \), but zero itself seems to work without numerical problems in practical application.)
Usage

\[
\begin{align*}
\text{GLcop} & (u, v, \text{para=\text{NULL}}, \ldots) \\
\text{GLEVCop} & (u, v, \text{para=\text{NULL}}, \ldots) \\
\text{GLPMcop} & (u, v, \text{para=\text{NULL}}, \ldots) \# \text{inserts third parameter automatically} \\
\text{J0copBB4} & (u, v, \text{para=\text{NULL}}, \ldots) \# \text{inserts third parameter automatically}
\end{align*}
\]

Arguments

- **u**: Nonexceedance probability \(u\) in the \(X\) direction;
- **v**: Nonexceedance probability \(v\) in the \(Y\) direction;
- **para**: To trigger \(\text{GL}(u,v)\), a vector (single element) of \(\Theta\), to trigger \(\text{GLEV}(u,v)\), a two element vector of \(\Theta\) and \(\delta\) and alias is \(\text{GLEVCop}\), and to trigger \(\text{GLPM}(u,v)\), a three element vector of \(\Theta\), \(\delta\), and any number (the presence of the third entry alone is the triggering mechanism) though aliases \(\text{GLPM}\) or \(\text{J0copBB4}\) will insert the third parameter automatically for convenience; and
- **...**: Additional arguments to pass.

Value

Value(s) for the copula are returned.

Note

Joe (2014, p. 198) shows \(\text{GLEV}(u,v;\Theta,\delta)\) as a two-parameter Galambos, but its use within the text seemingly is not otherwise known. However, testing of the implementation here seems to show that this copula is really not broader in form than \(\text{GL}(u,v;\alpha)\). The \(\alpha\) can always(?) be chosen to mimic the \(\{\Theta,\delta\}\). We can test this assertion from a semi-independent direction. First, define an alternative style of one-parameter Galambos:

```r
GL1cop <- function(u,v, para=NULL, ...) {
 GL1pA <- function(x,y,t) { # Pickands dependence func form 1p Galambos
 x + y - (x^t + y^t)^(-1/t)
 }
 if(length(u) == 1) { u <- rep(u, length(v)) } else
 if(length(v) == 1) { v <- rep(v, length(u)) }
 exp(-GL1pA(-log(u), -log(v), para[1]))
}
```

Second, redefine the two-parameter Galambos:

```r
GL2cop <- function(u,v, para=NULL, ...) {
 GL2pA <- function(x,y,t,d) { # Pickends dependence func form 2p Galambos
 x + y - (x^t + y^t - (x^t+d+y^t)\cdot(t+d))\cdot(-1/t)
 }
 if(length(u) == 1) { u <- rep(u, length(v)) } else
 if(length(v) == 1) { v <- rep(v, length(u)) }
 exp(-GL2pA(-log(u), -log(v), para[1], para[2]))
}
```
Next, we can combine the Pickend’s dependence functions into an objective function. This objective function will permit the computation of the $\alpha$ given a pair $\{\Theta, \delta\}$.

```r
objfunc <- function(a, t=NA, d=NA, x=0.7, y=0.7) {
 lhs <- (x^t + y^t - (x^(t*d) + y^(t*d))*(-1/d))^(-1/t)
 rhs <- (x^-a + y^-a)^(-1/a); return(rhs - lhs) # to be unroot'ed
}
```

We can now make a demonstration:

```r
t <- 0.6; d <- 4; lohi <- c(0,100)
set.seed(3); UV <- simCOP(3000, cop=GL2cop, para=c(t,d), pch=16, col=3, cex=0.5)
a <- unroot(objfunc, interval=lohi, t=t, d=d)$root
set.seed(3); UV <- simCOP(3000, cop=GL1cop, para=a, lwd=0.5, ploton=FALSE)
```

The graphic so produced shows almost perfect overlap in the simulated values. To date, the author has not really found that the two parameters can be chosen such that the one-parameter version can not attain. Extensive numerical experiments using simulated parameter combinations through the use of various copula metrics (tail dependencies, L-comoments, etc) have not found material differences. **Has the author missed something?**

**Author(s)**

W.H. Asquith

**References**


**See Also**

`M, P, GHcop, HRcop, tEVcop`

**Examples**

```r
Theta = pi for GLcop and recovery through Blomqvist Beta (Joe, 2014, p. 175)
log(2)/(log(log(2))/log(1+blomCOP(cop=GLcop, para=pi)))
```

```r
Theta = 2 and delta = 3 for the GLPM form and Blomqvist Beta (Joe, 2014, p. 197)
t <- 2; Btheo <- blomCOP(GLPMcop, para=c(t,3))
Bform <- (2^(t+1) - 1 - taildepCOP(GLPMcop, para=c(t,3))$lambdaU*(2^t -1))^-1/t
print(c(Btheo, 4*Bform-1)) # [1] 0.8611903 0.8611900
```

```
```
Description

Compute a grid of copula values. This function has the primary intention of supporting 3D render-erings or 2D images of the copulatic surface. Users should be aware of the convention of the placement of the plotting origin and the various plotting mechanisms available to them in R. By convention copulatic surfaces start in lower left corner for \( u = v = 0 \), but matrix conventions (or at least how some functions plot matrices) start with the origin in the upper left.

Usage

```r
gridCOP(cop=NULL, para=NULL, delta=0.05, transpose=TRUE, ...)
```

Arguments

- `cop`: A copula function;
- `para`: Vector of parameters or other data structure, if needed, to pass to the copula;
- `delta`: The \( \Delta u = \Delta v \) of the grid edges;
- `transpose`: A logical to transpose the returned grid. This is needed if functions such as `image()` in R are to be used for visualization (see last example in Examples with `composite2COP`); and
- `...`: Additional arguments to pass.

Value

The values for \( C(u,v) \) are returned as a grid as an R matrix.

Author(s)

W.H. Asquith

See Also

`empircopdf`

Examples

```r
Not run:
the.grid <- gridCOP(cop=PSP)
the.grid[1,1] <- 0 # replace the NaN
image(the.grid) # ramps to the upper right
End(Not run)

Not run:
See this composite copula also used in densityCOPplot() documentation.
```
The Hoeffding’s Phi of a Copula or Lp Distances (Independence, Radial Asymmetry, or Reflection Symmetry Forms)

Description

Compute the measure of association known as Hoeffding’s Phi $\Phi_C$ of a copula from independence $(uv = \Pi; p)$ according to Cherubini et al. (2004, p. 164) by

$$\Phi_C = 3 \sqrt{10 \int_{T^2} (C(u,v) - uv)^2 \, du \, dv},$$

and Nelsen (2006, p. 210) shows this as

$$\Phi_C = \left(90 \int_{T^2} |C(u,v) - uv|^2 \, du \, dv\right)^{1/2},$$

for which $\Phi_C^2$ (the square of the quantity) is known as the dependence index. Gaißer et al. (2010, eq. 1) have $\Phi_C^2$ as Hoeffding’s Phi-Square, and their definition, when square-rooted, matches Nelsen’s listing.

A generalization (Nelsen, 2006) to $L_p$ distances from independence $(uv = \Pi; p)$ through the $\text{LpCOP}$ function is

$$L_p \equiv \Phi_C(p) = \left(k(p) \int_{T^2} |C(u,v) - uv|^p \, du \, dv\right)^{1/p},$$

for a $1 \leq p \leq \infty$ and where $k(p)$ is a normalization constant such that $\Phi_C(p) = 1$ when the copula $C$ is $M$ (see M) or $W$ (see W). The $k(p)$ (bivariate definition only) for other powers is given (Nelsen, 2006, exer. 5.44, p. 213) in terms of the complete gamma function $\Gamma(t)$ by

$$k(p) = \frac{\Gamma(2p + 3)}{2[\Gamma(p + 1)]^2},$$

which is implemented by the $\text{hoefCOP}$ function. It is important to realize that the $L_p$ distances are all symmetric nonparametric measures of dependence (Nelsen, 2006, p. 210). These are symmetric because distance from independence is used as evident by “$uv$” in the above definitions.

Reflection/Radial and Permutation Asymmetry—Asymmetric forms similar to the above distances exist. Joe (2014, p. 65) shows two measures of bivariate reflection asymmetry or radial asymmetry (term favored in $\text{copBasic}$) as the distance between $C(u, v)$ and the survival copula $\hat{C}(u, v)$ ($\text{surCOP}$) measured by

$$L^{(\text{radasym})}_\infty = \sup_{0 \leq u, v \leq 1} |C(u, v) - \hat{C}(u, v)|,$$
or its $L_p^{(\text{radsym})}$ counterpart

$$L_p^{(\text{radsym})} = \left[ \int \int_{I^2} |C(u, v) - \hat{C}(u, v)|^p \, du \, dv \right]^{1/p} \quad \text{with } p \geq 1,$$

where $\hat{C}(u, v) = u + v - 1 + C(1 - u, 1 - v)$ and again $p : 1 \leq p \leq \infty$. Joe (2014) does not seem to discuss and normalization constants for these two radial asymmetry distances.

Joe (2014, p. 66) offers analogous measures of bivariate permutation asymmetry ($C(u, v) \neq C(v, u)$) defined as

$$L_{\infty}^{(\text{permsym})} = \sup_{0 \leq u, v \leq 1} |C(u, v) - \hat{C}(v, u)|,$$

or its $L_p^{(\text{permsym})}$ counterpart

$$L_p^{(\text{permsym})} = \left[ \int \int_{I^2} |C(u, v) - \hat{C}(v, u)|^p \, du \, dv \right]^{1/p} \quad \text{with } p \geq 1,$$

where $p : 1 \leq p \leq \infty$. Again, Joe (2014) does not seem to discuss and normalization constants for these two permutation symmetry distances. Joe (2014, p. 65) states that the “simplest one-parameter bivariate copula families [and] most of the commonly used two-parameter bivariate copula families are permutation symmetric.”

The asymmetrical $L_{\infty}$ and $L_p$ measures identified by Joe (2014, p. 66) are nonnegative with an upper bounds that depends on $p$. The bound dependence on $p$ is caused by the lack of normalization constant $k(p)$. In an earlier paragraph, Joe (2014) indicates an upper bounds of 1/3 for both (likely?) concerning $L_{\infty}^{(\text{radsym})}$ and $L_{\infty}^{(\text{permsym})}$. The numerical integrations for $L_p^{(\text{radsym})}$ and $L_p^{(\text{permsym})}$ can readily return zeros and often inspection of the formula for the $C(u, v)$ itself would be sufficient to judge whether symmetry exists and hence the distances are uniquely zero.

Joe (2014, p. 66) completes the asymmetry discussion with three definitions of skewness of combinations of random variables $U$ and $V$: Two definitions are in $uvlmoms$ (for $U + V - 1$ and $U - V$) and two are in $joeskewcop$ (for $V - U$ and $U + V - 1$) where only the later function $joeskewcop$ makes direct computations directly using formula for the copula.

Usage

```r
hoefCOP(cop=NULL, para=NULL, p=2, as.sample=FALSE, sample.as.prob=TRUE, brute=FALSE, delta=0.002, ...)
```

LpCOP(cop=NULL, para=NULL, p=2, brute=FALSE, delta=0.002, ...)

LpCOPradsym(cop=NULL, para=NULL, p=2, brute=FALSE, delta=0.002, ...)

LpCOPperm_sym(cop=NULL, para=NULL, p=2, brute=FALSE, delta=0.002, ...)

Arguments

- **cop**
  - A copula function;
- **para**
  - Vector of parameters or other data structure, if needed, to pass to the copula;
- **p**
  - The value for $p$ as described above with a default to 2 to match the discussion of Nelsen (2006) and Hoeffding’s $\Phi$ of Cherubini et al. (2004). Do not confuse $p$ with $d$ described in **Note**;
as.sample

A logical controlling whether an optional \( \text{data.frame} \) in \( \text{para} \) is used to compute the \( \hat{\Phi}_C \) (see \textbf{Note}). If set to -1, then the message concerning CPU effort will be suppressed;

\text{sample.as.prob}

When \text{as.sample} triggered, what are the units incoming in \text{para}? If they are probabilities, the default is applicable. If they are not, then the columns are re-ranked and divided simply by \( 1/n \)—more sophisticated empirical copula probabilities are not used (\text{EMPIRCop});

\text{brute}

Should brute force be used instead of two nested \text{integrate()} functions in \text{R} to perform the double integration;

\text{delta}

The \( du \) and \( dv \) for the brute force (\text{brute=}\text{TRUE}) integration; and

... Additional arguments to pass.

\textbf{Value}

The value for \( \hat{\Phi}_C(p) \) is returned.

\textbf{Note}

Concerning the distance from independence, when \( p = 1 \), then \textit{Spearman’s Rho} (\text{rhoCOP}) of a copula is computed where it is seen in that documentation that the \( k_p(1) = 12 \). The respective values of \( k_p(p) \) for select integers \( p \) are

\[ p \mapsto [1, 2, 3, 4, 5] \equiv k(p) \mapsto \{12, 90, 560, 3150, 16600\}, \]

and these values are hardwired into \text{hoefCOP} and \text{LpCOP}. The integers for \( k_p \) ensures that the equality in the second line of the examples is \textsc{true}, but the \( p \) can be a noninteger as well. \text{Nelsen} (2006, p. 211) reports that when \( p = \infty \) that \( L_\infty \equiv \Phi_C(\infty) = \Lambda_C = 4 \sup_{u,v \in \mathcal{I}} |C(u,v) - uv| \).

A sample \( \hat{\Phi}_C \) (square root of nonparametric \textit{Hoeffding’s Phi-Square}) based on nonparametric estimation generalized for \( d \) dimensions (\( d = 2 \) for bivariate) is presented by \text{Gaißer \textit{et al.}} (2010, eq. 10) for estimated probabilities \( \hat{U}_{ij} \) for the \( i \text{th} \) dimension and \( j \text{th} \) row (observation) for sample of size \( n \). Those authors suggest that the \( \hat{U}_{ij} \) be estimated from the empirical copula:

\[ \hat{\Phi}_C = \sqrt{h(d)[A + B]}, \]

where

\[ A = \left(\frac{1}{n}\right)^2 \sum_{j=1}^{n} \sum_{k=1}^{n} \prod_{i=1}^{d} [1 - \max(\hat{U}_{ij}, \hat{U}_{ik})], \]

\[ B = \left(\frac{1}{3}\right)^d - \left(\frac{2}{n}\right)^d \left(\frac{1}{2}\right)^d \sum_{j=1}^{n} \prod_{i=1}^{d} (1 - \hat{U}_{ij}^2), \]

and the normalization constant is a function of dimension and is

\[ h(d)^{-1} = \frac{2}{(d + 1)(d + 2)} - \left(\frac{1}{2}\right)^d \frac{d! \prod_{i=0}^{d} (i + (1/2))}{\prod_{i=0}^{d} (i + (1/2))} + \left(\frac{1}{3}\right)^d. \]
The value $h(2) = 90$, which is the second $k(p)$ shown above and recall the $d$ dimension implied for $k(p)$ is bivariate ($d = 2$). The internals of hoefCOP for $\Phi_C$ are generalized to arbitrary dimension although the copBasic has a bivariate focus. An application of $\Phi_C$ is shown in the extensive theoretical and sample estimator comparison for a composited copula in the Examples section of giniCOP. Two examples that shown a modest difference in the sample estimation when standard normal variates are returned from simCOP and hence they require re-estimation via a simple empirical copula:

```r
set.seed(1); UV <- simCOP(n=1000, cop=PSP)
hoefCOP(cop=PSP) # 0.4547656 (theo.)
hoefCOP(para=UV, as.sample=TRUE) # 0.4892757
set.seed(1); UV <- simCOP(n=1000, cop=PSP, snv=TRUE) # std normal variates
hoefCOP(para=UV, as.sample=TRUE, sample.as.prob=FALSE) # 0.4270324
```

Author(s)

W.H. Asquith

References


See Also

blomCOP, footCOP, giniCOP, rhoCOP, tauCOP, wolfCOP, joeskewCOP, uv1moms

Examples

```r
Not run:
Example (ii) Gaiss et al. (2010, p. 2574)
Theta <- 0.66 # Phi^2 = Theta^2 --> Phi = Theta as shown
hoefCOP(cop=convex2COP, para=c(alpha=Theta, cop1=M, cop2=F)) # 0.6599886

rhoCOP(cop=PSP) == hoefCOP(cop=PSP, p=1) # TRUE
LpCOP(cop=PLACKETTcop, para=1.6, p=2.6) # 0.1445137 (Fractional p)
End(Not run)

Not run:
set.seed(938) # Phi(1.6; Plackett) = 0.1184489; L_1 = 0.1168737
UV <- simCOP(cop=PLACKETTcop, para=1.6, n=2000, ploton=FALSE, points=FALSE)
hoefCOP(cop=PLACKETTcop, para=1.6, p=200) # Large p near internal limits
L_1 <- 4*max(abs(PLACKETTcop(UVU, UVV, para=1.6) - UV$U*UV$V)) # p is infty # and finite n and arguably a sample-like statistic here, now on intuition try # a more sample-like means
U <- runif(10000); V <- runif(10000)
```
Description

The Hüsler–Reiss copula (Joe, 2014, p. 176) is

\[
C_\Theta(u, v) = HR(u, v) = \exp\left[-x\Phi(X) - y\Phi(Y)\right],
\]

where \( \Theta \geq 0, x = -\log(u), y = -\log(v), \Phi(.) \) is the cumulative distribution function of the standard normal distribution, \( X \) and \( Y \) are defined as:

\[
X = \frac{1}{\Theta} + \frac{\Theta}{2} \log[x/y] \quad \text{and} \quad Y = \frac{1}{\Theta} + \frac{\Theta}{2} \log[y/x].
\]

As \( \Theta \to 0^+ \), the copula limits to independence (\( \Pi; P \)). The copula here is a bivariate extreme value copula (BEV), and the parameter \( \Theta \) requires numerical methods.

Usage

\[
HRcop(u, v, para=NULL, \ldots)
\]

Arguments

- **u**: Nonexceedance probability \( u \) in the \( X \) direction;
- **v**: Nonexceedance probability \( v \) in the \( Y \) direction;
- **para**: A vector (single element) of parameters—the \( \Theta \) parameter of the copula; and
- **...**: Additional arguments to pass.
Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References


See Also

P, GHcop, GLcop, tEVcop

Examples

# Parameter Theta = pi recovery through Blomqvist's Beta (Joe, 2014, p. 176)
qnorm(1 - log(1+blomCOP(cop=HRcop, para=pi))/(2*log(2)))^(-1)

---

**isCOP.LTD**

*Is a Copula Left-Tail Decreasing*

Description

Numerically set a logical whether a copula is left-tail decreasing (LTD) as described by Nelsen (2006, pp. 192–193) and Salvadori et al. (2007, p. 222). A copula \( C(u, v) \) is left-tail decreasing for LTD(\( V|U \)) if and only if for any \( v \in [0, 1] \),

\[
\frac{\delta C(u, v)}{\delta u} \leq \frac{C(u, v)}{u}
\]

for almost all \( u \in [0, 1] \). Similarly, a copula \( C(u, v) \) is left-tail decreasing for LTD(\( U|V \)) if and only if for any \( u \in [0, 1] \),

\[
\frac{\delta C(u, v)}{\delta v} \leq \frac{C(u, v)}{v}
\]

for almost all \( v \in [0, 1] \) where the later definition is controlled by the \( \text{wrtV}=\text{TRUE} \) argument.

The LTD concept is associated with the concept of tail monotonicity (Nelsen, 2006, p. 191). Specifically, but reference to Nelsen (2006) definitions and geometric interpretations is recommended, LTD(\( V|U \)) (or LTD(\( V|U \))) means that the probability \( P[Y \leq y|X \leq x] \) (or \( P[X \leq x|Y \leq y] \)) is a nonincreasing function of \( x \) (or \( y \)) for all \( y \) (or \( x \)).

A positive LTD of either LTD(\( V|U \)) or LTD(\( U|V \)) implies positively quadrant dependency (PQD, **iscOP.PQD**) but the condition of PQD does not imply LTD. Finally, the accuracy of the numerical assessment of the returned logical by **isCOP.LTD** is dependent on the the “smallness” of the delta argument passed into the function.
Usage

iscop.LTD(cop=NULL, para=NULL, wrtV=FALSE, delta=0.005, ...)

Arguments

cop A copula function;

para Vector of parameters, if needed, to pass to the copula;

wrtV A logical to toggle between with respect to v or u (default);

delta The increment of \( \{u, v\} \mapsto [0 + \Delta \delta, 1 - \Delta \delta, \Delta \delta] \) set by wrtV; and

... Additional arguments to pass to the copula or derivative of a copula function.

Value

A logical TRUE or FALSE is returned.

Author(s)

W.H. Asquith

References


See Also

iscop.RTI, iscop.PQD

Examples

```r
Not run:
iscop.LTD(cop=P, delta=0.01) # independence should be FALSE
Positive association
iscop.LTD(cop=PSP) # TRUE

Negative association Plackett
iscop.LTD(cop=PLACKETTcop, para=0.15) # FALSE
Positive association Plackett
iscop.LTD(cop=PLACKETTcop, para=15) # TRUE

Negative association Plackett
iscop.LTD(cop=PLACKETTcop, wrtV=TRUE, para=0.15) # FALSE
Positive association Plackett
iscop.LTD(cop=PLACKETTcop, wrtV=TRUE, para=15) # TRUE
End(Not run)
```
**isCOP.permsym**

*Is a Copula Permutation Symmetric*

**Description**

Numerically set a logical whether a copula is *symmetric* (Nelsen, 2006, p. 38), or has *exchangable* variables, or is *permutation symmetric* (Joe, 2014, p. 66). A copula \( C(u,v) \) is permutation symmetric if and only if for any \( \{u,v\} \in [0,1] \) the following holds

\[
C(u,v) = C(v,u).
\]

The computation is (can be) CPU intensive.

**Usage**

isCOP.permsym(cop=NULL, para=NULL, delta=0.005, tol=1e-4, ...)

**Arguments**

- **cop**  A copula function;
- **para**  Vector of parameters, if needed, to pass to the copula;
- **delta**  The increment of \( \{u,v\} \mapsto [0 + \Delta \delta, 1 - \Delta \delta, \Delta \delta] \);
- **tol**  A tolerance on the check for symmetry, default 1 part in 10,000, which is the test for the \( \equiv 0 \) (zero equivalence, see source code); and
- **...**  Additional arguments to pass to the copula.

**Value**

A logical `TRUE` or `FALSE` is returned.

**Author(s)**

W.H. Asquith

**References**


**See Also**

isCOP.radsym

**Examples**

```r
Not run:
isCOP.permsym(cop=GHcop, para=1.3) # TRUE
End(Not run)
```
The Positively Quadrant Dependency State of a Copula

Description

Numerically determine the global property of the positively quadrant dependency (PQD) characteristic of a copula as described by Nelsen (2006, p. 188). The random variables $X$ and $Y$ are PQD if for all $(x, y)$ in $\mathbb{R}^2$ when $H(x, y) \geq F(x)G(x)$ for all $(x, y)$ in $\mathbb{R}^2$ and thus by the copula $C(u, v) \geq uv$ for all $(u, v)$ in $I^2$. Alternatively, this means that $C(u, v) \geq \Pi$, and thus it can be said that it is globally “greater” than independence ($uv = \Pi$).

Nelsen (2006) shows that a copula is PQD when

$$0 \leq \beta_C, 0 \leq \gamma_C, \text{ and } 0 \leq \rho_C \leq 3\tau_C,$$

where $\beta_C$, $\gamma_C$, $\rho_C$, and $\tau_C$ are various copula measures of association or concordance that are respectively described in `blomCOP`, `giniCOP`, `rhoCOP`, and `tauCOP`. The concept of negatively quadrant dependency (NQD) is the reverse: $C(u, v) \leq \Pi$ for all $(u, v)$ in $I^2$; so NQD is globally “smaller” than independence.

Conceptually, PQD is related to the probability that two random variables are simultaneously small (or simultaneously large) is at least as great as it would be if they were independent. The graph of a PQD copula lies on or above the copulatic surface of the independence copula $\Pi$, and conversely a NQD copula lies on or below $\Pi$.

Albeit a “global” property of a copula, there can be “local” variations in the PQD/NQD state. Points in $I^2$ where $C(u, v) - \Pi \geq 0$ are locally PQD, whereas points in $I^2$ where $C(u, v) - \Pi \leq 0$ and locally NQD. Lastly, readers are directed to the last examples in `wolfCOP` because as those examples involve the copulatic difference from independence $C(u, v) - \Pi = C(u, v) - \Pi$ with 3D renderings.

Usage

```r
isCOP.PQD(cop=NULL, para=NULL, uv=NULL, empirical=FALSE, verbose=TRUE, ...)
```

Arguments

- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `uv` An optional R data.frame of $U$ and $V$ nonexceedance probabilities $u$ and $v$ for the random variables $X$ and $Y$. This argument triggers different value return behavior (see `Value`);
- `empirical` A logical that will use sample versions for Gini’s Gamma, Spearman’s Rho, and Kendall’s Tau. This feature is only applicable if the copula is empirical and therefore the para argument is the data.frame of $u$ and $v$, which will be passed along to sample version functions instead of copula (see `Note`);
- `verbose` A logical that will report the four concordance measures; and
- `...` Additional arguments to pass, which are then passed to subordinate functions.


Value

If uv=NULL then a logical for the global property of PQD is returned but if argument uv is a data.frame, then an R list is returned, and that list holds the global condition in global.PQD and local condition assessments in local.PQD and local.NQD.

Note

The function isCOP.PQD will try brute force computations if subordinate calls to one or more functions fails. The user can use ... to set the delta argument for giniCOP, rhoCOP, and (or) tauCOP. This function is not guaranteed to work using a bivariate empirical copula such as the following operation: copPQD(cop=EMPIRcop, para=the.data). An evidently open problem for copBasic is how to support PQD assessment (either globally or locally) for empirical copulas. The τC for the bivariate empirical copula example brute=TRUE|FALSE to unity and γC and ρC reach maximum number of subdivisions on the numerical integration and thus fail. If an empirical bivariate copula is “Tau’d” to itself, is τC ≡ 1 guaranteed? The τC computation relies on numerical partial derivatives of the copula, whereas the γC and ρC use the copula itself. It seems in the end that use of sample versions of γC, ρC, and τC would be appropriate and leave the βC as either copula or direct sample computation (see Examples).

SPECIAL DEMONSTRATION 1—Given the following,

```r
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=c(14.5), para2=c(1.45),
 alpha=0.51, beta=0.15, kappa=0.45, gamma=0.78)
D <- simCOP(n=500, cop=composite3COP, para=para, cex=0.5, col=1, pch=16)
```

the two different call types to isCOP.PQD for an empirical copula are illustrative:

```r
PQD.list <- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE)
```

and

```r
PQD.list <- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE, uv=D)
points(D, col=PQD.list$local.PQD+2, lwd=2) # red (if present) is local NQD
```

which in the former only returns the global PQD and the later returns an R list with global (global.PQD), local (local.PQD as well as local.NQD), and the four statistics (beta βC, gamma γC, rho ρC, tau τC) used to determine global PQD.

SPECIAL DEMONSTRATION 1—Lastly, the ctype="bernstein" argument to the empirical copula can be used. Repeated iterations of the following will show that local quadrant dependency can appear slightly different when the bernstein argument is present. The simulation sample size is reduced considerably for this second example because of the CPU effort triggered by the Bernstein extension (see EMPIRcop) having been turned on.

```r
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=14.5, para2=1.45,
 alpha=0.51, beta=0.15, kappa=0.45, gamma=0.78)
D <- simCOP(n=500, cop=composite3COP, para=para, cex=0.5, col=1, pch=16)
PQD.A <- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE, uv=D)
pQD.A$local.PQD+2, lwd=2) # red (if present) is local NQD
```

```r
PQD.B <- isCOP.PQD(cop=EMPIRcop, para=D, empirical=TRUE, uv=D, ctype="bernstein")
pQD.B$local.PQD+2, lwd=1, pch=3, cex=1.5)
```
isCOP.radsym

Author(s)
W.H. Asquith

References

See Also
blomCOP, giniCOP, rhoCOP, tauCOP, isCOP.LTD, isCOP.RTI

Examples
```r
Not run:
isCOP.PQD(cop=PSP) # TRUE
End(Not run)

Not run:
Example concerning Empirical Bivariate Copula and sample versions for comparison.
set.seed(10); n <- 1000
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, para1=0.145, para2=1.45, alpha=0.81, beta=0.8)
D <- simCOP(n=n, cop=composite2COP, para=para, cex=0.5, col=rgb(0,0,0.2), pch=16)
#tauCOP(cop=EMPIRcop, para=D) # ??? but == 1
cor(DU, DV, method="kendall") # -0.3224705
blomCOP(cop=EMPIRcop, para=D) # -0.332
giniCOP(cop=EMPIRcop, para=D) # -0.3692037
GINI <- sum(abs(rank(D$U)+rank(D$V)-n-1)) - sum(abs(rank(D$U)-rank(D$V)))
print(GINI/as.integer(n^2/2)) # -0.369996
rhoCOP(cop=EMPIRcop, para=D) # ??? but fails
cor(DU, DV, method="spearman") # -0.456694
lmomco::lcomoms2(D)$T2 # 1.0000000 -0.4568357
-0.4567859 1.0000000
End(Not run)
```

isCOP.radsym  Is a Copula Radially Symmetric

Description
Numerically set a logical whether a copula is radially symmetric (Nelsen, 2006, p. 37) [reflection symmetric, Joe (2014, p. 64)]. A copula \( C(u, v) \) is radially symmetric if and only if for any \( \{u, v\} \in [0, 1] \) either of the following hold

\[
C(u, v) = u + v - 1 + C(1 - u, 1 - v)
\]

or

\[
u + v - 1 + C(1 - u, 1 - v) - C(u, v) = 0.
\]

Thus if the equality of the copula \( C(u, v) = \hat{C}(u, v) \), then radial symmetry exists: \( \text{COP} = \text{surCOP} \) or \( C(u, v) = \hat{C}(1 - u, 1 - v) \). The computation is (can be) CPU intensive.
Usage

`isCOP.radSym(cop=NULL, para=NULL, delta=0.005, tol=1e-4, ...)`

Arguments

cop A copula function;
para Vector of parameters, if needed, to pass to the copula;
delta The increments of \{u, v\} ↦ [0 + Δδ, 1 − Δδ, Δδ];
tol A tolerance on the check for symmetry, default 1 part in 10,000, which is the
test for the \equiv 0 (zero equivalence, see source code); and
... Additional arguments to pass to the copula or derivative of a copula function.

Value

A logical TRUE or FALSE is returned.

Note

An open research question possibly exists: *Is a radially symmetric copula characterized by the L-comoments for orders \( r \geq 3 \) as having values of zero?* The author asks this question partly out of intuition stemming from numerical experiments (some not show here) suggesting this condition, and review of copula literature does not seem to directly address this question. Let us consider the two symmetrical copulas: the parameterless \( \text{PSP}(u, v) \) (see \texttt{psp}) and the Plackett (see \texttt{PLACKETTcop}) with the \( \rho_C = 4.709 \) (see \texttt{rhoCOP}). The two copulas have different radial symmetries as shown below.

```r
plackpar <- PLACKETTpar(rho=rhoCOP(cop=PSp)) # Spearman's Rho = 0.4784176
isCOP.radSym(cop=PSp) # FALSE
isCOP.radSym(cop=PLACKETTcop, para=plackpar) # TRUE
```

Now, let us compute the L-comoments from the \texttt{lmomco} \texttt{R} package for \( n = 10,000 \) simulations from each copula. The L-correlations are each about 0.48, which agree with the given \( \rho_C \).

```r
set.seed(639)
UVa <- simCOP(n=10000, cop=PSp, para=NA, graphics=FALSE)
set.seed(639)
UVb <- simCOP(n=10000, cop=PLACKETTcop, para=plackpar, graphics=FALSE)
Lmomco::ILcomoms2(UVa, nmom=4)$T3[2,1] # Only show L-coskew of V wrt U.
Lmomco::ILcomoms2(UVb, nmom=4)$T3[2,1] # Only show L-coskew of V wrt U.
```

The L-coskew for the \texttt{PSP} is about \(-0.13\) and that for the Plackett copula is about zero \(< 0.003\). L-cokurtosis provides a similar result if 'T3' is changed to 'T4'. The \texttt{PSP} L-cokurtosis is about 0.04, whereas the Plackett L-cokurtosis is about < 0.004.

Author(s)

W.H. Asquith
References


See Also

iscOP.permSYM

Examples

# Radially symmetry is computationally intensive and relies on a gridded [0,1]x[0,1] space and laborious check on equality. Thus these examples are commented out for R's --timings check. Note that the proof of radial symmetry absent of algebraic manipulation or verification is difficult and subject to the fineness of the grid to find a nonequality from which to immediately conclude FALSE.
## Not run:
isCOP.radsym(cop=P) # TRUE

para <- list(cop1=PLACKETTcop, cop2=M, para1=c(.3), para2=NA, alpha=0.8, beta=0.5)
isCOP.radsym(composite2COP, para=para) # FALSE

## Not run:

gh <- simCOP(n=34, cop=GHCop, para=theta, ploton=FALSE, points=FALSE) * 150
# Pretend gh is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls
fakeU <- lmomco::pp(gh[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(gh[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics
	s.set.seed(120); theta <- 2
gh <- simCOP(n=34, cop=GHCop, para=theta, ploton=FALSE, points=FALSE) * 150
# Pretend psp is real data, the * 150 is to clearly get into an arbitrary unit system.

# The sort=FALSE is critical in the following two calls
fakeU <- lmomco::pp(gh[,1], sort=FALSE) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(gh[,2], sort=FALSE) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV); # our U-statistics

isCOP.radsym(cop=EMPIRcop, para=uv) # FALSE
isCOP.LTD(cop=EMPIRcop, para=uv) # TRUE
isCOP.RTI(cop=EMPIRcop, para=uv) # FALSE
isCOP.PQD(cop=EMPIRcop, para=uv, empirical=TRUE) # TRUE

isCOP.radsym(cop=GHCop, para=theta) # FALSE
isCOP.LTD(cop=GHCop, para=theta) # TRUE
isCOP.RTI(cop=GHCop, para=theta) # TRUE
isCOP.PQD(cop=GHCop, para=theta) # TRUE
# Notice that isCOP.RTI is not the same for empirical and theoretical.
# This shows the difficulty in tail dependence parameter estimation for
# small samples (see Salvadori et al., 2007 p. 175).
## End(Not run)

---

**isCOP.RTI**

*Is a Copula Right-Tail Increasing*

**Description**

Numerically set a logical whether a copula is right-tail increasing (RTI) as described by Nelsen (2006, pp. 192–193) and Salvadori *et al.* (2007, p. 222). A copula \( C(u,v) \) is right-tail decreasing for RTI(\( V|U \)) if and only if for any \( v \in [0, 1] \),

\[
\delta C(u,v) \leq \frac{v - C(u,v)}{1 - u}
\]

for almost all \( u \in [0, 1] \). Similarly, a copula \( C(u,v) \) is right-tail decreasing for RTI(\( U|V \)) if and only if for any \( u \in [0, 1] \),

\[
\delta C(u,v) \leq \frac{u - C(u,v)}{1 - v}
\]

for almost all \( v \in [0, 1] \) where the later definition is controlled by the wrtv=TRUE argument.

The RTI concept is associated with the concept of tail monotonicity (Nelsen, 2006, p. 191). Specifically, but reference to Nelsen (2006) definitions and geometric interpretations is recommended, RTI(\( V|U \)) (or RTI(\( V|U \))) means that the probability \( P[Y > y | X > x] \) (or \( P[X > x | Y > y] \)) is a nondecreasing function of \( x \) (or \( y \)) for all \( y \) (or \( x \)).

A positive RTI of either RTI(\( V|U \)) or RTI(\( U|V \)) implies positively quadrant dependency (PQD, isCOP.PQD) but the condition of PQD does not imply RTI. Finally, the accuracy of the numerical assessment of the returned logical by isCOP.RTI is dependent on the the smallness of the delta argument passed into the function.

**Usage**

```
isCOP.RTI(cop=NULL, para=NULL, wrtv=FALSE, delta=0.005, ...)```

Arguments

- `cop` A copula function;
- `para` Vector of parameters, if needed, to pass to the copula;
- `wrtv` A logical to toggle between with respect to \(v \) or \(u \) (default);
- `delta` The increment of \(\{u, v\} \mapsto [0 + \Delta \delta, 1 - \Delta \delta, \Delta \delta] \) set by wrtv; and
- `...` Additional arguments to pass to the copula or derivative of a copula function.

Value

A logical TRUE or FALSE is returned.
isfuncCOP

Author(s)

W.H. Asquith

References

See Also

isCOP.LTD, isCOP.PQD

Examples

```r
## Not run:
isCOP.RTICop=PLACKETTcop, para=.15) # FALSE : negative assoc. Plackett
isCOP.RTICop=PLACKETTcop, para=15) # FALSE : negative assoc. Plackett
isCOP.RTICop=PLACKETTcop, wrtv=TRUE, para=15) # FALSE : negative assoc. Plackett
## End(Not run)
```

isfuncCOP

Is a General Bivariate Function a Copula by Gridded Search?

Description

Is a general bivariate function a copula? Three properties are identified by Nelsen (2006, p. 10) for a bivariate copula $C(u, v)$:

\[
C(u, 0) = 0 = C(0, v) \quad \text{Nelsen 2.2.2a,}
\]

\[
C(u, 1) = u \quad \text{and} \quad C(1, v) = v \quad \text{Nelsen 2.2.2b, and}
\]

for every u_1, u_2, v_1, v_2 in I^2 such that $u_1 \leq u_2$ and $v_1 \leq v_2$,

\[
C(u_2, v_2) - C(u_2, v_1) - C(u_1, v_2) + C(u_1, v_1) \geq 0 \quad \text{Nelsen 2.2.2c.}
\]

The last condition is known also as “2-increasing.” The isfuncCOP works along a gridded search in the domain $I^2 = [0, 1] \times [0, 1]$ for the 2-increasing check with a resolution $\Delta u = \Delta v = \text{delta}$.

Because there are plenty of true copula functions available in the literature it seems unlikely that this function provides much production utility in investigations. This function is provided because part of the objectives of the copBasic package is for instructional purposes. The computational overhead is far too great for relative benefit to somehow dispatch to this function using the other copula utilities in this package.
Usage

```r
isfuncCOP(cop=NULL, para=NULL, delta=0.002, ...)
```

Arguments

cop A potential bivariate copula function that accepts two arguments for the u and v and parameters along argument para with option of additional arguments through the ... argument;

para Vector of parameters or other data structure, if needed, to pass to the copula;

delta The $\Delta u = \Delta v$ of the grid edges; and

... Additional arguments to pass to the copula function.

Value

A logical value of TRUE or FALSE is returned.

Author(s)

S. Kloibhofer (idea and most code) and W.H. Asquith (documentation)

References

See Also

densityCOP

Examples

```
## Not run:
"NelsenEx2.11" <- function(u,v, ...) { # Nelsen (2006, exer. 2.11, p. 16)
  if(length(u) > 1 & length(v) > 1 & length(u) != length(v)) return(NA)
  if(length(u) == 1) u <- rep(u, length(v))
  if(length(v) == 1) v <- rep(v, length(u))
  return(sapply(1:length(u), function(i) { upv <- u[i] + v[i]
    if(2/3 <= upv & upv <= 4/3) return(min(c(u,v,1/3,upv-(2/3))))
    max(u[i]+v[i]-1, 0) )))
} isfuncCOP(cop=NelsenEx2.11) # FALSE
## End(Not run)
```
The Joe/B5 copula (Joe, 2014, p. 170) is
\[C_\Theta(u, v) = B5(u, v) = 1 - ([1 - u]^\Theta + [1 - v]^\Theta - [1 - u]^\Theta[1 - v]^\Theta), \]
where \(\Theta \in [1, \infty) \). The copula as \(\Theta \to \infty \) limits to the comonotonicity copula \(M(u, v) \) and \(\Pi(u, v) \), as \(\Theta \to 1^+ \) limits to independence copula \(\Pi(u, v) \). Finally, the parameter \(\Theta \) is readily computed from Kendall’s Tau (\texttt{tauCOP}) by
\[\tau_C = 1 + \frac{2}{2 - \Theta}(\psi(2) - \psi(1 + 2/\Theta)), \]
where \(\psi \) is the digamma() function and as \(\Theta \to 2 \) then
\[\tau_C(\Theta \to 2) = 1 - \psi'(2) \]
where \(\psi' \) is the trigamma() function.

Usage
\texttt{J0copB5(u, v, para=NULL, tau=NULL, ...)}

Arguments
- \texttt{u} Nonexceedance probability \(u \) in the \(X \) direction;
- \texttt{v} Nonexceedance probability \(v \) in the \(Y \) direction;
- \texttt{para} A vector (single element) of parameters—the \(\Theta \) parameter of the copula;
- \texttt{tau} Optional Kendall’s Tau; and
- \ldots Additional arguments to pass.

Value
Value(s) for the copula are returned. Otherwise if \texttt{tau} is given, then the \(\Theta \) is computed and a list having
- \texttt{para} The parameter \(\Theta \), and
- \texttt{tau} Kendall’s tau.

and if \texttt{para=NULL} and \texttt{tau=NULL}, then the values within \(u \) and \(v \) are used to compute Kendall’s Tau and then compute the parameter, and these are returned in the aforementioned list.

Author(s)
W.H. Asquith
References

See Also

M, P

Examples

Upper tail dependency of Theta = pi --> 2 - 2^(1/pi) = 0.753131 (Joe, 2014, p. 171).
taildepCOP(cop=J0copB5, para=pi)$lambdaU # 0.75313

Blomqvist's Beta of Theta = pi (Joe, 2014, p. 171).
bblomCOP(cop=J0copB5, para=pi) # 0.5521328
3 - 4*2*(1/2)^pi - (1/4)^pi*(1/pi) # 0.5521328

Not run:
A test near the limiting Theta for trigamma()
UV <- simCOP(cop=J0copB5, para=2, n=10000)
para <- J0copB5(UV[,1], UV[,2])$para
message("Tau difference ", round(2-para, digits=2), " is small.") #
End(Not run)

joeskewCOP

Joe's Nu-Skew and the copBasic Nu-Star of a Copula

Description

Compute the measure of permutation asymmetry, which can be thought of as bivariate skewness, named for the copBasic package as Joe’s Nu-Skew \(\nu_C \) of a copula according to Joe (2014, p. 66) by

\[

\nu_C = 3E[U^2 - V^2] = 6 \int \int_{T^2} (v - u)C(u,v) \, du \, dv.

\]

This definition is effectively the type="nu" for the function for which the multiplier 6 has been converted to 96 as explained in the Note.

Numerical results indicate \(\nu_W \approx 0 \) (W), \(\nu_H = 0 \) (P), \(\nu_M \approx 0 \) (M), \(\nu_{PL} \approx 0 \) for all \(\Theta \) (PLcop), and the \(\nu^*_{GH} = 0 \) (GHcop); copulas with mirror symmetry across the equal value line have \(\nu_C = 0 \).

Asymmetric copulas do exist. For example, consider an asymmetric Gumbel–Hougaard GH copula with \(\Theta_p = (5, 0.8,p) \):

```
optimize(function(p) { nuskewCOP(cop=GHcop, para=c(5,0,8, p)) },
c(0,0.99))$minimum
UV <- simCOP(n=10000, cop=GHcop, c(5,0,8, 0.2836485)) # inspect the graphics
48*mean(UV$U*$V$^2 - UV$U$*$V$+UV$V$) # -0.2847953 (not the 3rd parameter)
```
The minimization yields $\nu_{GH}(5, 0.8, 0.2836485) = -0.2796104$, which is close the expectation computed where $48 = 96/2$.

A complementary definition is supported, triggered by type="nustar", and is computed by

$$\nu^*_C = 12 \int \int_{V^2} (v + u)C(u, v) \, du \, dv - 4,$$

which has been for the copBasic package, ν^*_C is named as Nu-Star, which the 12 and the -4 have been chosen so that numerical results indicate $\nu^*_W = -1 (W)$, $\nu^*_P = 0 (P)$, and $\nu^*_M = +1 (M)$.

Lastly, the uv1moms function provides for a quantile-based measure of bivariate skewness based on the difference $U - V$ that also is discussed by Joe (2014, p. 66).

Usage

```r
joeskewcop(cop=NULL, para=NULL, type=c("nu", "nustar", "nuskew"),
            as.sample=FALSE, brute=FALSE, delta=0.002, ...)

nuskewcop(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)
nustarcop(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)
```

Arguments

- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `type` The type of metric to compute (nu and nuskew are synonymous for ν_C and nustar is for ν^*_C);
- `brute` Should brute force be used instead of two nested integrate() functions to perform the double integration;
- `delta` The du and dv for the brute force integration using brute;
- `as.sample` A logical controlling whether an optional R data.frame in `para` is used to compute the sample $\hat{\nu}$ or $\hat{\nu}^*$ (see Note). If set to `-1`, then the message concerning CPU effort will be suppressed; and
- `...` Additional arguments to pass.

Details

The implementation of joeskewCOP for copBasic provides the second metric of asymmetry, but why? Consider the results that follow:

```r
joeskewCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# -0.2796104
joeskewCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# +0.2796103
joeskewCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# 0.3571276
joeskewCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# 0.3571279
tauCOP(cop=GHcop, para=c(5, 0.8, 0.2836485), type="nu")
# 0.2443377
```
The demonstration shows—at least for the symmetry (switchability) of the 2nd and 3rd parameters \((\pi_2\) and \(\pi_3\)) of the asymmetric \(\text{GH}\) copula—that the first definition \(\nu\) is magnitude symmetric but carries a sign change. The demonstration shows magnitude and sign stability for \(\nu^*\), and ends with Kendall’s Tau (\(\text{tauCOP}\)). Collectively, Kendall’s Tau (or the other symmetric measures of association, e.g. \(\text{blomCOP}, \text{footCOP}, \text{giniCOP}, \text{hoefCOP}, \text{rhoCOP}, \text{wolfCOP}\)) when combined with \(\nu\) and \(\nu^*\) might provide a framework for parameter optimization of the asymmetric \(\text{GH}\) copula (see below).

The asymmetric \(\text{GH}(5,0,0.2836485,0.8)\) is not radial \(\text{isCOP.radsym}\) or permutation \(\text{isCOP.perm.sym}\), but if \(\pi_2 = \pi_3\) then the resulting \(\text{GH}\) copula is not radially symmetric but is permutation symmetric:

\[
isCOP.radsym(\cop=\text{GHcop}, \para=c(5, 0.2836485, 0.8)) \text{ # FALSE}
isCOP.perm.sym(\cop=\text{GHcop}, \para=c(5, 0.2836485, 0.8)) \text{ # FALSE}
isCOP.radsym(\cop=\text{GHcop}, \para=c(5, 0.8, 0.8)) \text{ # FALSE}
isCOP.perm.sym(\cop=\text{GHcop}, \para=c(5, 0.8, 0.8)) \text{ # TRUE}
\]

The use of \(\nu_C\) and \(\nu^*_C\) with a measure of association is just suggested above for parameter optimization. Suppose we have \(\text{GH}(5,0,0.5,0.7)\) with Spearman’s Rho \(\rho = 0.4888\), \(\nu = 0.001475\), and \(\nu^* = 0.04223\), and the asymmetric \(\text{GH}\) copula is to be fit. Parameter estimation for the asymmetric \(\text{GH}\) is accomplished by

\[
\text{"fitGHcop"} \leftarrow \text{function}(\text{hats, assocfunc=\text{rhoCOP, init=NA, eps=1E-4, ...}}) \{ \\
\quad \text{H} \leftarrow \text{GHcop} \text{ # shorthand for the copula} \\
\quad \text{"objfunc"} \leftarrow \text{function}(\text{par}) \{ \\
\quad \quad \text{par}[1] \leftarrow \text{ifelse}(\text{par}[1] < 1, \text{return}(\text{Inf}), \text{exp}(\text{par}[1])) \text{ # edge check} \\
\quad \quad \text{par}[2:3] \leftarrow \text{pnorm}(\text{par}[2:3]) \text{ # detransform} \\
\quad \quad \text{hp} \leftarrow \text{c(assocfunc(H, par), nuskewCOP(H, par), nustarcOP(H, par))} \\
\quad \quad \text{return}(\sum((\text{hats}-\text{hp})^2)) \\
\quad \} \\
\quad \text{# Theta=1 and Pi2 = Pi3 = 1/2 # as default initial estimates} \\
\quad \text{if(is.na(\text{init})) \init \leftarrow \text{c(1, rep(1/2, times=2))} \\
\quad \text{opt \leftarrow \text{optim}(\text{init, objfunc, ...}); \par \leftarrow \text{opt}\$\text{par}} \\
\quad \text{para \leftarrow \text{c(\text{exp}(\text{par}[1]), \text{pnorm}(\text{par}[2:3]))} \\
\quad \text{names(\text{para}) \leftarrow \text{c("Theta", "Pi2", "Pi3")} \\
\quad \text{fit \leftarrow \text{c(assocfunc(H, para), nuskewCOP(H, para), nustarcOP(H, para))} \\
\quad \text{txt \leftarrow \text{c("AssocMeasure", "NuSkew", "NuSkewStar")} \\
\quad \text{names(\text{fit}) \leftarrow \text{txt}; \names(\text{hats}) \leftarrow \text{txt}} \\
\quad \text{if(opt\$value > \text{eps}) \text{warning("inspect the fit"}) \\
\quad \text{return}(\text{list(\text{para}=para, fit=fit, given=hats, optim=opt)}) \\
\}
\}
\]

\text{father} \leftarrow \text{c(5,5,7)} \\
\text{densityCOPplot(cop=\text{GHcop, para=father}, contour.col=8)} \\
\text{fRho} \leftarrow \text{rhoCOP(\cop=\text{GHcop, father})} \\
\text{fNu} \leftarrow \text{nuskewCOP(cop=\text{GHcop, father})} \\
\text{fStar} \leftarrow \text{nustarcOP(cop=\text{GHcop, father})} \\
\text{child} \leftarrow \text{fitGHcop(fRho, fNu, fStar)$para} \\
\text{densityCOPplot(cop=\text{GHcop, para=child, ploton=FALSE})} \\
\text{cRho} \leftarrow \text{rhoCOP(\cop=\text{GHcop, child})}
The initial parameter estimate has the value $\Theta = 1$, which is independence for the one parameter GH. The two other parameters are set as $\pi_2 = \pi_3 = 1/2$ to be in the mid-point of their domain. The transformations using the $\log(\cdot) \leftrightarrow \exp(\cdot)$ and $\text{qnorm}(\cdot) \leftrightarrow \text{pnorm}(\cdot)$ functions in \mathbb{R} are used to keep the optimization in the viable parameter domain. The results produce a fitted copula of $\text{GH}_{(4.907,0.5006,0.7014)}$. This fit aligns well with the parent, and the three statistics are essentially matched during the fitting.

The ν_C can be similar to rhoCOP, but differences do exist. In the presence of radial symmetry, $(\nu_C == 0)$, the ν^*_C is nearly equal to Spearman Rho for some copulas. Let us test further:

```r
p <- 10^seq(0,2,by=.01)
s <- sapply(p, function(t) nustarCOP(cop=GHcop, para=c(t)))
r <- sapply(p, function(t) rhoCOP(cop=GHcop, para=c(t)))
plot(p,s, log="x", type="l", col=3, lwd=3); lines(p,r)
```

Now let us add some asymmetry

```r
s <- sapply(p, function(t) nustarCOP(cop=GHcop, para=c(t, 0.25, 0.75)))
r <- sapply(p, function(t) rhoCOP(cop=GHcop, para=c(t, 0.25, 0.75)))
plot(p,s, log="x", type="l", col=3, lwd=3); lines(p,r)
```

Now let us choose a different (the Clayton) copula

```r
s <- sapply(p, function(t) nustarCOP(cop=CLcop, para=c(t)))
r <- sapply(p, function(t) rhoCOP(cop=CLcop, para=c(t)))
plot(p,s, log="x", type="l", col=3, lwd=3); lines(p,r)
```

Value

The value for ν_C or ν^*_C is returned.

Note

The ν_C definition is given with a multiplier of 6 on the integrals in order to agree with Joe (2014) relation that is also shown. However, in mutual parameter estimation experiments using a simple sum-of-square errors as shown in the Details, it is preferred to have ν_C measured on a larger scale. Where does the 96 then come from? It is heuristically made so that the upright and rotated cophalf (see Examples under ascOP and bilmoms for this copula) acquires ν_C values of $+1$ and -1, respectively. As a result to make back comparisons to Joe results, the ratios of 96 are made in this documentation.

The source code shows slightly different styles of division by the sample size as part of the sample estimation of the statistics. The $\hat{\nu}$ using just division by the sample size as testing indicates that this statistic is reasonably unbiased for simple copula. The ν^* with similar division is a biased statistic.
and the bias is not symmetrical in magnitude or sign it seems whether the $\hat{\nu}^*$ is positive or negative. The salient code is

```r
spm <- ifelse(corsgn == -1, +2.4, +1.1) within the sources for which the corrections were determined heuristically through simulation, and corsgn is the sign of the sample Spearman’s Rho through the cor() function of R.
```

Author(s)

W.H. Asquith

References

See Also

uvskew, blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, wolfCOP

Examples

```r
nuskewCOP(cop=GHcop,para=c(1.43,1/2,1))*6/96) # 0.005886 (Joe, 2014, p. 184; 0.0059)
```

```r
## Not run:
joeskewCOP(cop=GHcop, para=c(8, .7, .5)) # -0.1523491
joeskewCOP(cop=GHcop, para=c(8, .5, .7)) # +0.1523472
UV <- simCOP(n=1000, cop=GHcop, para=c(8, .7, .5)) # see the switch in curvature
## End(Not run)
```

```r
## Not run:
para=c(19,0.3,0.8); set.seed(341)
nuskew <- nuskewCOP( cop=GHcop, para=para) # 0.3057744
UV <- simCOP(n=1000, cop=GHcop, para=para) # a large simulation
mean((UV$U - UV$V)^3)/(6/96) # 0.3127398
```

Two other definitions of skewness follow and are not numerically the same.

```r
uvskew(u=UV$U, v=UV$V, umv=TRUE) # 0.3738987 (see documentation uvskew)
uvskew(u=UV$U, v=UV$V, umv=FALSE) # 0.3592739 (or documentation uvlmoms)
```

Yet another definition of skew, which requires large sample approximation

```r
lmomco::lcomoms2(UV)$T3 # L-coskew of the simulated values [1,2] and [2,1]
```

```r
[,1] [2,1] 0.007398438 0.17076600
```

```r
[2,2] -0.061060260 -0.00006613
```

See the asymmetry in the two L-coskew values and consider this in light of the graphic produced by the simCOP() called for n=10,000. The T3[1,1] is the sampled L-skew (univariate) of the U margin and T3[2,2] is the same but for the V margin.

For suitable large sample must be zero because the L-skew of the uniform distribution is by definition zero.

```r
# Now let us check the sample estimator for sample of size n=300, and the
```

```r
# t-test will (should) result in acceptance of the NULL hypothesis.
```
S <- replicate(60, nuskewCOP(para=simCOP(n=300, cop=GHcop, para=para,
 graphics=FALSE), as.sample=TRUE))

t.test(S, mnu=nuskew)
t = 0.004633, df = 59, p-value = 0.9963
alternative hypothesis: true mean is not equal to 0.3057744
95 percent confidence interval:
0.2854282 0.3262150
sample estimates:
mean of x
0.3058216
End(Not run)

Not run:
Let us run a large ensemble of copula properties that use the whole copula
(not tail properties). We composite a Plackett with a Gumbel-Hougaard for
which the over all association (correlation) sign is negative, but amongst
these statistics with nuskew and nustar at the bottom, there are various
quantities that can be extracted. These could be used for fitting.
set.seed(873)
para <- list(cop1=PLcop, cop2=GHcop, alpha=0.6, beta=0.9,
 para=c(8.3,0.25,0.7))
UV <- simCOP(1000, cop=composite2COP, para=para) # just to show
blomCOP(composite2COP, para) # -0.4078657
footCOP(composite2COP, para) # -0.2854227
hoefCOP(composite2COP, para) # +0.5713775
lcomCOP(composite2COP, para) #1comUV[3] # +0.1816084
lcomCOP(composite2COP, para) #1comUV[3] # +0.1279844
rhoCOP(composite2COP, para) # -0.5688417
rhohevCOP(composite2COP, para) # -0.2005210
tauCOP(composite2COP, para) # -0.4514693
wolfCOP(composite2COP, para) # +0.5691933
nustarCOP(composite2COP, para) # -0.5172434
nuskewCOP(composite2COP, para) # +0.0714987
End(Not run)

joint.curvesCOP

Compute Coordinates of the Marginal Probabilities given joint AND
or OR Probabilities

Description

Compute the coordinates of the bivariate marginal probabilities for variables U and V given selected probabilities levels t for a copula $C(u,v)$ for v with respect to u. For the case of a joint and probability, symbolically the solution is

$$Pr[U \leq v, V \leq v] = t = C(u,v),$$

where $U \mapsto [t_i, u_j, u_{j+1}, \ldots, 1; \Delta t]$ (an irregular sequence of u values from the ith value of t_i provided through to unity) and thus

$$t_i \mapsto C(u = U, v),$$
and solving for the sequence of \(v \). The index \(j \) is to indicate that a separate loop is involved and is distinct from \(i \). The pairings \(\{ u(t_i), v(t_i) \} \) for each \(t \) are packaged as an \(\mathbb{R} \) data.frame. This operation is very similar to the plotting capabilities in \texttt{level.curvesCOP} for \textit{level curves} (Nelsen, 2006, pp. 12–13) but implemented in the function \texttt{joint.curvesCOP} for alternative utility.

For the case of a \textbf{joint} or probability, the \textit{dual of a copula (function)} or \(\tilde{C}(u, v) \) from a copula (Nelsen, 2006, pp. 33–34) is used and symbolically the solution is:

\[
\Pr[U \leq v \text{ or } V \leq v] = t = \tilde{C}(u, v) = u + v - C(u, v),
\]

where \(U \mapsto [0, u_j, u_{j+1}, \ldots, t_i; \Delta t] \) (an irregular sequence of \(u \) values from zero through to the \(i \)th value of \(t \)) and thus

\[
t_i \mapsto \tilde{C}(u = U, v),
\]

and solving for the sequence of \(v \). The index \(j \) is to indicate that a separate loop is involved and is distinct from \(i \). The pairings \(\{ u(t_i), v(t_i) \} \) for each \(t \) are packaged as an \(\mathbb{R} \) data.frame.

Usage

\[
\text{joint.curvesCOP}(\text{cop=NULL, para=NULL, type="and", or"}, \\text{probs=c(0.5, 0.8, 0.90, 0.96, 0.98, 0.99, 0.995, 0.998),} \\text{zero2small=TRUE, small=1E-6, divisor=100, delu=0.001, ...})
\]

Arguments

- \texttt{cop} \quad A copula function;
- \texttt{para} \quad Vector of parameters or other data structure, if needed, to pass to the copula;
- \texttt{type} \quad What type of joint probability is to be computed;
- \texttt{probs} \quad The joint probabilities \(t_i \) from which to compute the coordinates. The default values represent especially useful annual return period equivalents that are useful in hydrologic risk analyses;
- \texttt{zero2small} \quad A logical controlling whether exactly zero value for probability are converted to a small value and exactly unity values for probability are converted to the value \(1 - \small \); this logical is useful if transformation from probability space into standard normal variates or \textit{Gumbel reduced variates} (see function \texttt{prob2grv()} in package \texttt{lmomco}) is later desired by the user for attendant graphics (see \texttt{Examples} section);
- \texttt{small} \quad The value for \texttt{small} described for \texttt{zero2small};
- \texttt{divisor} \quad A divisor on a computation of a \(\Delta t \) for incrementing through the irregularly-spaced \(u \) domain as part of the coordinate computation (see source code);
- \texttt{delu} \quad A \(\Delta u \) for setup of the incrementing through the irregularly-space \(u \) domain as part of the coordinate computation (see source code); and
- \ldots \quad Additional arguments to pass to the \texttt{ducop} function of \texttt{copBasic} or \texttt{uniroot()} function in \texttt{R}.

Value

An \(\mathbb{R} \) list is returned with elements each of the given \texttt{probs}.

Note
The arguments divisor and delu provide flexibility to obtain sufficient smoothness in the coordinate curvatures for a given t. The pairings $\{u(t_i), v(t_i)\}$ for each t packaged as data frames within the returned list each have their own unique length, and this is the reason that a single “master” data frame is not returned by this function.

Extended Example—The code below shows both types of joint probability being computed using the default probs. The plotting is made in Gumbel reduced variates (GRV; see `prob2grv` in package `lmomco`). This transformation is somewhat suitable for the magnitude variation in and at tail depth of the probs. Also with transformation is being used, the zeroRsmall logical is kept at TRUE, which is appropriate. The zeroRsmall being set is also useful if standard normal variate transformation (by the `qnorm()` function in R) were used instead.

The Gumbel–Hougaard copula (ghcop) and a reversed Gumbel–Hougaard copula rgh are composited together by `composite2COP`. These were chosen so that some asymmetry in the solutions by `joint.curvesCOP` could be seen. We begin by specifying symmetrical plotting limits for later use and then creating a function for the reversed Gumbel–Hougaard and setting the parameters and composition weights:

```r
grvlim <- lmomco::prob2grv(c(0.25, 0.999)) # out to 1,000 years
"rGHcop" <- function(u,v, ...) { u + v - 1 + GHCop(1-u, 1-v, ...)}
para <- list(alpha=0.16, beta=0.67, cop1 =GHCop, cop2 =rGHcop,
               para1=4.5, para2=2.2)
tau <- tauCOP( cop=composite2COP, para=para) # Tau = 0.351219
joeskew <- joeskewCOP(cop=composite2COP, para=para) # Joeskew = 0.005266
UV <- simCOP(n=1000, cop=composite2COP, para=para, snv=TRUE)
```

The code also computed Kendall’s Tau (tauCOP) and Joe’s Bivariate Skewness (joeskewCOP) and the results are shown. The code finishes with a simulation by `simCOP` of the copula composition just for reference.

Next, we compute and plot the joint probability curves. The tolerance for the `uniroot` calls is reset from R’s defaults because slight wobble in the numerical solutions exists otherwise. The AND and OR lists each provide data frames from which successive graphic calls plot the lines. The second `plot()` call is commented out so that both sets of joint probability curves are drawn on the same plot.

```r
AND <- joint.curvesCOP(cop=composite2COP, para=para, type="and",
                        divisor=1000, tol=.Machine$double.eps)
plot(grvlim, grvlim, type="n",
     xlab="GUMBEL REDUCED VARIATE IN U", ylab="GUMBEL REDUCED VARIATE IN V")
for(t in sort(as.numeric(names(AND)))) {
    UV <- get(as.character(t), AND)
    lines(lmomco::prob2grv(UV$U), lmomco::prob2grv(UV$V))
    text(lmomco::prob2grv(median(UV$U)), lmomco::prob2grv(median(UV$V)),
         as.character(round(1/(1-t)), digits=0))
}

OR <- joint.curvesCOP(cop=composite2COP, para=para, type="or",
                       divisor=1000, tol=.Machine$double.eps)
```

for(t in sort(as.numeric(names(OR)))) {
 UV <- get(as.character(t), OR)
 lines(lmomco::prob2grv(UV$U), lmomco::prob2grv(UV$V), col=2)
 text(lmomco::prob2grv(median(UV$U)), lmomco::prob2grv(median(UV$V)),
 as.character(round(1/(1-t)), digits=0), col=2)
}

mtext("Return Periods: black=cooperative risk, red=dual risk")
abline(0,1, lty=2) # dash line is simply and equal value line

Black Curves—The black curves represent the nonexceedance joint and condition. The black curves are a form of level curve (see level.curvesCOP), but it seems appropriate to not name them as such because Nelsen’s examples and others usually have the level curves on a even step interval of probability such as 10-percent level curves. The complement of nonexceedance joint and is the probability level that either or both random variables (say “hazards”) U or V causes “failure” at the respective return period.

Red Curves—The red curves represent the nonexceedance joint or (inclusive) condition. The complement of nonexceedance joint or (inclusive) is the probability level that both random variables (say “hazards”) U or V must simultaneously (or dually) occur for “failure” at the respective return period. Note that there is obviously asymmetry in the joint or curves.

Interpretation—Because the two hazards can “cooperate” to cause failure (see coCOP) for an equal level of protection (say 500-year event) relative to the complement of nonexceedance joint or (inclusive) condition (see surCOP), the marginal probabilities must be considerably higher. Users are encouraged to review copBasic-package and the figure therein.

Author(s)

W.H. Asquith

References

See Also

diagCOPatf, duCOP, jointCOP, joint.curvesCOP2, level.curvesCOP

Examples

See Note section

joint.curvesCOP2

Compute Coordinates of the Marginal Probabilities given joint AND or OR Probability
Description

Compute the coordinates of the bivariate marginal probabilities for variables \(U \) and \(V \) given selected probabilities levels \(t \) for a copula \(C(u, v) \) for \(u \) with respect to \(v \). For the case of a joint and probability, symbolically the solution is

\[
\Pr[U \leq v, \ V \leq v] = t = C(u, v),
\]

where \(V \mapsto [t_i, t_j, t_{j+1}, \ldots, 1; \Delta] \) (an irregular sequence of \(v \) values from the \(i \)th value of \(t \) provided through to unity) and thus

\[
t_i \mapsto C(u, v = V),
\]

and solving for the sequence of \(u \). The index \(j \) is to indicate that a separate loop is involved and is distinct from \(i \). The pairings \(\{u(t_i), v(t_i)\} \) for each \(t \) are packaged as an \(R \) data.frame. This operation is very similar to the plotting capabilities in level.curvesCOP2 for level curves (Nelsen, 2006, pp. 12–13) but implemented in the function joint.curvesCOP2 for alternative utility.

For the case of a joint or probability, the dual of a copula (function) or \(\hat{C}(u, v) \) from a copula (Nelsen, 2006, pp. 33–34) is used and symbolically the solution is:

\[
\Pr[U \leq v \text{ or } V \leq v] = t = \hat{C}(u, v) = u + v - C(u, v),
\]

where \(V \mapsto [0, v_j, v_{j+1}, \ldots, t_i; \Delta] \) (an irregular sequence of \(v \) values from zero through to the \(i \)th value of \(t \)) and thus

\[
t_i \mapsto \hat{C}(u, v = V),
\]

and solving for the sequence of \(u \). The index \(j \) is to indicate that a separate loop is involved and is distinct from \(i \). The pairings \(\{u(t_i), v(t_i)\} \) for each \(t \) are packaged as an \(R \) data.frame.

Usage

\[
\text{joint.curvesCOP2}(\text{cop} = \text{NULL}, \ \text{para} = \text{NULL}, \ \text{type} = \text{c("and", "or")}, \ \text{probs} = \text{c(0.5, 0.8, 0.9, 0.96, 0.98, 0.99, 0.995, 0.998)}, \ \text{zero2small} = \text{TRUE}, \ \text{small} = \text{1E-6}, \ \text{divisor} = \text{100}, \ \text{delv} = \text{0.001}, \ldots)
\]

Arguments

- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula;
- **type**: What type of joint probability is to be computed;
- **probs**: The joint probabilities for which to compute the coordinates. The default values represent especially useful annual return period equivalents that are useful in hydrologic risk analyses;
- **zero2small**: A logical controlling whether precise zero value for probability are converted to a \(\text{small} \) value and precise unity values for probability are converted to the value \(1 - \text{small} \); this logical is useful if transformation from probability space into standard normal variates or Gumbel reduced variates (GRV; see function \text{prob2grv()} in package lmomco) is later desired by the user for attendant graphics (see Examples section);
- **small**: The value for \(\text{small} \) described for zero2small;
divisor A divisor on a computation of a Δ for incrementing through the v domain as part of the coordinate computation (see source code);
delv Δv for setup of the incrementing through the v domain as part of the coordinate computation (see source code); and
... Additional arguments to pass to the duCOP function of copBasic or uniroot() function.

Value
An R list is returned with elements each of the given probs.

Author(s)
W.H. Asquith

References

See Also
diagCOPatf, duCOP, jointCOP, joint.curvesCOP, level.curvesCOP2

Examples
Not run:
Approach the joint curves from both "with respect two" perspectives---results same.
JCwrtu <- joint.curvesCOP(cop=PSP, prob=0.98)$"0.98"
JCwrtv <- joint.curvesCOP2(cop=PSP, prob=0.98)$"0.98"; lim <- c(2,5)
plot(qnorm(JCwrtu$U), qnorm(JCwrtu$V), type="l", lwd=6, col=8, xlim=lim, ylim=lim,
xlab="STANDARD NORMAL VARIATE IN U", ylab="STANDARD NORMAL VARIATE IN V")
lines(qnorm(JCwrtv$U), qnorm(JCwrtv$V), col=2, lwd=2)
mtext("98th Joint Percentile Level Curve for PSP Copula")#
End(Not run)

jointCOP

Compute Equal Marginal Probabilities Given a Single Joint AND or OR Probability for a Copula

Description
Given a single joint probability denoted as t for a copula $C(u,v)$ numerically solve for bivariate marginal probabilities U and V such that they are also equal to each other ($u = v = w$). For the case of a joint and probability, the primary diagonal of the copula (Nelsen, 2006, pp. 12 and 16) is solved for by a simple dispatch to the diagCOPatf function instead. Symbolically the solution is

$$\Pr[U \leq v, V \leq v] = t = C(w, w).$$
For the case of a **joint or** probability, the *dual of a copula (function)* or \(\tilde{C}(u, v) \) from a copula (Nelsen, 2006, pp. 33–34; *duCOP*) is used where symbolically the solution is

\[
\Pr[U \leq v \text{ or } V \leq v] = t = \tilde{C}(u, v) = u + v - C(u, v),
\]

or

\[
\Pr[U \leq v \text{ or } V \leq v] = t = 2w - C(w, w).
\]

The function for `type="or"` tests \(\tilde{C}(0, 0) \) and if it returns NA or NaN then the lower limit for the rooting is treated as .Machine$double.eps instead of 0 (zero).

Usage

```r
groundCOP(t, cop=NULL, para=NULL, type=c("and", "or"), ...)
```

Arguments

- **t** The joint probability level \(t \);
- **cop** A copula function;
- **para** Vector of parameters or other data structure, if needed, to pass to the copula;
- **type** The type of joint probability is to be computed; and
- ... Additional arguments to pass to the *duCOP* function of *copBasic* or *unirOOT* function.

Value

A vector of the equal \(u \) and \(v \) probabilities for the given *type* at the joint probability level of \(t \). The vector includes the \(t \) as the third element.

Note

ENSEMBLE 1—Counting and Copula Probabilities from a Massive Sample Size:

Simulations can be used to check/verify select copula concepts. We begin with a **Gumbel–Hougaard copula** \(GH(u, v) = C_{\Theta}(u, v) \) having parameter \(\Theta = 1.5 \), which corresponds to a **Kendall Tau** \(\tau_C = 1/3 \) (ghcop). Next, simulate and count the number of either \(U \) or \(V \) exceeding the 99th percentile “event.” The event can occur either from the random variable \(U \) or from \(V \) with equal “loss.” If the event occurs in both \(U \) and \(V \), the loss is just the same as if \(U \) or \(V \) occurred. So, if a design were at the 100-year level and thus a 0.01 chance of loss each year, then 500 losses in 50,000 years would be expected.

```r
set.seed(89); n <- 50000
UV <- simCOP(n, cop=GHcop, para=1.5, graphics=FALSE)
length(UV$U[UV$U > 0.99 | UV$V > 0.99]) # 799 times (losses)
length(UV$U[UV$U > 0.99356 | UV$V > 0.99356]) # 500 times (losses)
```

Letting JP equal 0.99356, which forces the required acceptance of 500 losses for the design has conditions of \(UVU > JP \) or \(UVV > JP \) as well as condition of \(UVU > JP \) and \(UVV > JP \). These three conditions are captured using the structure of the R code listed. Up until now, manual searching resulted in a value for JP equaling 0.99356, which produces the 500 count losses (acceptable...
losses). Thus, JP is a marginal bivariate probability (in this case equality between $U_{\text{crit.}} = V_{\text{crit.}}$, declared) necessary to attain a 99th percentile joint protection from loss. The magnitude for either U or V thus must exceed the 99th percentile, and this is what the code shows with 799 losses.

It is important to consider that unless U and V are in perfect positive correlation (e.g. $M(u, v)$, M. Fréchet–Hoeffding upper bound copula), that protection from loss needs to be higher than 0.99 if the marginal risk is set at that level. Continuing, if the 99th percentile is the 100-year event, then design criteria should be about 155 years instead [1momco::prob2T(0.99356)]. The user can readily stay with the switch to perfect independence with the $GH(u, v)$ copula with $\Theta = 1$ and produce quite different results or extreme correlation with say $\Theta > 20$.

To provide the protection for 500 exceedances in $n = 50,000$ trials and for purposes of demonstration, balance the protection between U and V by setting their probabilities equal, then the theoretical joint probability is

\[
\text{diagCOPatf}(0.99, 0.99, \text{cop=GHCop, para=1.5}) \quad \# \; 0.9936887
\]
\[
\text{jointCOP}(\; 0.99, \; \text{cop=GHCop, para=1.5, type="and"}) \; \# \; 0.9936887
\]

and these two probabilities, which in reality are actually based on same computation (diagCOPatf), and nearly are the same as $J_P = 0.99356$ that was determined by searching on the simulated data.

A mutually inclusive and condition can be arranged as follows, and it is implicit in the definition that both loss events occur at the same time:

\[
\text{length(UV$U[UV$U > 0.99 \& UV$V > 0.99])} \quad \# \; 208 \text{ losses (simulated)}
\]
\[
\text{surCOP(} \; 1-0.99, \; 1-0.99, \; \text{cop=GHCop, para=1.5) \; \ast \; n} \quad \# \; 209 \text{ losses (theoretical)}
\]
\[
\text{surfCOP}(0.99, 0.99, \text{cop=GHCop, para=1.5) \; \ast \; n} \quad \# \; 209 \text{ losses (theoretical)}
\]

What are the expected number of exceedances if designs for U and V are built at $U = V = 0.99$ marginal probabilities for protection?

\[
\text{coCOP}(1-0.99, 1-0.99, \text{cop=GHCop, para=1.5) \; \ast \; n} \quad \# \; 791 \text{ losses (theoretical)}
\]

by the co-copula which from the copula as nonexceedances is
\[
(1-\text{COP}(\; 0.99, \; 0.99, \; \text{cop=GHCop, para=1.5})) \; \ast \; n \quad \# \; 791 \text{ losses (theoretical)}
\]

Note that the 791 losses is nearly equal to 799, but obviously not 500 as one might incorrectly have imagined strictly in a univariate world.

Now a couple of questions can be asked about the **joint and** and **joint or** probabilities using the definition of a copula COP and then the dual of a copula (function) ($\tilde{C}(u, v)$, duCOP), respectively:

\[
\text{# The AND nonexceedances:}
\]
\[
\text{length(UV$U[UV$U <= 0.99 \& UV$V <= 0.99])} / \; n \quad \# \; 0.98402 \quad \text{(simulated)}
\]
\[
\text{COP(0.99, 0.99, \text{cop=GHCop, para=1.5) \; \# \; 0.9841727 \text{(theoretical)}}
\]

\[
\text{# The OR nonexceedances:}
\]
\[
\text{length(UV$U[UV$U <= 0.99 \; | \; UV$V <= 0.99])} / \; n \quad \# \; 0.99584 \quad \text{(simulated)}
\]
\[
\text{duCOP(0.99, 0.99, \text{cop=GHCop, para=1.5) \; \# \; 0.9958273 \text{(theoretical)}}
\]

How about inversion of $\tilde{C}(u, v)$ by jointCOP and check against the simulation?

\[
\text{jointCOP(0.99, \text{cop=GHCop, para=1.5, type="or")}[1] \quad \# \; 0.9763951 \quad \text{(theor.)}}
\]
\[
\text{length(UV$U[UV$U <= 0.9763951 \; | \; UV$V <= 0.9763951])/n} \quad \# \; 0.98982 \quad \text{(simulated)}
\]
The second probability is a value quite near to 0.99. So if one wants mutual loss protection compute the inversion of the dual of a copula using \texttt{jointCOP(..., type="or")}. Let us say that 0.80 mutual loss protection is wanted

\begin{verbatim}
jointCOP(0.80, cop=GHcop, para=1.5, type="or")[1] # 0.6561286
n = length(UV$U[UV$U <= 0.6561286 | UV$V <= 0.6561286])# 10049 losses (sim.)
n = (1-0.8)*n # 10000 losses (theoretical)
\end{verbatim}

The example here shows numerical congruence of 10,049 \(\approx\) 10,000. An opposing question is also useful. How about a mutually exclusive or condition as nonexceedances?

\begin{verbatim}
The mutually exclusive OR as nonexceedances:
length((UV$U[(UV$U <= 0.99 | UV$V <= 0.99) &
 ! (UV$U <= 0.99 & UV$V <= 0.99)])) # 591 losses (simulated)

The mutually exclusive OR as exceedances:
length(UV$U[(UV$U > 0.99 | UV$V > 0.99) &
 ! (UV$U > 0.99 & UV$V > 0.99)])) # 591 losses (simulated)
\end{verbatim}

It is clear that 208 + 591 = 799 as shown earlier. Readers are asked to notice how there are two ways to get at the 591 count. There are 208 mutual loss events and 591 occurrences where either \(U\) or \(V\) is the causation of loss. For comparison, how many observed events by random variable?

\begin{verbatim}
length(UV$U[(UV$U > 0.99)]) # 519 (simulated)
length(UV$U[(UV$V > 0.99)]) # 491 (simulated)
\end{verbatim}

which if they were perfectly uncorrelated (\(P(u, v)\), \(P\), independence copula) would be 519 + 491 = 1,007 losses. But for the simulations here, 799 losses occurred, so 1,007 - 799 = 208 losses were at the same time caused by \(U\) and \(V\).

Both of the following lengths \(A\) and \(B\) are 799 and both represent a joint or condition—the operations do not represent a mutually exclusive or condition.

\begin{verbatim}
A <- length(UV$U[UV$U > 0.99]) + length(UV$U[UV$V > 0.99]) -
 length(UV$U[UV$U > 0.99 & UV$V > 0.99])
B <- length(UV$U[UV$U > 0.99 | UV$V > 0.99]) # A == B == 799
\end{verbatim}

\textit{ENSEMBLE 2—Simulation Study using a Real-World Sample Size:} Now with identities of sorts shown and described above, let us test a theoretically consistent version of a sample of size 150 repeated 1,000 times at the 98th percentile against loss by one or the other random variables or both for slightly correlated \(U\) or \(V\) again following the Gumbel–Hougaard copula. The losses incurred by mutual event occurrence is the same as if one or the other variables produced an event causing loss.

\begin{verbatim}
n <- 250; nsim <- 1000; EitherEvent <- 0.98; MutualEvent <- 0.99; Theta <- 1.5
PT <- jointCOP(EitherEvent, cop=GHcop, para=Theta, type="and")[1] # 0.9873537
DU <- jointCOP(MutualEvent, cop=GHcop, para=Theta, type="or")[1] # 0.9763951
\end{verbatim}

This next code listing is a redundant example to the one that follows but it is shown anyway because a slight possibility of confusion in the vectorized conditional evaluations in \texttt{R}. This first example concretely changes the loss events into binary states and adds them up prior to the condition.
set.seed(894234)
EX1a <- sapply(1:nsim, function(i) {
 uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
 length(uv$U[as.numeric(uv$U > PT) + as.numeric(uv$V > PT) >= 1])
})
t.test(EX1a, mu=(1-EitherEvent) * n)

The expected count $E[EX1a] = 5$ and the simulation run yielded 5.058. The `t.test()` function in R results in a statistically insignificant difference, and thus the result indistinguishable from the expectation. The following two example use a similar there. For sake of both code brevity and clarity, the examples here all restart the simulations at the expense of computation time.

set.seed(894234)
EX1b <- sapply(1:nsim, function(i) {
 uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
 length(uv$U[uv$U > PT | uv$V > PT])
})
t.test(EX1b, mu=(1-EitherEvent) * n)

The expected count $E[EX1b] = 5$—the same results are shown as in the first example listing.

Next, let us demonstrate the dual of a copula for mutually occurring events.

set.seed(894234)
EX2 <- sapply(1:nsim, function(i) {
 uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
 length(uv$U[uv$U > DU & uv$V > DU])
})
t.test(EX2, mu=(1-MutualEvent) * n)

The expected count $E[EX2] = 2.5$ and the simulation run yielded 2.49. The `t.test()` again results in a statistically insignificant difference, and thus the result indistinguishable from the expectation.

Now the $U = V = 0.9873537$ for the “and” and $U = V = 0.9763951$ for the “or” are not equal marginal probabilities. Taking the larger of the two marginal probabilities, the actual joint protection from mutual event occurrence can be computed:

```
duCOP(0.9873537, 0.9873537, cop=GHcop, para=Theta) # 0.9947075
(1-0.9947075)*n # which is about 1.32 events per 250 trials.
```

So the larger protection in terms of joint probabilities provided by EitherEvent at 0.98 instead of MutualEvent at 0.99 with respective protection at the 0.9873537 provides a MutualEvent protection of 0.9947075.

set.seed(894234)
EX3 <- sapply(1:nsim, function(i) {
 uv <- simCOP(n, cop=GHcop, para=Theta, graphics=FALSE)
 length(uv$U[uv$U > 0.9873537 & uv$V > 0.9873537])
})
t.test(EX3, mu=(1-0.9947075) * n)

The expected count $E[EX3] = 1.32$ and the simulation run yielded 1.31. The `t.test()` again results in a statistically insignificant difference, and thus the result indistinguishable from the expectation.
The Kendall (Distribution) Function of a Copula

Description

To begin, there are at least three terms in the literature for what appear as the same function supported by the kfuncCOP function. The Kendall Function also is known as Kendall Distribution Function (Nelsen, 2006, p. 163) and Kendall Measure (Salvadori et al., 2007, p. 148). Each of these is dealt with in sequel to set the manner of the rather lengthy documentation for this function.

KENDALL FUNCTION—The Kendall Function \(F_K \) (Joe, 2014, pp. 419–422) is the cumulative distribution function (CDF) of the vector \(U = (U_1, U_2, \ldots) \) or \(U = (u, v) \) (bivariate) where \(U \) is distributed as the copula: \(U \sim C(u, v) \). Letting \(Z \) be the random variable for \(C(u, v) : Z = C(u, v) \), the Kendall Function is defined as

\[
F_K(z; C) = \Pr[Z \leq z; U \sim C(u, v)],
\]

where \(F_K \) is the nonexceedance probability of the joint probability \(z \) stemming from the \(C \). Note that unlike its univariate counterpart, \(F_K(z) \) is rarely uniformly distributed (Nelsen et al., 2001, p. 278). The inverse \(F_K^{(-1)}(z) \) is implemented by the kfuncCOPinv function, which could be used for simulation of the correct joint probability using a single uniformly distributed \(\sim U(0,1) \) random variable. A reminder is needed that \(Z \) is the joint probability and \(F_K(z) \) is the Kendall Function.

Joe (2014) and others as cited list various special cases of \(F_K(z) \), inequalities, and some useful identities suitable for validation study:

- For \(M(u, v) \) (see M): \(F_K(z) = z \) for all \(0 < z < 1 \) for all \(d \geq 2 \) dimensions;
- For \(W(u, v) \) (see W): \(F_K(z) = 1 \) for all \(0 < z < 1 \) for \(d = 2 \) (bivariate only);
- For \(\Pi(u, v) \) (see P): \(F_K(z) = z - z \log z \) for \(0 < z < 1 \) for \(d = 2 \) (bivariate only);
- For any \(C: z \leq F_K(z) \) for \(0 < z < 1 \); and
- For any \(C: \mathbb{E}[Z] = 1 - \int_0^1 F_K(t) \, dt \geq z \) (Nelsen, 2001, p. 281) — Z expectation, not \(F_K \)!
• For any C: \(\tau_C = 3 - 4 \int_0^1 F_K(t) \, dt \) (Nelsen, 2006, p. 163; see tauCOP [Examples]).
• For any C: \(F_K(t) \) does not uniquely determine the copula.

This last item is from Durante and Sempi (2015, p. 118), and later discussion herein will concern an example of theirs. By coincidence within a few days before receipt of the Durante and Sempi book, experiments using kfuncCOP suggested that numerically the Galambos (GLcop), Gumbel–Hougaard (GHCop), and Hüsler-Reiss (HRCop) extreme value copulas for the same Kendall Tau (\(\tau_C \)) all have the same \(F_K(t) \). Therefore, do all EV-copulas have the same Kendall Function? Well in fact, they do and Durante and Sempi (2015, p. 207) show that \(F_K(z) = z - (1 - \tau_C)z \log(z) \) for an EV-copula.

Joe (2014, p. 420) also indicates that strength of lower-tail dependence (taildepCOP) affects \(F_K(z) \) as \(z \to 0^+ \), whereas strength of upper-tail dependence affects \(F_K(z) \) as \(z \to 1^- \). (A demonstration of tail dependence dependence is made in section Note.) Also compared to comonotonicity copula [M] there are no countermonotonicity copula \((W_{d>2}) \) for dimensions greater the bivariate (Joe, 2014, p. 214)

Joe (2014) does not explicitly list an expression of \(F_K(z) \) that is computable directly for any \(C(u,v) \), and Nelsen (2006, p. 163) only lists a form (see later in documentation) for Archimedean copulas. Salvadori et al. (2007, eq. 3.47, p. 147) also list the Archimedean form; however, Salvadori et al. (2007, eq. 3.49, p. 148) also list a form computable directly for any \(C(u,v) \).

Considerable numerical experiments and derivations involving the \(\Pi(u,v) \) copula and results for \(K_C(z) \) shown later, indicate that the correct Kendall form for any \(C(u,v) \) is

\[
F_K(z) = z + \int_z^1 \frac{\delta C(u,t)}{\delta u} \, du,
\]

where \(t = C^{(-1)}(u,z) \) for \(0 \leq z \leq 1 \), \(t \) can be computed by the COPinv function, and the partial derivative \(\frac{\delta C(u,t)}{\delta u} \) can be computed by the derCOP function. It is a curiosity that this form is not in Joe (2014), Nelsen et al. (2001, 2003), Nelsen (2006), or actually in Salvadori et al. (2007).

KENDALL MEASURE—The actual expression for any \(C(u,v) \) by Salvadori et al. (2007, eq. 3.49, p. 148) is for Kendall’s Measure \((K_C) \) of a copula:

\[
K_C(z) = z - \int_z^1 \frac{\delta C(u,t)}{\delta u} \, du,
\]

where \(t = C^{(-1)}(u,z) \) for \(0 \leq z \leq 1 \). Those authors report that \(K_C(z) \) is the CDF of a random variable \(Z \) whose distribution is \(C(u,v) \). This is clearly appears to be the same meaning as Joe (2014) and Nelsen (2006). The minus “−” in the above equation is very important.

Salvadori et al. (2007, p. 148) report that “the function \(K_C(z) \) represents a fundamental tool for calculating the return period of extreme events.” The complement of \(K_C(z) \) is \(\overline{K_C}(z) = 1 - K_C(z) \), and the \(\overline{K_C}(z) \) inverse

\[
\frac{1}{1 - K_C(z)} = \frac{1}{\overline{K_C}(z)} = T_KC
\]

is referred to as a secondary return period (Salvadori et al., 2007, pp. 161–170).

KENDALL DISTRIBUTION FUNCTION—Nelsen (2006, p. 163) defines the Kendall Distribution Function (say \(K^*_C(t) \)) as
\[K^\ast_C(t) = t - \frac{\phi(t)}{\phi'(t^+)} \]

where \(\phi(t) \) is a generator function of an Archimedean copula and \(\phi'(t^+) \) is a one-sided derivative (Nelsen, 2006, p. 125), and \(\phi(t) = \phi(C(u,v)) = \phi(u) + \phi(v) \). This same form is listed by Salvadori et al. (2007, eq. 3.47).

Nelsen (2006) does not seem to list a more general definition for any \(C(u,v) \). Because there is considerable support for Archimedean copulas in \(\mathbb{R} \), copBasic has deliberately been kept from being yet another Archimedean-based package. This is made for more fundamental theory and pedagogic reasons without the algorithmic efficiency relative to the many convenient properties of Archimedean copulas.

The similarity of \(F_K(z) \), \(K_C(z) \), and \(K^\ast_C(t) \), however, is obvious—research shows that there are no syntatic differences between \(F_K(z) \) and \(K_C(t) \) and \(K^\ast_C(z) \)—they all are the CDF of the joint probability \(Z \) of the copula. Consider now that Salvadori et al. show \(K_C \) having the form \(a - b \) and not a form \(a + b \) as previously shown for \(F_K(z) \). Which form is thus correct? The greater bulk of this documentation seeks to answer that question, and it must be concluded that Salvadori et al. (2007, eq. 3.49) definition for \(K_C(z) \) has a typesetting error.

Usage

```r
kfuncCOP(z, cop=NULL, para=NULL, wrtV=FALSE, as.sample=FALSE, verbose=FALSE,...)
kmeasCOP(z, cop=NULL, para=NULL, wrtV=FALSE, as.sample=FALSE, verbose=FALSE,...)
```

Arguments

- `z` The values for \(z \);
- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `wrtV` A control on whether an optional \(\mathbb{R} \) data.frame in `para` is used to compute the empirical \(F_K(z) \). Let vector length of `para` be denoted \(m \) and \(i = (1, \ldots, m) \), if `as.sample=TRUE`, then for each of the probability pairs in `para`, the empirical copula (EMPIRCop) function with additional arguments ... is used to generate a vector \((0, F^{\ast}_{K,m,1})\) of length \(m + 2 \), then a vector of \((0, z^\ast_{m,1})\) again of length \(m + 2 \) where \(z^\ast_i = (i - 0.5)/m \) is created and linear interpolation by the approx() function in \(\mathbb{R} \) for each of the \(z \) values in `z` is used to estimate \(F_K(z) \) (see source code). If `as.sample="genest"` then the \(F^{\ast}_K(z) \) is estimated without interpolation using a simple empirical copula basis and “pseudo-observations” after Genest et al. (2006, p. 339). The default \(F^{\ast}_K \) is `TRUE` is the linear interpolation based on the default call of Weibull form of the empirical copula, but that can be confirmed by `ctype="weibull"` (see Note);
- `verbose` A logical suppressing warnings from integrate() in \(\mathbb{R} \) that are usually related to “integral divergence” for \(z \to 0^+ \). The constructed behavior of kfuncCOP is to return \(F_K(z \to 0^+) = 0 \) if numerical integration returns `NULL`, and such a construction is made to avoid “end points not of opposite sign” during \(F_K(z) \) inversion by kfuncCOPinv; and
Additional arguments to pass.

Value

The value(s) for $F_K(z)$ is returned.

Note

VALIDATION STUDY—A validation study using the Independence copula ($\Pi = u; v; P$) with theoretical results of Joe (2014) and empiricism is readily performed using the expression for $F_K(z)$:

```r
Z <- sort(c(0.01, seq(0.1, by=0.05), 0.99))  # ** Joint probabilities **
UV <- simCOP(n=4000, cop=P, graphics=FALSE);  kendF <- Z - Z*log(Z)
emp.kendF <- kfuncCOP(Z, para=UV, as.sample="genest") # emp. Kendall func
theo.kendF <- kfuncCOP(Z, cop=P) # theo. Kendall func, numeric integration
plot(Z, kendF, type="l", col=3, lwd=4, lty=2, xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]", ylab="KENDALL FUNCTION, A NONEXCEEDANCE PROBABILITY") # analytical
points(Z, kendF, col=3, lwd=1, lty=2, pch=16) # green (theo. values)
points(Z, emp.kendF, col=4, lwd=2, cex=1.5) # blue (empirical values)
lines(Z, theo.kendF, col=2) # red (theoretical line by numerical integration)
mtext("Kendall Functions: Independence Copula")
```

The figure so produced shows that the theoretical relation in Joe (2014) is correct because the empirical values from the simulated sample (Empirical Kendall Function; Nelsen et al., 2003) match other curves quite well. Rerunning the above code with either $M(u)$ or $W(u,v)$ copulas will show that the special cases listed above are consistent with the empirical estimates. The case of $W(u,v)$ is degenerate at $z = 0$ so the empirical computation is in error for the smallest z given because of interpolation. The M copula has F_K along the equal value line (1:1) line.

Now consider a more comprehensive demonstration using the N4212cop copula with some relatively weak dependence in $\Theta = 1.17$.

```r
Theta <- 1.17; print(rhoCOP(cop=N4212cop, para=Theta)) # Spearman rho = 6/10
Z <- sort(c(0.01, seq(0.1, by=0.05), 0.99))  # ** Joint probabilities **
UV <- simCOP(n=16000, cop=N4212cop, para=Theta, graphics=TRUE)
empir.kendF <- kfuncCOP(Z, as.sample=TRUE, para=UV, ctype="weibull")
kwrtU <- kfuncCOP(Z, cop=N4212cop, para=Theta, wrtV=FALSE)
kwrtV <- kfuncCOP(Z, cop=N4212cop, para=Theta, wrtV=TRUE)
plot(Z, empir.kendF, type="p", col=2, lwd=7, lty=2, xlab="COPULA(u,v) VALUE [JOINT PROBABILITY]", ylab="KENDALL FUNCTION, A NONEXCEEDANCE PROBABILITY")
abline(0.1, lty=2, lwd=0.8); mtext("Kendall Functions: N4212(1.17) Copula")
lines(Z, kwrtU, col=4, lwd=4, lty=2); lines(Z, kwrtV, col=3, lwd=1, lty=2)
```

The figure so produced again shows congruence between the two theoretical computations and the empirical curve. Now consider another comprehensive demonstration using the PLACKETTcop copula with some strong negative dependence in $\Theta = 0.04$.
The figure so produced again shows congruence between the two theoretical computations and the empirical curve.

Another comparison of $F_K(z)$ is useful and concerns lower- and upper-tail dependency (taildepCOP) parameters with a comparison of three different copulae all having the same Kendall's Tau. The following code computes and draws the respective $F_K(z)$:

```r
# Given a Kendall Tau of 0.4 and the GHcop, N4212, and Plackett copulas
# parameters respectively are:
Phi <- 1.666667; Nu <- 1.111119; Mu <- 6.60344

Z <- seq(0.005, 0.995, by=0.005) # ** Joint probabilities **
GHkenf <- kfuncCOP(Z, cop=GHcop, para=Phi, wrtV=FALSE)
N4212kenf <- kfuncCOP(Z, cop=N4212cop, para=Nu, wrtV=FALSE)
PLkenf <- kfuncCOP(Z, cop=PLACKETTcop, para=Mu, wrtV=FALSE)

plot(qnorm(GHkenf), Z, type="l", col=1, lwd=2, xlim=c(-3,3), ylim=c(0,1),
     xlab="KENDALL FUNCTION, A NONEXCEEDANCE PROBABILITY")

abline(0,1, lty=2, lwd=0.8); mtext("Kendall Function: Plackett Copula")
lines(qnorm(N4212kenf), Z, col=2, lwd=2) # red curve
lines(qnorm(PLkenf), Z, col=4, lwd=2) # blue curve
```

The red curve for the N4212 ($\Theta=1.1$) copula (N4212cop) is higher on the left, which shows the impact of its larger lower-tail dependency ($\lambda^L_{N4212}=0 < \lambda^L_{GH}=0.535$), whereas the black curve for the GH ($\Theta=1.67$) copula (GHcop) is similarly (about same magnitude) higher on the right, which shows the impact of its larger upper-tail dependency ($\lambda^U_{GH}=0.484 < \lambda^U_{PL}=0$). The blue curve for the PL ($\Theta=6.60$) copula (PLACKETTcop) nearly overwrites on the left the GH curve, which is a reflection of both copulae having zero lower-tail dependencies ($\lambda^L_{GH} = \lambda^L_{PL} = 0$). Finally, as anticipated by λ^U, the curve on the right for the N4212 is just slightly larger for the PL because the $\lambda^U_{PL}=0 < \lambda^U_{N4212}=0.134$ (a small difference however), and again on the right, the N4212 curve is considerably smaller than the GH because $\lambda^U_{GH}=0 < \lambda^U_{PL}=0.484$.

Durante and Sempi (2015, p. 118) provide an example of two copula (C_1 and C_2) having the same $F_K(z) = \min(2z, 1)$. Let us check that out:

```r
"C1" <- function(u,v, ...) {
  if (length(u) == 1) { u <- rep(u, length(v)) } else
  if (length(v) == 1) { v <- rep(v, length(u)) }
  sapply(1:length(u), function(i) {
    min(c(u[i], max(c(v[i]/2, u[i]+v[i]-1))))
  })
```
"C2" <- function(u,v, ...) {
 if (length(u) == 1) { u <- rep(u, length(v)) } else
 if (length(v) == 1) { v <- rep(v, length(u)) }
 sapply(1:length(u), function(i) { g <- 1/2
 max(c(0, u[i]+v[i]-1, min(c(u[i], v[i])-g), min(c(u[i]-g, v[i]))))
 })
}

Dskf <- function(t) sapply(t, function(z) min(c(2*z, 1)))
zs <- seq(0,1, by=.01); plot(zs, Dskf(zs), col=2, cex=3) # red dots (theory)
lines(zs, kfuncCOP(zs, cop=C1), lwd=4, col=7) # thick yellow line
lines(zs, kfuncCOP(zs, cop=C2), lwd=1, col=1) # thin black line

The plot so produced shows indeed that the numerical operations by kfuncCOP solidly work on
these two strictly singular copulas C_1 and C_2 that are different from the two singular M and W
copulas. The $F_K(z)$ curves exactly matching the theoretical curve provided by Durante and Sempi
are produced.

CONVERSATIONAL ASIDE—Interestingly, Durante and Sempi (2015, pp. 115–121), like other
authors of major works cited herein, do not list a general expression for the $F_K(z)$ as a function
of any $C(u,v)$. Those authors develop the idea of Kendall Function well and show results but for
the author (Asquith) the jump based of Theorem 3.9.2 to an expression, such as shown above for
$F_K(z)$ based on $C(u,t)/\delta u$, to an usable form for any $C(u,v)$ is difficult.

This is a fascinating topic because if the Kendall Function is a reasonably important component of
copula theory, then why so much difficulty in finding a canonical reference? For this one piece,
whereas so much of copBasic features are quite nomenclaturely clear in say Nelsen (2006) or Joe
(2014) but somehow not for the Kendall Function.

Perhaps to the mathematicians, the descriptions (nomenclature) used in all but Salvadori et al.
(2007) are clear to intended readers. But even Salvadori et al. seemingly show theirs in error—
perhaps the author (Asquith) has missed something fundamental, but the validations shown in this
documentation prove at least that kfuncCOP does what it is supposed to be doing but perhaps for
the wrong reasoning. Lastly, Durante and Sempi have an error in their expression for Kendall’s Tau
as a function of $F_K(z)$ (see tauCOP).

SECONDARY RETURN PERIOD—As for “Kendall Measure” (after the lead of Salvadori et al.
[2007, pp. 161–170]), the following code shows for purposes of discussing secondary return period
that $F_K(z)$ is correct and once and for all as defined in this documentation $F_K(z) \neq K_C(z)$. The
secondary return period (T_K) is the expected interarrival time between events exceeding a
T-year joint probability either from U, from V, or both. Let us use the 100-year level (primary
return period; $T = 100$), the Gumbel–Hougaard copula (GH_{cop}) $F_K^{GH(3.055)}(z)$ where the choice
of $\Theta = 3.055$ is made to match discussion in copBasic-package and Salvadori et al. (2007, table
3.3, p. 166).

Gumbel–Hougaard [Kendall Tau=0.67267 (Salvadori et al. [2007])]
Tyear <- 100; ANEP <- 1-1/Tyear; nsim <- 30000; ix <- 1:nsim
1/(1-kfuncCOP(ANEP, cop=GHcop, para=3.055)) # 148.28 years
BarT <- sapply(1:20, function(i) {
 UV <- simCOP(n=nsim, cop=GHcop, para=3.055, graphics=FALSE)
 nsim/sum(GHcop(UVU, UVV, para=3.055) > ANEP)
} message("# BarBarT=", round(mean(BarT), digits=2),
The mean of 20 repeats of a large sample simulation run for \(F^G_{GH}(Z=3.055) K(z=0.99) \) demonstrates empirical results that closely approximate theory \(149.61 \approx 148.28 \), and thus congruence is shown that the definition for \(F_K(z) \) must be correct and that for \(K_C(z) \) is incorrect. The table 3.3 in Salvadori et al. (2007) lists the secondary return period as 148.3 years, which obviously matches the output of \(\text{kfuncCOP} \) and empirical results shown.

Some additional details on secondary return period from Salvadori et al. (2007). Letting \(t_* \) be some critical joint exceedance probability level, \(\bar{F}_K(z) \) be the complement of \(F_K(z) \), those authors (p. 166) name super-critical events having \(\bar{F}_K(t_*) < 1 - t_* \). Thus, the secondary return period \((\bar{F}_K(t_*)^{-1} = T_K) \) must be greater than the primary return period \((t_*)^{-1} \), which is the case here \((T_K=148.3 > T=100) \) (Salvadori et al., 2007, p. 166).

Salvadori et al. (2007) provide considerable discussion of \(T_K \) and some highlights are:

- (p. 162) events equally or exceeding probability \(F_K(1 - 1/t_*) \) or having return intervals \(\geq T_K \) “represent [a] class of potentially dangerous events, the outliers, and \(F_K \) can be used to introduce an ad hoc return period for such destructive events,”
- (p. 162) “primary return period \([T] \) . . . only takes into account the fact that a prescribed critical event is expected to appear once in a given time interval \([T] \) . . . \(\bar{F}_K(t_*) \) provides the exact probability that a potentially destructive event will happen at any given realization of \(Z \) . . . and \(T_K \) gives the expected time for such an outlier to occur.”
- (p. 164) “[\(T \)] only predicts that a critical event is expected to appear once in a given time interval . . . would be more important to be able to calculate (1) the probability that a super-critical [sic] event will occur at any given realization of \(Z \), and (2) how long it takes, on average, for a super-critical event to appear.”
- (p. 164) “the function \(\bar{F}_K \) turns the difficult analysis of bivariate dynamics of \(X \) and \(Y \) into a simpler one-dimensional problem.”

Author(s)

W.H. Asquith

Source

The comprehensive demonstrations are shown in the Note because of a sign convention and (or) probability convention incompatibility with the equation shown by Salvadori et al. (2007, p. 148). Initial source code development for copBasic was based on an hypothesis that the terms “Kendall’s Function” and “Kendall Measure” might somehow have separate meanings—that the author must be blamed for misunderstanding the requisite nomenclature—this is evidently not true.

The \(K_C(z) \) as shown herein simply cannot reproduce \(F_K(z; \Pi) = z - z \log z \) for the \(\Pi \) copula unless the “−” sign in the \(K_C(z) \) equation is changed to a “+” to become the \(F_K(z) \) definition as shown. The detective work needed for a valid function \(\text{kmeasCOP} \) was further complicated by fact that neither Durante and Sempi (2015), Joe (2014), Nelsen (2006), and others do not actually present a general equation for \(F_K(z) \) computation for any \(C(u,v) \).

Because of the subtle differences evidently between “Kendall functions” (lower case), an explicit derivation for \(F_K(z; \Pi) \) is informative to confirm what is meant by the Kendall Function as defined by \(F_K(z) \). Starting with \(z = \Pi(u,v) = uv \), then

\[
v(z) = t = \Pi(\frac{1}{u}, z) = z/u, \text{ and}
\]
\[
\frac{\delta}{\delta u} \Pi(u, t) = \frac{\delta}{\delta u} u v \rightarrow v = \frac{z}{u},
\]

substitution can now proceed:

\[
F_K(z; \Pi) = z + \int_1^z 1 \frac{\delta}{\delta u} \Pi(u, t) \, du = z + \int_1^z \frac{z}{u} \, du,
\]

which simplifies to

\[
F_K(z; \Pi) = z + [z \log(u)] \bigg|_1^z = z + z[\log(1) - \log(z)] = z - z \log z,
\]

which matches the special case shown by Joe (2014) for the independence copula \(\Pi; p\). It is obvious thus that the “+” is needed in the \(F_K(z)\) definition in order to stay consistent with the basic form and integration limits shown by Salvadori et al. (2007) for \(K_C(z)\).

References

See Also

kfuncCOPinv, tauCOP, derCOP, derCOP2, derCOPinv, derCOPinv2

Examples

```r
## Not run:
# Salvadori et al. (2007, p. 148, fig. 3.5 [right])
zs <- seq(0,1, by=.01)
plot(zs, kmeasCOP(zs, cop=GHcop, para=5), log="y", type="l", lwd=4,
     xlab="Z \leftarrow z", ylab="Kendall Function", xlim=c(0,1), ylim=c(0.001,1))
## End(Not run)
```
kfuncCOPinv The Inverse Kendall Function of a Copula

Description

Compute the (numerical) inverse $F_K^{-1}(z) \equiv z(F_K)$ of the Kendall Function $F_K(z; C)$ (kfuncCOP) of a copula $C(u,v)$ given nonexceedance probability F_K. The z is the joint probability of the random variables U and V coupled to each other through the copula $C(u,v)$ and the nonexceedance probability of the probability z is F_K—statements such as “probabilities of probabilities” are rhetorically complex so pursuit of word precision is made herein.

Usage

kfuncCOPinv(f, cop=NULL, para=NULL, ...)

Arguments

- **f**: Nonexceedance probability ($0 \leq F_K \leq 1$);
- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula; and
- **...**: Additional arguments to pass.

Value

The value(s) for $z(F_K)$ are returned.

Note

The L-moments of Kendall Functions appear to be unresearched. Therefore, the kfuncCOP1mom and kfuncCOP1moms functions were written. These compute L-moments on the CDF $F_K(z)$ and not the quantile function $z(F_K)$ and thus are much faster than trying to use kfuncCOPinv in the more common definitions of L-moments. A demonstration of the mean (first L-moment) of the Kendall Function numerical computation follows:

```r
# First approach
"afunc" <- function(f) kfuncCOPinv(f, cop=GHcop, para=p1)
integrate(afunc, 0, 1) # 0.4204238 with absolute error < 2.5e-05
# Second approach
kfuncCOP1mom(1, cop=GHcop, para=p1) # 0.4204222
```

where the first approach uses $z(F_K)$, whereas the second method uses integration for the mean on $F_K(z)$.

Author(s)

W.H. Asquith
References

See Also

kfuncCOP

Examples

```r
## Not run:
Z <- c(0, 0.25, 0.50, 0.75, 1)  # Joint probabilities of a N412cop
kfuncCOPinv(kfuncCOP(Z, cop=N412cop, para=4.3), cop=N412cop, para=4.3)
# [1] 0.000000 0.249998 0.500022 0.750011 1.000000
## End(Not run)
```

kfuncCOPlmoms

The L-moments of the Kendall Function of a Copula

Description

Compute the L-moments of the Kendall Function ($F_K(z; C)$) of a copula $C(u, v)$ where the z is the joint probability of the $C(u, v)$. The Kendall Function is the cumulative distribution function (CDF) of the joint probability Z of the coupla. The expected value of the $z(F_K)$ (mean, first L-moment λ_1), because Z has nonzero probability for $0 \leq Z \leq \infty$, is

$$E[Z] = \lambda_1 = \int_0^\infty [1 - F_K(t)] \, dt = \int_0^1 [1 - F_K(t)] \, dt,$$

where for circumstances here $0 \leq Z \leq 1$. The ∞ is mentioned only because expectations of such CDFs are usually shown using $(0, \infty)$ limits, whereas integration of quantile functions (CDF inverses) use limits $(0, 1)$. Because the support of Z is $(0, 1)$, like the probability F_K, showing just it (∞) as the upper limit could be confusing—statements such as “probabilities of probabilities” are rhetorically complex so pursuit of word precision is made herein.

An expression for λ_r for $r \geq 2$ in terms of the $F_K(z)$ is

$$\lambda_r = \frac{1}{r} \sum_{j=0}^{r-2} (-1)^j \binom{r-2}{j} \binom{r}{j+1} \int_0^1 [F_K(t)]^{r-j-1} \times [1 - F_K(t)]^{j+1} \, dt,$$

where because of these circumstances the limits of integration are $(0, 1)$ and not $(-\infty, \infty)$ as in the usual definition of L-moments in terms of a distribution’s CDF.

The mean, L-scale, coefficient of L-variation (τ_2, LCV, L-scale/mean), L-skew (τ_3, TAU3), L-kurtosis (τ_4, TAU4), and τ_5 (TAU5) are computed. In usual nomenclature, the L-moments are $\lambda_1 =$ mean, $\lambda_2 =$ L-scale, $\lambda_3 =$ third L-moment, $\lambda_4 =$ fourth L-moment, and $\lambda_5 =$ fifth L-moment, whereas the L-moment ratios are $\tau_2 = \lambda_2/\lambda_1 =$ coefficient of L-variation, $\tau_3 = \lambda_3/\lambda_2 =$ L-skew,
\(\tau_4 = \lambda_4 / \lambda_2 = \) L-kurtosis, and \(\tau_5 = \lambda_5 / \lambda_2 = \) not named. It is common amongst practitioners to lump the L-moment ratios into the general term “L-moments” and remain inclusive of the L-moment ratios. For example, L-skew then is referred to as the 3rd L-moment when it technically is the 3rd L-moment ratio. There is no first L-moment ratio (meaningless) so results from this function will canonically show a NA in that slot. The coefficient of L-variation is \(\tau_2 \) (subscript 2) and not Kendall’s Tau (\(\tau \)). Sample L-moments are readily computed by several packages in R (e.g. \texttt{lmomco}, \texttt{lmom}, \texttt{Lmoments}, \texttt{POT}).

Usage

\[
\text{kfuncCOPlmoms}(r, \text{cop=NULL, para=NULL, ...})
\]

\[
\text{kfuncCOPlmoms}(\text{cop=NULL, para=NULL, nmom=5, begin.mom=1, ...})
\]

Arguments

- \(r \): The \(r \)th order of a single L-moment to compute;
- \(\text{cop} \): A copula function;
- \(\text{para} \): Vector of parameters or other data structure, if needed, to pass to the copula;
- \(\text{nmom} \): The number of L-moments to compute;
- \(\text{begin.mom} \): The \(r \)th order to begin the sequence \(\lambda_{\text{beg}}: \text{nmom} \) for L-moment computation. The rarely used argument is means to bypass the computation of the mean if the user has an alternative method for the mean or other central tendency characterization in which case \(\text{begin.mom} = 2 \); and
- \(\ldots \): Additional arguments to pass.

Value

An \texttt{R list} is returned by \texttt{kfuncCOPlmoms} and only the scalar value of \(\lambda_r \) by \texttt{kfuncCOPlmoms}.

- \(\text{lambdas} \): Vector of the L-moments. First element is \(\lambda_1 \), second element is \(\lambda_2 \), and so on;
- \(\text{ratios} \): Vector of the L-moment ratios. Second element is \(\tau \), third element is \(\tau_3 \) and so on; and
- \(\text{source} \): An attribute identifying the computational source of the L-moments: “kfuncCOPlmoms”.

Note

The L-moments of Kendall Functions appear to be not yet fully researched. An interesting research direction would be the trajectories of the L-moments or L-moment ratio diagrams for the Kendall Function and the degree to which distinction between copulas becomes evident—such diagrams are in widespread use for distinguishing between univariate distributions. It is noted, however, that Kendall Function L-moment ratio diagrams might be of less utility that in the univariate world because different copulas can have the same \(F_K(z) \), such as all bivariate extreme value copulas.

\[
\text{Rhos} \leftarrow \text{seq}(0, 0.9, \text{by}=0.05)
\]
\[
\text{L1} \leftarrow \text{T2} \leftarrow \text{T3} \leftarrow \text{T4} \leftarrow \text{Thetas} \leftarrow \text{vector}(\text{mode}="\text{numeric}", \text{length(Rhos)})
\]


```r
for(i in 1:length(Thetas)) {
    Thetas[i] <- uniroot(function(p)
        Rhos[i] = rhoCOP(cop=PARETOcop, para=p), c(0,100))$root
        message("Rho = ", Rhos[i], " and Pareto theta = ",
        round(Thetas[i], digits=4))
    lmr <- kfunccOPlmoms(cop=PARETOcop, para=Thetas[i], nmom=4)
    L1[i] <- lmr$lambdas[1]; T2[i] <- lmr$ratios[2]
}
LMR <- data.frame(Rho=Rhos, Theta=Thetas, L1=L1, T2=T2, T3=T3, T4=T4)
plot(LMR$Rho, LMR$T2, ylim=c(-0.04, 0.5), xlim=c(0,1),
    xlab="Spearman's Rho or coefficient of L-variation",
    ylab="L-moment ratio", type="l", col=1) # black
lines(LMR$Rho, LMR$T3, col=2) # red
lines(LMR$Rho, LMR$T4, col=3) # green
lines(LMR$T2, LMR$T3, lty=2, col=4) # dashed blue
lines(LMR$T2, LMR$T4, lty=2, col=5) # dashed cyan
lines(LMR$T3, LMR$T4, lty=2, col=6) # dashed purple

Author(s)
W.H. Asquith

References

See Also
kfuncCOP

Examples
## Not run:
kfuncCOPlmom(1, cop=P) # 0.5 * 0.5 = 0.25 is expected joint prob. of independence
# [1] 0.2499999 (in agreement with theory)
ls.str(kfuncCOPlmoms(cop=GHCop, para=4.21)) # Gumbel-Hougaard copula
# lambdas : num [1:5] 0.440617 0.169085 0.011228 -0.00797 0.000249
# ratios : num [1:5] NA 0.38375 0.0664 -0.00472 0.00147
# source : chr "kfuncCOPlmoms" # e.g. L-skew = 0.0664
## End(Not run)

## Not run:
UV <- simCOP(200, cop=PLCop, para=1/pi, graphics=FALSE)
theta <- PPlpar(UV[,1], UV[,2]); zs <- seq(0.01,0.99, by=.01) # for later

# Take the sample estimated parameter and convert to joint probabilities Z
# Convert the Z to the Kendall Function estimates again with the sample parameter
Z <- PLCop(UV[,1], UV[,2], para=theta); KF <- kfuncCOP(Z, cop=PLCop, para=theta)
```
`kullCOP`

Kullback–Leibler Divergence, Jeffrey’s Divergence, and Kullback–Leibler Sample Size

Description

Compute the Kullback–Leibler divergence, Jeffrey’s divergence, and Kullback–Leibler sample size following Joe (2014, pp. 234–237). Consider two densities \(f = c_1(u, v; \Theta_f) \) and \(g = c_2(u, v; \Theta_g) \) for two different bivariate copulas \(C_1(\Theta_1) \) and \(C_2(\Theta_2) \) having respective parameters \(\Theta \), then the Kullback–Leibler divergence of \(f \) relative to \(g \) is

\[
KL(f|g) = \int_{\mathcal{I}^2} g \log(g/f) \, du \, dv,
\]

and Kullback–Leibler divergence of \(g \) relative to \(f \) is

\[
KL(g|f) = \int_{\mathcal{I}^2} f \log(f/g) \, du \, dv,
\]

where the limits of integration \(\mathcal{I}^2 \) theoretically are closed on \([0, 1]^2\) but an open interval \((0, 1)^2\) might be needed for numerical integration. Note that in general \(KL(f|g) \neq KL(g|f) \). The \(KL(f|g) \) is the expected log-likelihood ratios of \(g \) to \(f \) when \(g \) is the true density (Joe, 2014, p. 234), whereas \(KL(g|f) \) is the opposite.
This asymmetry leads to Jeffrey’s divergence, which is defined as a symmetrized version of the two Kullback–Leibler divergences, and is

\[J(f, g) = KL(f|g) + KL(g|f) = \int \int_{\mathbb{R}^2} (g - f) \log(g/f) \, du \, dv. \]

The variances of the Kullback–Leibler divergences are defined as

\[\sigma_{KL(f|g)}^2 = \int \int_{\mathbb{R}^2} g \left[\log(g/f) \right]^2 \, du \, dv - [KL(f|g)]^2, \]

and

\[\sigma_{KL(g|f)}^2 = \int \int_{\mathbb{R}^2} f \left[\log(f/g) \right]^2 \, du \, dv - [KL(g|f)]^2. \]

For comparison of copula families \(f \) and \(g \) and taking an \(\alpha = 0.05 \), the Kullback–Leibler sample size is defined as

\[n_{fg} = \left[\Phi^{-1}(1 - \alpha) \times \eta_{KL} \right]^2, \]

where \(\Phi^{-1}(t) \) is the quantile function for the standard normal distribution \(\sim N(0,1) \) for non-exceedance probability \(t \), and \(\eta_{KL} \) is the maximum of

\[\eta_{KL} = \max \left[\sigma_{KL(f|g)}/KL(f|g), \sigma_{KL(g|f)}/KL(g|f) \right]. \]

The \(n_{fg} \) gives an indication of the sample size needed to distinguish \(f \) and \(g \) with a probability of at least \(1 - \alpha = 1 - 0.05 = 0.95 \) or 95 percent.

The \texttt{copBasic} features a naïve Monte Carlo integration scheme in the primary interface \texttt{kullCOP}, although the function \texttt{kullCOPint} provides for nested numerical integration. This later function is generally fast but suffers too much for general application from integral divergencies issued from the \texttt{integrate()} function in \texttt{R}—this must be judged in the light that the package focuses only on implementation of the function of the copula itself and neither numerical estimation of copula density (\texttt{densityCOP}) and not analytical copula densities or hybrid representations thereof. Sufficient “bread crumbs” are left among the code and documentation for users to re-implement if speed is paramount. Numerical comparison to the results of Joe (2014) (see \textbf{Examples}) suggests that the default Monte Carlo sample size should be more than sufficient for general inference with the expense of considerable CPU time; however, a couple of repeated calls of \texttt{kullCOP} would be advised and compute say the mean of the resulting sample sizes.

Usage

```
kullCOP(cop1=NULL, cop2=NULL, para1=NULL, para2=NULL, alpha=0.05, del=0, n=1E5, verbose=TRUE, sobol=FALSE, ...)
```

```
kullCOPint(cop1=NULL, cop2=NULL, para1=NULL, para2=NULL, alpha=0.05, del=NULL, Machine$double.eps*0.25, verbose=TRUE, ...)
```

Arguments

- \texttt{cop1} A copula function corresponding to copula \(f \) in Joe (2014);
- \texttt{para1} Vector of parameters or other data structure, if needed, to pass to the copula \(f \);
A copula function corresponding to copula g in Joe (2014);

Vector of parameters or other data structure, if needed, to pass to the copula g;

The α in the Kullback–Leibler sample size equation;

A small value used to denote the lo and hi values of the numerical integration: $lo = \text{del}$ and $hi = 1 - \text{del}$. If $\text{del} == 0$, then $lo = 0$ and $hi = 1$, which corresponds to the theoretical limits $Z^2 = [0, 1]^2$ and are defaulted here to $[0, 1]^2$ because the Monte Carlo algorithm is preferred for general application. The end point control, however, is maintained just in case pathological situations should arise;

$kullCOP$ (Monte Carlo integration) only—The Monte Carlo integration simulation size;

A logical trigging a couple of status lines of output through the message() function in R;

A logical trigging Sobol sequences for the Monte Carlo integration instead of the bivariate uniform distribution. The Sobol sequences are dependent on the randtoolbox package and the sobol() function; and

Additional arguments to pass to the densityCOP function.

An R list is returned having the following components:

MonteCarlo.sim.size

$kullCOP$ (Monte Carlo integration) only—The simulation size for numerical integration;

divergences

A vector of the Kullback–Leibler divergences and their standard deviations: $\text{KL}(f|g)$, $\sigma_{\text{KL}(f|g)}$, $\text{KL}(g|f)$, and $\sigma_{\text{KL}(g|f)}$, respectively;

stdev.divergences

$kullCOP$ (Monte Carlo integration) only—The standard deviation of the divergences and the variances;

Jeffrey.divergence

Jeffrey’s divergence $J(f, g)$;

KL.sample.size

Kullback–Leibler sample size n_{fg}; and

integrations

$kullCOPint$ (numerical integration) only—An R list of the outer call of the integrate() function for the respective numerical integrals shown in this documentation.

Author(s)

W.H. Asquith

References

See Also
densityCOP, vuongCOP

Examples

See another demonstration under the Note section of statTn().
Not run:
Joe (2014, p. 237, table 5.2)
The Gumbel-Hougaard copula and Plackett copula below each have a Kendall Tau of
about 0.5. Joe (2014) lists in the table that Jeffrey divergence is about 0.110
and the Kullback-Leibler sample size is 133. Joe (2014) does not list the
parameters for either copula, just that Kendall Tau = 0.5.
KL <- kullCOP(cop1=GHCop, para1=2, cop2=PLACKETTCop, para2=11.40484)
Reports Jeffrey divergence = 0.1063858
Kullback-Leibler sample size = 136 (another run produces 131)
S <- replicate(20, kullCOP(cop1=GHCop, para1=2, cop2=PLACKETTCop,
 para2=11.40484, verbose=FALSE)$KL.sample.size)
print(as.integer(c(mean(S), sd(S))))) # 134 plus/minus 5

Joe (2014, p. 237, table 5.3)
The Gumbel-Hougaard copula and Plackett copula below each have a Spearman Rho of
about 0.5. Joe (2014) lists in the table that Jeffrey divergence is about 0.063
and the Kullback-Leibler sample size is 210. Joe (2014) does not list the
parameters for either copula, just that for Spearman Rho = 0.5.
KL <- kullCOP(cop1=GHCop, para1=1.541071, cop2=PLACKETTCop, para2=5.115658)
Reports Jeffrey divergence = 0.06381151
Kullback-Leibler sample size = 220 (another run produces 203)
S <- replicate(20, kullCOP(cop1=GHCop, para1=1.541071, cop2=PLACKETTCop,
 para2=5.115658, verbose=FALSE)$KL.sample.size)
print(as.integer(c(mean(S), sd(S))))) # 220 plus/minus 16

Joe (2014) likely did the numerical integrations using analytical solutions to the
probability densities and not rectangular approximations as in densityCOP().
End(Not run)

Not run:
Compare Jeffery Divergence estimates as functions of sample size when computed
using Sobol sequences or not---Sobol sequences have less sampling variability.
GHPar <- PAPar <- 2 # Spearman Rho = 0.6822339
Ns <- as.integer(10^c(seq(2.0, 3.5, by=0.01), seq(3.6, 5, by=0.2)))
JDuni <- sapply(length(Ns), function(i) {
 kullCOP(cop1=GHCop, para1=GHPar, verbose=FALSE, cop2=PARETOcop, para2=PAPar, n=Ns[i], sobol=FALSE)$Jeffrey.divergence })
JDsob <- sapply(length(Ns), function(i) {
 kullCOP(cop1=GHCop, para1=GHPar, verbose=FALSE, cop2=PARETOcop, para2=PAPar, n=Ns[i], sobol=TRUE)$Jeffrey.divergence })
plot(Ns, JDuni, type="l", log="x", # black line, notice likely outliers too xlab="Sample Size", ylab="Jeffery Divergence")
lines(Ns, JDsob, col=2) # red line
print(c(mean(JDuni), sd(JDuni))) # [1] 0.05923462 0.01544651
print(c(mean(JDsob), sd(JDsob))) # [1] 0.05863623 0.01184879
So we see a slightly smaller variation when the Sobol sequence is used.
End(Not run)

L-comoments and Bivariate L-moments of a Copula

Description

Compute the L-comoments (Serfling and Xiao, 2007; Asquith, 2011) through the bivariate L-moments (ratios) \(\delta_{k;C}^{[12]} \) of a copula \(C(u, v; \Theta) \). The L-comoments include L-correlation (Spearman’s Rho), L-coskew, and L-cokurtosis. As described by Brahimi et al. (2015), the first four bivariate L-moments \(\delta_{k;C}^{[12]} \) for random variable \(X^{(1)} \) or \(U \) with respect to \(\text{wrt} \) random variable \(X^{(2)} \) or \(V \) are defined as

\[
\delta_{1;C}^{[12]} = 2 \int \int_{T^2} C(u, v) \, du \, dv - \frac{1}{2},
\]

\[
\delta_{2;C}^{[12]} = \int \int_{T^2} (12v - 6)C(u, v) \, du \, dv - \frac{1}{2},
\]

\[
\delta_{3;C}^{[12]} = \int \int_{T^2} (60v^2 - 60v + 12)C(u, v) \, du \, dv - \frac{1}{2}, \text{ and}
\]

\[
\delta_{4;C}^{[12]} = \int \int_{T^2} (280v^3 - 420v^2 + 180v - 20)C(u, v) \, du \, dv - \frac{1}{2},
\]

where the bivariate L-moments are related to the L-comoment ratios by

\[
6\delta_{k}^{[12]} = \tau_{k+1}^{[12]} \quad \text{and} \quad 6\delta_{k}^{[21]} = \tau_{k+1}^{[21]},
\]

where in otherwords, “the third bivariate L-moment \(\delta_{3}^{[12]} \) is one sixth the L-cokurtosis \(\tau_{4}^{[12]} \).” The first four bivariate L-moments yield the first five L-comoments. The terms and nomenclature are not easy and also the English grammar adjective “ratios” is not always consistent in the literature. The \(\delta_{k;C}^{[12]} \) are ratios. The sample L-comoments are supported by the lmomco package, and in particular for the bivariate case, they are supported by lcomomsR of that package.

Similarly, the \(\delta_{k}^{[21]} \) are computed by switching \(u \rightarrow v \) in the polynomials within the above integrals multiplied to the copula in the system of equations with \(u \). In general, \(\delta_{k}^{[12]} \neq \delta_{k}^{[21]} \) for \(k > 1 \) unless in the case of permutation symmetric (iscOP/permsym) copulas. By theory, \(\delta_{1}^{[12]} = \delta_{1}^{[21]} = \rho_C/6 \) where \(\rho_C \) is Spearman’s Rho rhocOP.

The integral for \(\delta_{k}^{[12]} \) does not appear in Brahimi et al. (2015) but this and the other forms are verified in the Examples and discussion in Note. The four \(k \in [1, 2, 3, 4] \) for \(U \text{ wrt} \ V \) and \(V \text{ wrt} \ U \) comprise a full spectrum of system of seven (not eight) equations. One equation is lost because \(\delta_{1}^{[12]} = \delta_{1}^{[21]} \).

Usage

lcomCOP(cop=NULL, para=NULL, as.bilmoms=FALSE, orders=2:5, ...)

development

L-comoments and Bivariate L-moments of a Copula

Description

Compute the L-comoments (Serfling and Xiao, 2007; Asquith, 2011) through the bivariate L-moments (ratios) \(\delta_{k;C}^{[12]} \) of a copula \(C(u, v; \Theta) \). The L-comoments include L-correlation (Spearman’s Rho), L-coskew, and L-cokurtosis. As described by Brahimi et al. (2015), the first four bivariate L-moments \(\delta_{k;C}^{[12]} \) for random variable \(X^{(1)} \) or \(U \) with respect to \(\text{wrt} \) random variable \(X^{(2)} \) or \(V \) are defined as

\[
\delta_{1;C}^{[12]} = 2 \int \int_{T^2} C(u, v) \, du \, dv - \frac{1}{2},
\]

\[
\delta_{2;C}^{[12]} = \int \int_{T^2} (12v - 6)C(u, v) \, du \, dv - \frac{1}{2},
\]

\[
\delta_{3;C}^{[12]} = \int \int_{T^2} (60v^2 - 60v + 12)C(u, v) \, du \, dv - \frac{1}{2}, \text{ and}
\]

\[
\delta_{4;C}^{[12]} = \int \int_{T^2} (280v^3 - 420v^2 + 180v - 20)C(u, v) \, du \, dv - \frac{1}{2},
\]

where the bivariate L-moments are related to the L-comoment ratios by

\[
6\delta_{k}^{[12]} = \tau_{k+1}^{[12]} \quad \text{and} \quad 6\delta_{k}^{[21]} = \tau_{k+1}^{[21]},
\]

where in otherwords, “the third bivariate L-moment \(\delta_{3}^{[12]} \) is one sixth the L-cokurtosis \(\tau_{4}^{[12]} \).” The first four bivariate L-moments yield the first five L-comoments. The terms and nomenclature are not easy and also the English grammar adjective “ratios” is not always consistent in the literature. The \(\delta_{k;C}^{[12]} \) are ratios. The sample L-comoments are supported by the lmomco package, and in particular for the bivariate case, they are supported by lcomomsR of that package.

Similarly, the \(\delta_{k}^{[21]} \) are computed by switching \(u \rightarrow v \) in the polynomials within the above integrals multiplied to the copula in the system of equations with \(u \). In general, \(\delta_{k}^{[12]} \neq \delta_{k}^{[21]} \) for \(k > 1 \) unless in the case of permutation symmetric (iscOP/permsym) copulas. By theory, \(\delta_{1}^{[12]} = \delta_{1}^{[21]} = \rho_C/6 \) where \(\rho_C \) is Spearman’s Rho rhocOP.

The integral for \(\delta_{k}^{[12]} \) does not appear in Brahimi et al. (2015) but this and the other forms are verified in the Examples and discussion in Note. The four \(k \in [1, 2, 3, 4] \) for \(U \text{ wrt} \ V \) and \(V \text{ wrt} \ U \) comprise a full spectrum of system of seven (not eight) equations. One equation is lost because \(\delta_{1}^{[12]} = \delta_{1}^{[21]} \).

Usage

lcomCOP(cop=NULL, para=NULL, as.bilmoms=FALSE, orders=2:5, ...)

development
Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
as.bilmoms A logical to trigger return of the \(\delta_k \) and the return vectors will be named differently;
orders The orders of the L-comoments to return, which is internally adjusted if as.bilmoms is set. There is no first order L-comoment and the first index on returned values is set to NA to remain index consistent with the lmomco package. An order greater than 5 is not supported; and
... Additional arguments to pass to the densityCOP function.

Value

An R list of the L-comoments or bivariate L-moments is returned depending on as.bilmoms setting.

\[\text{bilmomUV} \quad \text{The bivariate L-moments } \delta_k^{[12]} \text{ of } U \text{ with respect to } V \text{ for } k \in [1, 2, 3, 4] \text{ if orders is } 2:5 \text{ and there is no NA index as for the L-comoments;} \]

\[\text{bilmomVU} \quad \text{The bivariate L-moments } \delta_k^{[21]} \text{ of } V \text{ with respect to } U \text{ for } k \in [1, 2, 3, 4] \text{ if orders is } 2:5 \text{ and there is no NA index as for the L-comoments;} \]

\[\text{lcomUV} \quad \text{The L-comoments } \tau_k^{[12]} \text{ of } V \text{ with respect to } U \text{ for } k \in [2, 3, 4, 5] \text{ if orders is } 2:5 \text{ and index 1 is NA;} \text{ and} \]

\[\text{lcomVU} \quad \text{The L-comoments } \tau_k^{[21]} \text{ of } V \text{ with respect to } U \text{ for } k \in [2, 3, 4, 5] \text{ if orders is } 2:5 \text{ and index 1 is NA.} \]

Note

The documentation here is highly parallel to bilmoms for which that function was developed some years before lmomCOP January 2019. Also bilmoms is based on gridded or Monte Carlo numerical integration is deprecated and is to be considered deprecated. Finally, related background and various algorithm testing is documented in bilmoms.

Author(s)

W.H. Asquith

References

Simulating the Sample Distribution(s) of L-correlation, L-coskew, and L-cokurtosis for a Copula

Description

EXPERIMENTAL: The function provides two themes of sampling distribution characterization by simulation of the first three L-comoment ratios (L-correlation $\tau_2[\ldots]$, L-coskew $\tau_3[\ldots]$ and L-cokurtosis $\tau_4[\ldots]$) of a copula. Subsequently, the sampling distribution can be used for inference. First, semi-optional Monte Carlo integration estimation of the L-comoments of the parent copula are computed. Second, simulations involving the sample size n presumed the size of the actual sample from which the estimates of the sample L-comoments given as arguments. These simulations result in a report of the L-moments (not L-comoments) of the sampling distribution and these then are used to compute p-values for the L-comoment matrices provided by the user as a function argument.

Usage

```r
lcomCOPpv(n, lcom, cop=NULL, para=NULL, repcoe=5E3, type="gno",
        mcn=1E4, mcrep=10, usemcmu=FALSE, digits=5, ...)```

Arguments

- **n**: The sample size $n$. This argument is semi-optional because $n = 0$ can be given to skip corresponding simulations and the ntable on return will only contain NA; this feature permits rapid extraction of the Ntable and thus the lcom contents are simply not used;
- **lcom**: The sample L-comoments (see below);
- **cop**: A copula function;
- **para**: Vector of parameters, if needed, to pass to the copula;

Examples

```r
Not run:
para <- list(alpha=0.5, beta=0.93, para1=4.5, cop=GLcop, cop2=PSP)
copBasic:::lcomCOP(cop=composite2COP, para=para)$lcomUV[3]
 # Lcomom: T3[12] = +0.156

copBasic:::lcomCOP(cop=composite2COP, para=para)$lcomUV[3]
 # Lcomom: T3[21] = -0.0668

bilmoms(cop=composite2COP, n=10000, para=para, sobol=TRUE)$bilmoms$T3
 # Tau3[12] = +0.1566, Tau3[21] = -0.0655

The numerical default Monte Carlo integration of bilmoms()
matches the numerical integration of lcomCOP albeit with a
substantially slower and less elegant means in bilmoms().
End(Not run)```
The replication coefficient ϕ affecting the number of simulations of size n;

distribution type

The distribution type used for modeling the distribution of the sampling values. The generalized normal (see distribution type "gno" in package \texttt{lmomco}) accommodates some skewness compared to the symmetry of the normal ("nor") just in case situations arise in which non-ignorable skewness in the sample distribution exists. The distribution abbreviations of package \texttt{lmomco} are recognized for the \texttt{type} argument, but in reality the "nor" and "gno" should be more than sufficient;

sample size

The sample size N passed to the \texttt{bilmoms} function for the Monte Carlo integration. If $N = 0$ then the Monte Carlo integration is not used, otherwise the minimum sample size is internally reset to $N = 4$ so that first four L-moments are computable;

number of replications of the Monte Carlo simulation by \texttt{bilmoms};

A logical toggling whether the mean value computed from the replicated Monte Carlo integrations is used instead of the mean values for the small sample simulation for the p-value computations;

number of digits to round numerical entries in the returned tables and can be NA for no rounding; and

Additional arguments to pass to the \texttt{bilmoms} function or to the copula.

Details

The notation $r[\ldots]$ refers to two specific types of L-comoment definitions and a blend between the two. The notation $r[12]$ means that the rth L-comoment for random variables $\{X^{(1)}, X^{(2)}\}$ where $X^{(2)}$ is the sorted variable and $X^{(1)}$ is shuffled by the sorting index. Conversely, the notation $r[21]$ means that the rth L-comoment for random variables $\{X^{(1)}, X^{(2)}\}$ where $X^{(1)}$ is the sorted variable and $X^{(2)}$ is shuffled by the sorting index. The notation $r[12:21]$ means that the average between the $r[21]$ and $r[21]$ is computed, which might prove useful in circumstances of known or expected symmetry of the L-comoments.

Continuing, $\hat{\tau}_{2[12]}$ is the sample L-correlation, $\hat{\tau}_{3[12]}$ is the sample L-coskew, and $\hat{\tau}_{4[12]}$ is the sample L-cokurtosis all with respect to the sorting of the second variable. The computation of these L-comoment matrices can be made by functions such as function \texttt{lcomom2()} in the \texttt{lmomco} package. The number of replications for the simulations involving the n sample size is computed by

\[m = \phi / \sqrt{n}, \]

where ϕ is the \texttt{repcoe} replication factor or coefficient. If \texttt{usemcmu} is TRUE then \texttt{mcn} > 0 else \texttt{usemcmu} is reset to FALSE.

Value

An \texttt{R} list is returned.

description text

A string functioning as a label for the remaining tables;

table

Another \texttt{R} list holding tables of the L-moments of the L-comoments derived from Monte Carlo integration for samples of size $N = \texttt{mcn}$. The simulations are replicated \texttt{mcrep} times; and
Another R list holding tables of the L-moments of the L-comoments derived from the small sample simulations for samples of size \(n = n \) as well as the p-values estimated by a generalized normal distribution (see \texttt{lmomco} package documentation) of the L-moments using either the small sample means or the mean of the replicated Monte Carlo integrations as dictated by \texttt{usemcmu}. In all circumstances, however, the results for the small sample simulations are tabulated in \texttt{ntable} only the p-value will be reflective the setting of \texttt{usemcmu}.

Note

A significance column for the p-values is added to the right side of the returned \texttt{ntable} and is used to guide the eye in interpretation of results. The significant codes having the following definitions for a two-tailed form:

- "_" > 0.1; ".", 0.1; "+", 0.05; "++", 0.01; "+++", 0.001

Author(s)

W.H. Asquith

References

See Also

\texttt{COP}, \texttt{kullCOP}, \texttt{vuongCOP}

Examples

See Note section of \texttt{vuongCOP()} for an extended discussion of copula inference
Not run:
 Tau <- \texttt{0.6410811}; para <- GHcop(tau=Tau)$para # This Tau is from a situation of two river tributaries. These three L-comoments with univariate L-moments on the T2 <- c(1, 0.79908960, 0.79908960, 1) # diagonals are derived from those river tributaries and downstream of the junction data. T3 <- c(0, -0.04999318, 0.07680982, 0) T4 <- c(0, 0.01773833, 0.04756257, 0) # Is the H0:GHcop rejectable? LCOM <- list(T2=matrix(T2, nrow=2), T3=matrix(T3, nrow=2), T4=matrix(T4, nrow=2)) set.seed(30312) ZZ1 <- \texttt{lcomCOPpv}(75, LCOM, cop=GHcop, para=para, repcoe=2000, usemcmu=FALSE)
print(ZZ1)
set.seed(30312)
ZZ2 <- \texttt{lcomCOPpv}(75, LCOM, cop=GHcop, para=para, repcoe=2000, usemcmu=TRUE)
print(ZZ2)
The results here suggest that the GHcop is not rejectable.
End(Not run)
Convert L-comoments to Parameters of Alpha-Beta Compositions of Two One-Parameter Copulas

Description

EXPERIMENTAL—This function converts the L-comoments of a bivariate sample to the four parameters of a composition of two one-parameter copulas. Critical inputs are of course the first three dimensionless L-comoments: L-correlation, L-coskew, and L-cokurtosis. The most complex input is the solutionenvir, which is an environment containing arbitrarily long, but individual tables, of L-comoment and parameter pairings. These pairings could be computed from the examples in simcompositeCOP.

The individual tables are prescanned for potentially acceptable solutions and the absolute additive error of both L-comoments for a given order is controlled by the tNeps arguments. The default values seem acceptable. The purpose of the prescanning is to reduce the computation space from perhaps millions of solutions to a few orders of magnitude. The computation of the solution error can be further controlled by X or u with respect to Y or v using the comptNerrXY arguments, but experiments thus far indicate that the defaults are likely the most desired. A solution “matching” the L-correlation is always sought; thus there is no usetNerr argument. The arguments uset3err and uset4err provide some level of granular control on addition error minimization; the defaults seek to “match” L-coskew and ignore L-cokurtosis. The setreturn controls which rank of computed solution is returned; users might want to manually inspect a few of the most favorable solutions, which can be done by the setreturn or inspection of the returned object from the \texttt{lcomoms2.ABcop2parameter} function. The examples are detailed and self-contained to the \texttt{copBasic} package; curious users are asked to test these.

Usage

```r
lcomoms2.ABcop2parameter(solutionenvir=NULL,
T2.12=NULL, T2.21=NULL,
T3.12=NULL, T3.21=NULL,
T4.12=NULL, T4.21=NULL,
t2eps=0.1, t3eps=0.1, t4eps=0.1,
compt2errvu=TRUE, compt2errrvu=TRUE,
compt3errvu=TRUE, compt3errrvu=TRUE,
compt4errvu=TRUE, compt4errrvu=TRUE,
uset3err=TRUE, uset4err=FALSE,
setreturn=1, maxtokeep=1e5)
```

Arguments

- `solutionenvir` The environment containing solutions;
- `T2.12` L-correlation $\tau_2^{[12]}$;
- `T2.21` L-correlation $\tau_2^{[21]}$;
T3.12 L-coskew $\tau_3^{[12]}$;
T3.21 L-coskew $\tau_3^{[21]}$;
T4.12 L-cokurtosis $\tau_4^{[12]}$;
T4.21 L-cokurtosis $\tau_4^{[21]}$;

t2eps An error term in which to pick a potential solution as close enough on preliminary processing for $\tau_2^{[1\leftrightarrow 2]}$;

t3eps An error term in which to pick a potential solution as close enough on preliminary processing for $\tau_3^{[1\leftrightarrow 2]}$;

t4eps An error term in which to pick a potential solution as close enough on preliminary processing for $\tau_4^{[1\leftrightarrow 2]}$;

compt2erruv Compute an L-correlation error using the 1 with respect to 2 (or u wrt v);
compt2errvu Compute an L-correlation error using the 2 with respect to 1 (or v wrt u);
compt3erruv Compute an L-coskew error using the 1 with respect to 2 (or u wrt v);
compt3errvu Compute an L-coskew error using the 2 with respect to 1 (or v wrt u);
compt4erruv Compute an L-cokurtosis error using the 1 with respect to 2 (or u wrt v);
compt4errvu Compute an L-cokurtosis error using the 2 with respect to 1 (or v wrt u);

uset3err Use the L-coskew error in the determination of the solution. The L-correlation error is always used;
uset4err Use the L-cokurtosis error in the determination of the solution. The L-correlation error is always used;

setreturn Set (index) number of the solution to return. The default of 1 returns the preferred solutions based on the controls for the minimization; and

maxtokeep The value presets the number of rows in the solution matrix. This matrix is filled with potential solutions as the various subfiles of the solutionenvir are scanned. The matrix is trimmed of NAs and error trapping is in place for too small values of maxtokeep. The default value appears appropriate for the feeding of massively large simulated parameter spaces.

Value

An R data.frame is returned.

Author(s)

W.H. Asquith

References

See Also

simCOP, simcompositeCOP, composite2COP

Examples

```r
## Not run:
# Build an initial parameter to L-cumoment mapping table.
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
                 paralgen=function() { return(10*runif(1, min=-5, max=5)) },
                 paragen2=function() { return(10*runif(1, min=0, max=5)) })
nsim <- 1E4
sample.size.for.estimation <- 1000 # really use vastly larger sample size
PlackettPlackettNP <-
  simcompositeCOP(n=sample.size.for.estimation, nsim=nsim, parent=mainpara)
save(PlackettPlackettNP, file="PlackettPlackettNP.RData", compress="xz")

# Plackett-Plackett composited copula from the copBasic package
# Then create an environment to house the "table."
PlackettPlackett <- new.env()
assign("PlackettPlackett", PlackettPlackettNP, envir=PlackettPlackett)
# Now that the table is assigned into the environment, the parameter
# estimation function can be used. In reality, a much much larger
# solution set is needed, but this effort is experimental.

# Now grab the closest Plackett-Plackett solution having the following six
# arbitrary L-cumoments. Then simulate 1000 values and plot them to show
# the underlying bivariate distribution.
PPcop <- lcmoms2.ABcop2parameter(solutionenvir=PlackettPlackett,
                           T2.12=-0.5059, T2.21=-0.5110,
                           T3.12= 0.1500, T3.21= 0.1700,
                           T4.12=-0.0500, T4.21= 0.0329,
                           use3err=TRUE, use4err=TRUE)

# A user is encouraged to inspect the contents of PPcop to "assess" the
# solution by a method of L-cumoments, we will now proceed with showing the
# copula via a simulation of the fitted version.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=PPcop$alpha, beta=PPcop$beta,
             paral=PPcop$Cop1Thetas, paral2=PPcop$Cop2Thetas)

D <- simCOP(n=5000, cop=composite2COP, para=para, col=rgb(0,0,0,0.1), pch=16)
# The sample L-cumoments of the fitted Plackett-Plackett may be found by
lmomco::lcmomco(2, nmom=4) # from the lmomco package, and six sample values shown
T2.12 <- -0.5151547; T2.21 <- -0.5139863
T3.12 <- 0.1502336; T3.21 <- 0.1721355
T4.12 <- -0.0326277; T4.21 <- 0.0233979
PPcop <- lcmoms2.ABcop2parameter(solutionenvir=PlackettPlackett,
                           T2.12=T2.12, T2.21=T2.21,
                           T3.12=T3.12, T3.21=T3.21,
                           T4.12=T4.12, T4.21=T4.21, use4err=TRUE)
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=PPcop$alpha, beta=PPcop$beta,
             paral=PPcop$Cop1Thetas, paral2=PPcop$Cop2Thetas)
D <- simCOP(n=5000, cop=composite2COP, para=para, col=rgb(0,0,0,0.1), pch=16)
level.curvesCOP(cop=composite2COP, para=para, delt=.1, ploton=FALSE)
```
qua.regressCOP.draw(cop=compositeCOP, para=para, ploton=FALSE, f=seq(0.05, 0.95, by=0.05))
qua.regressCOP.draw(cop=compositeCOP, para=para, wrtV=TRUE, ploton=FALSE, f=seq(0.05, 0.95, by=0.05), col=c(3,2))
diag <- diagCOP(cop=compositeCOP, para=para, ploton=FALSE, lwd=4)

image(gridCOP(cop=compositeCOP, para=para), col=terrain.colors(20))
One can inspect alternative solutions like this
S <- PPcop$solutions$solutions[,1:16]
B <- S[abs(S$T2.12res) < 0.02 & abs(S$T2.21res) < 0.02 &
abs(S$T3.12res) < 0.02 & abs(S$T3.21res) < 0.02,]
print(B)
End(Not run)

Description

EXPERIMENTAL—This function converts the *L-comoments* of a bivariate sample to the four parameters of a composition of two one-parameter copulas. Critical inputs are of course the first three dimensionless L-comoments: *L-correlation*, *L-coskev*, and *L-cokurtosis*. The most complex input is the solutionenvir, which is an environment containing arbitrarily long, but individual tables, of L-comoment and parameter pairings. These pairings could be computed from the examples in simcompositeCOP.

The individual tables are prescanned for potentially acceptable solutions and the absolute additive error of both L-comoments for a given order is controlled by the tNeps arguments. The default values seem acceptable. The purpose of the prescanning is to reduce the computation space from perhaps millions of solutions to a few orders of magnitude. The computation of the solution error can be further controlled by X or u with respect to Y or v using the comptNerrXY arguments, but experiments thus far indicate that the defaults are likely the most desired. A solution “matching” the L-correlation is always sought; thus there is no usetRerr argument. The arguments uset3err and uset4err provide some level of granular control on addition error minimization; the defaults seek to “match” L-coskev and ignore L-cokurtosis. The setreturn controls which rank of computed solution is returned; users might want to manually inspect a few of the most favorable solutions, which can be done by the setreturn or inspection of the returned object from the lcomoms2.ABKGcop2parameter function. The examples are detailed and self-contained to the copBasic package; curious users are asked to test these.

Usage

```r
lcomoms2.ABKGcop2parameter(solutionenvir=NULL,
T2.12=NULL, T2.21=NULL,
T3.12=NULL, T3.21=NULL,
T4.12=NULL, T4.21=NULL,
t2eps=0.1, t3eps=0.1, t4eps=0.1,
```

```
Arguments

**solutionenvir** The environment containing solutions;

- **T2.12** L-correlation $\tau_2^{[12]}$;
- **T2.21** L-correlation $\tau_2^{[21]}$;
- **T3.12** L-coskew $\tau_3^{[12]}$;
- **T3.21** L-coskew $\tau_3^{[21]}$;
- **T4.12** L-cokurtosis $\tau_4^{[12]}$;
- **T4.21** L-cokurtosis $\tau_4^{[21]}$;

- **t2eps** An error term in which to pick a potential solution as close enough on preliminary processing for $\tau_2^{[1\leftrightarrow 2]}$;
- **t3eps** An error term in which to pick a potential solution as close enough on preliminary processing for $\tau_3^{[1\leftrightarrow 2]}$;
- **t4eps** An error term in which to pick a potential solution as close enough on preliminary processing for $\tau_4^{[1\leftrightarrow 2]}$;

**compt2erruv** Compute an L-correlation error using the 1 with respect to 2 (or $u$ wrt $v$);

**compt3erruv** Compute an L-correlation error using the 2 with respect to 1 (or $v$ wrt $u$);

**compt3erruv** Compute an L-coskew error using the 1 with respect to 2 (or $u$ wrt $v$);

**compt4erruv** Compute an L-coskew error using the 2 with respect to 1 (or $v$ wrt $u$);

**compt4erruv** Compute an L-cokurtosis error using the 1 with respect to 2 (or $u$ wrt $v$);

**compt4erruv** Compute an L-cokurtosis error using the 2 with respect to 1 (or $v$ wrt $u$);

**uset3err** Use the L-coskew error in the determination of the solution. The L-correlation error is always used;

**uset4err** Use the L-cokurtosis error in the determination of the solution. The L-correlation error is always used;

**setreturn** Set (index) number of the solution to return. The default of 1 returns the preferred solutions based on the controls for the minimization; and

**maxtokeep** The value presets the number of rows in the solution matrix. This matrix is filled with potential solutions as the various subfiles of the solutionenvir are scanned. The matrix is trimmed of NAs and error trapping is in place for too small values of maxtokeep. The default value appears appropriate for the feeding of massively large simulated parameter spaces.

Value

An R data.frame is returned.
Author(s)
W.H. Asquith

References

See Also
simCOP, simcompositeCOP, composite3COP

Examples
```r
Not run
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
 para1gen=function() { return(10*runif(1, min=-5, max=5)) },
 para2gen=function() { return(10*runif(1, min=-5, max=5)) })
nsim <- 1E4
sample.size.for.estimation <- 1000
PlackettPlackettABKGtest <-
 simcomposite3COP(n=sample.size.for.estimation, nsim=nsim, parent=mainpara)
save(PlackettPlackettABKGtest, file="PlackettPlackettABKG.RData", compress="xz")

Plackett-Plackett compositcd copula from the copBasic package
Then create an environment to house the "table".
PlackettPlackettABKG <- new.env()
assign("NeedToCreateForDemo", PlackettPlackettABKGtest, envir=PlackettPlackettABKG)

Now that the table is assigned into the environment, the parameter estimation
function can be used. In reality a much much larger solution set is needed.
Assume one had the following six L-moments, extract a possible solution.
PPcop <- lcomoms2.ABKGcop2parameter(solutionenvir=PlackettPlackettABKG,
 T2.12=-0.5059, T2.21=-0.5110,
 T3.12= 0.1500, T3.21= 0.1700,
 T4.12=-0.0500, T4.21= 0.0329,
 use3err=TRUE, use4err=TRUE)

Now take that solution and setup a parameter object.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
 alpha=PPcop$alpha, beta=PPcop$beta, kappa=PPcop$kappa, gamma=PPcop$gamma,
 para1=PPcop$Cop1Thetas, para2=PPcop$Cop2Thetas)

Example Plot Number 1
D <- simCOP(n=2000, cop=composite3COP, para=para, col=rgb(0,0,0.1), pch=16)
print(lmomco::lcomoms2(D, nmom=4)) # See the six extractd sample values for this seed.
T2.12 <- -0.4877717; T2.21 <- -0.4907403
T3.12 <- 0.1642508; T3.21 <- 0.1715944
T4.12 <- -0.0560310; T4.21 <- -0.0350828
PPcop <- lcomoms2.ABKGcop2parameter(solutionenvir=PlackettPlackettABKG,
 T2.12=-0.5059, T2.21=-0.5110,
 T3.12= 0.1500, T3.21= 0.1700,
 T4.12=-0.0500, T4.21= 0.0329,
 use3err=TRUE, use4err=TRUE)
```
level.curvesCOP

Compute and Plot Level Curves of a Copula \( V \) with respect to \( U \)

Description

Compute and plot level curves or level sets of a copula for \( V \) with respect to \( U \) (Nelsen, 2006, pp. 12–13). The level curves at levels \( t \mapsto [0 + \Delta t, 1 - \Delta t, \Delta t] \) are defined for \( U \mapsto [0 + \Delta u, 1 - \Delta u, \Delta u] \) by

\[
t \mapsto C(u = U, v),
\]

and solving for \( v \). Plotting is provided by this function because level curves are such an important visual attribute of a copula and highly useful for pedagogic purposes. The above equation is implemented by the inverse of a copula using \texttt{COPinv}.

Usage

```r
level.curvesCOP(cop=NULL, para=NULL, ploton=TRUE, lines=TRUE, plotMW=FALSE, ramp=TRUE, delu=0.001, delt=0.10, getlevel=NULL, ...)
```

Arguments

- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula;
- **ploton**: A logical to toggle on the plot;
- **lines**: A logical to toggle calls to the \texttt{lines()} function in \texttt{R} to draw the lines;
plotMW  A logical to toggle to use the abline() function in R to plot cross lines for the M (M) and W (W) copulas;

ramp   A logical to toggle whether the level curves are ramped in thickness according to the probability of the line;

delu   The increment for Δu. The default is 1 part in 1,000, which should often provide enough smoothness for many copulas in practice;

delt   The increment Δt for the level curves to plot, defaults to 10-percent intervals. If delt=0.5, then only the median plus the consequences of a defined getlevel is used. If NULL, then a sequence of t values is not made and only getlevel is used (if available);

getlevel If defined, then it is inserted into the sequence of levels t and that level t = getlevel is returned in an R list data structure. If more than one level is desired, then instead of repeated calls to this function, the joint.curvesCOP function could be considered; and

... Additional arguments to pass to the lines() function in R.

Value

Typically no values are returned because this function is used for its side effects. But the arguments can be such that the \{u, v\} for C(u, v) = t are returned within an R list.

Author(s)

W.H. Asquith

References


See Also

COPinv, level.curvesCOP2, level.setCOP, joint.curvesCOP

Examples

```r
Not run:
level.curvesCOP(cop=M, para=NULL, delt=.02) # Upper bounds copula
End(Not run)
Not run:
D <- level.curvesCOP(cop=P, getlevel=.56)
str(D) # empty
D <- level.curvesCOP(cop=P, getlevel=.5)
str(D) # contains stuff
D <- level.curvesCOP(cop=PSP, getlevel=.8)
str(D) # contains stuff
End(Not run)
```
**level.curvesCOP2**  
*Compute and Plot Level Curves of a Copula U with respect to V*

**Description**

Compute and plot level curves or level sets of a copula for \( U \) with respect to \( V \) (Nelsen, 2006, pp. 12–13). The level curves at a levels \( t \mapsto [0 + \Delta t, 1 - \Delta t, \Delta t] \) are defined for \( V \mapsto [0 + \Delta v, 1 - \Delta v, \Delta v] \) by

\[
t = C(u, v = V),
\]

and solving for \( u \). Plotting is provided by this function because level curves are such an important visual attribute of a copula and highly useful for pedagogic purposes. The above equation is implemented by the inverse of a copula using \texttt{COPinv2}.

**Usage**

```r
level.curvesCOP2(cop=NULL, para=NULL, ploton=TRUE, lines=TRUE, plotMW=FALSE, ramp=TRUE, delv=0.001, delt=0.10, getlevel=NULL, ...)
```

**Arguments**

- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula;
- **ploton**: A logical to toggle on the plot;
- **lines**: A logical to toggle calls to the \texttt{lines()} function in \texttt{R} to draw the lines;
- **plotMW**: A logical to toggle to use \texttt{abline()} function in \texttt{R} to plot cross lines for the \texttt{M} (\( M \)) and \texttt{W} (\( W \)) copulas;
- **ramp**: A logical to toggle whether the level curves are ramped in thickness according to the probability of the line;
- **delv**: The increment of \( \Delta v \). The default is 1 part in 1,000, which should often provide enough smoothness for many copulas in practice;
- **delt**: The increment of \( \Delta t \) for the level curves to plot, defaults to 10-percent intervals;
- **getlevel**: If defined and level exists upon stepping through using \( \texttt{delt} \), then the level curve at the \( \texttt{getlevel} \) is returned in an \texttt{R} list data structure; and
- **...**: Additional arguments to pass to the \texttt{lines()} function in \texttt{R}.

**Value**

Typically no values are returned because this function is used for its side effects. But the arguments can be such that the \( \{u, v\} \) for \( C(u, v) = t \) are returned within an \texttt{R} list.

**Author(s)**

W.H. Asquith
level.setCOP

References

See Also
COPinv2, level.curvesCOP, level.setCOP2, joint.curvesCOP2

Examples
## Not run:
level.curvesCOP2(cop=M, para=NULL, delt=.02) # Upper bounds copula
## End(Not run)

level.setCOP

*Compute a Level Set of a Copula V with respect to U*

Description
Compute a *level curve* or *level set* of a copula for \( V \) with respect to \( U \) (Nelsen, 2006, pp. 12–13). The level curve at level \( t \) is defined for \( U \mapsto [0 + \Delta u, 1 - \Delta u, \Delta u] \) by

\[
t \mapsto C(u = U, v),
\]

and solving for \( v \). The function is largely a dispatcher to features implemented in `level.curvesCOP`.

Usage
level.setCOP(cop=NULL, para=NULL, getlevel=NULL, delu=0.001, lines=FALSE, ...)

Arguments
- **cop** A copula function;
- **para** Vector of parameters or other data structure, if needed, to pass to the copula;
- **getlevel** The level set for \( t \);
- **delu** The increment for \( \Delta u \). The default is 1 part in 1,000, which should often provide enough smoothness for many copulas in practice;
- **lines** A logical that matches the argument of the same name in `level.curvesCOP`; and
- **...** Additional arguments to pass to the lines() function in R.

Value
The level set for \( t = \text{getlevel} \) is returned.

Author(s)
W.H. Asquith
References

See Also
level.setCOP2, level.curvesCOP

Examples

```r
Not run:
set <- level.setCOP(cop=PSP, getlevel=0.23, delu=0.005)
level.curvesCOP(cop=PSP)
lines(setU, setV, col=2, lwd=2) # manually draw the 23rd percentile
set <- level.setCOP(cop=PSP, para=3.1, getlevel=0.67, lines=TRUE, col=4, lwd=4)
Notice the change in the lines argument and using levelsetCOP2 to draw.
mtext("Level Curves and Special Level Sets for PSP copula") #
End(Not run)
```

level.setCOP2

Compute a Level Set of a Copula $U$ with respect to $V$

Description
Compute a level curve or level set of a copula for $U$ with respect to $V$ (Nelsen, 2006, pp. 12–13). The level curve at level $t$ is defined for $V \mapsto [0 + \Delta v, 1 - \Delta v, \Delta v]$ by

$$t \mapsto C(u, v=V),$$

and solving for $u$. The function is largely a dispatcher to features of level.curvesCOP2.

Usage

```r
level.setCOP2(cop=NULL, para=NULL, getlevel=NULL, delv=0.001, lines=FALSE, ...)
```

Arguments

- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `getlevel` The level set for $t$;
- `delv` The increment for $\Delta v$. The default is 1 part in 1,000, which should often provide enough smoothness for many copulas in practice;
- `lines` A logical that matches the argument of the same name in level.curvesCOP2; and
- `...` Additional arguments to pass to the lines() function in R.

Value
The level set for $t = \text{getlevel}$ is returned.
The Fréchet–Hoeffding Upper Bound Copula

Description

Compute the Fréchet–Hoeffding upper bound copula (Nelsen, 2006, p. 11), which is defined as

\[ M(u, v) = \min(u, v). \]

This is the copula of perfect association (comonotonicity, perfectly positive dependence) between \( U \) and \( V \) and is sometimes referred to as the comonotonicity copula. Its opposite is the \( W(u, v) \) copula (countermonotonicity copula; \( W \)), and statistical independence is the \( \Pi(u, v) \) copula (\( P \)).

Usage

\[ M(u, v, \ldots) \]

Arguments

\[
\begin{align*}
\text{u} & \quad \text{Nonexceedance probability } u \ \text{in the } X \ \text{direction;} \\
\text{v} & \quad \text{Nonexceedance probability } v \ \text{in the } Y \ \text{direction; and} \\
\ldots & \quad \text{Additional arguments to pass.}
\end{align*}
\]

Value

Value(s) for the copula are returned.
Author(s)
W.H. Asquith

References

See Also
W, P

Examples
M(0.4, 0.6)
M(0, 0)
M(1, 1)

---

med.regressCOP

**Perform Median Regression using a Copula by Numerical Derivative Method for V with respect to U**

Description
Perform median regression (Nelsen, 2006, pp. 217–218) of a copula by inversion of numerical derivatives of the copula (derCOPinv). The documentation for qua.regressCOP provides mathematical details. The qua.regressCOP.draw supports so-called quantile regression along various probability levels (see Examples).

Usage
med.regressCOP(u=seq(0.01, 0.99, by=0.01), cop=NULL, para=NULL, level=NA, ...)

Arguments
- **u** Nonexceedance probability \( u \) in the X direction;
- **cop** A copula function;
- **para** Vector of parameters or other data structure, if needed, to pass to the copula;
- **level** The level of the prediction interval to compute. For example, level=0.95 will compute the 95-percent prediction interval as will level=0.05 because internally a reflection check is made; and
- **...** Additional arguments to pass such qua.regressCOP and derCOPinv that are called in succession.
Value

An R data.frame of the median regressed probabilities of \( V \) and provided \( U \) values is returned. Note that if level is used then the column ordering of the returned data.frame changes—please access the columns by the named idiom. The lower and upper prediction interval is contained in the columns respectively titled \( \text{vlwr} \) and \( \text{vupr} \) to mimic nomenclature somewhat of function \text{predict.lm}() in R.

Note

An extended demonstration is needed concerning prediction intervals by median regression and a comparison to well-known linear regression. This also affords and opportunity to have \text{copBasic} interact with the \text{copula} package to gain access to the Gaussian copula and a maximum pseudo-likelihood estimation of the parameter.

First, a function \text{NORMcop}() is defined to form the interconnect between the two packages. It is critically important that the user recognize that the so-called copula object as built by the \text{copula} package is treated as the canonical \text{para} argument in \text{copBasic} calls herein.

```r
"NORMcop" <- # pCoupla() from package copula is analogous to COP()
function(u,v, para=NULL, ...) {
 if(length(u) == 1) u <- rep(u, length(v)) # see asCOP() for reasoning of
 if(length(v) == 1) v <- rep(v, length(u)) # this "vectorization" hack
 return(copula::pCopula(matrix(c(u,v), ncol=2), para))
}
```

The parameter \( \Theta \in [-1,1] \) (Pearson’s R) and \( \rho_C(\Theta) \) (Spearman’s Rho, \text{rhoCOP}) and \( \tau_C(\Theta) \) (Kendall’s Tau, \text{tauCOP}) are according to Salvadori et al. (2007, p. 255) the values

\[
\rho_C(\Theta) = \frac{2}{\pi} \arcsin(\Theta)
\]

and

\[
\tau_C(\Theta) = \frac{6}{\pi} \arcsin(\Theta/2).
\]

Second, a bivariate Gaussian copula is defined with a parameter \( \Theta = 0.7 \) (thus \( \rho_C = 0.6829105 \), \text{rhoCOP(NORMcop, normcop)}) and then \( n = 255 \) samples simulated from it. These are then cast into standard normal variates to mimic the idea of bivariate data in nonprobability units and facilitation regression comparison.

```r
norm.cop <- copula::normalCopula(c(0.7), dim = 2) # define a Gaussian copula
UVs <- copula::rCopula(255, norm.cop) # draw 255 samples
UVs <- as.data.frame(UVs); X <- qnorm(UVs[,1]); Y <- qnorm(UVs[,2])
```

Third, the Weibull plotting positions from the \text{pp()} function of package \text{lmomco} are used to estimate the empirical probabilities of the data in UV that are casted into an R matrix because the \text{copula} package expects the data as a matrix for the default parameter estimation. The code is completed by the specification of the fitted Gaussian copula in \text{fnorm.cop}.

```r
UV <- as.matrix(data.frame(U=lmomco:::pp(X, sort=FALSE),
 V=lmomco:::pp(Y, sort=FALSE)))
```
para <- copula::fitCopula(copula::normalCopula(dim=2), UV)
fnorm.cop <- copula::normalCopula(para, dim=2)

Fourth, ordinary-least-squares (OLS) linear regression for $Y \mid X$ and $X \mid Y$ is computed, and the results plotted on top of the data points. The 2/3rd-prediction limits are computed by predict.lm() and also shown.

```
Classical linear regressions from two perspectives.
LMyx <- lm(Y~X); LMxy <- lm(X~Y)
YonX <- summary(LMgx); XonY <- summary(LMxy)
```

```
QUorV <- seq(-3.3, by=0.05) # vector for graphical operations
plot(X,Y, col=8, pch=21)
lines(QUorV, YonX$coefficients[1]+YonX$coefficients[2]*QUorV, col=2, lwd=4)
tmp <- predict.lm(LMxy, list(X=QUorV), level=2/3, interval="prediction")
lines(X, tmp[,2], col=2); lines(X, tmp[,3], col=2)
lines(XonY$coefficients[1]+XonY$coefficients[2]*QUorV, QUorV, col=3, lwd=4)
tmp <- predict.lm(LMxy, list(Y=QUorV), level=2/3, interval="prediction")
lines(tmp[,2], Y, col=3); lines(tmp[,3], Y, col=3)
```

Finally, the demonstration ends with plotting of the median regression for the Gaussian copula and drawing the regression lines. The two median regression lines are nearly coincident with the OLS regression lines as anticipated with a reasonably large sample size albeit maximum pseudo-likelihood was used to estimate the copula parameter. The mean of a uniform distributed variable given say $U = u$ (horizontal axis) is $1/2$, which coincides with the median. The median regression lines thus are coincident with the OLS lines even though OLS and real-space (native units of $X$ and $Y$) were not used for their computation. The 2/3-prediction intervals are also plotted for comparison.

```
UorV <- c(0.001, seq(.02,.98, by=.02), .999)
MEDreg <- med.regressCOP(u=UorV, level=2/3,
cop=NORMcop, para=fnorm.cop)
MEDreg2 <- med.regressCOP2(v=UorV, level=2/3,
cop=NORMcop, para=fnorm.cop)
```

```
lines(qnorm(UorV), qnorm(MEDreg$V), col=4, lty=2)
lines(qnorm(UorV), qnorm(MEDreg$V1wr), col=4, lty=2)
lines(qnorm(UorV), qnorm(MEDreg$Vupr), col=4, lty=2)
lines(qnorm(MEDreg2$U), qnorm(UorV), col=6, lty=2)
lines(qnorm(MEDreg2$U1wr), qnorm(UorV), col=6, lty=2)
lines(qnorm(MEDreg2$Uupr), qnorm(UorV), col=6, lty=2)
```

A curious aside (Joe, 2014, p. 164) about the Gaussian copula is that Blomqvist’s Beta ($blomCop$) is equal to Kendall’s Tau ($taucop$), which can be checked by

```
blomCop(cop=NORMcop, para=norm.cop) # 0.4936334
taucop(cop=NORMcop, para=norm.cop) # 0.493633
```

and obviously the $\beta_C = \tau_C$ are numerically the same.
Perform Median Regression using a Copula by Numerical Derivative Method for U with respect to V

Description

Perform median regression of a copula (Nelsen, 2006, pp. 217–218) by inversion of numerical derivatives of the copula (derCOPinv2). The documentation for qua.regressCOP2 provides mathematical details.

Usage

med.regressCOP2(v=seq(0.01,0.99, by=0.01), cop=NULL, para=NULL, level=NA, ...)
Arguments

v Nonexceedance probability \( v \) in the \( Y \) direction;
cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
level The level of the prediction interval to compute. For example, level=0.95 will compute the 95-percent prediction interval as will level=0.05 because internally a reflection check is made; and
... Additional arguments to pass such qua.regressCOP2 and derCOPinv2 that are called in succession.

Value

An \( \mathbb{R} \) data.frame of the median regressed probabilities of \( U \) and provided \( V \) values is returned. Note that if level is used that the column ordering of the returned data.frame changes—please access the columns by the named idiom. The lower and upper prediction interval is contained in the columns respectively titled \( \text{ulwr} \) and \( \text{uppr} \) to mimic nomenclature somewhat of function predict.lm() in \( \mathbb{R} \).

Author(s)

W.H. Asquith

References


See Also

med.regressCOP, qua.regressCOP2, qua.regressCOP.draw

Examples

# See other examples under med.regressCOP

mleCOP

Maximum Pseudo-Log-Likelihood Estimation for Copula Parameter Estimation

Description

Perform maximum pseudo-log-likelihood estimation (pMLE) for copula parameters by maximizing the function:

\[
\mathcal{L}(\Theta_p) = \sum_{i=1}^{n} \log [c(F_x(x_i), F_y(y_i); \Theta_p)],
\]

where \( \mathcal{L}(\Theta_p) \) is the log-likelihood for parameter vector \( \Theta_p \) of dimension \( p \), and \( c(u, v; \Theta_p) \) is the bivariate copula density. The \( u \) and \( v \) are estimated by the respective empirical cumulative distribution functions \( u = F_x(\cdots) \) and \( v = F_y(\cdots) \) for each of the joint realizations of a sample of size \( n \). The \( c(u, v) \) is numerically estimated by the copula using the densityCOP function.
mleCOP

Usage

mleCOP(u, v=NULL, cop=NULL, parafn=function(k) return(k), interval=NULL, init.para=NULL, verbose=FALSE, control=list(), the.zero=.Machine$double.eps^0.25, ...)

Arguments

u  Nonexceedance probability \( u \) in the \( X \) direction;

v  Nonexceedance probability \( v \) in the \( Y \) direction and if NULL then \( u \) is treated as a two column \( R \) data.frame;

cop A copula function;

parafn A function responsible for generating the parameters. This is often just a simple return of a parameter vector as \texttt{copBasic} uses this style of parameterization, but this function can take over parameter remapping to handle boundary conditions to benefit the search or provide an interface into other copula packages in \( R \) (see \texttt{Examples});

interval The search interval for root finding if the parameter dimension of the copula is \( p = 1 \). The interval is not used for \( p \geq 2 \);

init.para The initial guesses for the parameters for the \( p \)-dimensional optimization for \( p \geq 2 \). The initial guess is used if the parameter dimension of the copula is \( p = 1 \) and interval is NULL (see \texttt{Examples});

verbose A logical to trigger an minimal reporting scheme within the objective function. This is independent from the \texttt{control$trace} of function \texttt{optim}();

control This argument is the argument of the same name for \texttt{optim}();

the.zero The value for “the zero” of the copula density function. This argument is the argument of the same name for \texttt{densityCOP}. The default here is intended to suggest that a tiny nonzero value for density will trap the numerical zero densities; and

... Additional arguments to pass, see source code for the internally used functions that can pick these additional arguments up.

Value

The value(s) for the estimated parameters are returned within an \( R \) list where the elements listed below are populated unique to this package. The other elements of the returned list are generated from either the \texttt{optimise}() or \texttt{optim}() functions of \( R \).

para The parameter(s) in a canonical element after the one-dimensional root finding \((p = 1)\) or multi-dimensional optimization \((p \geq 2)\) solutions are passed through \texttt{parafn};

packagetext A helpful message unique to the \texttt{copBasic} package;

loglik The maximum of the log-likelihood matching the name for the same quantity by the function \texttt{fitCopula} in package \texttt{copula} though a separate implementation is used in \texttt{copBasic};
AIC  Akaike information criterion (AIC) (see also \texttt{aicCOP}): \( \text{AIC} = 2p - 2\mathcal{L}(\Theta_p); \)
and
BIC  Bayesian information criterion (BIC) (see also \texttt{bicCOP}): \( \text{BIC} = p\log(n) - 2\mathcal{L}(\Theta_p). \)

\textbf{Note}

This section provides for a more thorough assessment of pMLE than shown in the \texttt{Examples}.

\textit{INTERFACE TO THE COPULA PACKAGE}—A not uncommon question to the author is how can \texttt{copBasic} support copulas from other packages? A \texttt{copBasic} pMLE implementation to the \texttt{Gaussian copula} from the \texttt{copula} package is thus useful.

Two interface functions are required for the pMLE situation. First, interface the \texttt{copula} package in a generic form for the \texttt{copBasic} package:

```r
"cB2copula" <- # pCoupala() from package copula is analogous to COP()
function(u,v, para=NULL, ...) {
 if(length(u) == 1) u <- rep(u, length(v)) # see asCOP() for reasoning of
 if(length(v) == 1) v <- rep(v, length(u)) # this "vectorization" hack
 return(co=::pCopula(matrix(c(u,v), ncol=2), para))
}
```

where the para argument above must be built by the features of the \texttt{copula} package. The following function then provides for parameter setup specific to the \texttt{Gaussian copula} having parameter \( \rho \):

```r
copula2cBpara <- function(rho) return(co::normalCopula(rho, dim = 2))
```

Now, let us perform a parameter estimate for a sample of size \( n = 900 \):

```r
set.seed(162); UV <- simCOP(n=900, cop=cB2copula, para=copula2cBpara(0.45))
mlCOP(UV, cop=cB2copula, parafn=copula2cBpara, interval=c(-1,1)$para
 # rho.1 = 0.4248822
```

The search interval for the \textit{Gaussian copula} is \( \rho \in [-1,1] \), and the final result is \( \rho = 0.4458822 \).

\textit{MULTI-DIMENSIONAL EXAMPLE OF pMLE}—Consider a 2-parameter \textit{Gumbel–Hougaard copula} \((\text{GH}(\Theta_1, \Theta_2))\) but now use the \texttt{parafn} argument to provide boundary condition assistance through function \texttt{GH2pfunc} to the \texttt{optim()} function that performs the maximization.

```r
set.seed(162); UV <- simCOP(n=890, cop=GHcop, para=c(2.4, .06))
GH2pfunc <- function(p) { return(c(exp(p[1])+1, exp(p[2]))) }
ML <- mleCOP(UV, UV$V, cop=GHcop, init=para=c(1,1), parafn=GH2pfunc)
print(ML$para) # [1] 2.2755018 0.1194788
```

and the result is \( \Theta_{1,2} = (2.2755018, 0.1194788) \). Next, consider now a 3-parameter \( \text{GH}(\Theta, \pi_1, \pi_2) \) copula and again use the \texttt{parafn} argument through function \texttt{GH3pfunc} but notice that the 2nd and 3rd parameters are now mapped into \( 0 \leq \pi_1, \pi_2 \leq 1 \) domain using the \texttt{pnorm()} function.
\texttt{mleCOP}

```
set.seed(162); UV <- simCOP(n=500, cop=GHcop, para=c(5.5, .6, .9))
GH3pfunc <- function(p) { return(c(exp(p[1])+1, pnorm(p[2]), pnorm(p[3])))) }
ML <- mleCOP(UV, UV, init=para=c(1, .5, .5), para=GH3pfunc)
print(ML$para) # [1] 5.3742229 0.6141652 0.9382638
```

and the result is $\Theta = 5.3742229$ and $\pi_{1,2} = (0.6141652, 0.9382638)$.

\textit{ANOTHER MULTI-DIMENSIONAL EXAMPLE OF pMLE} — Finally, an experiment can be made fitting a 3-parameter \textit{GH}(\Theta, \pi_1, \pi_2) to a simulation from a 2-parameter \textit{GH}(\Theta_1, \Theta_2), where the seed is just arbitrary and Vuong’s Procedure \textit{(vuongCOP)} is used to compare fits and make inference. The parameter functions \textit{GH2pfunc} and \textit{GH3pfunc} are as before.

```
set.seed(10); UV <- simCOP(n=500, cop=GHcop, para=c(1.7, 1.86))
GH2pfunc <- function(p) { return(c(exp(p[1])+1, exp(p[2]))) }
GH3pfunc <- function(p) { return(c(exp(p[1])+1, pnorm(p[2]), pnorm(p[3]))) }
para1 <- mleCOP(UV, cop=GHcop, init=para=c(1,1), para=GH2pfunc)$para
para2 <- mleCOP(UV, cop=GHcop, init=para=c(1,5,5), para=GH3pfunc)$para
vuongCOP(UV, cop1=GHcop, para1=para1, cop2=GHcop, para2=para2)$message
#[1] “Copula 1 has better fit than Copula 2 at 100(1-alpha) level”
```

The results show the 2-p \textit{GH} is a better fit to the simulated data than the 3-p \textit{GH}, which seems a bit self evident? Plot some same-seeded simulations just to confirm.

```
set.seed(67) # First the estimated parameters but with the correct model.
UV <- simCOP(n=200, GHcop, para=para1, snv=TRUE, pch=16, col=2)
set.seed(67) # Second, the estimated incorrect model.
UV <- simCOP(n=200, GHcop, para=para2, snv=TRUE, ploton=FALSE)
```

Yes, differences in form are manifest in the produced graphic. Now, let us try another set of parameters and again an arbitrarily-chosen seed.

```
set.seed(10); UV <- simCOP(n=500, cop=GHcop, para=c(1.91, .16))
para1 <- mleCOP(UV, cop=GHcop, init=para=c(1,1), para=GH2pfunc)$para
para2 <- mleCOP(UV, cop=GHcop, init=para=c(1,5,.5), para=GH3pfunc)$para
vuongCOP(UV, cop1=GHcop, para1=para1, cop2=GHcop, para2=para2)$message
#[1] “Copulas 1 and 2 are not significantly different at 100(1-alpha)”
```

The results show equivalence, let us now check a graphic.

```
set.seed(67); z <- simCOP(n=200, GHcop, para=para1, snv=TRUE, pch=16, col=2)
set.seed(67); z <- simCOP(n=200, GHcop, para=para2, snv=TRUE, ploton=FALSE)
```

The differences are small but the differences might be inflating into the lower left corner. What sample size could conceivably begin to distinguish between the copula?

```
kullCOP(cop1=GHcop, cop2=GHcop, para1=para1, para2=para2) # 625 on this run
```

```
nsim <- 20; set.seed(67)
Results <- sapply(1:nsim, function(i) {
 UV <- simCOP(n=625, cop=GHcop, para=c(1.91, .16), graphics=FALSE)
})
```
The summation yields 6 of 20 for which copula 1 has the better fit, but with \( n = 1,000 \) instead of \( n = 625 \), the sum of the Results is 13 of 20 (so better than half the time). This seems to be in conflict with what the \( n_{fg} \) sample size from \texttt{kullcop} should be telling. The author thinks it should be 18 to 19 of 20 (95th percentile) based on what the \texttt{kullcop} is reported to do (NEED TO LOOK INTO THIS).

### Author(s)

W.H. Asquith

### References


### See Also

\texttt{densityCOP}

### Examples

```r
Not run:
set.seed(162); UV <- simCOP(n=188, cop=PLACKETTcop, para=5.6)
ML <- mleCOP(UVU, UVV, cop=PLACKETTcop, interval=c(0.1,40)) # 5.225459 estimated

Thetas <- 10^((seq(log10(0.001),log10(100), by=.005))
MLs <- sapply(Thetas, function(k)
 densityCOP(UVU, UVV, cop=PLACKETTcop, para=k, sumlogs=TRUE))
plot(Thetas, MLs, log="x", type="l", # draw the pMLE solution process
 xlab="Plackett Theta", ylab="sum of log densities")
lines(rep(ML$para, 2), c(ML$objective, par()$usr[3]), col=2) #
End(Not run)

Not run:
set.seed(149); UV <- simCOP(1000, cop=CLcop, para=pi)
Warning messages about using optim() for 1D solution
mleCOP(UV, cop=CLcop, init.para=2)$para # 3.082031
No warning message, optimise() called instead.
mleCOP(UV, cop=CLcop, interval=c(0,1E2))$para # 3.081699
End(Not run)

See extended code listings and discussion in the Note section
```
Description

The \textit{N4212 copula} \citep[][eq. 4.2.12]{nelsen2006} is named by the author (Asquith) for the \texttt{copBasic} package and is defined as

\[
C_{N4212}(u, v; \Theta) = (1 + [(u^{-1} - 1)^{\Theta} + (v^{-1} - 1)^{\Theta}]^{1/\Theta})^{-1}.
\]

The \textit{N4212} \((u, v)\) copula is \textit{not comprehensive} because for \(\Theta = 1\) the copula becomes the so-called \textit{PSP} \((u, v)\) copula \citep[see \textit{PSP}]{nelsen2006} and as \(\Theta \to \infty\) the copula becomes \(M(u, v)\) \citep[see \textit{M}]{nelsen2006}. The copula is undefined for \(\Theta < 1\). The N4212 copula has respective \textit{lower-} and \textit{upper-tail dependency} \citep[see \textit{taildepCOP}]{nelsen2006}.

Although \texttt{copBasic} is intended to not implement or “store house” the enormous suite of copula functions available in the literature, the N4212 copula is included to give the package another copula to test against.

Usage

\texttt{N4212cop(u, v, para=NULL, infis=100, ...)}

Arguments

\begin{itemize}
\item \texttt{u} Nonexceedance probability \(u\) in the \(X\) direction;
\item \texttt{v} Nonexceedance probability \(v\) in the \(Y\) direction;
\item \texttt{para} A vector (single element) of parameters—the \(\Theta\) parameter of the copula;
\item \texttt{infis} What is infinity? Testing shows that \texttt{infis=Theta > 100} is about right to consider the copula as becoming \(M(u, v)\) \citep[see \texttt{M}]{nelsen2006}; and
\item \ldots Additional arguments to pass.
\end{itemize}

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References

\citep{nelsen2006}
Examples

\[
N4212\text{cop}(0.4, 0.6, \text{para}=1) == \text{PSP}(0.4, 0.6) \ # \text{TRUE}
\]
\[
N4212\text{cop}(0.4, 0.6, \text{para}=10) \ # \ 0.3999928
\]
\[
\text{taildepCOP(cop=N4212cop, para=10)} \ # \text{LamL} = 0.93303; \text{LamU} = 0.92823
\]
## Not run:
\[
D <- \text{simCOP}(n=400, \text{cop=N4212cop, para=2})
\]
\[
D <- \text{simCOP}(n=400, \text{cop=N4212cop, para=10, ploton=FALSE, col=2})
\]
\[
D <- \text{simCOP}(n=400, \text{cop=N4212cop, para=100, ploton=FALSE, col=3})
\]
## End(Not run)

---

**The Product (Independence) Copula**

### Description

Compute the *product copula* (Nelsen, 2006, p. 12), which is defined as

\[
\Pi(u, v) = uv.
\]

This is the copula of statistical independence between \(U\) and \(V\) and is sometimes referred to as the *independence copula*. The two extreme antithesis copulas are the Fréchet–Hoeffding upper bound (\(m\)) and Fréchet–Hoeffding lower bound (\(w\)) copulas.

### Usage

\[
P(u, v, \ldots)
\]

### Arguments

- **\(u\)**: Nonexceedance probability \(u\) in the \(X\) direction;
- **\(v\)**: Nonexceedance probability \(v\) in the \(Y\) direction; and
- **\(\ldots\)**: Additional arguments to pass.

### Value

Value(s) for the copula are returned.

### Author(s)

W.H. Asquith

### References


### See Also

\(M, W\)
Examples

\[
\begin{align*}
\text{P}(c(0.4,0.1),\text{c}(0.06,1))
\end{align*}
\]

## Not run:

n <- 1000000 # giant sample size, L-moments are zero
# PERFECT INDEPENDENCE

UV <- simCOP(n=n, cop=P, graphics=FALSE)
lmomco::lcomoms2(UV, nmom=4)
# The following are Taus_r^*(12) and Taus_r^*(21)
# L-corr: 0.00265 and 0.00264 ---> ZERO
# L-coskew: -0.00121 and 0.00359 ---> ZERO
# L-cokurtosis: 0.00123 and 0.00262 ---> ZERO

# MODEST POSITIVE CORRELATION

rho <- 0.5; # Spearman’s Rho
theta <- PLACKETTpar(rho=0.5) # Theta = 5.115658

UV <- simCOP(n=n, cop=PLACKETTcop, para=theta, graphics=FALSE)
lmomco::lcomoms2(UV, nmom=4)
# The following are Taus_r^*(12) and Taus_r^*(21)
# L-corr 0.50136 and 0.50138 ---> Pearson R = Spearman Rho
# L-coskews -0.00641 and -0.00347 ---> ZERO
# L-cokurtosis -0.00153 and 0.00046 ---> ZERO
## End(Not run)

---

**PARETOcop**

The Pareto Copula

Description

The Pareto copula (Nelsen, 2006, pp. 33) is

\[
C_\Theta(u, v) = PA(u, v) = \left[(1 - u)^{-\Theta} + (1 - v)^{-\Theta}\right]^{-1/\Theta},
\]

where \(\Theta \in [0, \infty)\). As \(\Theta \rightarrow 0^+\), the copula limits to the \(\Pi\) copula (\(\Pi\)) and the \(M\) copula (\(M\)).

The parameterization here has association increasing with increasing \(\Theta\), which differs from Nelsen (2006), and also the Pareto copula is formed with right-tail increasing reflection of Nelsen’s presentation because it is anticipated that copBasic users are more likely to have right-tail dependency situations (say large maxima [right tail] coupling but not small maxima [left tail] coupling).

Usage

\[
\begin{align*}
PARETOcop(u, v, \text{para=NULL, } \ldots) \\
PAcop(u, v, \text{para=NULL, } \ldots)
\end{align*}
\]

Arguments

\[
\begin{align*}
u & \quad \text{Nonexceedance probability } u \text{ in the } X \text{ direction;} \\
v & \quad \text{Nonexceedance probability } v \text{ in the } Y \text{ direction;} \\
\text{para} & \quad \text{A vector (single element) of parameters—the } \Theta \text{ parameter of the copula; and} \\
\ldots & \quad \text{Additional arguments to pass.}
\end{align*}
\]
Value

Value(s) for the copula are returned.

Note

The Pareto copula is used in a demonstration of Kendall Function L-moment ratio diagram construction (see kfunccoplmoms).

Author(s)

W.H. Asquith

References


See Also

M, P

Examples

```r
Not run:
z <- seq(0.01,0.99, by=0.01) # Both copulas have Kendall Tau = 1/3
plot(z, kfunccop(z, cop=PAcop, para=1), lwd=2,
xlab="z \leq Z", ylab="F_K(z)\", type="l")
lines(z, kfunccop(z, cop=GHCop, para=1.5), lwd=2, col=2) # red line
All extreme value copulas have the same Kendall Function [F_K(z)], the
Gumbel-Hougaard is such a copula and the F_K(z) for the Pareto does not
plot on top and thus is not an extreme value but shares a "closeness."
End(Not run)
```

PLACKETTcop

**The Plackett Copula**

Description

The Plackett copula (Nelsen, 2006, pp. 89–92) is

\[
C_\Theta(u,v) = \text{PL}(u,v) = \frac{1 + (\Theta - 1)(u + v)}{2(\Theta - 1)} - \sqrt{1 + (\Theta - 1)(u + v)}^2 - 4uv\Theta(\Theta - 1).
\]

The Plackett copula (\text{PL}(u,v)) is *comprehensive* because as \(\Theta \to 0\) the copula becomes \(W(u,v)\) (see \text{W}, *countermonotonicity*), as \(\Theta \to \infty\) the copula becomes \(M(u,v)\) (see \text{M}, *comonotonicity*) and for \(\Theta = 1\) the copula is \(\Pi(u,v)\) (see \text{P}, *independence*).

Nelsen (2006, p. 90) shows that

\[
\Theta = \frac{H(x,y)[1 - F(x) - G(y) + H(x,y)]}{[F(x) - H(x,y)][G(y) - H(x,y)]},
\]
where $F(x)$ and $G(y)$ are cumulative distribution function for random variables $X$ and $Y$, respectively, and $H(x, y)$ is the joint distribution function. Only Plackett copulas have a constant $\Theta$ for any pair $\{x, y\}$. Hence, Plackett copulas are also known as constant global cross ratio or contingency-type distributions. The copula therefore is intimately tied to contingency tables and in particular the bivariate Plackett defined herein is tied to a $2 \times 2$ contingency table. Consider the $2 \times 2$ contingency table shown at the end of this section, then $\Theta$ is defined as

$$
\Theta = \frac{a/c}{b/d} = \frac{a/\sum_{i=1}^{n}x_i}{b/\sum_{j=1}^{n}y_j}
$$

and

$$
\Theta = \frac{a/b}{c/d} = \frac{a/\sum_{i=1}^{n}x_i}{c/\sum_{j=1}^{n}y_j},
$$

where it is obvious that $\Theta = ad/bc$ and $a$, $b$, $c$, and $d$ can be replaced by proportions for a sample of size $n$ by $a/n$, $b/n$, $c/n$, and $d/n$, respectively. Finally, this copula has been widely used in modeling and as an alternative to bivariate distributions and has respective lower- and upper-tail dependency parameters of $\lambda^L = 0$ and $\lambda^U = 0$ (taildepCOP).

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
<th>Sums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>$a$</td>
<td>$b$</td>
<td>$a + b$</td>
</tr>
<tr>
<td>High</td>
<td>$c$</td>
<td>$d$</td>
<td>$c + d$</td>
</tr>
<tr>
<td>Sums</td>
<td>$a + c$</td>
<td>$b + d$</td>
<td></td>
</tr>
</tbody>
</table>

Usage

```r
PLACKETTcop(u, v, para=NULL, ...)
Pעמקop(u, v, para=NULL, ...)
```

Arguments

- **u**: Nonexceedance probability $u$ in the $X$ direction;
- **v**: Nonexceedance probability $v$ in the $Y$ direction;
- **para**: A vector (single element) of parameters—the $\Theta$ parameter of the copula; and
- **...**: Additional arguments to pass.

Value

Value(s) for the copula are returned.

Note

The Plackett copula was the first copula implemented in copBasic as part of initial development of the code base for instructional purposes. Thus, this particular copula has a separate parameter estimation function in PLACKETTpar.

Author(s)

W.H. Asquith
References

See Also
PLACKETTpar, PLACKETTsim, W.M, densityCOP

Examples
PLACKETTcop(0.4,0.6,para=1)
P(0.4,0.6) # independence copula, same two values because Theta == 1
PLcop(0.4,0.6,para=10.25) # joint probability through positive association

# Not run:
# Joe (2014, p. 164) shows the closed form copula density of the Plackett.
“dPLACKETTcop” <- function(u,v,para) {
  eta <- para - 1; A <- para*(1 + eta*(u+v-2*u*v))
  B <- (((1 + eta*(u+v))^2 - 4*para*eta*u*v)^3/2); return(A/B)
}
u <- 0.08; v <- 0.67 # Two probabilities to make numerical evaluations.
del <- 0.0001 # a 'small' differential value of probability
u1 <- u; u2 <- u+del; v1 <- v; v2 <- v+del
# Density following Nelsen, 2006, p. 10)
dCrect <- (PLcop(u2, v2, para=10.25) - PLcop(u2, v1, para=10.25) -
               PLcop(u1, v2, para=10.25) + PLcop(u1, v1, para=10.25))/del^2
dCanal <- dPLACKETTcop(u, v, para=10.25)
dCfunc <- densityCOP(u, v, cop=PLcop, para=10.25, deluv = del)
R <- round(c(dCrect, dCanal, dCfunc), digits=6)
message("Density: ", R[1], " (manual), ", R[2], " (analytical), ", R[3], " (function)\n";

# Comparison of partial derivatives
dUr <- (PLcop(u2, v2, para=10.25) - PLcop(u1, v2, para=10.25))/del
dVr <- (PLcop(u2, v2, para=10.25) - PLcop(u2, v1, para=10.25))/del
dU <- derCOP(u, v, cop=PLcop, para=10.25)
dV <- derCOP2(u, v, cop=PLcop, para=10.25)
R <- round(c(dU, dV, dUr, dVr), digits=6)
message("Partial derivatives dU=" , R[1], " and dUr=" , R[3], "\n",
         dV=" , R[2], " and dVr=" , R[4]) #

## End(Not run)

PLACKETTpar

Estimate the Parameter of the Plackett Copula

Description
The parameter Θ of the Plackett copula (Nelsen, 2006, pp. 89–92) is related to Spearman’s Rho
(\rhoS \neq 1, see rhoCOP)

\rhoS(\Theta) = \frac{\Theta + 1}{\Theta - 1} - \frac{2\Theta \log(\Theta)}{(\Theta - 1)^2}.
Alternatively the parameter can be estimated using a *median-split estimator*, which is best shown as an algorithm. First, compute the two medians:

\[
\text{medx} <- \text{median}(x); \text{medy} <- \text{median}(y)
\]

Second and third, compute the number of occurrences where both values are less than their medians and express that as a probability:

\[
k <- \text{length}(x[x < \text{medx} \& y < \text{medy}]); m <- k/\text{length}(x)
\]

Finally, the median-split estimator of \( \Theta \) is computed by

\[
\Theta = \frac{4m^2}{(1 - 2m)^2}.
\]

Nelsen (2006, p. 92) and Salvadori *et al.* (2007, p. 247) provide further details. The input values \( x \) and \( y \) are not used for the median-split estimator if *Spearman's Rho* (see \texttt{rhoCOP}) is provided by \( \text{rho} \).

### Usage

\begin{verbatim}
PLpar(x, y, rho=NULL, byrho=FALSE, cor=NULL, ...)  
PLACKETTpar(x, y, rho=NULL, byrho=FALSE, cor=NULL, ...)
\end{verbatim}

### Arguments

- \( x \): Vector of values for random variable \( X \);
- \( y \): Vector of values for random variable \( Y \);
- \( \text{rho} \): Spearman's Rho and \( \text{byrho} \) is set to \text{TRUE} automatically;
- \( \text{byrho} \): Should Spearman’s Rho be used instead of the median-split estimator;
- \( \text{cor} \): A \texttt{copBasic} syntax for “the correlation coefficient” suitable for the copula—a synonym for \( \text{rho} \); and
- \ldots: Additional arguments to pass.

### Value

A value for the Plackett copula \( \Theta \) is returned.

### Note

Evidently there “does not appear to be a closed form for \( \tau(\Theta) \)” (Fredricks and Nelsen, 2007, p. 2147), but given \( \rho(\Theta) \), the equivalent \( \tau(\Theta) \) can be computed by either the \texttt{tauCOP} function or by approximation. One of the Examples sweeps through \( \rho \mapsto [0, 1; \Delta \rho=\delta] \), fits the Plackett \( \theta(\rho) \), and then solves for Kendall’s Tau \( \tau(\theta) \) using \texttt{taucop}. A polynomial is then fit between \( \tau \) and \( \rho \) to provide rapid conversion between \( |\rho| \) and \( \tau \) where the residual standard error is 0.0005705, adjusted R-squared is \( \approx 1 \), the maximum residual is \( \epsilon < 0.006 \). Because of symmetry, it is only necessary to fit positive association and reflect the result by the sign of \( \rho \). This polynomial is from the Examples is
The following code might be useful in some applications for the inversion of the polynomial for the \( \rho \) as a function of \( \tau \):

```
"fun" <- function(rho, tau=NULL) { tp <- getPLACKETTtau(rho); return(tau-tp)}
```

tau <- 0.78
rho <- uniroot(fun, interval=c(0,1), tau=tau)$root # 0.9220636

Author(s)

W.H. Asquith

References


See Also

PLACKETTcop, PLACKETTsim, rhoCOP

Examples

```
Q1 <- rnorm(1000); Q2 <- Q1+rnorm(1000)
PLpar(Q1,Q2); PLpar(Q1,Q2, byrho=TRUE) # two estimates for same data
PLpar(rho= 0.76) # positive association
PLpar(rho=-0.76) # negative association
tauCOP(cop=PLcop, para=PLpar(rho=-0.15, by.rho=TRUE))

Not run:
RHOS <- seq(0,0.990, by=0.002); TAUS <- rep(NA, length(RHOS))
for(i in 1:length(RHOS)) {
 message("Spearman’s Rho: ", RHOS[i])
 theta <- PLACKETTpar(rho=RHOS[i], by.rho=TRUE); tau <- NA
 try(tau <- tauCOP(cop=PLACKETTcop, para=theta), silent=TRUE)
 TAUS[i] <- ifelse(is.null(tau), NA, tau)
}
```
**PLACKETTsim**

Direct Simulation of a Plackett Copula

**Description**

Simulation of the Plackett copula (Nelsen, 2006, pp. 89–92) is made by this function using analytical formula (Durante, 2007, p. 247; see source code). Thus the PLACKETTsim function can be useful for comparison against the numerical derivative (conditional distribution method) methods (*simCop, simCopMicro*) otherwise used in *copBasic*. The documentation for PLACKETTcop provides the mathematical formula of the Plackett copula.

**Usage**

PLACKETTsim(n, para=NULL, ...)

**Arguments**

- `n` Sample size;
- `para` The Θ parameter of the Plackett copula; and
- `...` Additional arguments to pass.

**Value**

An R data.frame of the values U and V for the nonexceedance probabilities is returned.

**Author(s)**

W.H. Asquith

**References**


**See Also**

PLACKETTcop, PLACKETTpar

**Examples**

```r
LM <- lm(TAUS~ RHOS + I(RHOS^2) + I(RHOS^3) + I(RHOS^4) +
 I(RHOS^5) + I(RHOS^6) + I(RHOS^7) + I(RHOS^8) - 1)
plot(RHOS,TAUS, type="l", xlab="abs(Spearman Rho)", ylab="abs(Kendall Tau")
lines(RHOS,fitted.values(LM), col=3)
End(Not run)
```
The Product of Two Copulas

Description

Perform copula multiplication (so-called "\(*\)-product" or Markov Product) is a continuous analog of matrix multiplication and yields another copula:

\[
(C_1 \ast C_2)(u, v) = C_3(u, v) = \int_I \frac{\delta C_1(u, t)}{\delta u} \frac{\delta C_2(t, v)}{\delta v} \, dt,
\]

for copulas \(C_1(u, v)\) and \(C_2(u, v)\) are copulas whose \(*\)-product yields copula \(C_3(u, v)\) in terms of partial derivatives (\(\text{derCOP}\) and \(\text{derCOP2}\)) of the other two. Nelsen (2006, p. 245) lists several identities of the \(*\)-product involving the product (\(\Pi; P\)), lower bound (\(W; W\)), and upper bound (\(M; M\)) copulas:

\[
\Pi \ast C = C \ast \Pi = \Pi, \\
M \ast C = C \ast M = M, \\
(W \ast C)(u, v) = v - C(1 - u, v) \text{ and } (C \ast W)(u, v) = u - C(u, 1 - v), \text{ and}
\]

\[
W * W = M \text{ and } W * C * W = \hat{C},
\]

where \(\hat{C}\) is the survival copula (\(\text{surCOP}\)). The \(*\)-product is associative:

\[
A \ast (B \ast C) = (A \ast B) \ast C,
\]

but \(*\)-product is not commutative (order independent). Nelsen (2006, p. 245) reports that “if we view \(*\) as a binary operation on the set of copulas, then \(\Pi\) is the null element, and \(M\) is the identity.” Copula multiplication is closely linked to Markov Processes (Nelsen, 2006, pp. 244–248).

For other descriptions and computations of copula combination are possible using the \texttt{copBasic}\ package, see \texttt{convex2COP}, \texttt{composite1COP}, \texttt{composite2COP}, and \texttt{composite3COP}.

Usage

\[
\text{prod2COP}(u, v, \text{cop1=}\text{NULL}, \text{para1=}\text{NULL}, \text{cop2=}\text{NULL}, \text{para2=}\text{NULL}, \text{para=}\text{NULL}, \text{interval=}\text{NULL}, \ldots)
\]

Arguments

- \(u\): Nonexceedance probability \(u\) in the \(X\) direction;
- \(v\): Nonexceedance probability \(v\) in the \(Y\) direction;
- \(\text{cop1}\): The \(C_1(u, v; \Theta_1)\) copula function with vectorization as in \texttt{asCOP};
- \(\text{para1}\): Vector of parameters or other data structures for \(\Theta_1\), if needed, to pass to copula \(C_1(u, v; \Theta_1)\);
- \(\text{cop2}\): The \(C_2(u, v; \Theta_2)\) copula function with vectorization as in \texttt{asCOP};
- \(\text{para2}\): Vector of parameters or other data structures for \(\Theta_2\), if needed, to pass to copula \(C_2(u, v; \Theta_2)\);
para

An R list that can take the place of the cop1, para1, cop2, and para2 arguments. These four will be populated from same named elements of the list, and if the other four arguments were specified through the function interface, these are silently ignored;

interval

An optional interval for the above integral. The default is $I = [0, 1]$ but the option of the user to replace exact end points with “small” numbers is possible (e.g., interval=c(lo, 1-lo) for say lo=.Machine$double.eps; and)

Additional arguments to pass to the copulas.

Value

Value(s) for the copula are returned.

Note

The Farlie–Gumbel–Morgenstern copula ($FGM(u, v; \Theta); \text{FGMcop}$) is

$$FGM(u, v; \Theta) = uv[1 + \Theta(1 - u)(1 - v)],$$

where $-1 \leq \Theta \leq 1$. Nelsen (2006, exer. 6.12, p. 249) asserts that for $FGM_\alpha$ and $FGM_\beta$ with $*$-product as $FGM_\alpha * FGM_\beta$ that a closed-form solution exists and is

$$FGM_\alpha * FGM_\beta = FGM_{\alpha\beta/3}.$$

That the assertion is numerically true as readily verified using the prod2COP function:

```r
u <- c(0.41, 0.87); v <- c(0.13, 0.35); A <- -0.532; B <- 0.235
FGMcop(u,v, para=A*B/3) # 0.05215986 and 0.30342773, matched by prod2COP()
prod2COP(u,v, cop1=FGMcop, para1=A, cop2=FGMcop, para2=B)
```

Author(s)

W.H. Asquith

References


See Also

COP, convex2COP, composite1COP, composite2COP, composite3COP

Examples

```r
Not run:
Product P * N4212 ---> P (by identity)
u <- c(0.41, 0.87); v <- c(0.13, 0.35)
prod2COP(u,v, cop1=P, cop2=N4212cop, para1=NA, para2=2.12) # 0.0533 and 0.3045
COP(u,v, cop=P) # 0.0533 and 0.3045
End(Not run)
Kiriliouk et al. (2016, pp. 358–360) describe a pseudo-polar representation of bivariate data as a means to explore right-tail extremal dependency between the variables. Let \((X_i, Y_i)\) (real values) or \((U_i, V_i)\) (as probabilities) for \(i = 1, \ldots, n\) be a bivariate sample of size \(n\). When such data are transformed into a “uni-Pareto” scale by

\[
\hat{X}_i^* = n/(n + 1 - R_{X,i}) \quad \text{and} \quad \hat{Y}_i^* = n/(n + 1 - R_{Y,i}),
\]

where \(R\) is \(\text{rank}()\), then letting each component sum or pseudo-polar radius be defined as

\[
\hat{S}_i = \hat{X}_i^* + \hat{Y}_i^*,
\]

and each respective pseudo-polar angle be defined as

\[
\hat{W}_i = \hat{X}_i^*/(\hat{X}_i^* + \hat{Y}_i^*) = \hat{X}_i^*/\hat{S}_i,
\]

a pseudo-polar representation is available for study. A scatter plot of \(\hat{W}_i\) (horizontal) versus \(\hat{S}_i\) (vertical) will depict a pseudo-polar plot of the data. Kiriliouk et al. (2016) approach the pseudo-polar concept as a means to study extremal dependency in the sense of what are the contributions of the \(X\) and \(Y\) to their sum conditional on the sum being large. The largeness of \(\hat{S}_i\) is assessed by its empirical cumulative distribution function and a threshold \(S_f\) stemming from \(f\) as a nonexceedance probability \(f \in [0, 1]\).

A density plot of \(\hat{W}_i\) is a representation of extremal dependence. If the density plot shows low density for pseudo-polar angles away from 0 and 1 or bimodality on the edges then weak extremal dependency is present. If the density is substantial and uniform away from the the angles 0 and 1 or if the density peaks near \(\hat{W} \approx 0.5\) then extremal dependency is strong.

Usage

\[
psepol(u, v=NULL, f=0.90, \ldots)
\]
Arguments

- **u**: Nonexceedance probability \(u \) in the \(X \) direction (actually the ranks are used so this can be a real-value argument as well);
- **v**: Nonexceedance probability \(v \) in the \(Y \) direction (actually the ranks are used so this can be a real-value argument as well) and if NULL then \(u \) is treated as a two column \(R \) data.frame;
- **f**: The nonexceedance probability of the distal \(\hat{S} \) to flag in \(\text{Shat_ge_Sf} \) column of the output; and
- ... Additional arguments to pass to the \text{dat2bernqua()} function of the \text{lmomco} package.

Value

An \text{R data.frame} is returned in the \text{table} element and the \(\hat{S}_f \) is in the \(S_f \) element.

- **U**: An echo of the \(u \) input;
- **V**: An echo of the \(v \) input;
- **Xstar**: The \(\hat{X}_i^* \) (Kiriliouk \textit{et al.}, 2016, eq. 17.8, p. 359);
- **Ystar**: The \(\hat{Y}_i^* \) (Kiriliouk \textit{et al.}, 2016, eq. 17.8, p. 359);
- **FXhat1**: The \(F_{X,i} = 1 - 1/X_i^* \), which is the inverse of Kiriliouk \textit{et al.} (2016, eq. 17.1, p. 354);
- **FYhat1**: The \(F_{Y,i} = 1 - 1/Y_i^* \), which is the inverse of Kiriliouk \textit{et al.} (2016, eq. 17.1, p. 354);
- **FXhat3**: The \(F_{3,X,i} = (R_{X,i} - 1/2)/n \) corresponding to the “3” alternative identified by Kiriliouk \textit{et al.} (2016, p. 365);
- **FYhat3**: The \(F_{3,Y,i} = (R_{Y,i} - 1/2)/n \) corresponding to the “3” alternative identified by Kiriliouk \textit{et al.} (2016, p. 365);
- **What**: The \(\hat{W}_i \) (Kiriliouk \textit{et al.}, 2016, eq. 17.9, p. 359);
- **Shat**: The \(\hat{S}_i \) (Kiriliouk \textit{et al.}, 2016, eq. 17.9, p. 359); and
- **Shat_ge_Sf**: A logical on whether the \(\hat{S}_i \) are larger than \(S_f \).

Note

The default of \(f=0.90 \) means that the upper 90th percentile of the component sum will be identified in the output. This percentile is computed by the Bernstein empirical distribution function provided by the \text{lmomco} package through the \text{dat2bernqua()} function. Suggested arguments for ... are poly.type="Bernstein" and bound.type="Carv" though the former is redundant because it is the default of \text{dat2bernqua()}.

Author(s)

William Asquith <william.asquith@ttu.edu>
References

See Also

spectralmeas, stabtaildepf

Examples

```r
## Not run:
pse <- psepol$par # The Pareto copula has right-tail extreme dependency
plot(1/(1-pse$u), 1/(1-pse$v), col=pse$Shat_ge_SF+1, lwd=0.8, cex=0.5, log="xy", pch=16)
plot(pse$pwhat, pse$Shat, log="y", col=pse$Shat_ge_SF+1, lwd=0.8, cex=0.5, pch=16)
plot(density(pse$pwhat[pse$Shat_ge_SF]), pch=16, xlim=c(0,1)) # then try the
# non-right tail extremal copula PSP as cop=PSP in the above psepol() call.
## End(Not run)
```

PSP

The Ratio of the Product Copula to Summation minus Product Copula

Description

Compute *PSP copula* (Nelsen, 2006, p. 23) is named by the author (Asquith) for the copBasic package and is

$$
\text{PSP}(u,v) = \frac{\Pi}{\Sigma - \Pi} = \frac{uv}{u + v - uv},
$$

where Π is the independence or product copula (P) and Σ is the sum $\Sigma = u + v$. The PSP(u,v) copula is a special case of the N4212(u,v) copula (N4212cop). The PSP is included in copBasic because of its simplicity and for pedagogical purposes. The name “PSP” comes from Product, Summation, Product to loosely reflect the mathematical formula shown. Nelsen (2006, p. 114) notes that the PSP copula shows up in several families and designates it as “$\Pi/(\Sigma - \Pi)$.” The PSP is undefined for $u = v = 0$ but no internal trapping is made; calling functions will have to intercept the NaN so produced for $\{0,0\}$. The PSP is left internally untrapping NaN so as to be useful in stressing other copula utility functions herein.

Usage

```
PSP(u, v, ...)
```

Arguments

- **u** Nonexceedance probability u in the X direction;
- **v** Nonexceedance probability v in the Y direction; and
- **...** Additional arguments to pass, which for this copula are not needed, but given here to support flexible implementation.
Perform Quantile Regression using a Copula by Numerical Derivative Method for V with respect to U

Description

Perform *quantile regression* (Nelsen, 2006, pp. 217–218) using a copula by numerical derivatives of the copula (*derCOPinv*). If X and Y are random variables having quantile functions $x(F)$ and $y(G)$ and letting $y = \tilde{y}(x)$ denote a solution to $\Pr[Y \leq y \mid X = x] = F$, where F is a nonexceedance probability. Then the curve $y = \tilde{y}(x)$ is the quantile regression curve of V or Y with respect to U or X, respectively. If $F = 1/2$, then *median regression* is performed (*med.regressCOP*). Using copulas, the quantile regression is expressed as

$$
\Pr[Y \leq y \mid X = x] = \Pr[V \leq G(y) \mid U = F(x)] = \Pr[V \leq v \mid U = v] = \frac{\delta C(u, v)}{\delta u},
$$

where $v = G(y)$ and $u = F(x)$. The general algorithm is

1. Set $\delta C(u, v)/\delta u = F$.
2. Solve the regression curve $v = \tilde{v}(u)$ (accomplished by *derCOPinv*), and
3. Replace u by $x(u)$ and v by $y(v)$.

The last step is optional as step two produces the regression in probability space, which might be desired, and step 3 actually transforms the probability regressions into the quantiles of the respective random variables.
Usage

`qua.regressCOP(f=0.5, u=seq(0.01,0.99,by=0.01), cop=NULL, para=NULL, ...)`

Arguments

- **f** A single value of nonexceedance probability F to perform regression at and defaults to median regression $F = 1/2$;
- **u** Nonexceedance probability u in the X direction;
- **cop** A copula function;
- **para** Vector of parameters or other data structure, if needed, to pass to the copula; and
- **...** Additional arguments to pass.

Value

An R data.frame of the regressed probabilities of V and provided $U = u$ values is returned.

Author(s)

W.H. Asquith

References

See Also

`med.regressCOP, derCOPinv, qua.regressCOP.draw`

Examples

```r
## Not run:
# Use a positively associated Plackett copula and perform quantile regression
theta <- 10
R <- qua.regressCOP(cop=PLACKETTcop, para=theta) # 50th percentile regression

plot(R$U,R$V, type="l", lwd=6, xlim=c(0,1), ylim=c(0,1), col=8)
lines(R$U,(1+(theta-1)*R$U)/(theta+1), col=4, lwd=1) # theoretical for Plackett, see
# (Nelsen, 2006, p. 218)
R <- qua.regressCOP(f=0.90, cop=PLACKETTcop, para=theta) # 90th-percentile regression
lines(R$U,R$V, col=2, lwd=2)
R <- qua.regressCOP(f=0.10, cop=PLACKETTcop, para=theta) # 10th-percentile regression
lines(R$U,R$V, col=3, lty=2)
mtext("Quantile Regression V wrt U for Plackett copula")#
## End(Not run)

## Not run:
# Use a composite copula with two Placketts with compositing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
        para1=0.04, para2=5, alpha=0.9, beta=0.6)
plot(c(0,1),c(0,1), type="n", lwd=3,
```
xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")
Draw the regression of V on U and then U on V (wrtV=TRUE)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtv=TRUE, lty=2, ploton=FALSE)
mtext("Composition of Two Plackett Copulas and Quantile Regression")#
End(Not run)

Not run:
Use a composite copula with two Placketts with compositing parameters alpha and beta.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
 paral=0.34, para2=50, alpha=0.63, beta=0.47)
D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtv=TRUE, lty=2, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
mtext("Composition of Two Plackett Copulas, Level Curves, Quantile Regression")

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, # Note the singularity
 paral=0, para2=500, alpha=0.63, beta=0.47)
D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5)
qua.regressCOP.draw(cop=composite2COP, para=para, ploton=FALSE)
qua.regressCOP.draw(cop=composite2COP, para=para, wrtv=TRUE, lty=2, ploton=FALSE)
level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
mtext("Composition of Two Plackett Copulas, Level Curves, Quantile Regression")

pdf("quantile_regression_test.pdf")
for(i in 1:10) {
 para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=runif(1), beta=runif(1),
 paral=10*runif(1, min=-4, max=0), para2=10*runif(1, min=0, max=4))
 txts <- c("Alpha="
 round(para$alpha, digits=4),
 " Beta="
 round(para$beta, digits=4),
 " Theta1="
 round(para$para1[1], digits=5),
 " Theta2="
 round(para$para2[1], digits=2))

 D <- simCOP(n=3000, cop=composite2COP, para=para, cex=0.5, col=3)
 mtext(paste(txts, collapse=""))
 qua.regressCOP.draw(f=c(seq(0.05, 0.95, by=0.05)),
 cop=composite2COP, para=para, ploton=FALSE)
 qua.regressCOP.draw(f=c(seq(0.05, 0.95, by=0.05)),
 cop=composite2COP, para=para, wrtv=TRUE, ploton=FALSE)
 level.curvesCOP(cop=composite2COP, para=para, ploton=FALSE)
}
dev.off() # done
End(Not run)
Description

Draw a suite of lines for specified nonexceedance probabilities representing the *quantile regression* (Nelsen, 2006, pp. 217–218) of either V with respect to U or U with respect to V depending upon an argument setting.

Usage

```r
qua.regressCOP.draw(f=seq(0.1, 0.9, by=0.1), fs=0.5, cop==NULL, para=NULL,
ploton=TRUE, wrtV=FALSE, col=c(4,2), lwd=c(1,2), lty=1,...)
```

Arguments

- **f** Nonexceedance probability F to perform quantile regression at and defaults to a 10-percent-interval sequence. This vectorization of f for this function differs from that in `qua.regressCOP` and `qua.regressCOP2`;
- **fs** A special value of nonexceedance probability to draw with second values to arguments `col` and `lwd` and defaults to the median ($F = 1/2$);
- **cop** A copula function;
- **para** Vector of parameters or other data structure, if needed, to pass to the copula;
- **ploton** A logical to toggle on the plot;
- **wrtV** If `wrtV=FALSE` call `qua.regressCOP` and perform quantile regression of V with respect to U and if `wrtV=TRUE` call `qua.regressCOP2` and perform regression of U with respect to V;
- **col** A vector of two values for the color of the line to draw, where the first value is used for the f probabilities and the second value is used for the fs probability;
- **lwd** A vector of two values for the line width of the line to draw, where the first value is used for the f probabilities and the second value is used for the fs probability;
- **lty** The line type to draw; and
- **...** Additional arguments to pass.

Value

No values are returned, this function is used for its side effects.

Author(s)

W.H. Asquith

References

See Also

`qua.regressCOP`, `qua.regressCOP2`
Examples

See example in qua.regressCOP documentation

Description

Perform quantile regression (Nelsen, 2006, pp. 217–218) using a copula by numerical derivatives of the copula (derCOPinv2). If X and Y are random variables having quantile functions $x(F)$ and $y(G)$ and letting $x = \tilde{x}(y)$ denote a solution to $\Pr[X \leq x \mid Y = y] = F$, where F is a nonexceedance probability. Then the curve $x = \tilde{x}(y)$ is the quantile regression curve of U or X with respect to V or Y, respectively. If $F = 1/2$, then median regression is performed (med.regressCOP2). Using copulas, the quantile regression is expressed as

$$\Pr[X \leq x \mid Y = y] = \Pr[U \leq F(x) \mid V = F] = \Pr[U \leq u \mid V = F] = \frac{\delta C(u, v)}{\delta v},$$

where $v = G(y)$ and $u = F(x)$. The general algorithm is

1. Set $\delta C(u, v)/\delta v = F$;
2. Solve the regression curve $u = \tilde{u}(v)$ (accomplished by derCOPinv2), and
3. Replace u by $x(u)$ and v by $y(v)$. The last step is optional as step two produces the regression in probability space, which might be desired, and step 3 actually transforms the probability regressions into the quantiles of the respective random variables.

Usage

`qua.regressCOP2(f=0.5, v=seq(0.01, 0.99, by=0.01), cop=NULL, para=NULL, ...)`

Arguments

- **f**: A single value of nonexceedance probability F to perform regression at and defaults to median regression $F = 1/2$;
- **v**: Nonexceedance probability v in the Y direction;
- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula; and
- **...**: Additional arguments to pass.

Value

An R data.frame of the regressed probabilities of U and $V = v$ is returned.
Author(s)

W.H. Asquith

References

See Also

med.regressCOP2, derCOPinv2

Examples

```r
## Not run:
# Use a positively associated Plackett copula and perform quantile regression
theta <- 0.10
R <- qua.regressCOP2(cop=PLACKETTcop, para=theta) # 50th percentile regression
plot(R$U,R$V, type="l", lwd=6, xlim=c(0,1), ylim=c(0,1), col=8)
lines((1+(theta-1)*R$V)/(theta+1),R$V, col=4, lwd=1) # theoretical for Plackett,
# compare the theoretical form to that in qua.regressCOP---just switch terms around
# because of symmetry
R <- qua.regressCOP2(f=0.90, cop=PLACKETTcop, para=theta) # 90th-percentile regression
lines(R$U,R$V, col=2, lwd=2)
R <- qua.regressCOP2(f=0.10, cop=PLACKETTcop, para=theta) # 10th-percentile regression
lines(R$U,R$V, col=2, lty=2)

mtext("Quantile Regression U wrt V for Plackett copula")#
## End(Not run)
```

ReineckeWell266
Porosity and Permeability Data for Well-266 of the Reinecke Oil Field, Horseshoe Atoll, Texas

Description

These data represent porosity and permeability data from laboratory analysis for Well-266 Reinecke Oil Field, Horseshoe Atoll, Texas as used for the outstanding article by Saller and Dickson (2011). Dr. Art Saller shared a CSV file with the author of the **copBasic** package sometime in 2011. These data are included in this package because of the instruction potential of the bivariate relation between permeability and porosity.

Usage

data(ReineckeWell266)
Format

An R data.frame with

- **WELLNO**: The number of the well, no. 266;
- **DEPTH**: The depth in feet to the center of the incremental spacings of the data;
- **FRACDOLOMITE**: The fraction of the core sample that is dolomite, 0 is 100 percent limestone;
- **Kmax**: The maximum permeability without respect to orientation in millidarcies;
- **POROSITY**: The porosity of the core sample; and
- **DOLOMITE**: Is the interval treated as dolomite (1) or limestone (0).

References

Examples

```r
## Not run:
data(ReineckeWells)
summary(ReineckeWells) # show summary statistics
## End(Not run)
```

ReineckeWells

Porosity and Permeability Data for the Reinecke Oil Field, Horseshoe Atoll, Texas

Description

These data represent porosity and permeability data from laboratory analysis for the Reinecke Oil Field, Horseshoe Atoll, Texas as used for the outstanding article by Saller and Dickson (2011). Dr. Art Saller shared a CSV file with the author of the copBasic package sometime in 2011. These data are included in this package because of the instruction potential of the bivariate relation between permeability and porosity.

Usage

```r
data(ReineckeWells)
```

Format

An R data.frame with

- **DOLOMITE**: The fraction of the core sample that is dolomite, 0 is 100 percent limestone;
- **Kmax**: The maximum permeability without respect to orientation in millidarcies;
- **K90**: The horizontal (with respect to 90 degrees of the borehole) permeability in millidarcies;
- **Kvert**: The vertical permeability in millidarcies; and
- **POROSITY**: The porosity of the core sample.
References

Examples

```r
## Not run:
data(ReineckeWells)
summary(ReineckeWells) # show summary statistics
## End(Not run)
```

RFcop
The Raftery Copula

Description

The Raftery copula (Nelsen, 2006, p. 172) is

\[
C_\Theta(u, v) = RF(u, v) = M(u, v) + \frac{1 - \Theta}{1 + \Theta} (uv)^{1/(1-\Theta)} \left[1 - (\max\{u, v\})^{-(1+\Theta)/(1-\Theta)} \right],
\]

where \(\Theta \in (0, 1) \). The copula, as \(\Theta \to 0^+ \) limits, to the independence copula \((P(u, v); P) \), and as \(\Theta \to 1^- \), limits to the comonotonicity copula \((M(u, v); M) \). The parameter \(\Theta \) is readily computed from Spearman’s Rho \((\rho\text{COP}) \) by \(\rho_C = \Theta(4 - 3\Theta)/(2 - \Theta)^2 \) or from Kendall’s Tau \((\tau\text{COP}) \) by \(\tau_C = 2\Theta/(3 - \Theta) \).

Usage

```
RFcop(u, v, para=NULL, rho=NULL, tau=NULL, ...) # Additional arguments to pass.
```

Arguments

- **u**: Nonexceedance probability \(u \) in the X direction;
- **v**: Nonexceedance probability \(v \) in the Y direction;
- **para**: A vector (single element) of parameters—\(\Theta \) parameter of the copula;
- **rho**: Optional Spearman’s Rho;
- **tau**: Optional Kendall’s Tau; and
- **\ldots**: Additional arguments to pass.
Value

Value(s) for the copula are returned. Otherwise if either rho or tau is given, then the \(\Theta \) is computed and a list having

- para: The parameter \(\Theta \), and
- rho: Spearman’s Rho if the rho is given.
- tau: Kendall’s Tau if the tau is given but also if both rho and tau are NULL as mentioned next.

and if para=NULL and rho and tau=NULL, then the values within \(u \) and \(v \) are used to compute Kendall’s Tau and then compute the parameter, and these are returned in the aforementioned list.

Author(s)

W.H. Asquith

References

See Also

\(\text{M, P} \)

Examples

```r
# Lower tail dependency of Theta = 0.5 --> 2*(0.5)/(1+0.5) = 2/3 (Nelsen, 2006, p. 214)
taildepCOP(cop=RFcop, para=0.5)$lambdal # 0.66667

## Not run:
# Simulate for a Spearman Rho of 0.7, then extract estimated Theta that
# internally is based on Kendall Tau of U and V, then convert estimate
# to equivalent Rho.
UV <- simCOP(1000, cop=RFcop, RFcop(rho=0.7)$para)
Theta <- RFcop(UV$U, UV$V)$para # 0.605893
Rho <- Theta*(4-3*Theta)/(2-Theta)^2 # 0.679483 (nearly 0.7)
## End(Not run)
```

`rhobevCOP` A Dependence Measure for a Bivariate Extreme Value Copula based on the Expectation of the Product of Negated Log-Transformed Random Variables \(U \) and \(V \)
Description

Compute a dependence measure based on the expectation of the product of transformed random variables U and V, which unnamed by Joe (2014, pp. 383–384) but symbolically is ρ_E, having a bivariate extreme value copula $C_{BEV}(u,v)$ by

$$\rho_E = E[(-\log U) \times (-\log V)] - 1 = \int_0^1 [B(w)]^{-2} \, dw - 1,$$

where $B(w) = A(w, 1-w)$, $B(0) = B(1) = 1$, $B(w) \geq 1/2$, and $0 \leq w \leq 1$, and where only bivariate extreme value copulas can be written as

$$C_{BEV}(u,v) = \exp[-A(-\log u, -\log v)],$$

and thus in terms of the coupla

$$B(w) = -\log[C_{BEV}(\exp[-w], \exp[w - 1])].$$

Joe (2014, p. 383) states that ρ_E is the correlation of the “survival function of a bivariate min-stable exponential distribution,” which can be assembled as a function of $B(w)$. Joe (2014, p. 383) also shows the following expression for Spearman Rho

$$\rho_S = 12 \int_0^1 [1 + B(w)]^{-2} \, dw - 3$$

in terms of $B(w)$. This expression, in conjunction with rhoCOP, was used to confirm the prior expression shown here for $B(w)$ in terms of $C_{BEV}(u,v)$. Lastly, for independence ($uv = \Pi; \Pi$), $\rho_E = 0$ and for the Fréchet–Hoeffding upper bound copula (perfect positive association), $\rho_E = 1$.

Usage

```
rhobevCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)
```

Arguments

- **cop**: A bivariate extreme value copula function—the function rhobevCOP makes no provision for verifying whether the copula in cop is actually an extreme value copula;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula;
- **as.sample**: A logical controlling whether an optional R data.frame in para is used to compute a $\hat{\rho}_E$ by mean() of the product of negated log()’s in R. The user is required to cast para into estimated probabilities (see Examples);
- **brute**: Should brute force be used instead of two nested integrate() functions in R to perform the double integration;
- **delta**: The dw for the brute force (brute=TRUE) integration; and
- **...**: Additional arguments to pass.

Value

The value for ρ_E is returned.
Description

Compute the measure of association known as *Spearman’s Rho* ρ_C of a copula according to Nelsen (2006, pp. 167–170, 189, 208) by

$$
\rho_C = 12 \int \int_{T^2} C(u, v) \, du \, dv - 3,
$$

or

$$
\rho_C = 12 \int \int_{T^2} [C(u, v) - uv] \, du \, dv,
$$

where the later equation is implemented by `rhoCOP` as the default method (method="default"). This equation, here having $p = 1$ and $k_2(1) = 12$, is generalized under `hoefCOP`. The absence of the 12 in the above equation makes it equal to the covariance defined by *Hoeffding’s identity* (Joe, 2014, p. 54):

$$
cov(U, V) = \int \int_{T^2} [C(u, v) - uv] \, du \, dv \quad \text{or} \quad
$$

$$
cov(U, V) = \int \int_{T^2} [\hat{C}(u, v) - uv] \, du \, dv, \quad \text{which is}$$

$$
cov(U, V) = \int \int_{T^2} [u + v - 1 + C(1 - u, 1 - v) - uv] \, du \, dv.
$$
Depending on copula family (Joe, 2014, pp. 56 and 267), the alternative formulation for \(\rho_C \) could be used

\[
\rho_C = 3 - 12 \int \int_{I^2} u \frac{\delta C(u,v)}{\delta u} \, du \, dv = 3 - 12 \int \int_{I^2} v \frac{\delta C(u,v)}{\delta v} \, du \, dv,
\]

where the first integral form corresponds to Joe (2014, eq. 248, p. 56) and is the method="joe21", and the second integral form is the method="joe12".

The integral

\[
\int \int_{I^2} C(u,v) \, du \, dv,
\]

represents the “volume under the graph of the copula and over the unit square” (Nelsen, 2006, p. 170) and therefore \(\rho_C \) is simple a rescaled volume under the copula. The second equation for \(\rho_C \) expresses the “average distance” between the joint distribution and statistical independence \(\Pi = uv \). Nelsen (2006, pp. 175–176) shows that the following relation between \(\rho_C \) and \(\tau_C \) (tauCOP) exists

\[-1 \leq 3\tau - 2\rho \leq 1.\]

Usage

\[
rhocop(cop=NULL, para=NULL, method=c("default", "joe21", "joe12"),
\quad as.sample=FALSE, brute=FALSE, delta=0.002, \ldots)
\]

Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
method The form of integration used to compute (see above);
as.sample A logical controlling whether an optional R data.frame in para is used to compute the \(\hat{\rho} \) by dispatch to cor() function in R with method = "spearman";
brute Should brute force be used instead of two nested integrate() functions in R to perform the double integration;
delta The \(du \) and \(dv \) for the brute force integration using brute; and
\ldots Additional arguments to pass.

Value

The value for \(\rho_C \) is returned.

Note

Technically, Nelsen (2006) also shows that these definitions are a form of call to a concordance function \(Q(C_1, C_2) \) of two copulas that involve \(C_1 = C(u,v) \) and \(C_2 = \Pi \). As such in order to keep rhocop a small function when brute=TRUE, \(\rho_C \) is computed by a special call to tauCOP, which by itself and although titled for computation of Kendall’s Tau, does support the concordance function \(Q(C_1, C_2) \) [see Nelsen (2006, pp. 158–159)] when given two different copulas and respective parameters as arguments.
Author(s)

W.H. Asquith

References

See Also

blomCOP, footCOP, giniCOP, hoefCOP, tauCOP, wolfCOP, joeskewCOP, uvlmoms

Examples

```r
rhocop(cop=PSP)  # 0.4784176
```

```
# Not run:
rhocop(cop=PSP, brute=TRUE) # 0.4684063
# CPU heavy example showing that the dual-integration (fast) results in
# a Spearman's Rho that mimics a sample version

do_rho <- function(n) {
  uv <- simCOP(n=n, cop=PSP, ploton=FALSE, points=FALSE)
  return(corr(uv$U, uv$V, method="spearman"))
}

rhos <- replicate(100, do_rho(1000))
rho_sample <- mean(rhos); print(rho_sample) # 0.472661
```

```
# Not run:
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
             paral=0.00395, paral2=4.67, alpha=0.9392, beta=0.5699)
rhocop(cop=composite2COP, para=para) # -0.5924796

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
             paral=0.14147, paral2=20.96, alpha=0.0411, beta=0.6873)
rhocop(cop=composite2COP, para=para) # 0.2818874

para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
             paral=0.10137, paral2=4492.87, alpha=0.0063, beta=0.0167)
rhocop(cop=composite2COP, para=para)  # 0.9812919
rhocop(cop=composite2COP, para=para, brute=TRUE) # 0.9752155
```

```
# Not run:
# This is the same composited copula used in a highly asymmetric multi-modal
# plotting example under densityCOPplot(). Let us use that copula as a means to
# check on the Spearman's Rho from the alternative formulations from Joe (2014).

para <- list(alpha=0.15, beta=0.90, kappa=0.06, gamma=0.96,
            cop1=GHcop, cop2=PLACKETTcop, paral=5.5, paral2=0.07)

"rhocopByJoe21" <- function(cop=NULL, para=NULL, ...) {
  # Joe (2014, eq. 2.48)
  myint <- NULL
  try(myint <- integrate(function(u) {
```
The Root Mean Square Error between a Fitted Copula and an Empirical Copula

Description

Compute the root mean square error RMSE$_C$ (Chen and Guo, 2019, p. 29), which is computed using mean square error MSE as

$$\text{MSE}_C = \frac{1}{n} \sum_{i=1}^n \left(C_n(u_i, v_i) - C_{\Theta_m}(u_i, v_i) \right)^2$$ and

$$\text{RMSE}_C = \sqrt{\text{MSE}_C},$$

where $C_n(u_i, v_i)$ is the empirical copula (empirical joint probability) for the ith observation, $C_{\Theta_m}(u_i, v_i)$ is the fitted copula having m parameters in Θ. The $C_n(u_i, v_i)$ comes from EMPIRcop. The RMSE$_C$ is in effect saying that the best copula will have its joint probabilities plotting on a 1:1 line with the empirical joint probabilities, which is an RMSE$_C = 0$. From the MSE$_C$ shown above, the Akaike information criterion (AIC) aicCOP and Bayesian information criterion (BIC) bicCOP can be computed, which add a penalty for m parameters. These goodness-of-fits can assist in deciding one copula favorability over another, and another goodness-of-fit using the absolute differences between $C_n(u, v)$ and $C_{\Theta_m}(u, v)$ is found under statTn.

Usage

$$\text{rmseCOP}(u, v, \text{cop}=\text{NULL}, \text{para} = \text{NULL}, \ldots)$$

Arguments

- `u`: Nonexceedance probability u in the X direction;
- `v`: Nonexceedance probability v in the Y direction;
The Sections or Derivative of the Sections of a Copula

```r
## Not run:
S <- simCOP(0, cop=GHcop, para=5) # Simulate some probabilities, but we # must then treat these as data and recompute empirical probabilities.
U <- lmomco::pp(S$U, sort=FALSE); V <- lmomco::pp(S$V, sort=FALSE)
# The parent distribution is Gumbel-Hougaard extreme value copula.
# But in practical application we do not know that but say we speculate that
# perhaps the Galambos extreme value might be the parent. Then maximum
# likelihood is used to fit the single parameter.
pGL <- mleCOP(U,V, cop=GLcop, interval=c(0,20))$par

rmse <- c(rmseCOP(U,V, cop=GLcop, para=pGL),
          rmseCOP(U,V, cop=P),
          rmseCOP(U,V, cop=PSP))
print(rmse) # We will see that the first RMSE is the smallest as the
# Galambos has the nearest overall behavior than the P and PSP copulas.
## End(Not run)
```
Description

Compute the *copula sections* or the *(partial) derivatives of copula sections* of a copula (Nelsen, 2006, pp. 12–14). The *horizontal section* at $V = a$ (a constant) is

$$ t \mapsto C(t, a), $$

and the *vertical section* at $U = a$ (a constant, with respect to V or wrt $V = \text{TRUE}$) is

$$ t \mapsto C(a, t). $$

The partial derivatives of the copula sections are *conditional cumulative distribution functions* (see *derCOP* and *derCOP2*). The derivatives are constrained as

$$ 0 \leq \frac{\delta}{\delta u} C(u, v) \leq 1, $$

or

$$ 0 \leq \frac{\delta}{\delta v} C(u, v) \leq 1. $$

Usage

```
sectionCOP(f, cop=NULL, para=NULL, wrtV=FALSE, dercop=FALSE, delt=0.005, ploton=TRUE, lines=TRUE, xlab="NONEXCEEDANCE PROBABILITY", ...)```

Arguments

- **f**: A single value of nonexceedance probability $u$ or $v$ along the horizontal $U$ axis or vertical $V$ axis of the unit square $I^2$;
- **cop**: A copula function;
- **para**: Vector of parameters, if needed, to pass to the copula;
- **wrtV**: A logical to toggle between with respect to $v$ or $u$ (default). The default provides the vertical section whereas the horizontal comes from $wrtV = \text{TRUE}$;
- **dercop**: A logical that triggers the derivative of the section;
- **delt**: The increment of the level curves to plot, defaults to 5-percent intervals;
- **ploton**: A logical to toggle on the plot;
- **lines**: Draw the lines of diagonal to the current device;
- **xlab**: A label for the x-axis title passed to plot() in R; and
- **...**: Additional arguments to pass to the plot() and lines() functions in R.

Value

An R list is returned.

- **t**: The nonexceedance probability along the section. The nomenclature $t$ mimics Nelsen (2006) and is *not* the same as the $u$ or $v$;
- **seccop**: The section of the copula or its derivative;
- **wrt**: A text string declaring what the setting for wrtV was;
- **fvalue**: The provided value of nonexceedance probability; and
- **isderivative**: A logical stating whether the derivative of the section is seccop.
sectionCOP

Author(s)
W.H. Asquith

References

See Also
COP, diagCOP

Examples

```r
Not run:
EXAMPLE 1, plot the v=0.55 section and then u=0.55 section, which will overlay
the other because the PSP is a symmetrical copula
tmp <- sectionCOP(0.55, cop=PSp, ylab="COPULA SECTIONS", lw=5, col=2)
tmp <- sectionCOP(0.55, cop=PSp, wtrV=TRUE, ploton=FALSE, lw=2, col=3)
now add the v=0.85 section and the u=0.85, again overlay each other
tmp <- sectionCOP(0.85, cop=PSp, ploton=FALSE, lw=5, col=2, lty=2)
tmp <- sectionCOP(0.85, cop=PSp, wtrV=TRUE, ploton=FALSE, lw=2, col=3, lty=2)
End(Not run)

Not run:
EXAMPLE 2, v=0.35 section and derivative (the conditional distribution) function
tmp <- sectionCOP(0.35, cop=PSp, ylab="COPULA SECTIONS OR DERIV.", lw=5, col=3)
tmp <- sectionCOP(0.35, cop=PSp, dcrp=TRUE, ploton=FALSE, col=3)
The thin green line represents the cumulative distribution function conditional
on u = 0.35 from the derCOP function. Then see Example 3
End(Not run)

Not run:
EXAMPLE 3 (random selection commented out)
#para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=runif(1), beta=runif(1),
para1=10*runif(1,min=-4, max=0), para2=10*runif(1,min= 0, max=4))
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=0.7, beta=0.22,
para1=0.0155, para2=214.4)
x <- c("Alpha=" , round(para$alpha, digits=4),
"Beta=" , round(para$beta, digits=4),
"Theta1=" , round(para$para[1], digits=5),
"Theta2=" , round(para$para[2], digits=2))
layout(matrix(1:2, byrow=TRUE))
D <- simCOP(n=1000, cop=composite2COP, para=para, cex=0.5, col=rgb(0,0,0,0.2), pch=16)
mtext(paste(x,text,"="))
#f <- c(runif(1),runif(1))
f <- c(0.2,0.9) # RED is the horizontal section and BLACK is the vertical section
segments(f[1],0,f[1],1, col=2, lw=2); segments(0,f[2],1,f[2], lw=2)
ftxt <- c("Sections (thick) and derivatives (thin) at ", f, ", nonexceed. prob.")
tmp <- sectionCOP(f[1],cop=composite2COP,para=para, col=2, lw=4)
tmp <- sectionCOP(f[1],cop=composite2COP,para=para, dcrp=TRUE, ploton=FALSE, col=2)
tmp <- sectionCOP(f[2],cop=composite2COP,para=para, wtrv=TRUE,ploton=FALSE, lw=4)
tmp <- sectionCOP(f[2],cop=composite2COP,para=para,wtrv=TRUE,ploton=FALSE,dercpl=TRUE)
```

sectionCOP
semicorCOP

The Lower and Upper Semi-Correlations of a Copula

Description

Compute the lower semi-correlations
\[ \rho_C^{-}(u, v; a) = \rho^{-}_N(a) \]
and compute the upper semi-correlations
\[ \rho_C^{+}(u, v; a) = \rho^{+}_N(a) \]
of a copula \( C(u, v) \) (Joe, 2014, p. 73) using numerical simulation. The semi-correlations are defined as
\[ \rho^{-}_N(a) = \text{cor}[Z_1, Z_2 | Z_1 < -a, Z_2 < -a], \]
\[ \rho^{+}_N(a) = \text{cor}[Z_1, Z_2 | Z_1 > +a, Z_2 > +a], \]
and
\[ \rho_N(a > -\infty) = \text{cor}[Z_1, Z_2], \]
where \( \text{cor}[z_1, z_2] \) is the familiar Pearson’s correlation function, which is in \( \mathbb{R} \) the syntax \( \text{cor}(\ldots, \text{method}="\text{pearson}"), \) parameter \( a \geq 0 \) is a truncation point that identifies truncated tail regions (Joe, 2014, p. 73), and lastly \( (Z_1, Z_2) \sim C(\Phi, \Phi) \) and thus from the standard normal distribution \( (Z_1, Z_2) = (\Phi^{-1}(u), \Phi^{-1}(v)) \) where the random variables \( (U, V) \sim C \).

Usage

semicorCOP(cop=NULL, para=NULL, truncation=0, n=0, as.sample=FALSE, ...)
Value

The value(s) for \( \rho_N, \rho_N^-, \rho_N^+ \) are returned.

Note

The sample semi-correlations can be computed from a two column table that is passed into the function using the \texttt{para} argument. Although the truncation point \( a \geq 0 \), as \( a \) increases and focus is increasingly made into one or the other truncated tail regions, the sample version with data becomes decreasing well estimated because the available sample size diminishes. The \texttt{para} argument can contain probabilities or raw data because internally the function computes the \textit{Hazen plotting positions} (e.g. \( u_i = (i - 0.5)/n \) for rank \( i \) and sample size \( n \)) because Joe (2014, pp. 9, 17, 245, 247–248) repeatedly emphasizes this form of plotting position when normal scores are involved.

Author(s)

W.H. Asquith

References


See Also

giniCOP, rhoCOP, tauCOP

Examples

```r
Not run:
Gumbel-Hougaard copula with Pearson rhoN = 0.4 (by definition)
run <- sapply(1:20, function(i) semicorCOP(cop=GHcop, para=1.350, n=600))
mean(unlist(run[1,])) # cor.normal.scores
mean(unlist(run[2,])) # minus.semicor
mean(unlist(run[3,])) # plus.semicor
sd(unlist(run[1,])) # cor.normal.scores (These are our sampling variations
sd(unlist(run[2,])) # minus.semicor for the n=600 used as a Monte
sd(unlist(run[3,])) # plus.semicor Carlo simulation.)
The function returns: rhoN = 0.3945714, rhoN-= 0.1312561, rhoN+= 0.4108908
standard deviations (0.0378331) (0.0744049) (0.0684766)
Joe (2014, p. 72) shows: rhoN = 0.4, rhoN-= 0.132, rhoN+= 0.415
standard deviations (not avail) (0.08) (0.07)
We see alignment with Joe's results with his n=600.
End(Not run)
```
Simulate copula parameters and compute \textit{L-comoments} and provision for plotting features for a composited copula using four compositing parameters (see \texttt{composite3COP}). The compositing parameters are each independent and uniformly distributed:

\[ \alpha \sim U[0, 1]; \ \beta \sim U[0, 1]; \ \kappa \sim U[0, 1]; \ \gamma \sim U[0, 1]. \]

L-comoment estimation is provided by the \texttt{lcomCOP}.

The \texttt{nsim} parameter is used to specify the number of simulations to perform. The \texttt{compositor} parameter determines which compositing function to use, and \texttt{parents} is a special parameter list (see \texttt{Note}).

The \texttt{digit} parameter specifies the number of digits to pass to the \texttt{round} function if \texttt{showresults} is true; and \texttt{...} represents additional arguments to pass.

An \texttt{R} matrix of results is returned. Each row represents a single simulation run. The first four columns are the \(\alpha, \beta, \kappa,\) and \(\gamma\) \textit{compositing parameters} and are labeled as such. The next two columns are the opposing diagonals, by first row and then second, of the \textit{L-comoment correlation}. The following two columns are the opposing diagonals, by row and then second, of the \textit{L-coskew}. The following two columns are the opposing diagonals, by row and then second, of the \textit{L-cokurtosis}. The L-comoment columns are labeled to reflect the L-comoment matrix: \texttt{T2.21} means the L-comoment correlation row 2 column 1 and \texttt{T3.12} mean the L-coskew row 1 column 2. The remaining columns represent the \(\Theta_n\) parameters for copula 1, the \(\Theta_m\) parameters for copula 2. The columns are labeled \texttt{Cop1Thetas} or \texttt{Cop2Thetas}. 

\begin{verbatim}
Usage
simcomposite3COP(nsim=100, compositor=composite3COP,
    parents=NULL, ploton=FALSE, points=FALSE,
    showpar=FALSE, showresults=FALSE, digits=6, ...)

Arguments
nsim Number of simulations to perform;
compositor The compositing function that could be either composite1COP, composite2COP, and composite3COP;
parents A special parameter list (see Note);
ploton A logical to toggle on intermediate plotting;
points A logical to actually draw the simulations on the ploton by the points() function in \texttt{R};
showpar Print the simulated parameter set with each iteration;
showresults Print the results (useful if harvest results from a batch operation in \texttt{R});
digits The number digits to pass to round if showresults is true; and
... Additional arguments to pass.
\end{verbatim}
Note

The following descriptions list in detail the parents argument structure and content of the para argument:

cop1 — Function of the first copula;
cop2 — Function of the second copula;
para1gen — Function to generate random parameters for the first copula; and
para2gen — Function to generate random parameters for the second copula.

The para argument of this function are passed to the function contained in compositor and are therefore subject to further constraints in items should such constraints exist.

Author(s)

W.H. Asquith

References


See Also

lcomCOP, simcompositeCOP

Examples

```r
Not run:
EXAMPLE 1: Make a single simulation result.
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
 para1gen=function() { return(c((10*runif(1,min=-5,max=0))))},
 para2gen=function() { return(c((10*runif(1,min= 0,max=5)))})

v <- simcompositeCOP(nsim=1, parent=mainpara, showresults=TRUE)
print(v)

EXAMPLE 2: Make 1000 "results" and plot two columns.
mainpara <- list(cop1=PLACKETTcop, cop2=N4212cop,
 para1gen=function() { return(c((10*runif(1,min=-5,max=5))))},
 para2gen=function() { return(c((10*runif(1,min= 0,max=2)))})

v <- simcompositeCOP(nsim=100, parent=mainpara); labs <- colnames(v)
plot(v[,5],v[,7], # open circles are 1 with respect to 2
 xlab=paste(c(labs[5], "and", labs[6]), collapse=" "),
 ylab=paste(c(labs[6], "and", labs[8]), collapse=" "))
points(v[,6],v[,8], pch=16) # black dots are 2 with respect to 1
End(Not run)
```
Compute the L-comoments of a Two-Value Composited Copula by Simulation

**Description**

TSimulate copula parameters and compute *L-comoments* and provision for plotting features for a composited copula using using two compositing parameters (see `composite1COP` and `composite2COP`). The compositing parameters are each independent and uniformly distributed:

\[ \alpha \sim U[0,1]; \beta \sim U[0,1]. \]

L-comoment estimation is provided by the `lcomcop`.

**Usage**

```r
simcompositecop(nsim=100, compositor=composite2COP, parents=NULL, ploton=FALSE, points=FALSE, showpar=FALSE, showresults=FALSE, digits=6, ...)```

Arguments

- `nsim` Number of simulations to perform;
- `compositor` The compositing function, could be either `composite1COP` or `composite2COP`. Each of these is acceptable because two compositing parameters are used;
- `parents` A special parameter list (see Note);
- `ploton` A logical to toggle on intermediate plotting;
- `points` A logical to actually draw the simulations on the ploton by points() function in R;
- `showpar` Print the simulated parameter set with each iteration;
- `showresults` Print the results (useful if harvest results from a batch operation in R);
- `digits` The number digits to pass to round if showresults is true; and
- `...` Additional arguments to pass.

Value

An R matrix of results is returned. Each row represents a single simulation run. The first two columns are the \(\alpha \) and \(\beta \) compositing parameters and are labeled as such. The next two columns are the opposing diagonals, by first row and then second, of the *L-comoment correlation*. The following two columns are the opposing diagonals, by row and then second, of the *L-coskew*. The following two columns are the opposing diagonals, by row and then second, of the *L-cokurtosis*. The L-comoment columns are labeled to reflect the L-comoment matrix: \(T2.21 \) means the L-comoment correlation row 2 column 1 and \(T3.12 \) mean the L-coskew row 1 column 2. The remaining columns represent the \(\Theta_n \) parameters for copula 1, the \(\Theta_m \) parameters for copula 2. The columns are labeled Cop1Thetas or Cop2Thetas.
Note

The following descriptions list in detail the parents argument structure and content of the para argument:

cop1 — Function of the first copula;
cop2 — Function of the second copula;
para1gen — Function to generate random parameters for the first copula; and
para2gen — Function to generate random parameters for the second copula.

The para argument of this function are passed to the function contained in compositor and are therefore subject to further constraints in items should such constraints exist.

Author(s)

W.H. Asquith

References

See Also

lcomCOP, simcomposite3COP

Examples

```r
## Not run:
# A single simulation result.
mainpara <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
                 para1gen=function() { return(c(10*runif(1,min=-5,max=0))) },
                 para2gen=function() { return(c(10*runif(1,min=0,max=5))) })
v <- simcompositeCOP(nsim=1, parent=mainpara, showresults=TRUE)
pin(v) # for review
## End(Not run)
```

simCOP

Simulate a Copula by Numerical Derivative Method

Description

Perform a simulation and visualization of a copula using numerical partial derivatives of the copula (Nelsen, 2006, p. 32). The method is more broadly known as *conditional simulation method*. Because a focus of **copBasic** is on copula theory for pedagogic purposes, the coupling between simulation and subsequent visualization is emphasized by this function by it providing for both simulation and plotting operations by default.
The `simCOP` function is based on a uniformly simulating nonexceedance probability u and then conditioning the v from the inverse of the sectional derivative for V with respect to U (see `derCOPinv`). The function for speed will only report a warning if at least one of the requested simulations in n could not be made because of `uniroot`ing problems in `derCOPinv`. The returned data.frame will be shortened automatically, but this can be controlled by `na.rm`. Failure of a simulation is purely dependent on the derivative inversion, which should be quite robust for continuous or near continuous copulas and even copulas with singularities should be more or less okay. Lastly, the logical combination `na.rm=FALSE` and `keept=TRUE` could be used to isolate those combinations giving `derCOPinv` problems. The implemented simulation method in the `copBasic` package is known as the conditional distribution method (Nelsen, 2006; pp. 40–41), conditional method, or Rosenblatt transform (Joe, 2014, p. 270).

Usage

```r
simCOP(n=100, cop=NULL, para=NULL, na.rm=TRUE, keep=FALSE,
       graphics=TRUE, ploton=TRUE, points=TRUE, snv=FALSE,
       infsnv.rm=TRUE, trapinfsnv=.Machine$double.eps, ...)
rcop(n, cop=NULL, para=NULL, na.rm=TRUE, ...)
```

Arguments

- `n` A sample size, default is $n = 100$;
- `cop` A copula function;
- `para` Vector of parameters, if needed, to pass to the copula;
- `na.rm` A logical to toggle the removal of `NA` entries should they form on the returned data.frame. A well implemented copula should accommodate and not return `NA` but because this package relies on numerical derivation, it was decided to have a mechanism to handle this;
- `keept` Keep the t uniform random variable for the simulation as the last column in the returned data.frame;
- `graphics` A logical that will disable graphics by setting `ploton` and `points` to `FALSE` and overriding whatever their settings were;
- `ploton` A logical to toggle on the plot (see Examples in `vuongCOP`);
- `points` A logical to actually draw the simulations by the `points()` function in R;
- `snv` A logical to convert the $\{u, v\}$ to standard normal scores (variates) both for the optional graphics and the returned R data.frame. Curiously, Joe (2014) advocates extensively for use of normal scores, which is in contrast to Nelsen (2006) who does not;
- `infsnv.rm` A logical that will quietly strip out any occurrences of $u = \{0, 1\}$ or $v = \{0, 1\}$ from the simulations because these are infinity in magnitude when converted to standard normal variates is to occur. Thus, this logical only impacts logic flow when `snv` is `TRUE`. The `infsnv.rm` is mutually exclusive from `trapinfsnv`;
- `trapinfsnv` If `TRUE` and presumably small, the numerical value of this argument (η) is used to replace $u = \{0, 1\}$ and $v = \{0, 1\}$ with $u(0) = v(0) = \eta$ or $u(1) = v(1) = 1 - \eta$ as appropriate when conversion to standard normal variates is to occur. The setting of `trapinfsnv` only is used if `snv` is `TRUE` and `infsnv.rm` is `FALSE`; and
Additional arguments to pass to the `points()` function in R.

Value

An R data frame of the simulated values is returned.

Note

Function `rcop` is a light-weight implementation for bivariate copula random variates that dispatches to `simCOPmicro` and bypasses the graphical and other features of `simCOP`. Finally, an experimental parallel for the empirical copula is `EMPIRsim`.

Author(s)

W.H. Asquith

References

See Also

derCOPinv, `simCOPmicro`

Examples

```r
simCOP(n=5, cop=PARETOcop, para=2.4)
```

```r
# Not run:
# The simCOP function is oft used in other Examples sections through this package.
simCOP(n=10, cop=W)       # Frechet lower bound copula
simCOP(n=10, cop=P)       # Independence copula
simCOP(n=10, cop=M, col=2) # Frechet upper bound copula
simCOP(n=10, cop=PSP)     # The PSP copula
# End(Not run)
```

```r
# Not run:
# Now simulate the PSP copula, add the level curves of the copula, and demonstrate
# the uniform distribution of marginals on the correct axes (U [top] and V [left]).
D <- simCOP(n=400, cop=PSP) # store simulated values in D
level.curvesCOP(cop=PSP, ploton=FALSE)
rug(D$U, side=3, col=2); rug(D$V, side=4, col=2)
```

```r
# Now let us get more complicated and mix two Plackett copulas together using the
# compositeCOP as a "composer." The parameter argument becomes more complex, but
# is passed as shown into composite2COP.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop, alpha=0.3, beta=0.5, param=0.1, para=2=50)
D <- simCOP(n=950, cop=compositeCOP, para=para, col=rgb(0,0,0,0.2), pch=16, snv=TRUE)
# End(Not run)
```
Simulate \(V \) from \(U \) through a Copula by Numerical Derivative Method

Description

Perform bivariate simulation of random but coupled variables \(V \) from \(U \) through a copula (Nelsen, 2006, p. 32) by inversion of the numerical derivatives of the copula (\texttt{derCOPinv}, \texttt{derCOPinv2}). The method is more broadly known as *conditional simulation method*. An elaborate implementation is available in \texttt{simCOP}, which unlike \texttt{simCOPmicro}, has provisions (default) for graphical support. The \texttt{simCOPmicro} function is intended to be a minimalist version for copula simulation, and such a version is useful for pedagogic purposes including conditional distributions, conditional quantile functions, and copula reflection (see Note and \texttt{COP}). An extended educational discussion of simulation using the conditional method is available in the Note section of \texttt{derCOPinv}.

Some definitions are needed. The copula of \((1 - U, 1 - V)\) is the *survival copula* (\texttt{surCOP}) and is defined as

\[
\hat{C}(u, v) = u + v - 1 + C(1 - u, 1 - v),
\]

whereas, following the notation of Joe (2014, pp. 271–272), the copula of \((1 - U, V)\) is defined as

\[
\dot{C}(u, v) = v - C(1 - u, v),
\]

and the copula of \((U, 1 - V)\) is defined as

\[
\ddot{C}(u, v) = u - C(u, 1 - v).
\]

Careful consideration of the nomenclature is necessary as confusion with the occurrences of \(1 - u\) and \(1 - v\) easily conflate meaning. The nomenclature for the *survival copula* is more elaborately shown under \texttt{surCOP}. The difficulty is that the bivariate arguments to the *survival copula* are exceedance probabilities.

For simulation, again following the nomenclature of Joe (2014, p. 272), the conditional distribution functions (numerical derivatives; \texttt{derCOP} \(\equiv \) \(C_{2|1}(v|u) \) and \texttt{derCOP2} \(\equiv \) \(C_{1|2}(u|v) \)) can be written in terms of \(C(u|v) = C_{2|1}(v|u) \) as

\[
\ddot{C}_{2|1}(v|u) = C_{2|1}(v|1 - u),
\]

\[
\dot{C}_{2|1}(v|u) = C_{2|1}(v|1 - u), \text{ and}
\]

\[
\dddot{C}_{2|1}(v|u) = 1 - C_{2|1}(1 - v|u),
\]

where the respective "surv", "acute", and "grave" are inverses (conditional quantile functions; inverses of numerical derivatives; \texttt{derCOPinv} \(\equiv \) \(C_{2|1}^{(-1)}(v|u) \) and \texttt{derCOPinv2} \(\equiv \) \(C_{1|2}^{(-1)}(u|v) \)) are

\[
\dddot{C}_{2|1}^{(-1)}(t|u) = 1 - C_{2|1}^{(-1)}(1 - t|1 - u) \to \text{"sur"},
\]

\[
\dot{C}_{2|1}^{(-1)}(t|u) = C_{2|1}^{(-1)}(t|1 - u) \to \text{"acute"}, \text{ and}
\]

\[
\ddot{C}_{2|1}^{(-1)}(t|u) = 1 - C_{2|1}^{(-1)}(1 - t|u) \to \text{"grave"},
\]
where \(t \) is a uniformly distributed variable.

To clarify the seemingly clunky nomenclature—Joe (2014) does not provide “names” for \(\hat{C}(u,v) \) or \(\breve{C}(u,v) \)—the following guidance is informative:

1. "surv" or \(\hat{C}(u,v) \) is a reflection of \(U \) and \(V \) on the horizontal \textit{and} vertical axes, respectively.
2. "acute" or \(\acute{C}(u,v) \) is a reflection of \(U \) on the horizontal axis, and
3. "grave" or \(\grave{C}(u,v) \) is a reflection of \(V \) on the vertical axis.

The names “acute” and “grave” match those used in the \texttt{Rd}-format math typesetting instructions.

Usage

\[
\text{simCOPmicro}(u, \text{cop=}\text{NULL}, \text{para=}\text{NULL}, \text{reflect=}c(\"cop\", \"surv\", \"acute\", \"grave\", \"1\", \"2\", \"3\", \"4\"), ...) \\
\text{simCOPv}(u, \text{cop=}\text{NULL}, \text{para=}\text{NULL}, \text{reflect=}c(\"cop\", \"surv\", \"acute\", \"grave\", \"1\", \"2\", \"3\", \"4\"), ...)
\]

Arguments

- **u**: Nonexceedance probability \(u \) in the \(X \) direction. The \texttt{runif()} function in \texttt{R} can be used to drive conditional simulation using the \texttt{simCOPmicro} function (see \textbf{Examples});

- **cop**: A copula function;

- **para**: Vector of parameters, if needed, to pass to the copula;

- **reflect**: The reflection of the copula (see above) and the default "cop" or "1" is the usual copula definition. The numbered values correspond, respectively, to the named values; and

- **...**: Additional arguments to pass should they be needed.

Value

Simulated value(s) of nonexceedance probability \(v \) are returned based on the nonexceedance probabilities \(u \) in argument \(u \).

Note

The advanced features of \texttt{simCOPmicro} permit simulation of the three permutations of \textit{variable reflection}. The first code simply produce four different “copulas” based on the \textit{Gumbel–Hougaard} copula (\(\text{GH}(u,v;\Theta); \text{ghcop} \)), which has substantial upper tail dependency but no lower tail dependency for \(\Theta = 2.512 \) as quantified by the \texttt{taildepCOP} function call.

\[
U \leftarrow \text{runif}(1500) \land G \leftarrow 2.512; \ u \leftarrow 0.1; \ up \leftarrow 1-u; \ v \leftarrow 0.2; \ vp \leftarrow 1-v \\
\text{UV} \leftarrow \text{data.frame}(U, \text{simCOPmicro}(U, \text{cop=}\text{G} \text{hcop}, \text{para=}G \text{I})) \\
\text{sUsV} \leftarrow \text{data.frame}(U, \text{simCOPmicro}(U, \text{cop=}\text{G} \text{hcop}, \text{para=}G \text{I}, \text{reflect=}\text{"surv\" })) \\
\text{sUV} \leftarrow \text{data.frame}(U, \text{simCOPmicro}(U, \text{cop=}\text{G} \text{hcop}, \text{para=}G \text{I}, \text{reflect=}\text{"acute\"})) \\
\text{UsV} \leftarrow \text{data.frame}(U, \text{simCOPmicro}(U, \text{cop=}\text{G} \text{hcop}, \text{para=}G \text{I}, \text{reflect=}\text{"grave\"})) \\
\text{taildepCOP(cop=G} \text{hcop}, \text{para=}G \text{) \# lambdaL = 2e-05; lambdaU = 0.68224}
\]
The following code example will verify that the simulations produce values of \(U \) and \(V \) that are consistent with the empirical copula (EMPIRcop) results as well as consistent with the variable reflections provided through the COP interface. Notice the combinations of nonexceedance and exceedance probabilities blended so that the two returned values for the four different copulas are numerically congruent.

\[
\begin{align*}
&c(\text{EMPIRcop}(u, v, \text{para}=\text{UV}), \ COP(u, v, \ cop=\text{GHcop}, \ para=G, \ reflect=\text{"cop" }) \\
&c(\text{EMPIRcop}(up, vp, \ para=sUsV), \ COP(up, vp, \ cop=\text{GHcop}, \ para=G, \ reflect=\text{"surv" }) \\
&c(\text{EMPIRcop}(up, v, \ para=sUV), \ COP(up, v, \ cop=\text{GHcop}, \ para=G, \ reflect=\text{"acute"}) \\
&c(\text{EMPIRcop}(u, vp, \ para=\text{UsV}), \ COP(u, vp, \ cop=\text{GHcop}, \ para=G, \ reflect=\text{"grave"}))
\end{align*}
\]

The user can verify the reflections graphically using code such as this

```r
xlab <- "PROBABILITY IN U"; ylab <- "PROBABILITY IN V"
layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE));
plot(UV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=1)
mtext("no reflection")
plot(sUV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=3)
mtext("horizontal reflection")
plot(UsV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=4)
mtext("vertical reflection")
plot(sUsV, xlab=xlab, ylab=ylab, pch=3, lwd=0.5, col=2)
mtext("double reflection")
```

in which inspection of tails exhibiting the dependency is readily seen on the four plots: upper right tail dependency (no reflection), upper left tail dependency (horizontal reflection), lower right tail dependency (vertical reflection), and lower left tail dependency (double reflection). It is important to stress that these descriptions and graphical depictions of single tail dependency are specific to the \(\text{GH}(u, v; \Theta) \) copula chosen for the demonstration.

Author(s)

W.H. Asquith

References

See Also

`simCOP`

Examples

```r
simCOPmicro(runif(1), cop=W) # Frechet lower bound copula
simCOPmicro(runif(1), cop=P) # Independence copula
simCOPmicro(runif(1), cop=M) # Frechet upper bound copula
simCOPmicro(runif(1), cop=PSP) # The PSP copula
```
Now let us get more complicated and mix two Plackett copulas together using the composite2COP as a "compositor." The parameter argument becomes more complex, but is passed as shown into composite2COP.

```r
copa <- list(cop=PLACKETTcop, cop2=PLACKETTcop, alpha=0.3, beta=0.5, para1=0.1, para2=50)
simCOPmicro(runif(5), cop=composite2COP, para=para)
```

Not run:

Now let us implement our own version of features of simCOP() but using the micro version to manually create just the simulation vector of V.

```r
UV <- data.frame(U, simCOPmicro(U, cop=N4212cop, para=4))
plot(UV, xlab="PROBABILITY IN U", ylab="PROBABILITY IN V", pch=3, col=2) #
## End(Not run)
```

spectralmeas

Estimation of the Spectral Measure

Description

Kiriliouk et al. (2016, pp. 360–364) describe estimation of the spectral measure of bivariate data. Standardize the bivariate data as \(X^* \) and \(Y^* \) as in `psepolar` and select a “large” value for the pseudo-polar radius \(S_f \) for nonexceedance probability \(f \). Estimate the spectral measure \(H(w) \), which is the limiting distribution of the pseudo-polar angle component \(W \) given that the corresponding radial component \(S \) is large:

\[
\Pr[W \in |S > S_f|] \to H(w) \text{ as } S_f \to \infty.
\]

So \(H(w) \) is the cumulative distribution function of the spectral measure for angle \(w \in (0, 1) \). The \(S_f \) can be specified by a nonexceedance probability \(F \) for \(S_f(F) \).

The estimation proceeds as follows:

Step 1: Convert the bivariate data \((X_i, Y_i)\) into \((\hat{S}_i, \hat{W}_i)\) by `psepolar` and set the threshold \(S_f \) according to “\(n/k \)” (this part involving \(k \) does not make sense in Kiriliouk et al. (2016)) where for present implementation in `copBasic` the \(S_f \) given the \(f \) by the user is based on the empirical distribution of the \(\hat{S}_i \). The empirical distribution is estimated by the Bernstein empirical distribution function from the `lmomco` package.

Step 2: Let \(I_n \) denote the set of indices that correspond to the observations when \(\hat{S}_i \geq S_f \) and compute \(N_n \) as the cardinality of \(N_n = |I_n| \), which simply means the length of the vector \(I_n \).

Step 3: Use the maximum Euclidean likelihood estimator, which is the third of three methods mentioned by Kiriliouk et al. (2016):

\[
\tilde{H}_3(w) = \sum_{i \in I_n} \hat{p}_{3,i} \times 1[\hat{W}_i \leq w],
\]

where \(1[\cdot] \) is an indicator function that is only triggered if `smooth=FALSE`, and following the notation of Kiriliouk et al. (2016), the “3” represents maximum Euclidean likelihood estimation. The \(\hat{p}_{3,i} \) are are the weights

\[
\hat{p}_{3,i} = \frac{1}{N_n} \left[1 - (\hat{W} - 1/2)S_f^{-2}(\hat{W}_i - \hat{W}) \right],
\]
where \bar{W} is the sample mean and S_W^2 is the sample variance of \hat{W}_i

$$\bar{W} = \frac{1}{N_n} \sum_{i \in I_n} \hat{W}_i \quad \text{and} \quad S_W^2 = \frac{1}{N_n - 1} \sum_{i \in I_n} (\hat{W}_i - \bar{W})^2,$$

where Kiriliouk et al. (2016, p. 363) do not show the $N_n - 1$ in the denominator for the variance but copBasic uses it because those authors state that the sample variance is used.

Step 4: A smoothed version of $\hat{H}_3(w)$ is optionally available by

$$\tilde{H}_3(w) = \sum_{i \in I_n} \hat{p}_{3,i} \times \mathcal{B}(w; \bar{W}_i \nu, (1 - \bar{W}_i) \nu),$$

where $\mathcal{B}(x; p, q)$ is the cumulative distribution function of the Beta distribution for $p, q > 0$ and where $\nu > 0$ is a smoothing parameter that can be optimized by cross-validation.

Step 5: The spectral density lastly can be computed optionally as

$$\tilde{h}_3(w) = \sum_{i \in I_n} \hat{p}_{3,i} \times \beta(w; \bar{W}_i \nu, (1 - \bar{W}_i) \nu)$$

where $\beta(x; p, q)$ is the probability density function (pdf) of the Beta distribution. Readers are alerted to the absence of the $1[\cdot]$ indicator function in the definitions of $\tilde{H}_3(w)$ and $\tilde{h}_3(w)$. This is correct and matches Kiriliouk et al. (2016, eqs. 17.21 and 17.22) though this author was confused for a day or so by the indicator function in what is purported to be the core definition of $\hat{H}_l(w)$ where $l = 3$ in Kiriliouk et al. (2016, eq. 17.21 and 17.17).

Usage

```r
spectralmeas(u, v=NULL, w=NULL, f=0.90, snv=FALSE, 
smooth=FALSE, nu=100, pdf=FALSE, ...) 
```

Arguments

- **u** Nonexceedance probability u in the X direction (actually the ranks are used so this can be a real-value argument as well);
- **v** Nonexceedance probability v in the Y direction (actually the ranks are used so this can be a real-value argument as well) and if NULL then u is treated as a two column R data.frame;
- **w** A vector of polar angle values $W \in [0, 1]$ on which to compute the $H(w)$;
- **f** The nonexceedance probability $F(S_f)$ of the pseudo-polar radius in psepolar;
- **snv** Return the standard normal variate of the H by the well-known transform through the quantile function of the standard normal, qnorm();
- **smooth** A logical to return $\tilde{H}_3(w)$ instead of $H_3(w)$;
- **nu** The $\nu > 0$ smoothing parameter;
- **pdf** A logical to return the smoothed probability density $\tilde{h}_3(w)$. If pdf=TRUE, then internally smooth=TRUE will be set; and
- **...** Additional arguments to pass to the psepolar function.
Value

An \(\mathbb{R} \) vector of \(H_3(w), \tilde{H}_3(w) \), or \(\tilde{h}_3(w) \) is returned.

Note

The purpose of this section is to describe an extremely CPU intensive study of goodness-of-fit between a Gumbel–Hougaard copula (\(\text{GHcop} \), \(\text{GH}(u, v; \Theta_1) \)) parent and a fitted Hüsler–Reiss copula (\(\text{HRCop} \), \(\text{HR}(u, v; \Theta_2) \)). Both of these copulas are extreme values and are somewhat similar to each other, so sample sizes necessary for detection of differences should be large. A two-sided Kolmogorov–Smirnov tests (KS test, \text{ks.test()}) will be used to measure significance in the differences between the estimated spectral measure distributions at \(f = 0.90 \) (the 90th percentile, \(F(S_f) \)) into the right tail.

The true copula will be the \(\text{GH}(\Theta_1) \) having parameter \(\Theta_1 = 3.3 \). The number of simulations per sample size \(n \in \text{seq}(50, 1000, \text{by}=25) \) is \(n_{sim} = 500 \). For each sample size, a sample from the true parent is drawn, and a \(\text{HR}(\Theta_2) \) fit by maximum likelihood (\text{mleCOP}). The two spectral measure distributions (\(\tilde{H}_{GH}(w) \), \(\tilde{H}_{HR}(w) \)) are estimated for a uniform variate of the angle \(W \) having length equal to the applicable sample size. The Kolmogorov–Smirnov test is made between \(\tilde{H}_{true} \) and \(\tilde{H}_{fit} \), and number of p-values less than the \(\beta = 0.05 \) (Type II error because alternative hypothesis is rigged as true) and simulation count are returned and written in file Results.txt. The sample sizes initially are small and traps of NaN (abandonment of a simulation run) are made. These traps are needed when the empirical distribution of \(\tilde{H}_{true} \) or \(\tilde{H}_{fit} \) degenerates.

```r
Results <- NULL
ttrue.par <- 3.3; ttrue.cop <- GHcop; tfit.cop <- HRCop; search <- c(0, 100)
nsim <- 20000; first_time <- TRUE; f <- 0.90; beta <- 0.05
ns <- c(seq(100, 1000, by=50), 1250, 1500, 1750, 2000)
for(n in ns) {
  W <- sort(runif(n)); PV <- vector(mode="numeric")
  for(i in 1:(nsim/n/2)) {
    UV <- simCOP(n=n, cop=ttrue.cop, para=ttrue.par, graphics=FALSE)
    fit.par <- mleCOP(UV, cop=fit.cop, interval=search)$para
    UVfit <- simCOP(n=n, cop=fit.cop, para=fit.par, graphics=FALSE)
    Htru <- spectralmeas(UV, w=W, bound.type="Carv", f=f)
    Hfit <- spectralmeas(UVfit, w=W, bound.type="Carv", f=f)
    if(length(Htru[!is.nan(Htru)]) != length(Hfit[!is.nan(Hfit)])) |
      length(Htru[!is.nan(Htru)]) == 0 |
      length(Hfit[!is.nan(Hfit)]) == 0) {
      PV[i] <- NA; next
    }
    # suppressWarnings() to silence ties warnings from ks.test()
    KS <- suppressWarnings(stats::ks.test(Htru, Hfit)$p.value)
    plot(FF, H, type="l"); lines(FF, Hfit, col=2); mtext(KS)
    message("-", i, appendLF=FALSE)
    PV[i] <- KS
  }
  message(":", n)
zz <- data.frame(SampleSize=n, NumPVle0p05=sum(PV[!is.na(PV)] <= beta),
               SimulationCount=length(PV[!is.na(PV)]))
if(first_time) {
```
The results show a general increase in the counts of p-value ≤ 0.05 as sample size increases. There is variation of course and increasing nsim would smooth that considerably. The results show for \(n ≈ 1,000 \) that the detection of statistically significant differences for extremal \(F(S_f) = 0.90 \) dependency between the \(GH(\Theta_1=3.3) \) and \(HR(\Theta_2) \) are detected at the error rate implied by the specified \(\beta = 0.05 \).

This range in sample size can be compared to the Kullback–Leibler sample size \((n_{fg}) \):

\[
\begin{align*}
UV & \leftarrow \text{simCOP}(n=10000, \text{cop=true.cop, para=true.par, graphics=FALSE}) \\
\text{fit.par} & \leftarrow \text{mleCOP}(UV, \text{cop=fit.cop, interval=search}$\text{para}
\text{kullCOP(cop1=true.cop, para1=true.par, cop2=fit.cop, para2=fit.par})
\end{align*}
\]

The Kullback-Leibler (integer) sample size for detection of differences at
alpha=0.05 are \(n_{fg} \) = (742, 809, 815, 826, 915, 973, 1203) for seven runs
Do more to see variation.

where the Kullback–Leibler approach is to measure density departures across the whole \(\mathbb{I}^2 \) domain as opposed to extremal dependency in the right tail as the spectral measure.

Different runs of the above code will result in different \(n_{fg} \) in part because of simulation differences internal to \text{kullCOP} but also because the \(\Theta_2 \) has its own slight variation in its fit to the large sample simulation \((n = 10,000) \) of the parent. However, it seems that \(n_{fg} ≈ 900 \) will be on the order of the \(n \) for which the KS test on the spectral measure determines statistical significance with similar error rate.

Now if the aforementioned simulation run is repeated for \(F(S_f) = 0.95 \) or \(f=0.95 \), the \(n_{fg} \) obviously remains unchanged at about 900 but the \(n \) for which the error rate is about \(\beta = 0.05 \) is \(n ≈ 600 \). This sample size is clearly smaller than before and smaller than \(n_{fg} \), therefore, the analysis of the empirical spectral measure deeper into the tail \(F(S_f) = 0.95 \) requires a smaller sample size to distinguish between the two copula. Though the analysis does not address the question as to whether one or both copula are adequate for the problem at hand. For a final comparison, if the aforementioned simulation run is repeated for \(F(S_f) = 0.80 \) or \(f=0.80 \), then the \(n \) for which the error rate is about \(\beta = 0.05 \) is \(n ≈ 1,700 \). Thus as analysis is made further away from the tail into the center of the distribution, the sample size to distinguish between these two similar copula increases substantially.

Author(s)

William Asquith <william.asquith@ttu.edu>

References

spectralmeas

See Also

psepolar, stabtaildepf

Examples

```r
## Not run:
UV <- simCOP(n=500, cop=HRcop, para=1.3, graphics=FALSE)
W <- seq(0,1,by=0.005)
Hu <- spectralmeas(UV, w=W)
Hs <- spectralmeas(UV, w=W, smooth=TRUE, nu=100)
plot(W,Hu, type="l", ylab="Spectral Measure H", xlab="Angle")
lines(W, Hs, col=2) #
## End(Not run)

## Not run:
"GAuscop" <- function(u,v, para=NULL, ...) {
  if(length(u)==1) u <- rep(u,length(v)); if(length(v)==1) v <- rep(v,length(u))
  return(copula::pCopula(matrix(c(u,v), ncol=2), para))
}
GAusparfn <- function(rho) return(copula::normalCopula(rho, dim = 2))
n <- 2000 # The PSP parent has no upper tail dependency
uv <- simCOP(n=n, cop=PSP, para=NULL, graphics=FALSE)
PLpar <- mleCOP(uv, cop=PLcop, interval=c(0,100))$para
PLuv <- simCOP(n=n, cop=PLcop, para=PLpar, graphics=FALSE)
GApar <- mleCOP(uv, cop=GAuscop, parafn=GAusparfn, interval=c(-1,1))$para
GAuv <- simCOP(n=n, cop=GAuscop, para=GApar, graphics=FALSE)
GLpar <- mleCOP(uv, cop=GLcop, interval=c(0,100))$para
GLuv <- simCOP(n=n, cop=GLcop, para=GLpar, graphics=FALSE)
FF <- c(0.001,seq(0.005,0.995, by=0.005),0.999); qFF <- qnorm(FF)
f <- .90 # Seeking beyond the 98th percentile pseudo-polar radius
PSPh <- spectralmeas( uv=FF, w=FF, f=f, smooth=TRUE, snv=TRUE)
PLh <- spectralmeas(PLuv, w=FF, f=f, smooth=TRUE, snv=TRUE)
GAh <- spectralmeas(GAuv, w=FF, f=f, smooth=TRUE, snv=TRUE)
GLh <- spectralmeas(GLuv, w=FF, f=f, smooth=TRUE, snv=TRUE)
plot(qFF, PSPh, type="l", lwd=2, xlim=c(-3,3), ylim=c(-2,2),
     xlab="STANDARD NORMAL VARIATE OF PSEUDO-POLAR ANGLE",
     ylab="STANDARD NORMAL VARIATE OF SPECTRAL MEASURE PROBABILITY")
lines(qFF, PLh, col=2) # red line is the Plackett copula
lines(qFF, GAh, col=3) # green line is the Gaussian copula
lines(qFF, GLh, col=4) # blue line is the Galambos copula
# Notice the flat spot and less steep nature of the PSP (black line), which is
# indicative of no to even spreading tail dependency. The Plackett and Gaussian
# copulas show no specific steepening near the middle, which remains indicative
# of no tail dependency with the Plackett being less steep because it has a more
# dispersed copula density at the right tail is approached than the Gaussian.
# The Galambos copula has upper tail dependency, which is seen by
# the mass concentration and steepening of the curve on the plot.
## End(Not run)
```
Kiriliouk et al. (2016, pp. 364–366) describe a technique for estimation of an empirical stable tail dependence function for a random sample. The function is defined as
\[
\hat{l}(x, y) = \frac{1}{k} \sum_{i=1}^{n} \mathbf{1}[R_{i,x,n} > n + 1 - k \mathbf{xor} R_{i,y,n} > n + 1 - k y],
\]
where \(\mathbf{1}[\cdot]\) is an indicator function, \(R\) denotes the rank() of the elements and \(k \in [1, \ldots, n]\) and \(k\) is intended to be “large enough” that \(\hat{l}(x, y)\) has converged to a limit.

The “Capéraà and Fougères smooth” of the empirical stable tail dependence function is defined for a coordinate pair \((x, y)\) as
\[
\hat{l}_{CF}(x, y) = 2 \sum_{i \in I_n} \hat{p}_{3,i} \times \max[\hat{W}_i x, (1 - \hat{W}_i) y],
\]
where \(\hat{p}_{3,i}\) are the weights for the maximum Euclidean likelihood estimator (see spectralmeas) and \(\hat{W}_i\) are the pseudo-polar angles (see spectralmeas) for the index set \(I_n\) defined by \(I_n = \{i = 1, \ldots, n : \hat{S}_i > \hat{S}_{(k+1)}\}\), where \(\hat{S}_{(k+1)}\) denotes the \((k+1)\)-th largest observation of the pseudo-polar radii \(\hat{S}_i\) where the cardinality of \(I_n\) is exactly \(k\) elements long. (Tentatively, then this definition of \(I_n\) is ever so slightly different than in spectralmeas.) Lastly, note the multiplier of 2 on the smooth form, and this multiplier is missing in Kiriliouk et al. (2016, p. 365) but shown in Kiriliouk et al. (2016, eq. 17.14, p. 360). Numerical experiments indicate that the 2 is needed for \(\hat{l}_{CF}(x, y)\) but evidently not in \(\hat{l}(x, y)\).

Visualization of \(l(x, y)\) commences by setting a constant \(c_i \in \{0.2, 0.4, 0.6, 0.8\}\) for \(c > 0\) as \(l(x, y) = c\). The \(y\) are solved for \(x \in [0, \ldots, c_i]\) through the \(l(x, y)\) for each of the \(c_i\). Each solution set constitutes a level set for the stable tail dependence function. If the bivariate data have asymptotic independence (to the right), then a level set or the level sets for all the \(c\) is equal to the lines \(x + y = c\). Conversely, if the bivariate data have asymptotic dependence (to the right), then the level sets will make 90-degree bends for \(\max(x, y) = c\).

Usage

```r
stabtaildepf(uv=NULL, xy=NULL, k=function(n) as.integer(0.5*n),
levelset=TRUE, ploton=TRUE, title=TRUE, delu=0.01, smooth=FALSE, ...)
```

Arguments

- **uv**
 An \(\mathbb{R}\) data.frame of \(u\) and \(v\) nonexceedance probabilities in the respective \(X\) (horizontal) and \(Y\) (vertical) directions. Note that rank()s are called on these so strictly speaking this need not be as nonexceedance probabilities. This is not an optional argument;
A vector of the scalar coordinates \((x, y)\), which are “the relative distances to the upper endpoints of [these respective] variables” (Kiriliouk et al., 2016, p. 356). This is a major point of nomenclature confusion. If these are in probability units, they are exceedance probabilities. Though tested for NULL and a warning issued, these can be NULL only if levelset=TRUE but can be set to xy=NA if levelset=FALSE and smooth=TRUE (see discussion in Note);

The \(k\) for both the \(\hat{l}(x, y)\) and \(\hat{l}_{CF}\), though the effect of \(k\) might not quite be the same for each. The default seems to work fairly well;

A logical triggering the construction of the level sets for \(c = \text{seq}(0.1, 1, \text{by}=0.1)\);

A logical to call the plot() function;

A logical to trigger a title for the plot if ploton=TRUE;

The \(\Delta x\) for a sequence of \(x = \text{seq}(0, c, \text{by}=\text{delu})\);

A logical controlling whether \(\hat{l}(x, y)\) or the Capéraà and Fougères smooth function \(\hat{l}_{CF}(x, y)\) is used;

Additional arguments to pass.

Value

Varies according to argument settings. In particular, the levelset=TRUE will cause an \(\mathbb{R}\) list to be returned with the elements having the character string of the respective \(c\) values and the each holding a data.frame of the \((x, y)\) coordinates.

Note

This function is also called in a secondary recursion. The default levelset=TRUE makes a secondary call with levelset=FALSE to compute the \(\hat{l}(x, y)\) for the benefit of the looping on the one-dimensional root to solve for a single \(y\) in \(\hat{l}(x, y) = c\) given a single \(x\). If levelset=TRUE and smooth=TRUE, then a secondary call with smooth=TRUE and levelset=FALSE is made to internally return an \(\mathbb{R}\) list containing scalar \(N_n\) and vectors \(\hat{W}_n\) and \(\hat{p}_{3,i}\) for similar looping and one-dimensional rooting for \(\hat{l}_{CF}(x, y)\).

If levelset=FALSE, then \(xy\) is required to hold the \((x, y)\) coordinate pair of interest. A demonstration follows and shows the limiting behavior of a random sample from the \(\text{N4212cop} \) copula.

\[
\begin{align*}
n & \leftarrow 2000 \ # \text{very CPU intensive this and the next code snippet} \\
UV & \leftarrow \text{simCOP}(n=n, \text{cop}=\text{N4212cop}, \text{para}=\pi); \ k & \leftarrow 1:n \\
lhat & \leftarrow \text{sapply}(k, \text{function}(j) \\
& \quad \text{stabtaildepf}(\text{xy}=c(0.1, 0.1), \ uv=\text{UV}, \text{levelset}=\text{FALSE}, \ k=j)) \\
\text{plot}(k, \ lhat, \text{xlab}="k \text{ in } [1,n]", \text{cex}=0.8, \text{lwd}=0.8, \text{type}="b", \\
\text{ylab}="\text{Empirical Stable Tail Dependence Function}"
\text{mtext}(\text{"Empirical function in the 0.10x0.10 Pr square (upper left corner)}")
\end{align*}
\]

The \(\mathbb{R}\) list that can be used to compute \(\hat{l}_{CF}(x, y)\) is retrievable by

\[
\begin{align*}
x & \leftarrow 0.1; \ y & \leftarrow 0.1; \ k & \leftarrow 1:(n-1) \\
lhatCF & \leftarrow \text{sapply}(k, \text{function}(j) \{ \\
& \quad \text{Hlis} \leftarrow \text{stabtaildepf}(\text{xy}=\text{NA}, \ uv=\text{UV}, \text{levelset}=\text{FALSE}, \text{smooth}=\text{TRUE}, \ k=j))
\end{align*}
\]
Compute the $T_n(p)$ statistic of Genest et al. (2011) that is defined as

$$T_n(p) = \sum_{i=1}^{n} \left| C_n(u_i, v_i) - C_{\Theta_n}(u_i, v_i) \right|^p,$$

where $C_n(u, v)$ is the **empirical copula**, $C_{\Theta_n}(u, v)$ is the **fitted copula** with estimated parameters Θ_n from the sample of size n. The T_n for $p = 2$ is reported by those authors to be of general purpose and overall performance in large scale simulation studies. The extension here for arbitrary exponent p is made for flexibility. Alternatively the definition could be associated with the statistic $T_n(p)^{1/p}$ in terms of a root $1/p$ of the summation as shown above.

The T_n statistic is obviously a form of deviation between the empirical (nonparametric) and parametric fitted copula. The distribution of this statistic through Monte Carlo simulation could be used
for inference. The inference is based on that a chosen parametric model is suitably close to the empirical copula. The $T_n(p)$ statistic has an advantage of being relatively straightforward to understand and explain to stakeholders and decision makers, is attractive for being suitable in a wide variety of circumstances, but intuitively might have limited statistical power in some situations for it looks at whole copula structure and not say at tail dependency. Finally, other goodness-of-fits using the squared differences between $C_n(u, v)$ and $C_{\theta_m}(u, v)$ are `aicCOP`, `bicCOP`, and `rmseCOP`.

Usage

```r
statTn(uv, cop=NULL, para=NULL, p=2, proot=FALSE, ...)
```

Arguments

- `uv` An R two column matrix or `data.frame` of a sample of nonexceedance probabilities u and v;
- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `p` The value for p, and the default follows that of Genest et al. (2011);
- `proot` A logical controlling whether the T_n returned be rooted by $1/p$, and the default follows that of Genest et al. (2011); and
- `...` Additional arguments to pass to the copula function and (or) the empirical copula.

Value

The value for T_n is returned dependent on the specification of p and whether rooting of the result is desired.

Note

The `Examples` section shows a simple computation of the \hat{T}_n statistic for a sample and a fitted copula to that sample. Ideally `statTn` would be wrapped in a Monte Carlo process of fitting the apparent “parent” distribution from the sample data, then for some large replication count, generate N samples of size n from the parent and from these samples compute the empirical copula and also fit parameter(s) of the chosen copula and repeatedly solve for T_n. Given a total of N values of T_n, then the sample T_n or \hat{T}_n can be compared to the distribution, and if \hat{T}_n is greater than say the 95th percentile, then the assumed form of the copula could be rejected.

The `distTn` defined below and is dependent on the `copBasic.fitpara.beta` function can be used to demonstrate concepts. (The process is complex enough that user-level implementation of `distTn` in `copBasic` is not presently (2019) thought appropriate.)

```r
"distTn" <- function(n, N=1000, statf=NULL, cop=NULL, para=para, interval=NULL, ...) {
  opts <- options(warn=-1)
  message("Estimating Tn distribution: ", appendLF=FALSE)
  Tn <- vector(mode="numeric", N)
  for(i in 1:N) {
    showi <- as.logical(length(grep("0+$", i, perl=TRUE))))
  }
}
```
Let us imagine an $n = 400$ sample size of a \textit{Galambos copula} ($\text{GL}(u, v); \text{GLcop}$) and then treat the \textit{Plackett copula} ($\text{PL}(u, v); \text{PLACKETTcop}$) as the proper (chosen) model. The estimated parameter by the sample Blomqvist’s Beta ($\hat{\beta}_C = 0.64$ using the \texttt{blomCOP} function called from within \texttt{copBasic.fitpara.beta} is then placed in variable \texttt{para}. The $\hat{\beta}_C$ is not the most efficient estimator but for purposes here, but it is fast. The parameter for the given seed is estimated as about $\text{PL}(\Theta = 20.75)$.

```r
n <- 400 # sample size
correctCopula <- \texttt{GLcop}; set.seed(1596)
sampleUV <- \texttt{simCOP}(n=n, cop=correctCopula, para=1.9) # a random sample
para.correctCopula <- \texttt{copBasic.fitpara.beta}(uv=sampleUV, statf=blomCOP,
interval=c(1,5), cop=correctCopula)
chosenCopula <- \texttt{PLACKETTcop}
para <- \texttt{copBasic.fitpara.beta}(uv=sampleUV, statf=blomCOP,
interval=c(.001,200), cop=chosenCopula)
```

Next, compute the sample $\hat{T}_n = 0.063$ from \texttt{sampleUV}. The distribution of the T_n is estimated using the \texttt{disttn} function, and an estimate of the T_n p-value is in turn estimated. A large simulation run $N = 1000$ for a sample of size of $n = 400$ is selected. The \texttt{disttn} function internally will simulated for N-replicates from the assumed parent and estimate the parameter. A computation run yields a p-value of approximately 0.01 (depending upon the seed) and is statistically significant at an alpha of 0.05, and therefore, the $\text{PL}(\Theta = 20.75)$ should be rejected for fitting to these data.

```r
sampleTn <- \texttt{statTn(sampleUV, cop=chosenCopula, para=para)}
Tns <- \texttt{disttn(n=n, cop=chosenCopula, para=para,
interval=c(.001,100), statf=blomCOP)}
Tns_pvalue <- 1 - sum(Tns <= sampleTn)/length(Tns) # estimate p-value
```

The demonstration is furthered with a check on the \textit{Kullback–Leibler sample size} n_{fg} at the 5-percent significance level ($\alpha = 0.05$) by the \texttt{kullCOP} function, which yields 100. Given the parent copula as $\text{GL}(\Theta = 1.9)$, therefore, it would take approximately 100 samples to distinguish between that copula and a $\text{PL}(\Theta = 20.75)$ where in this case the fit was through the $\hat{\beta}_C = 0.64$.

```r
kullCOP(cop1=correctCopula, para1=1.9,
cop2=chosenCopula, para2=para)$\text{KL.sample.size}$ # KL sample size = 100
vuongCOP(sampleUV, cop1=correctCopula, para1=para.correctCopula, cop2=chosenCopula, para2=para)$\text{message}$
```

[1] "Copula 1 has better fit than Copula 2 at 100x(1-alpha) level"
The available sample size $n = 400$ is then about four times larger than n_{fg} so the sample size n should be sufficient to judge goodness-of-fit. This is a large value but with the sample variability of β_C, it seems that other measures of association such as Spearman’s Rho (rhoCOP) or Kendall’s Tau (tauCOP) and others cross-referenced therein might be preferable.

The prior conclusion is supported by the p-value of the T_n being about 0.01, which suggests that the $PL(u, v)$ is not a good model of the available sample data in sampleUV. Lastly, these judgments are consistent with Vuong’s Procedure performed by the vuongCOP function, which reports at the 5-percent significance level that “copula number 1”—in this case, the $GL(u, v)$—has the better fit, and this is obviously consistent with the problem setup because the random sample for investigation was drawn from the Galambos copula (the parent form).

Author(s)

W.H. Asquith

References

See Also

aicCOP, bicCOP, rmseCOP, vuongCOP, kullCOP

Examples

```r
## Not run:
# Example here is just for Tn. For the example below, the PSP copula is radically different from the Gumbel-Hougaard copula and thus, the hatTn would be expected to be quite different from those of the Gumbel-Hougaard and certainly not too near to zero.
sampleUV <- simCOP(n=60, cop=PSP, graphics=FALSE)  # random sample
hatTau <- cor(sampleUV$U, sampleUV$V, method="kendall")  # Kendall Tau
hatTn <- statTn(sampleUV, cop=GHcop, para=GHcop(tau=hatTau)$para, ctype="bernstein", bernprogress=TRUE)
# approximate range 0.0141 -- 0.830
# hatTn in this case is by itself is somewhat uninformative and requires
# Monte Carlo to put an individual value into context.
## End(Not run)
```
Description

Compute the survival copula from a copula (Nelsen, 2006, pp. 32–34), which is defined as

\[\hat{C}(1-u, 1-v) = \hat{C}(u', v') = \Pr[U > u, V > v] = u' + v' - 1 + C(1-u', 1-v'), \]

where \(u' \) and \(v' \) are exceedance probabilities and \(C(u, v) \) is the copula. The survival copula is a reflection of both \(U \) and \(V \).

The survival copula is an expression of the joint probability that both \(U > v \) and \(U > v \) when the arguments \(a \) and \(b \) to \(C(a, b) \) are exceedance probabilities as shown. This is unlike a copula that has \(U \leq u \) and \(V \leq v \) for nonexceedance probabilities \(u \) and \(v \). Alternatively, the joint probability that both \(U > u \) and \(V > v \) can be solved using just the copula \(1 - u - v + C(u, v) \), as shown below where the arguments to \(C(u, v) \) are nonexceedance probabilities. The later formula is the joint survival function \(C(u, v) \) defined for a copula (Nelsen, 2006, p. 33) as

\[C(u, v) = \Pr[U > u, V > v] = 1 - u - v + C(u, v). \]

Users are directed to the collective documentation in COP and simCOPmicro for more details on copula reflection.

Usage

\[\text{surCOP}(u, v, \text{cop} = \text{NULL}, \text{para} = \text{NULL}, \text{exceedance} = \text{TRUE}, \ldots) \]

Arguments

- \(u \) Exceedance probability \(u' = 1 - u \) (nonexceedance based on exceedance) in the \(X \) direction;
- \(v \) Exceedance probability \(v' = 1 - v \) (nonexceedance based on exceedance) in the \(Y \) direction;
- \(\text{cop} \) A copula function;
- \(\text{para} \) Vector of parameters or other data structure, if needed, to pass to the copula;
- \(\text{exceedance} \) A logical affirming whether \(u \) and \(v \) are really in exceedance probability or not? If FALSE, then the complements of the two are made internally and the nonexceedances can thus be passed; and
- \(\ldots \) Additional arguments to pass (such as parameters, if needed, for the copula in the form of an \(R \) list).

Value

Value(s) for the survival copula are returned.

Note

The author (Asquith) finds the use of exceedance probabilities delicate in regards to Nelsen’s notation having grown up in a strictly nonexceedance world. This function and \(\text{coCOP} \) have the exceedance argument to serve as a reminder that the survival copula as usually defined uses exceedance probabilities as its arguments.
The Joint Survival Function

Description

Compute the joint survival function for a copula (Nelsen, 2006, p. 33), which is defined as

\[\overline{C}(u, v) = \Pr[U > u, V > v] = 1 - u - v + C(u, v) = \hat{C}(1 - u, 1 - v), \]

where \(\hat{C}(u', v') \) is the survival copula (see \texttt{surCOP}), which is defined by

\[\hat{C}(u', v') = \Pr[U > u, V > v] = u' + v' - 1 + C(1 - u', 1 - v'). \]

Although the joint survival function is an expression of the probability that both \(U > v \) and \(U > v \), \(\overline{C}(u, v) \) not a copula.

Usage

\texttt{surfuncCOP(u, v, cop=NULL, para=NULL, ...)}
Arguments

- **u**: Nonexceedance probability \(u \) in the \(X \) direction;
- **v**: Nonexceedance probability \(v \) in the \(Y \) direction;
- **cop**: A copula function;
- **para**: Vector of parameters or other data structure, if needed, to pass to the copula; and
- **...**: Additional arguments to pass (such as parameters, if needed, for the copula in the form of a list).

Value

Value(s) for the joint survival function are returned.

Author(s)

W.H. Asquith

References

See Also

surCOP

Examples

```r
"MOCop.formula" <- function(u,v, para=para, ...) {
  alpha <- para[1]; beta <- para[2]; return(min(v*u^(1-alpha), u*v^(1-beta)))
}
"MOCop" <- function(u,v, ...) { asCOP(u,v, f=MOCop.formula, ...) }
u <- 0.2; v <- 0.75; ab <- c(1.5, 0.3)
# U **and** V are less than or equal to a threshold +
# U **or** V are less than or equal to a threshold
surCOP(1-u,1-v, cop=MOCop, para=ab) + duCOP(u,v, cop=MOCop, para=ab) # UNITY
surfuncCOP(u,v, cop=MOCop, para=ab) + duCOP(u,v, cop=MOCop, para=ab) # UNITY
## Not run:
# The joint survival function is not a copula so it does not increases to the
# upper right with increasing exceedance probabilities. Let us show that by
# hacking the surCOP function into a copula for feeding back into the algorithmic
# framework of copBasic.
UsersCop <- function(u,v, para=NULL) {
  afunc <- function(u,v, theta=para) { surfuncCOP(u, v, cop=N4212cop, para=theta)}
  return(afunc(u,v, f=afunc))
}image(gridCOP(cop=UsersCop, para=1.15), col=terrain.colors(20),
xlab="U, NONEXCEEDANCE PROBABILITY", ylab="V, NONEXCEEDANCE PROBABILITY")#
## End(Not run)
## Not run:
# Conditional return period (Salvadori et al., 2007, p. 159)
UV <- simCOP(n=100000, cop=PLACKETTcop, para=5, graphics=FALSE)
```
tailconCOP

The Tail Concentration Function of a Copula

Description

Compute the tail concentration function (q_C) of a copula $C(u, v)$ \texttt{(COP)} or diagonal \texttt{(diagCOP)} of a copula $\delta_C(t) = C(t, t)$ according to Durante and Semp (2015, p. 74):

$$q_C(t) = \frac{C(t, t)}{t} \cdot 1_{[0,0.5)} + \frac{1 - 2t + C(t, t)}{1 - t} \cdot 1_{[0.5,1]}$$

or

$$q_C(t) = \frac{\delta_C(t)}{t} \cdot 1_{[0,0.5)} + \frac{1 - 2t + \delta_C(t)}{1 - t} \cdot 1_{[0.5,1]},$$

where t is a nonexceedance probability on the margins and 1(.) is an indicator function scoring 1 if condition is true otherwise zero on what interval t resides: $t \in [0,0.5)$ or $t \in [0.5,1]$. The $q_C(t; M) = 1$ for all t for the M copula and $q_C(t; W) = 0$ for all t for the W copula. Lastly, the function is related to Blomqvist’s Beta (β_C; \texttt{blomCOP}) by

$$q_C(0.5) = (1 + \beta_C)/2,$$

where $\beta_C = 4C(0.5, 0.5) - 1$. Lastly, the $q_C(t)$ for $0,1 = t$ is NaN and no provision for alternative return is made.

Usage

\texttt{tailconCOP(t, cop=NULL, para=NULL, ...)}

Arguments

- t Nonexceedance probabilities t;
- cop A copula function;
- para Vector of parameters or other data structure, if needed, to pass to the copula; and
- \ldots Additional arguments to pass to the copula function.

Value

Value(s) for q_C are returned.

Author(s)

W.H. Asquith
References

See Also

taildepCOP, tailordCOP

Examples

tailconCOP(0.5, cop=PSP) == (1+bisCop(cop=PSP))/2 # TRUE

taildepCOP

The Lower- and Upper-Tail Dependency Parameters of a Copula

Description

Compute the lower- and upper-tail dependency parameters (if they exist), respectively, of a copula according to Nelsen (2006, pp. 214–215). Graphical confirmation of the computations is important, so a plot can be generated by the function. The dependency parameters are expressions of conditional probability that Y is greater than the $100 \times t$-th percentile of its distribution G given that X is greater than the $100 \times t$-th percentile of its distribution F as t approaches unity. Specifics in terms of quantile functions $G(−1)(t) = y(t)$ and $F(−1)(t) = x(t)$ follow.

The **lower-tail dependence parameter** λ_L is defined as

$$\lambda_L = \lim_{t \to 0^+} \Pr[Y \leq y(t) \mid X \leq x(t)],$$

and

the **upper-tail dependence parameter** λ_U with reversed inequalities is defined as

$$\lambda_U = \lim_{t \to 1^-} \Pr[Y > y(t) \mid X > x(t)].$$

Nelsen (2006, p. 214) also notes that both λ_L and λ_U are nonparametric and depend only on the copula of X and Y, and Nelsen shows that each can be computed if the above limits exist as follows:

$$\lambda_L = \lim_{t \to 0^+} \frac{C(t,t)}{t} = \delta'_C(0^+) \quad \text{and} \quad \lambda_U = \lim_{t \to 1^-} \frac{1 - 2t - C(t,t)}{1 - t} = 2 - \lim_{t \to 1^-} \frac{1 - C(t,t)}{1 - t} = 2 - \delta'_C(1^-),$$

where $\delta'_C(t)$ is the derivative of the diagonal of the copula. Multiple presentations are shown because algebraic variants are shown across the literature.

If $\lambda_L \in (0, 1]$, then C has lower-tail dependence but if $\lambda_L = 0$, then C has no lower-tail dependence. Likewise, if $\lambda_U \in (0, 1]$, then C has upper-tail dependence but if $\lambda_U = 0$, then C has no upper-tail dependence.
Usage

taildepCOP(cop=NULL, para=NULL, tol=1e-6, divisor=2, plot=FALSE, ylim=NULL, verbose=FALSE, ...)

Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
tol A tolerance on convergence;
divisor The divisor on the incremental reductions towards 0⁺ and 0⁻ by the algorithm;
plot A logical plotting a diagnostic plot of the diagonal derivatives and label the limits;
ylim Optional vertical limits if the plot is turned on. Although the dependence parameters are bounded as described above, numerical stability can be a problem. Stability is especially a problem if an empirical copula is being used, so the bounds of the plot are left open unless the user locks them down with this argument;
verbose Show incremental progress; and
... Additional arguments to pass to the copula function.

Value

An R list is returned.

\(\lambda_L \) The rounded value of \(\lambda_C \);

\(\lambda_U \) The rounded value of \(\lambda_C \);

source An attribute identifying the computational source: “taildepCOP”.

Note

IMPLEMENTED ALGORITHM—The algorithm implemented for taildepCOP is based on halves (or alternatives by the setting of divisor argument) and uses the copula function (not an analytical or even numeric derivative of the diagonal, \(\delta_C(t) \)). Starting from the median or \(t = 0.5 \), each limit is respectively computed by successive halving (or the setting of argument divisor of the distance towards 0⁺ and 1⁻ and checking the change in computed value against the tolerance tol argument. After the change becomes less than the tolerance, convergence is assumed. Other tests are made for NaN to aid in breaking the successive halvings. The rounding for the numerical results for \(\lambda_U \) and \(\lambda_L \) is an order of magnitude larger than the tolerance. Users are encouraged to plot the results and further verify whether the convergence makes sense. The plot produced when plot=TRUE shows the probability \(t \) transformed into standard normal variates by the qnorm() function in R so that the distal reaches of each tail and thus limit are readily seen. The terminal points of each limit computation are shown by a small dot and the letter “L” and “U” also are plotted at the terminal points.

Joe (2014, p. 63) reports that “the empirical measure of tail dependence \(\hat{\lambda}_C \) or \(\hat{\lambda}_C \) for data does not really exist because of the limit.” Joe (2014) suggests that other sources in the literature are
the “best that can be done” (Dobrić and Schmid, 2005; Frahm et al., 2005). Another source of discussion is by Schmidt and Stadtmüller (2006). The results herein are not yet followed up for the copBasic package. Picking up the simulation dealt with extensively in the Note section of vuongCOP, a user might try this:

```r
set.seed(385); n <- 390
UV <- simCOP(cop=PS, n=n, col=8, pch=16, graphics=FALSE)
taildepCOP(cop=EMPIRCop, para=UV, plot=TRUE, divisor=8, ylim=c(0,1))
```

The returned tail dependency parameters are numerically of little importance and in strict terms likely misleading. What should be of interest are the plottee trajectories of the lower and upper lines. Note how the lower tail wobbles but seems to show stability towards near $\hat{\lambda}_L^C = 0.5$ and upper-tail line wobbles downward towards $\hat{\lambda}_U^C = 0$. A user might try increasing the sample size by an order of magnitude and rerunning the above code. Lastly, Salvadori et al. (2006, pp. 173–175) caution on the difficulties of nonparametric tail dependency estimation. Therefore, given the objective of the copBasic package, estimation of $\hat{\lambda}_L^C$ and $\hat{\lambda}_U^C$ is an open development opportunity.

DEMONSTRATION (Tail Dependence)—The following example shows a comparison between early code examples by Charpentier (2012) concerning copulas and tail dependence using real-world data. Consider the lossalae data set and the following code requiring the evd package:

```r
library(evd); X <- lossalae # Charpentier (2012)
library(copBasic)
fakeU <- lmomco::pp(X[,1],sort=FALSE,a=0) # Weibull plotting position i/(n+1)
fakeV <- lmomco::pp(X[,2],sort=FALSE,a=0) # Weibull plotting position i/(n+1)
uv <- data.frame(U=fakeU, V=fakeV) # parameter "object" for Empirical copula
tD <- taildepCOP(cop=EMPIRCop, para=uv, divisor=25, plot=TRUE, ylim=c(0,7/10))
U <- rank(X[,1])/(nrow(X)+1); V <- rank(X[,2])/(nrow(X)+1)# Charpentier (2012)
Lerp <- function(z) sum((U<=z) & (V<=z)) /sum(U<=z) # Charpentier (2012)
Remp <- function(z) sum((U>=1-z)&(V>=1-z))/sum(U>=1-z) # Charpentier (2012)
u <- seq(.001,.5,.by=.001) # Charpentier (2012)
L <- Vectorize(Lerp)(u); R <- Vectorize(Remp)(rev(u)) # Charpentier (2012)
lines(qnorm(c(u,u+.5-u[1])),c(L,R)) # modified after Charpentier (2012)
```

The figure that will be generated shows considerably similarity to that from the algorithms of Charpentier.

Author(s)
W.H. Asquith

References

See Also

COP, tailconCOP, tailordCOP

Examples

Plot the tail dependencies by nonexceedance probability for a
for a positive association Plackett copula and see that both are zero.
taildepCOP(cop=PLACKETTcop, para=3, plotem=TRUE)
So Plackett has no tail dependency, as Nelsen (2006, p. 215) shows.

Not run:
"MOCop" <- function(u,v, para=NULL) { # Marshall-Olkin copula
 alpha <- para[1]; beta <- para[2]; return(min(v*u^(-1-alpha), u*v^(-1-beta)))
} # The results that follow match those reported by Nelsen (2006, p. 215).
taildepCOP(cop=MOCop, para=c(0.4, 0.9)) # LambL = 0, LambU = 0.4 [min(alpha,beta)]
End(Not run)

Not run:
Analytical solution to Gumbel-Hougaard copula from the copula package:
copula::lambda(copula::gumbelCopula(3))
lower upper
0.000000 0.740079
Numerical approximation (see copBasic::GHcop for analytical formula):
as.data.frame(taildepCOP(GHcop, para=3))
lambda lambda source
#1 0.00012 0.74008 taildepCOP
End(Not run)

Not run:
Plot the tail dependencies by nonexceedance probability
for the PSP copula, which has lower but no upper-tail dependence.
taildepCOP(cop=PSP, para=NULL, plotem=TRUE) # LambL=0.5, LambU=0
which is readily confirmed by simCOP(1000, cop=PSP)
Nelsen (2006, p. 216) reports that this copula has LambL=1/2 and LambU=0.

How about some composited Plackett-Plackett copulas?
Each has upper- and lower-tail dependence parameters equal to zero.
para <- list(cop1=PLACKETTcop, cop2=PLACKETTcop,
 para1=0.00395, para2=4.67, alpha=0.9392, beta=0.5699)
taildepCOP(cop=composite2COP, para=para, plot=TRUE, verbose=TRUE)
This next Plackett-Plackett is interesting because at its core it looks
like it should be both tail dependent like M() but the shapes of the curves
are quite different from those of M().
The Lower- and Upper-Tail Orders of a Copula

Description

Compute the lower- and upper-tail orders (if they exist), respectively, of a copula \(C(u, v) \) according to Joe (2014, pp. 67–70). The tail order is a concept for the strength of dependence in the joint tails of a multivariate distribution. The opposing tails can be compared to assess tail order or reflection symmetry (term by Joe (2014) for Nelsen’s (2006, p. 36) term radial symmetry). Joe (2014) provides extensively analytical details but sufficient for the \texttt{copBasic} package, the tail orders can be numerically explored.

The lower-tail order maybe numerically approximated by

\[
\kappa_L^C = \frac{\log[C(t,t)]}{\log(t)},
\]

for some small positive values of \(t \), and similarly the upper-tail order maybe numerically approximated by

\[
\kappa_U^C = \frac{\log[\hat{C}(t,t)]}{\log(t)},
\]

where \(\hat{C}(u,v) \) is the survival copula (\texttt{surCop}). Joe (2014) has potentially(?) conflicting notation in the context of the upper-tail order; the term “reflection” is used (p. 67) and “lower tail order of the reflected copula is the same as the upper tail order of the original copula” (p. 69), but Joe (2014, p. 67) only uses the joint survival function (\texttt{surfuncCop}) in the definition of \(\kappa_U^C \).

As a note, the author of this package was not able to get \texttt{tailordCop} to function properly for the upper-tail order using the joint survival function as implied on the bottom of Joe (2014, p. 67) and fortunately the fact that “reflection” is used in other contexts and used in analytical examples, the \texttt{tailordCop} function uses the lower-tail order of the reflection (survival copula). Joe (2014) also defines tail order parameter \(\Psi \) but that seems to be a result of analytics and not implemented in this package. Lastly, the tail orders are extendable into \(d \) dimensions, but only a bivariate (\(d = 2 \)) is provided in \texttt{copBasic}. The tail orders have various classifications for \(\kappa = \kappa_L = \kappa_U \):

- **Intermediate tail dependence** for \(1 < \kappa < d \) or \(\kappa = 1, \Psi = 0 \);
- **Strong tail dependence** for \(\kappa = 1 \) with \(\Psi > 0 \); and
- **Tail orthant independence or tail quadrant independence** for \(\kappa = d \).

Joe (2014) provides additional properties:

- \(\kappa_L = \kappa_U = d \) for the \(d \)-dimensional independence copula (\(\mathcal{P} \); e.g. \texttt{tailordCop(cop=\texttt{P})});
- It is not possible for \(\kappa_L < 1 \) or \(\kappa_U < 1 \) but each can be > 1 for a \(C(u,v) \) having some negative dependence (e.g. \texttt{tailordCop(cop=\texttt{PLACKETTcop}, para=0.2)}; see \texttt{PLACKETTcop}); and
For the bivariate Frechet–Hoeffding lower bound copula (countermonotonicity copula) the \(\kappa_L = \kappa_U \) and can be considered \(+\infty \). (A special trap in the tailordCOP provides consistency on \(\kappa \) but does not test that the copula is actually that function itself.)

Usage

```r
tailordCOP(cop=NULL, para=NULL, tol=1e-6, plot=FALSE, verbose=FALSE, ...)
```

Arguments

- `cop` A copula function;
- `para` Vector of parameters or other data structure, if needed, to pass to the copula;
- `tol` A tolerance on convergence;
- `plot` A logical plotting a diagnostic plot of the diagonal derivatives and label the limits;
- `verbose` Show incremental progress; and
- `...` Additional arguments to pass to the copula function.

Value

An R list is returned.

- `kappaL` The rounded value of \(\kappa_L \);
- `kappaU` The rounded value of \(\kappa_U \);
- `source` An attribute identifying the computational source: “tailordCOP”.

Note

The algorithm implemented for tailordCOP is based on halves (or alternatives by the setting of the `divisor` argument) and uses the copula function (not an analytical or even numerical derivative of the diagonal, \(\delta_C(t) \)). Starting from the median or \(t = 0.5 \), each limit is respectively computed by successive halving of the distance towards \(0^+ \) and checking the change in computed value against the tolerance `tol` argument. After the change becomes less than the tolerance, convergence is assumed. Other tests are made for NaN to aid in breaking the successive halvings. The rounding for the numerical results for \(\kappa_L \) and \(\kappa_U \) is an order of magnitude larger than the tolerance.

Users are encouraged to plot the results and further verify whether the convergence makes sense. The plot produced when `plot=TRUE` shows the probability \(t \) transformed into standard normal variates by the `qnorm()` function in R so that the distal reaches of each tail and thus limit are readily seen. The terminal points of each limit computation are shown by a small dot, and the letter “L” and “U” also are plotted at the terminal points.

Author(s)

W.H. Asquith

References

See Also

COP, tailconCOP, taildepCOP

Examples

Joe (2014, p. 5) names MTCJ = Mardia-Takahasi-Cook-Johnson copula
"MTCJ" <- function(u,v,para) { (u*(-para) + v*(-para) - 1)^(1/(-para)) }
The results that follow match those reported by Joe (2014, p. 69) who
analytically derives KappaL = 1 and KappaU = 2.
TAIL ORDER:
tailordCOP(cop=MTCJ, para=3, plot=TRUE) # kappaL = 1.00667, kappaU = 1.96296
TAIL DEPENDENCY:
taildepCOP(cop=MTCJ, para=3, plot=TRUE) # lambdaL = 0, lambdaU = 0.7937
Joe (2014) reports lambdaL = 2^(-1/para) = 2^(-1/3) = 0.7937005

tauCOP

The Kendall’s Tau and Concordance Function of a Copula

Description

Compute the measure of association known as Kendall’s Tau (τ_C) of a copula (τ_C) according to Nelsen (2006, sec. 5.1.1 and p. 161) by

$$\tau_C = Q(C, C) = 4 \int_{I^2} C(u,v) \, dC(u,v) - 1,$$

where $Q(C, C)$ is a concordance function (concordCOP) of a copula with itself. Nelsen (2006, p. 164) reports however that this form is often not amenable to computation when there is a singular component to the copula and that the expression

$$\tau_C = 1 - 4 \int_{I^2} \frac{\delta C(u,v)}{\delta u} \frac{\delta C(u,v)}{\delta v} \, dudv$$

is to be preferred. Such an expression hence relies on the partial numerical derivatives of the copula provided by derCOP and derCOP2. Nelsen’s preferred expression is used by the tauCOP function. Nelsen (2006, pp. 175–176) reports that the following relation between τ_C and ρ_C (rhoCOP) exists $-1 \leq 3\tau - 2\rho \leq 1$ (see rhoCOP for more details).

Nelsen (2006, pp. 160–161) lists some special identities involving $Q(C_1, C_2)$:

$$Q(M,M) = 4 \int_0^1 u \, du - 1 = 1,$$

$$Q(M, \Pi) = 4 \int_0^1 u^2 \, du - 1 = 1/3,$$

$$Q(M, W) = 4 \int_{1/2}^1 (2u - 1) \, du - 1 = 0,$$

$$Q(W, \Pi) = 4 \int_0^1 u(1-u) \, du - 1 = -1/3,$$
\[Q(W, W) = 4 \int_0^1 0 \, du - 1 = -1, \text{ and} \]

\[Q(\Pi, \Pi) = 4 \int \int_{D^2} uv \, du \, dv - 1 = 0. \]

Kendall’s Tau also can be expressed in terms of the \textit{Kendall Function} \((F_K(z); \text{kfuncCOP})\):

\[\tau_C = 3 - 4 \int_0^1 F_K(t) \, dt, \]

which is readily verified by code shown in \textbf{Examples}. This definition might be useful if integration errors are encountered for some arbitrary copula and arbitrary parameter set. In fact, should two attempts (see source code) at dual integration of the partial derivatives occur, the implementation switches over to integration of the Kendall Function \((e.g. \tau_CopHcopHcop\, para\, copR, \, paraR)\). Note that Durante and Sempi have erroneously dropped the multiplication by “4” as shown above in their definition of \(\tau_C\) as a function of \(F_K(t)\) (Durante and Sempi, 2015, eq. 3.9.4, p. 121).

\textbf{Usage}

\[\text{tauCOP(cop=NULL, \, para=NULL,} \]

\[\text{cop2=NULL, para2=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)} \]

\[\text{concordCOP(cop=NULL, \, para=NULL, cop2=NULL, para2=NULL, ...)} \]

\textbf{Arguments}

\begin{itemize}
 \item \texttt{cop} \quad \text{A copula function;}
 \item \texttt{para} \quad \text{Vector of parameters or other data structure, if needed, to pass to the copula;}
 \item \texttt{cop2} \quad \text{A second copula function;}
 \item \texttt{para2} \quad \text{Vector of parameters or other data structure, if needed, to pass to the second copula;}
 \item \texttt{as.sample} \quad \text{A logical controlling whether an optional \texttt{R} data.frame in \texttt{para} is used to compute the \(\hat{r} \) by dispatch to \texttt{cor()} function in \texttt{R} with \texttt{method = "kendall"};}
 \item \texttt{brute} \quad \text{Should brute force be used instead of two nested \texttt{integrate()} functions in \texttt{R} to perform the double integration;}
 \item \texttt{delta} \quad \text{The \(du \) and \(dv \) for the brute force integration using \texttt{brute}; and}
 \item \text{\ldots} \quad \text{Additional arguments to pass on to \texttt{derCOP} and \texttt{derCOP2}.}
\end{itemize}

\textbf{Value}

The value for \(\tau_C \) is returned.
Note

Although titled for computation of Kendall’s Tau, the tauCOP function is the implementation of the concordance function $Q(C_1, C_2)$ (see Nelsen (2006, pp. 158–159) when given two different copulas and respective parameters as arguments. The function concordCOP just dispatches to tauCOP.

A useful relation is

$$
\int \int_{T^2} C_1(u,v) \, dC_2(u,v) = \frac{1}{2} - \int \int_{T^2} \frac{\delta}{\delta u} C_1(u,v) \frac{\delta}{\delta v} C_2(u,v) \, du \, dv,
$$

where $C_1(u,v)$ is the first copula and $C_2(u,v)$ is the second copula.

Nelsen et al. (2001, p. 281) lists several measures of association defined by the concordance function:

1. $\tau_C = Q(C, C)$: (Kendall’s Tau; tauCOP);
2. $\rho_C = 3 \cdot Q(C, \Pi)$: (Spearman’s Rho; rhoCOP);
3. $\gamma_C = 2 \cdot Q(C, [M + W]/2)$: (Gini’s Gamma; giniCOP); and
4. $\psi_C = \frac{3}{2} \cdot Q(C, M) - \frac{1}{2}$: (Spearman’s Footrule; footCOP).

Author(s)

W.H. Asquith

References

See Also

blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, wolfCOP, joeskewCOP, uvlmoms, derCOP, derCOP2, kfuncCOP

Examples

```r
## Not run:
tauCOP(cop=PSP) # 1/3
# Now compute Kendall Tau via integration of the Kendall Function.
# 3 - 4*integrate(function(t) kfuncCOP(t, cop=PSP), 0, 1)$value # 0.3333314
## End(Not run)

## Not run:
tauCOP(cop=PSP, brute=TRUE) # 0.3306625
# CPU heavy example showing that the dual-integration (fast) results in
# a Kendall's Tau that matches a sample version

dtau <- function(n) {
  uv <- simCOP(n=n, cop=PSP, ploton=FALSE, points=FALSE)
  return(cor(uv$U, uv$V, method="kendall"))
}
```


The t-EV copula (Joe, 2014, p. 189) is a limiting form of the t-copula (multivariate t-distribution):

\[C_{\rho,\nu}(u, v) = tEV(u, v; \rho, \nu) = \exp\left(-\frac{(x + y)B(x/(x + y); \rho, \nu)}{1 + \rho^2}\right), \]

where \(x = \log(u) \), \(y = \log(v) \), and letting \(\eta = \sqrt{\nu + 1}/(1 - \rho^2) \) define

\[B(w; \rho, \nu) = w T_{\nu + 1}(\eta[(w/[1 - w])^{1/\nu} - \rho]) + (1 - w)T_{\nu + 1}(\eta[(1 - w)/w]^{1/\nu} - \rho), \]

where \(T_{\nu + 1} \) is the cumulative distribution function of the univariate t-distribution with \(\nu - 1 \) degrees of freedom. As \(\nu \to \infty \), the copula weakly converges to the Hüsler–Reiss copula (HRCop) because the t-distribution converges to the normal (see Examples for a study of this copula).
The \(t\text{EV}(u, v; \rho, \nu) \) copula is a two-parameter option when working with extreme-value copula. There is a caveat though. Demarta and McNeil (2004) conclude that “the parameter of the Gumbel \([\text{G'Hcop}]\) or Galambos \([\text{GLcop}]\) A-functions [the Pickend dependence function and B-function by association] can always be chosen so that the curve is extremely close to that of the \(t\)-EV A-function for any values of \(\nu \) and \(\rho \). The implication is that in all situations where the \(t\)-EV copula might be deemed an appropriate model we can work instead with the simpler Gumbel or Galambos copulas.”

Usage

\[\text{tEVcop}(u, v, \text{para=NULL}, \ldots) \]

Arguments

- \(u \) Nonexceedance probability \(u \) in the \(X \) direction;
- \(v \) Nonexceedance probability \(v \) in the \(Y \) direction;
- \(\text{para} \) A vector (two element) of parameters in \(\rho \) and \(\nu \) order; and
- \(\ldots \) Additional arguments to pass.

Value

Value(s) for the copula are returned.

Note

Note that Joe (2014) shows \(x = \log(u) \) (note absence of the minus sign). This is not correct.

Author(s)

W.H. Asquith

References

See Also

\[\text{GHcop}, \text{GLcop}, \text{HRcop} \]

Examples

```r
## Not run:
tau <- 1/3 # Example from copula::evCopula.Rd
tev.cop <- tevCopula(iTau(tevCopula(), tau))
copula::pCopula(c(0.1,.5), copula=tev.cop) # 0.07811367
tEVcop(0.1, 0.5, para=slot(tev.cop, "parameters")) # 0.07811367
## End(Not run)

## Not run:
```
nsim <- 2000; pargh <- c(5, 0.5, 0.5)
UV <- simCOP(nsim, cop=GHcop, para=pargh)
U <- linomom:::pp(UV[,1], sort=FALSE)
V <- linomom:::pp(UV[,2], sort=FALSE)
RT <- mleCOP(u=U, v=V, cop=tEVcop, init=para=c(0.5,log(4)),
 para=fun=function(k) return(c(k[1], exp(k[2]))))
partev <- RT$para

FT <- simCOP(nsim, cop=tEVcop, para=RT$para)

tauCOP(cop=GHcop, para=pargh)
tauCOP(cop=tEVcop, para=partev)

tauCOP(cop=GHcop, para=pargh) # [1] 0.3003678
tauCOP(cop=tEVcop, para=partev) # [1] 0.3178904

densityCOPplot(cop=GHcop, para=pargh)
densityCOPplot(cop=tEVcop, para=partev,
 ploton=FALSE, contour.col=2) #

End(Not run)

Not run:
A demonstration Joe (2014, p. 190) for which tEvCop() has
upper tail dependence parameter as
para <- c(0.8, 10)
 "tEVcop.copula" <- function(u,v, para=NULL, ...)
 {
 if(length(u)==1) u<-rep(u,length(v)); if(length(v)==1) v<-rep(v,length(u))
 return(copula::copula(matrix(c(u,v), ncol=2),
 tEvCopula(para=para[1], df=para[2])))
 }
lamU.copBasic <- tailDepCOP(cop=tEVcop, para=lamdaU
lamU.copula <- tailDepCOP(cop=tEVcop.copula, para=lamdaU
print(c(lamU, lamU.copBasic, lamU.copula))
[[1] 0.2925185 0.2925200 0.2925200 # So we see that they all match.
End(Not run)

Not run:
Convergence of tEvCop to HRCop as nu goes to infinity.
nu <- 10^(seq(-4,2,by=.1)) # nu right end point rho dependent
rho <- 0.7 # otherwise, expect to see 'zeros' errors on the plot()
Compute Blomqvist Beta (Fast computation is reason for choice)
btev <- sapply(nu, function(n) blomCOP(tEVcop, para=c(rho, n)))
limit.thetas <- sqrt(2/(nu*(1-rho))) # for nu --> infinity HRCop
thetas <- sapply(btev, function(b)
 { uniroot(function(l, blom=NA) { blom - blomCOP(HRCop, para=l }),
 interval=c(0,10), blom=b$root)}
plot(limit.thetas, thetas, log="xy", type="b",
 xlab="Theta of HRCop via limit nu --> infinity",
 ylab="Theta from Blomqvist Beta equivalent HRCop to tEVcop")
abline(0,1)
mtext(paste0("Note 'weak' convergence to lower left, and \n", "convergence increasing with rho"))
Bivariate Skewness after Joe (2014) or the Univariante L-moments of Combined U and V

Description

Joe (2014, pp. 65–66) suggests two quantile-based measures of bivariate skewness defined for uniform random variables \(U\) and \(V\) combined as either \(\psi_{u+v-1} = u + v - 1\) or \(\psi_{u-v} = u - v\) for which the \(E[u] = E[v] = 0\). The bivariate skewness is the quantity \(\eta\):

\[
\eta(p; \psi) = \frac{x(1-p) - 2x\left(\frac{1}{2}\right) + x(p)}{x(1-p) - x(p)},
\]

where \(0 < p < \frac{1}{2}\), \(x(F)\) is the quantile function for nonexceedance probability \(F\) for either the quantities \(X = \psi_{u+v-1}\) or \(X = \psi_{u-v}\) using either the empirical quantile function or a fitted distribution. Joe (2014, p. 66) reports that \(p = 0.05\) to “achieve some sensitivity to the tails.” How these might be related (intuitively) to L-coskew (see function lcomoms2() of the lmomco package) of the L-comoments or bivariate L-moments (bilmoms) is unknown, but see the Examples section of joeskewCOP.

Structurally the above definition for \(\eta\) based on quantiles is oft shown in comparative literature concerning L-moments. But why stop there? Why not compute the L-moments themselves to arbitrary order for \(\eta\) by either definition (the uvlmoms variation)? Why not fit a distribution to the computed L-moments for estimation of \(x(F)\)? Or simply compute “skewness” according to the definition above (the uvskew variation).

Usage

uvlmoms(u,v=NULL, umv=TRUE, p=NA, type="gno", getlmoms=TRUE, ...)

uvskew(u,v=NULL, umv=TRUE, p=0.05, type=6, getlmoms=FALSE, ...)

Arguments

- **u**: Nonexceedance probability \(u\) in the \(X\) direction;
- **v**: Nonexceedance probability \(v\) in the \(Y\) direction and if NULL then \(u\) is treated as a two column \(R\) data.frame;
- **umv**: A logical controlling the computation of \(\psi\): \(\psi = u - v \ (\text{umv} = \text{TRUE})\) or \(\psi = u + v - 1 \ (\text{umv} = \text{FALSE})\). The "m" is to read “minus”;
- **p**: A suggested \(p\) value is \(p = 0.05\). If is.na(NA), then getlmoms is set to TRUE (see below);
type

The type argument is mutable, and is a syntax match to the cannoncial use in package `lmomco`. Variation from that package however is permitted. Either type is an integer between 1 and 9 selecting one of the nine quantile algorithms described for the quantile function in R. The default 6 uses the Weibull plotting positions and differs from R’s default of 7. Otherwise type must be a valid distribution abbreviation for the `lmomco` package as in the abbreviation list `dist.list` function of that package. The gno shown as a default for the generalized normal distribution (see distribution type “gno” in package `lmomco`);

getlmoms

A logical triggering whether the L-moments of either $\psi_{u+\psi-1}$ or $\psi_{u-\psi}$ are returned instead computing the above definition of “skewness;” and

... Additional arguments to pass to the `lmomco` function `lmoms`, such as the number of L-moments `nmoms`.

Value

An R list of the univariate L-moments of η is returned (see documentation for `lmoms` in the `lmomco` package). Or the skewness of η can be either (1) based on the empirical distribution based on plotting positions by the quantile function in R using the type as described, or (2) based on the fitted quantile function for the parameters of a distribution for the `lmomco` package.

Author(s)

W.H. Asquith

References

See Also

`COP`

Examples

```r
## Not run: set.seed(234) UV <- simCOP(n=100, cop=GHcop, para=1.5, graphics=FALSE) lm <- uvlmoms(UV); print(lm) # L-kurtosis = 0.16568268 uvskew(UV, p=0.10) # -0.1271723 uvskew(UV, p=0.10, type="gno") # -0.1467011 ## End(Not run)

## Not run: ps <- seq(0.01,0.49, by=0.01) ETA <- sapply(1:length(ps), function(i) uvskew(UV, p=ps[i], type=5, uvl=FALSE) ) plot(ps, ETA, type="l", xlab="P FACTOR", ylab="BIVARIATE SKEWNESS") # ## End(Not run)
```
Vuong’s Procedure for Parametric Copula Comparison

Description

Perform Vuong’s Procedure following Joe (2014, pp. 257–258). Consider two copula densities \(f_1 = c_1(u, v; \Theta_1) \) and \(f_2 = c_2(u, v; \Theta_2) \) for two different bivariate copulas \(C_1(\Theta_1) \) and \(C_2(\Theta_2) \) having respective parameters \(\Theta_1 \) and \(\Theta_2 \) that provide the “closest” Kullback–Leibler divergence from the true copula density \(g(u, v) \).

The difference of the Kullback–Leibler divergence (\(\text{kullcop} \)) of the two copulas from the true copula density can be measured for a sample of size \(n \) and bivariate sample realizations \(\{u_i, v_i\} \) by

\[
\hat{D}_{12} = n^{-1} \sum_{i=1}^{n} D_i,
\]

where \(\hat{D}_{12} \) is referred to in the \text{copBasic} package as “Vuong’s D” and \(D_i \) is defined as

\[
D_i = \log \left(\frac{f_1(u_i, v_i; \Theta_2)}{f_2(u_i, v_i; \Theta_1)} \right).
\]

The variance of \(\hat{D}_{12} \) can be estimated by

\[
\hat{\sigma}_{12}^2 = (n-1)^{-1} \sum_{i=1}^{n} (D_i - \hat{D}_{12})^2.
\]

The sample estimate and variance are readily turned into the 100 \times (1 - \(\alpha \)) confidence interval by

\[
\hat{D}_{12}^{(lo)} < \hat{D}_{12} < \hat{D}_{12}^{(hi)},
\]

where, using the quantile (inverse) function of the t-distribution \(\sim T^{-1}(F; df=(n-2)) \) for nonexceedance probability \(F \) and \(n-2 \) degrees of freedom for \(n \) being the sample size, the confidence interval is

\[
\hat{D}_{12} - T^{-1}(1-\alpha/2) \times \hat{\sigma}_{12}/\sqrt{n} < \hat{D}_{12} < \hat{D}_{12} + T^{-1}(1-\alpha/2) \times \hat{\sigma}_{12}/\sqrt{n}.
\]

Joe (2014, p. 258) reports other interval forms based (1) on the Akaike (AIC) correction and (2) on the Schwarz (BIC) correction, which are defined for AIC as

\[
\text{AIC} = \hat{D}_{12} - (2n)^{-1} \log(n) \left(\dim(\Theta_2) - \dim(\Theta_1) \right) \pm T^{-1}(1-\alpha/2) \times \hat{\sigma}_{12}/\sqrt{n},
\]

and for BIC as

\[
\text{BIC} = \hat{D}_{12} - (2n)^{-1} \log(n) \left(\dim(\Theta_2) - \dim(\Theta_1) \right) \pm T^{-1}(1-\alpha/2) \times \hat{\sigma}_{12}/\sqrt{n}.
\]

The AIC and BIC corrections incorporate the number of parameters in the copula and for all else being equal the copula with the fewer parameters is preferable. If the two copulas being compared
have equal number of parameters than the AIC and BIC equate to \(\hat{D}_{12} \) and the same confidence interval because the difference \([\dim(\Theta_2) - \dim(\Theta_1)]\) is zero.

Joe (2014, p. 258) reports that these three intervals can be used for diagnostic inference as follows. If an interval contains 0 (zero), then copulas \(C_1(\Theta_1) \) and \(C_2(\Theta_2) \) are not considered significantly different. If the interval does not contain 0, then copula \(C_1(\Theta_1) \) or \(C_2(\Theta_2) \) is the better fit depending on whether the interval is completely below 0 (thus \(C_1(\Theta_1) \) better fit) or above 0 (thus \(C_2(\Theta_2) \) better fit), respectively. Joe (2014) goes on to emphasize that “the procedure compares different [copulas] and assesses whether they provide similar fits to the data. [The procedure] does not assess whether [either copula] is a good enough fit.”

Usage

```
vuongCOP(u, v=NULL, cop1=NULL, cop2=NULL, para1=NULL, para2=NULL, alpha=0.05, method=c("D12", "AIC", "BIC"),
the.zero=.Machine$double.eps^0.25, ...)
```

Arguments

- **u**: Nonexceedance probability \(u \) in the \(X \) direction;
- **v**: Nonexceedance probability \(v \) in the \(Y \) direction and if NULL then \(u \) is treated as a two column \(\mathbb{R} \) data.frame;
- **cop1**: A copula function corresponding to copula \(f_1 \) in Vuong’s Procedure;
- **para1**: Vector of parameters or other data structure, if needed, to pass to the copula \(f_1 \);
- **cop2**: A copula function corresponding to copula \(f_2 \) in Vuong’s Procedure;
- **para2**: Vector of parameters or other data structure, if needed, to pass to the copula \(f_2 \);
- **alpha**: The \(\alpha \) in Vuong’s Procedure, which results in the \(100 \times (1 - \alpha) \) confidence interval (two sided);
- **method**: The interval to evaluate as to position of the respective statistic form the comparison of the two copulas;
- **the.zero**: The value for “the zero” of the copula density function. This argument is the argument of the same name for `densityCOP`. The default here is intended to suggest that a tiny nonzero value for density will trap the numerical zero densities; and
- **...**: Additional arguments to pass to the `densityCOP` function.

Value

An \(\mathbb{R} \) list is returned having the following components:

- **title**: A descriptive title of the procedure;
- **method**: A textual description of the method setting;
- **result.text**: A textual description of the result of Vuong’s Procedure;
- **result**: A value 1 if \(C_1(\Theta_1) \) is better fit, 2 if copula \(C_2(\Theta_2) \) is better fit, and \(\emptyset \) if neither is better (\(\hat{D}_{12} = 0 \)), and NA including the likely (?) erroneous situation of \(C_1(\Theta_1) \equiv C_2(\Theta_2) \);
The two-sided p-values of the Vuong’s Procedure inclusive of AIC and BIC;

\[D_{12} \] A named vector of the lower and upper bounds of Vuong’s \(D \) at the respective confidence interval percentage along with \(\hat{D}_{12} \) and \(\sigma^2_{12} \);

AIC A named vector of the lower and upper bounds of Vuong’s AIC at the respective confidence interval percentage;

BIC A named vector of the lower and upper bounds of Vuong’s BIC at the respective confidence interval percentage; and

parameters A named vector of the alpha, sample size, value for the t-distribution quantile \(qt(1-\text{alpha}/2, \ df=n) \), and \(\hat{\sigma}_{12} \).

Note

The \texttt{vuongCOP} function along with \texttt{kullCOP} and features of function \texttt{densityCOPplot} represent collective milestones towards \textit{copula inference} and diagnostics post fitting of copulas to the usual measures of association such as \textit{Kendall’s Tau} (\(\tau_K \)) and \textit{Spearman’s Rho} (\(\rho_S \)) and their copula counterparts \(\tau_C \) (\texttt{tauCOP}) and \(\rho_C \) (\texttt{rhoCOP}).

For an example application, imagine a problem of say low springflow risk at “nearby springs” that jointly should converge in the lower tail because drought usually has a strong regional impact. First, it is necessary to form a reflection of the \textit{Gumbel–Hougaard copula} (\(\text{GH}(u,v; \Theta_{\text{GH}}) \); \texttt{ghcop}) but parameter estimation using \(\tau_C \) is the same because sample \(\hat{\tau}_K \) is invariant to reflection.

```r
"rGHcop" <- function(u,v, ...) { u + v - 1 + GHcop(1-u, 1-v, ...) }
set.seed(385) # setting so reported quantities here are reproducible
```

The prior code also sets a seed on the pseudo-random number generator so that reported values here are reproducible. The reflected \(\text{GH}(u,v; \Theta_{\text{GH}}) \) is denoted \(r\text{GH}(u,v; \Theta_{r\text{GH}}) \).

Second, the \text{PSP}(u,v) copula (\text{PSP}) is chosen as the parent distribution, and this copula has no parameter. The \text{PSP} has lower-tail dependency, which will be important as discussion unfolds. The following two lines of code establish a sample size to be drawn from the \text{PSP} and then simulates a sample from that copula. The color grey is used for the simulated values on the figure produced by \texttt{simCOP}, which forms a background example of the joint structure of the \text{PSP} copula.

```r
n <- 390
UV <- simCOP(cop=PSP, n=n, col=8, pch=16) # simulate and form the base image
```

By inspection of the so-produced graphic, it is obvious that there is contraction in the lower-left corner of the plot, which is a geometric representation of tail dependency. The lower-tail dependency thus phenomenologically says that there is joint interconnect during low springflow conditions—both springs are likely to be at low flow simultaneously. The variable \(UV \) contains the bivariate data as uniform variables (nonexceedance probabilities \(u \) and \(v \)).

The \textit{Plackett copula} (\(\text{PL}(u,v; \Theta_{\text{PL}}); \text{PLACKETTcop} \)) and the \(r\text{GH}(u,v; \Theta_{r\text{GH}}) \) copula are chosen as candidate models of the “unknown” parent. Both \text{PL} and \(r\text{GH} \) copulas use different “measures of association” for their parameter estimation. So next, sample estimates of the copula parameters using \textit{Schweizer and Wolff’s Sigma} \(\hat{\sigma}_C \). The sample value computations and parameter estimates also are set as shown in the following code:
STEP 1—Compute Kullback–Leibler sample size: The Kullback–Leibler divergences (KL($f|g$) and KL($g|f$)) are computed ($kullcop$) for the evaluation of the sample size as appropriate for distinguishing between the two candidate copulas 95 percent of the time. The Kullback–Leibler sample size (n_{fg}) also is computed as the following code illustrates and provides additional commentary.

```
STEP 2—Perform Vuong’s Procedure: The Vuong’s Procedure can now be completed. Now watch the copula and parameter order in the next code for mistakes, the author has purposefully switched order here to draw attention to the need to make sure argument `cop1` has the correct parameter(s) for copula 1 (the PL). The two calls to `simcop` are made to graphically superimpose these simulations on top of the parent `PSP`. Further discussion of Vuong’s Procedure is informative. Simply speaking, the result is that the rGH (copula 2) has better fit than PL (copula 1). The 95-percent confident limits from Vuong’s Procedure having $\hat{D}_{12} = 0.049$ with p-value $0.0012$, $\hat{\sigma}_{12} = 0.297$, and $n = 390$ are $0.0194 < \hat{D}_{12} < 0.0786$. This interval does not contain zero and is greater than zero and therefore a conclusion may be drawn that copula 2 has the better fit.

STEP 3—Comparison of lower-tail dependency parameters: What does the tail dependency do for inference? This can be checked by computing the lower-tail dependency parameters ($\lambda_L$; `taildepcop`) in the code that follows for each of the three copulas + the empirical copula but note that true sample estimators do not quite exist. Numeric focus need only be on the lower tail, but the four graphics are informative.

```

Wolf <- wolfCOP(para=UV, as.sample=TRUE) # 0.496943
paraPL <- uniroot(function(p)
 Wolf - wolfCOP(cop=PLACKETTcop, para=p, c(1,30))$root
paraGH <- uniroot(function(p)
 Wolf - wolfCOP(cop=rGHcop, para=p, c(1,30))$root

Ú

```
The important aspect of the graphics by taildepCOP is that the rGH has lower-tail dependency and the \( PL \) does not, so based on inspection rGH is superior given that we known PSP was the true parent. The empirical estimate of the \( \hat{\lambda}_L \) results from the EMP1RCop copula indicates that its lower-tail dependency is closer to that of the rGH relative to PL and thus quantitatively by lower-tail dependency the rGH has a superior fit.

So the rGH has a tail dependency more similar to the true model compared to the PL. Hence for this example, the rGH is clearly a superior fitting model in terms of Vuong’s Procedure (fit alone) and the \( \hat{\lambda}_L \) then is used as a follow up to shown that the rGH might be “good enough” an approximation to the PSP. The efficacy of reflecting the GH copula into a “new” form as rGH is demonstrated. Users are strongly encouraged to review the so-produced graphic from the simCOP call several listings back for \( n = 390 \), and lastly, this example is one for which absence of the argument snv (standard normal variate [scores]) by simCOP makes the tail dependency issue for the sample size more prominent in the graphic.

**STEP 4—Qualitatively compare using copula density plots:** Graphical depiction of copula density contours by the `densityCOPplot` function supports the conclusion that the rGH is the superior model relative to the PL. The so-produced graphic obviously shows that the rGH strongly mimics the shape of the parent PSP.

```r
densityCOPplot(cop=PSP, contour.col=8) # grey is the parent bivariate density
densityCOPplot(cop=PLACKETTCop, para=paraPL, contour.col=3, ploton=FALSE)# green
densityCOPplot(cop=rGHcop, params=paraGH, contour.col=2, ploton=FALSE)# red
```

**STEP 5—Compute L-comoments of the data via simulation and estimate the sampling distributions:** An open research problem is the what if any role that L-comoments might play in either copula estimation or inference. (There being virtually no literature on the topic?) Because a measure of association was used for parameter estimation, the L-correlation is uniformative, but a comparison is conceptually useful. The \( \hat{\sigma}_C = 0.4969 \) and Spearman’s Rho of the data \( \hat{\rho}_S = \) and the L-correlations \( \tau_{[2]} \approx \tau_{[2]} \approx 0.497 \) are all similar.

Inference using L-coskew and L-cokurtosis seems possible. The following code listing is CPU intensive. First, the L-correlation, L-coskew, and L-cokurtosis values are computed from the simulated sample by the `lcomomsR` function of the lmomco package. Second and third, the respective sampling distributions of these L-comoments \( \tau \) for the two copulas are estimated.

```r
UVlmr <- lcomomo::lcomoms2(UV, nmom=4) # The sample L-comoments
 # This execution will result in nonrejection of rGH copula.
GHlmr <- lcomCPp(n, UVlmr, cop=rGHcop, para=paraGH) # NONREJECTION
 # LcomType n Mean Lscale Lskew Lkurt sampleNest p.value signif
 # Tau3[12] 390 -0.06952 0.01819 0.04505 0.12024 -0.11188 0.08795
 # Tau3[21] 390 -0.06739 0.02084 0.04104 0.12917 -0.10673 0.14162
 # Tau3[12:21] 390 -0.06845 0.01713 0.04930 0.11696 -0.10931 0.08161
 # Tau4[12] 390 0.04970 0.01682 -0.01635 0.10150 0.04183 0.38996
 # Tau4[21] 390 0.05129 0.01606 -0.06833 0.13798 0.07804 0.17470
 # Tau4[12:21] 390 0.05049 0.01329 -0.02045 0.12001 0.05994 0.35069

 # This execution will result in rejection of Plackett copula.
PLlmr <- lcomCPp(n, UVlmr, cop=PLACKETTCop, para=paraPL) # REJECT PLACKETT
 # LcomType n Mean Lscale Lskew Lkurt sampleNest p.value signif
 # Tau3[12] 390 -0.02676 0.02133 0.01556 0.09581 -0.11188 0.00129 **
```
Because each copula was fit to a measure of association, the p-values for the L-correlations are all nonsignificant (noninformative because of how the copulas were fit), and therefore p-values quite near to the 50th percentile should be produced. So here, the L-correlation is noninformative on fit even though it might have some role because it is asymmetrical unlike that statistics $\tau_K$ and $\rho_S$.

The results in variable Ghlmr show no statistically significant entries (all p-values >0.05 = ($\alpha = 0.1$)/2)) for L-coskew and L-cokurtosis—the rGH copula is not rejected. The results in Pllmr show many p-values <0.05 = ($\alpha = 0.1$)/2 for both L-coskew and L-cokurtosis—the PL copula is rejected. The experimental L-comoment inference shown is consistent with results with Vuong’s Procedure.

Vuong’s Procedure, however, does not address adequacy of fit—it just evaluates which copula fits better. The inspection of the lower tail dependency results previously shown ($\lambda_{LPS}^{U} = 1/2 \approx \lambda_{rGH}^{U} = 0.429$) along with the L-coskew and L-cokurtosis of the sample being well within the sample distribution suggests that the rGH is a adequate mimic of the PSP copula.

Some open research questions concern the numerical performance of the L-comoments as simulation sample size becomes large and whether or not the L-comoments should be computed on the probabilities \{u, v\}. Also should conversion to normal scores be made and if so, should adjustment by the Hazen plotting positions ($u_i = (r_i - 0.5)/n$ for rank $r_i$) be made that Joe (2014) repeatedly advocates when standard normal variates (scores) $z_i = \Phi^{-1}(u_i)$ for quantile function of standard normal distribution $\Phi(0, 1)$? Collectively, Nelsen (2006) and Salvadori et al. (2007) are both silent on the matter of normal score conversion, and in conclusion Nelsen (2006), Salvadori et al. (2007), and Joe (2014) also are all silent on L-comoment applications with copulas.

Author(s)
W.H. Asquith

References

See Also
densityCOP, kullCOP, simCOP, statTn, mlecOP

Examples
# See extended code listings and discussion in the Note section
# See Examples in mlecOP() (Last example therein might suggest a problem in the
# implied 95th percentile associated with n_fg above.
The Fréchet–Hoeffding Lower Bound Copula

Description

Compute the Fréchet–Hoeffding lower bound copula (Nelsen, 2006, p. 11), which is defined as

\[ W(u, v) = \max(u + v - 1, 0). \]

This is the copula of perfect anti-association (countermonotonicity, perfectly negative dependence) between \( U \) and \( V \) and is sometimes referred to as the countermonotonicity copula. Its opposite is the \( M(u, v) \) copula (comonotonicity copula; \( M \)), and statistical independence is the \( \Pi(u, v) \) copula (\( P \)).

Usage

\[ W(u, v, \ldots) \]

Arguments

- \( u \) Nonexceedance probability \( u \) in the \( X \) direction;
- \( v \) Nonexceedance probability \( v \) in the \( Y \) direction; and
- \( \ldots \) Additional arguments to pass.

Value

Value(s) for the copula are returned.

Author(s)

W.H. Asquith

References


See Also

\( M, P \)

Examples

\[ W(0.4, 0.6) \]
\[ W(0, 0) \]
\[ W(1, 1) \]
The Schweizer and Wolff Sigma of a Copula

Description

Compute the measure of association known as Schweizer–Wolff Sigma $\sigma_C$ of a copula according to Nelsen (2006, p. 209) by

$$\sigma_C = 12\int\int_{T^2} |C(u,v) - uv| \, du \, dv,$$

which is $0 \leq \sigma_C \leq 1$. It is obvious that this measure of association, without the positive sign restriction, is similar to the following form of Spearman’s Rho of a copula:

$$\rho_C = 12\int\int_{T^2} [C(u,v) - uv] \, du \, dv.$$

If a copula is positively quadrant dependent (PQD, see isCOP.PQD) then $\sigma_C = \rho_C$ and conversely if a copula is negatively quadrant dependent (NQD) then $\sigma_C = -\rho_C$. However, a feature making $\sigma_C$ especially attractive is that for random variables $X$ and $Y$, which are not PQD or NQD—copulas that are neither larger nor smaller than $\Pi$—is that “$\sigma_C$ is often a better measure of [dependency] than $\rho_C$” (Nelsen, 2006, p. 209).

Usage

wolfCOP(cop=NULL, para=NULL, as.sample=FALSE, brute=FALSE, delta=0.002, ...)

Arguments

cop A copula function;
para Vector of parameters or other data structure, if needed, to pass to the copula;
as.sample A logical controlling whether an optional R data.frame in para is used to compute the $\hat{\sigma}_C$ (see Note). If set to -1, then the message concerning CPU effort will be suppressed;
brute Should brute force be used instead of two nested integrate() functions in R to perform the double integration;
delta The $du$ and $dv$ for the brute force (brute=TRUE) integration; and
... Additional arguments to pass.

Value

The value for $\sigma_C$ is returned.
Note

A natural estimator for $\sigma_C$ is through the empirical copula (Póczos et al., 2015) and can be computed as

$$\hat{\sigma}_C = \frac{12}{n^2 - 1} \sum_{i=1}^{n} \sum_{j=1}^{n} \left| \hat{C}_n \left( \frac{i}{n}, \frac{j}{n} \right) - \frac{i}{n} \times \frac{j}{n} \right|,$$

where $\hat{C}_n$ is the simplest empirical copula of

$$\hat{C}_n \left( \frac{i}{n}, \frac{j}{n} \right) = \frac{1}{n} \{ \# \text{ of } (U_k \leq U_i, V_k \leq V_j) \}.$$

An extended example is informative. First declare a composite of two different Plackett copulas (PLcop) and simulate a few hundred values:

```r
para <- list(cop1=PLcop, cop2=PLcop, para1=0.145, para2=21.9,
 alpha=0.81, beta=0.22)
D <- simCOP(n=300, cop=composite2COP, para=para,
cex=0.5, col=rgb(0,0,0.2), pch=16)
```

Second, show that this copula is globally PQD (iscopNPQD), but there is a significant local NQD part of $\mathbb{I}^2$ space that clearly is NQD.

```r
PQD <- isCOP.PQD(cop=composite2COP, para=para, uv=D)
message(PQD$global.PQD) # TRUE
points(D, col=PQD$local.PQD+2, lwd=2)
```

This composited copula intersects (passes through) the $P$ copula. Hence by the logic of Nelsen (2006), then Schweizer–Wolff Sigma should be larger than Spearman Rho (rhocop) as shown below

```r
wolfCOP(cop=composite2COP, para=para) # 0.08373378 (theoretical)
rhoCOP(cop=composite2COP, para=para) # 0.02845131 (theoretical)
hoefCOP(cop=composite2COP, para=para) # 0.08563823 (theoretical)
```

In fact, the output above also shows Schweizer–Wolff Sigma to be larger than Kendall Tau (taucop), Gini Gamma (ginicop), and Blomqvist Beta (blomcop). The Schweizer–Wolff Sigma has captured the fact that although the symbols plot near randomly on the figure, the symbol coloring for PQD and NQD clearly shows local dependency differences. The sample version is triggered by

```r
wolfCOP(para=D, as.sample=TRUE) # 0.09278467 (an example sample)
```

Author(s)

W.H. Asquith

References


See Also

blomCOP, footCOP, giniCOP, hoefCOP, rhoCOP, tauCOP, joeskewCOP, uvlmoms

Examples

```r
Not run:
wolfCOP(cop=PSP) # 0.4784176
End(Not run)

Not run:
n <- 1000; UV <- simCOP(n=n, cop=N4212cop, para=7.53, graphics=FALSE)
wolfCOP(cop=N4212cop, para=7.53) # 0.9884666 (theoretical)
wolfCOP(para=UV, as.sample=TRUE) # 0.9884174 (sample)
End(Not run)

Not run:
Redo D from Note section above
para <- list(cop1=PLcop, cop2=PLcop, para1=0.145, para2=21.9,
alpha=0.81, beta=0.22)
D <- simCOP(n=300, cop=composite2COP, para=para,
cex=0.5, col=rgb(0,0,0,0.2), pch=16)

the.grid <- EMPIRgrid(para=D)
the.persp <- persp(the.grid$empcop, theta=-25, phi=20, shade=TRUE,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
empcop <- EMPIRcopdf(para=D) # data.frame of all points
points(trans3d(empcop$p1, empcop$v, empcop$empcop, the.persp), cex=0.7,
col=rgb(0,1-sqrt(empcop$empcop),1,sqrt(empcop$empcop)), pch=16)
points(trans3d(empcop$p2, empcop$v, empcop$empcop, the.persp),
col=PQD$local.PQD+1, pch=1)

layout(matrix(c(1,2,3,4), 2, 2, byrow = TRUE), respect = TRUE)
QPD.NQD.cop <- gridCOP(cop=composite2COP, para=para)
Pi <- gridCOP(cop=P)
RHO <- QPD.NQD.cop - Pi; SIG <- abs(RHO)
the.persp <- persp(QPD.NQD.cop, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
mttext("The Copula that has local QPD and NQD", cex=0.5)
the.persp <- persp(Pi, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
mttext("Independence (P)", cex=0.5)
the.persp <- persp(RHO, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
mttext("Copula delta: Integrands of Spearman Rho", cex=0.5)
the.persp <- persp(SIG, theta=-25, phi=20, shade=TRUE, cex=0.5,
xlab="U VARIABLE", ylab="V VARIABLE", zlab="COPULA C(u,v)"
mttext("abs(Copula delta): Integrand of Schweizer-Wolff Sigma", cex=0.5)
End(Not run)
```
Index

*Topic **API to the copula package**
  GHcop, 105
  med.regressCOP, 184
  mleCOP, 188
  spectralmeas, 235

*Topic **Ali–Mikhail–Haq copula**
  AMHcop, 14

*Topic **Asymmetric Gumbel–Hougaard copula**
  GHcop, 105

*Topic **Clayton copula**
  CLcop, 28

*Topic **Durante and Sempi (2015) Examples and Exercises**
  kfuncCOP, 151

*Topic **Farlie–Gumbel–Morgenstern copula**
  FGMcop, 98

*Topic **Frechet Family copula**
  FRECHETcop, 102

*Topic **Galambos copula (lower extreme value form)**
  GLcop, 115

*Topic **Galambos copula**
  GLcop, 115

*Topic **Gaussian copula**
  blomCOP, 26
  med.regressCOP, 184

*Topic **Gumbel–Hougaard copula**
  GHcop, 105

*Topic **Husler–Reiss copula**
  HRcop, 123

*Topic **Joe (2014) Examples and Exercises**
  blomCOP, 26
  CLcop, 28
  densityCOP, 50
  densityCOPplot, 52
  derCOPinv, 59

  GHcop, 105
  GLcop, 115
  HRcop, 123
  JOcopB5, 135
  joeskewCOP, 136
  kfuncCOP, 151
  kullCOP, 163
  PLACKETTcop, 196
  rhoCOP, 217
  semicorCOP, 224
  tailordCOP, 254
  tEVcop, 259

*Topic **Joe/B5 copula**
  JOcopB5, 135

*Topic **Joe/BB4 copula**
  GLcop, 115

*Topic **Kendall Function (L-moments)**
  kfuncCOPlmoms, 160

*Topic **Kendall Function**
  kfuncCOP, 151

*Topic **Kendall Measure**
  kfuncCOP, 151

*Topic **Kendall inverse distribution function**
  kfuncCOPinv, 159

*Topic **Kendall quantile function**
  kfuncCOPinv, 159

*Topic **L-comoments**
  bilmoms, 21
  copBasic-package, 4
  lcomCOP, 167
  lcomCOPpv, 169
  lcomoms2.ABCop2parameter, 172
  lcomoms2.ABKGcop2parameter, 175
  simcomposite3COP, 226
  simcompositeCOP, 228

*Topic **L-moments of combined U and V**
  uv1moms, 262
INDEX

*Topic **L-moments**
kfuncCOPlmoms, 160
uvlmoms, 262
*Topic **Lp distance**
hoefCOP, 119
*Topic **Moments of combined U and V**
joeskewCOP, 136
*Topic **Nelsen (2006) Examples and Exercises**
ascOP, 17
bilmoms, 21
blomCOP, 26
copBasic-package, 4
derCOPinv, 59
hoefCOP, 119
isfuncCOP, 133
prod2COP, 202
RFcop, 214
taildepCOP, 250
tauCOP, 256
*Topic **Normal copula**
blomCOP, 26
med.regressCOP, 184
*Topic **Nu-Skew and Nu-Star (skewnesses)**
joeskewCOP, 136
*Topic **Pareto copula**
PAREToCop, 195
*Topic **Plackett copula**
PLACKETTcop, 196
PLACKETTpar, 198
PLACKETTsim, 201
*Topic **Raftery copula**
RFcop, 214
*Topic **Salvadori et al. (2007) Examples and Exercises**
derCOPinv, 59
kfuncCOP, 151
*Topic **Sobol sequence (Monte Carlo integration)**
bilmoms, 21
kullCOP, 163
*Topic **Table of Copulas**
copBasic-package, 4
*Topic **bivariate L-moments**
bilmoms, 21
lcomCOP, 167
*Topic **bivariate asymmetry**

(measures)
bilmoms, 21
lcomCOP, 167
uvlmoms, 262
*Topic **bivariate skewness**
bilmoms, 21
joeskewCOP, 136
lcomCOP, 167
uvlmoms, 262
*Topic **concordance function**
tauCOP, 256
*Topic **conditional cumulative distribution function**
derCOP, 55
derCOP2, 57
*Topic **conditional quantile function**
derCOPinv, 59
derCOPinv2, 62
*Topic **conditional return period**
surfCOP, 247
*Topic **copula (characteristics)**
blomCOP, 26
diagCOP, 64
diagCOPatf, 65
footCOP, 100
giniCOP, 112
hoefCOP, 119
isCOP.LTD, 124
isCOP.permSYM, 126
isCOP.PQD, 127
isCOP.radsym, 129
isCOP.RTI, 132
joeskewCOP, 136
kfuncCOP, 151
kfuncCOPinv, 159
kfuncCOPlmoms, 160
lcomCOPpv, 169
rhobevCOP, 215
rhoCOP, 217
semicorCOP, 224
tailconCOP, 249
taildepCOP, 250
tailordCOP, 254
tauCOP, 256
wolfCOP, 271
*Topic **copula (conditional distribution)**
COP, 41
derCOP, 55
derCOP2, 57
simCOPmicro, 232
*Topic copula (conditional quantile function)
COP, 41
derCOPinv, 59
derCOPinv2, 62
simCOPmicro, 232
*Topic copula (density)
densityCOP, 50
densityCOPplot, 52
kullCOP, 163
PLACKETTcop, 196
vuongCOP, 264
*Topic copula (derivative inverse)
derCOPinv, 59
derCOPinv2, 62
*Topic copula (derivative)
derCOP, 55
derCOP2, 57
*Topic copula (empirical)
EMPIRcop, 71
*Topic copula (estimation)
PLACKETTpar, 198
*Topic copula (extreme value)
geVcop, 104
GHcop, 105
GLcop, 115
HRcop, 123
tEVcop, 259
*Topic copula (fitting)
copBasic.fitpara, 44
mleCOP, 188
*Topic copula (formulas)
AMHcop, 14
ascCOP, 17
CLcop, 28
COP, 41
FGMcop, 98
FRECHETcop, 102
gEVcop, 104
GHcop, 105
GLcop, 115
HRcop, 123
JOCopB5, 135
M, 183
N4212cop, 193
P, 194
PARETOcop, 195
PLACKETTcop, 196
RFcop, 214
tEVcop, 259
W, 270
*Topic copula (goodness-of-fit)
aicCOP, 13
bicCOP, 19
copBasic.fitpara, 44
psepol, 204
rmseCOP, 220
spectralmeas, 235
statTn, 242
vuongCOP, 264
*Topic copula (inference)
aicCOP, 13
bicCOP, 19
copBasic.fitpara, 44
kullCOP, 163
lcomCOPpv, 169
psepol, 204
rmseCOP, 220
spectralmeas, 235
statTn, 242
vuongCOP, 264
*Topic copula (inverse)
copinv, 47
copinv2, 49
*Topic copula (limits/bounds)
M, 183
W, 270
*Topic copula (properties)
bloomCOP, 26
footCOP, 100
giniCOP, 112
hoefCOP, 119
isCOP.LTD, 124
isCOP.permSym, 126
isCOP.PQD, 127
isCOP.radsym, 129
isCOP.RTI, 132
isfuncCOP, 133
joeskewCOP, 136
kfuncCOP, 151
kfuncCOPinv, 159
rhobevevCOP, 215
rhoCOP, 217
INDEX 277

- Topic copula (properties, extreme value)
  semicorcop, 224
  tailconcop, 249
  taildepcop, 250
  tailordcop, 254
  tauCOP, 256
  wolfCOP, 271

- Topic copula (reflection)
  COP, 41
  simCOPmicro, 232
  surCOP, 245

- Topic copula (simulation)
  PLACKETTsim, 201
  simcomposite3COP, 226
  simCOP, 229
  simCOPmicro, 232

- Topic copula (symmetry)
  iscOP.permsym, 126
  iscOP.radsym, 129

- Topic copula (tail characteristics)
  semicorcop, 224
  tailconcop, 249
  taildepcop, 250
  tailordcop, 254

- Topic copula (tail properties)
  semicorcop, 224
  tailconcop, 249
  taildepcop, 250
  tailordcop, 254

- Topic copula (utilities)
  ascOP, 17

- Topic copula (utility)
  COPinv, 47
  COPinv2, 49
  derCOP, 55
  derCOP2, 57
  derCOPinv, 59
  derCOPinv2, 62

- Topic copula composition (convex combination)
  convex2COP, 37
  convexCOP, 39

- Topic copula composition (four compositing parameters)
  composite3COP, 35

- Topic copula composition (two compositing parameters)
  composite1COP, 31
  composite2COP, 33

- Topic copula composition
  composite1COP, 31
  composite2COP, 33
  composite3COP, 35
  convex2COP, 37
  convexCOP, 39
  lcomoms2.ABcop2parameter, 172
  lcomoms2.ABKGcop2parameter, 175
  simcomposite3COP, 226
  simcompositeCOP, 228

- Topic copula operator
  coCOP, 29
  COP, 41
  COPinv, 47
  COPinv2, 49
  derCOP, 55
  derCOP2, 57
  derCOPinv, 59
  derCOPinv2, 62
  duCOP, 67
  prod2COP, 202
  surCOP, 245
  surffuncCOP, 247

- Topic copula section
  sectionCOP, 221

- Topic copula utility
  gridCOP, 118

- Topic copulatic surface
  EMPIRgrid, 76
  gridCOP, 118

- Topic copula
  AMHcop, 14
  CLcop, 28
  EMPIRcop, 71
  FGMcop, 98
  FRECHETcop, 102
  gEVcop, 104
  GHcop, 105
  GLcop, 115
  HRcop, 123
  J0copB5, 135
  M, 183
  N4212cop, 193
  P, 194
*Topic **empirical copula (utility)**
  EMPIRcopdf, 75
  EMPIRgrid, 76

*Topic **empirical copula**
  EMPIRcop, 71
  EMPIRcopdf, 75
  EMPIRgrid, 76
  EMPIRgridder, 80
  EMPIRgridder2, 81
  EMPIRgridderinv, 82
  EMPIRgridderinv2, 85
  EMPIRmed.regress, 86
  EMPIRqua.regress, 87
  EMPIRqua.regress2, 93
  EMPIRs, 94
  EMPIRsim, 96

*Topic **extreme value copula**
  gEVcop, 104
  GHcop, 105
  GLcop, 115
  HRcop, 123
  tEVcop, 259

*Topic **g-EV copula**
  gEVcop, 104

*Topic **goodness-of-fit**
  aicCOP, 13
  bicCOP, 19
  copBasic.fitpara, 44
  psepol, 204
  rmseCOP, 220
  spectralmeas, 235
  statTn, 242
  vuongCOP, 264

*Topic **hypothesis testing**
  lcomCOPv, 169

*Topic **inference**
  aicCOP, 13
  bicCOP, 19
  copBasic.fitpara, 44
  kullCOP, 163
  lcomCOPv, 169
  psepol, 204
  rmseCOP, 220
  spectralmeas, 235
  statTn, 242
  vuongCOP, 264

*Topic **joint probability (exclusive or)**

PARETOcop, 195
PLACKETTcop, 196
PSP, 206
RFcop, 214
tEVcop, 259
W, 270

*Topic **datasets**
  ReineckeWells, 212

*Topic **dependence index**
  hoefCOP, 119

*Topic **derivative**
  derCOP, 55
  derCOP2, 57
  derCOPinv, 59
  derCOPinv2, 62
  EMPIRgridder, 80
  EMPIRgridder2, 81
  EMPIRgridderinv, 82
  EMPIRgridderinv2, 85

*Topic **diagnostics**
  diagCOP, 64
  diagCOPatf, 65
  level.curvesCOP, 178
  level.curvesCOP2, 180
  level.setCOP, 181
  level.setCOP2, 182
  sectionCOP, 221

*Topic **empirical copula (derivative inverses)**
  EMPIRgridderinv, 82
  EMPIRgridderinv2, 85

*Topic **empirical copula (derivatives)**
  EMPIRgridder, 80
  EMPIRgridder2, 81

*Topic **empirical copula (median regression)**
  EMPIRmed.regress, 86
  EMPIRmed.regress2, 86

*Topic **empirical copula (quantile regression)**
  EMPIRmed.regress, 86
  EMPIRmed.regress2, 86
  EMPIRqua.regress, 87
  EMPIRqua.regress2, 93

*Topic **empirical copula (simulation)**
  EMPIRsim, 94
  EMPIRsimv, 96

*Topic **empirical copula (utility)**
  EMPIRcopdf, 75
  EMPIRgrid, 76

*Topic **empirical copula**
  EMPIRcop, 71
  EMPIRcopdf, 75
  EMPIRgrid, 76
  EMPIRgridder, 80
  EMPIRgridder2, 81
  EMPIRgridderinv, 82
  EMPIRgridderinv2, 85
  EMPIRmed.regress, 86
  EMPIRqua.regress, 87
  EMPIRqua.regress2, 93
  EMPIRs, 94
  EMPIRsim, 96

*Topic **extreme value copula**
  gEVcop, 104
  GHcop, 105
  GLcop, 115
  HRcop, 123
  tEVcop, 259

*Topic **g-EV copula**
  gEVcop, 104

*Topic **goodness-of-fit**
  aicCOP, 13
  bicCOP, 19
  copBasic.fitpara, 44
  psepol, 204
  rmseCOP, 220
  spectralmeas, 235
  statTn, 242
  vuongCOP, 264

*Topic **hypothesis testing**
  lcomCOPv, 169

*Topic **inference**
  aicCOP, 13
  bicCOP, 19
  copBasic.fitpara, 44
  kullCOP, 163
  lcomCOPv, 169
  psepol, 204
  rmseCOP, 220
  spectralmeas, 235
  statTn, 242
  vuongCOP, 264

*Topic **joint probability (exclusive or)**
duCOP, 67
*Topic joint probability
couCOP, 29
couCOP, 41
duCOP, 67
joint.curvescouCOP, 141
joint.curvescouCOP2, 144
jointcouCOP, 146
surCOP, 245
surfuncCOP, 247
*Topic literature errors and inconsistencies
GHcop, 105
kfuncCOP, 151
stabtaildepcop, 240
tauCOP, 256
*Topic maximum likelihood
mleCOP, 188
*Topic medial correlation coefficient
blomCOP, 26
*Topic median regression
med.regresscouCOP, 184
med.regresscouCOP2, 187
*Topic multivariate
couBasic-package, 4
*Topic package copula (comparison to)
AMHcop, 14
gEVcop, 104
GHcop, 105
med.regresscouCOP, 184
mleCOP, 188
spectralmeas, 235
taildepcop, 250
tEVcop, 259
*Topic permutation asymmetry
joeskewcop, 136
*Topic pseudo-polar representation
psepolar, 204
*Topic quantile regression
med.regresscouCOP, 184
med.regresscouCOP2, 187
qua.regresscouCOP, 207
qua.regresscouCOP.draw, 209
qua.regresscouCOP2, 211
*Topic radial asymmetry
joeskewcop, 136
*Topic return period (conditional)
couBasic-package, 4
*Topic return period (secondary)
couBasic-package, 4
kfuncCOP, 151
*Topic semi-correlation coefficient
semicorCOP, 224
*Topic shuffle (in Examples)
asCOP, 17
*Topic spectral measure
spectralmeas, 235
*Topic stable tail dependence function
stabtaildepcop, 240
*Topic t-EV copula
tEVcop, 259
*Topic tail dependence
stabtaildepcop, 240
taildepcop, 250
*Topic triangle (in Examples)
asCOP, 17
*Topic visualization
densityCOP, 50
densityCOPplot, 52
diagCOP, 64
diagCOPatf, 65
diagCOPatf, 178
level.curvesCOP, 180
level.setCOP, 181
level.setCOP2, 182
qua.regressCOP.draw, 209
sectionCOP, 221
simcompositeCOP, 226
simcompositeCOP, 228
simCOP, 229
aicCOP, 6, 7, 13, 19, 20, 190, 220, 221, 243, 245
AMHcop, 4, 14
asCOP, 17, 22, 139
bicCOP, 6, 7, 13, 14, 19, 190, 220, 221, 243, 245
bilmoms, 6, 7, 21, 139, 168–170, 262
blomCOP, 6, 7, 26, 26, 73, 101, 114, 122, 127, 129, 138, 140, 186, 219, 244, 249, 258, 272, 273
CLcop, 4, 28
couCOP, 6, 9, 29, 43, 68, 70, 144, 246, 247
compositeICOP, 9, 31, 32, 34, 35, 37, 41, 43, 45, 202, 203, 226, 228
composite2COP, 9, 31, 32, 33, 35–38, 41, 118, 143, 174, 202, 203, 226, 228
composite3COP, 9, 32, 34, 35, 41, 177, 202, 203, 226
concordCOP, 100, 112, 113
concordCOP (tauCOP), 256
convex2COP, 9, 37, 40, 41, 103, 113, 202, 203
convexCOP, 9, 37, 38, 39
copBasic-package, 4
copBasic.fitpara, 44
copBasic.fitpara.beta, 243
COPinv, 7, 41, 47, 50, 152, 178, 179
COPinv2, 7, 41, 48, 49, 180, 181
densityCOP, 6, 22, 50, 52, 54, 134, 164–166, 168, 188, 189, 192, 198, 265, 269
densityCOPplot, 6, 50, 51, 52, 266, 268
derCOP, 7, 55, 57, 58, 62, 80, 107, 152, 158, 202, 222, 232, 256–258
derCOP2, 7, 55, 56, 57, 63, 82, 107, 158, 202, 222, 232, 256–258
derCOPinv, 7, 56, 59, 82, 158, 184, 207, 208, 230–232
derCOPinv2, 7, 58, 62, 85, 158, 187, 188, 211, 212, 232
diagCOP, 6, 64, 66, 73, 112, 223, 249
diagCOPatf, 6, 65, 65, 144, 146, 148, 151
diagCOPinv (diagCOPatf), 65
duCOP, 6, 9, 10, 29, 30, 43, 66, 67, 142, 144, 146–148, 151, 247
EMPIRcop, 6, 13, 14, 19, 20, 71, 75–77, 80, 82, 83, 85, 121, 128, 153, 220, 221, 234, 268
EMPIRcopdf, 75, 77, 80, 82, 83, 85, 118
EMPIRgrid, 6, 76, 80, 82, 83, 85, 94, 95, 97
EMPIRgridder, 80, 82
EMPIRgridder2, 80, 81, 83, 85
EMPIRgridderinv, 82, 85–88, 93–95, 97
EMPIRgridderinv2, 8, 85, 85, 87, 94
EMPIRmed.regress, 86, 87, 88, 94
EMPIRmed.regress2, 86, 86, 87, 88, 94
EMPIRqua.regress, 86, 87, 87, 94
EMPIRqua.regress2, 87, 88, 93
EMPIRsim, 6, 94, 96, 97, 231
EMPIRsimv, 6, 94, 95, 96
FGMcop, 5, 98, 203
footCOP, 6, 7, 27, 73, 100, 114, 122, 138, 140, 219, 258, 273
FRECHETcop, 4, 38, 102
gEVcop, 5, 104
GHcop, 5, 7, 10, 11, 42, 45, 105, 117, 124, 136, 143, 147, 152, 155, 156, 233, 237, 260, 266
GLcop, 5, 110, 115, 124, 152, 244, 260
GLEVcop (GLcop), 115
GLPMcop (GLcop), 115
gridCOP, 6, 118
hoefCOP, 6, 7, 27, 45, 73, 100, 101, 114, 119, 138, 140, 217, 219, 258, 273
HRcop, 5, 45, 46, 110, 117, 123, 152, 237, 259, 260
isCOP.LTD, 8, 124, 129, 133
isCOP.perm, 8, 21, 106, 126, 131, 138, 167
isCOP.PQQ, 8, 124, 125, 127, 132, 133, 271, 272
isCOP.radsym, 8, 106, 126, 129, 138
isCOP.RTI, 8, 125, 129, 132
isfuncCOP, 51, 133
J0copBS, 5, 135
J0copBB4 (GLcop), 115
joeskewCOP, 7, 27, 73, 106, 114, 120, 122, 136, 143, 219, 258, 262, 273
joint.curvesCOP, 7, 66, 70, 141, 146, 151, 179
joint.curvesCOP2, 7, 144, 144, 181
jointCOP, 6, 9, 66, 70, 144, 146
kfuncCOP, 6, 10, 151, 159, 160, 162, 257, 258
kfuncCOPinv, 6, 151, 153, 158, 159, 159
kfuncCOPlmom, 6, 159
kfuncCOPlmom (kfuncCOPlmoms), 160
kfuncCOPlmoms, 6, 159, 160, 196
kmeasCOP, 6
kmeasCOP (kfuncCOP), 151
INDEX

kullcopint (kullcop), 163
level.curvesCOP, 7, 47, 48, 72, 73, 142, 144, 151, 178, 181, 182
level.curvesCOP2, 7, 49, 50, 145, 146, 179, 180, 182, 183
level.setCOP, 7, 179, 181, 183
level.setCOP2, 7, 181, 182, 182
LPCOP, 6
LPCOP (hoefCOP), 119
LPCOPperm (hoefCOP), 119
LPCOPrad (hoefCOP), 119
med.regressCOP, 7, 11, 26, 184, 188, 207, 208
med.regressCOP2, 7, 187, 187, 211, 212
mleCOP, 6, 11, 99, 188, 237, 269
N4212cop, 5, 154, 155, 193, 206, 207, 241
nuskewCOP, 6, 7, 45, 109
nuskewCOP (joeskewCOP), 136
nustarcOP, 6, 7, 45
nustarcOP (joeskewCOP), 136
PAcop (PARETOcop), 195
PARETOcop, 195
PLACKETTCop, 130, 154, 155, 196, 200, 201, 244, 254, 266
PLACKETTpar, 197, 198, 198, 201
PLACKETTsim, 198, 200, 201
PLcop, 5, 136, 272
PLcop (PLACKETTCop), 196
PLpar (PLACKETTpar), 198
prod2COP, 9, 41, 202
psepolar, 8, 204, 235, 236, 239, 242
PSP, 5, 9, 68, 130, 193, 206, 266
qua.regressCOP, 7, 184, 187, 207, 210
qua.regressCOP.draw, 184, 187, 188, 208, 209
qua.regressCOP2, 7, 187, 188, 210, 211
rCOP, 6
Rcop (simCOP), 229
ReineckeWell266, 212
ReineckeWells, 213
RFcop, 5, 214
rhobevCOP, 106, 110, 215
rmseCOP, 6, 7, 13, 14, 19, 20, 220, 243, 245
sectionCOP, 7, 8, 65, 221
semicorCOP, 6, 7, 224
simcomposite2COP (simcompositeCOP), 228
simcomposite3COP, 37, 229
simcompositeCOP, 172, 174, 175, 177, 227, 228
simCOP, 6, 7, 9, 37, 45, 46, 51, 53, 54, 73, 94, 96, 122, 143, 174, 177, 201, 229, 232, 234, 266–269
simCOPmicro, 6, 7, 41, 42, 96, 201, 231, 232, 246, 247
simCOPv (simCOPmicro), 232
spectralmeas, 8, 206, 235, 240, 242
statabtaildepf, 8, 206, 239, 240
statTn, 6, 7, 13, 19, 220, 242, 269
surCOP, 5, 9, 30, 42, 43, 68, 70, 119, 129, 202, 232, 245, 247, 248, 254
surfCOP, 5, 9, 43, 247, 247, 254
tailCOP, 8, 249, 253, 256
taildepCOP, 7, 8, 102, 106, 152, 155, 193, 197, 233, 250, 250, 256, 267, 268
tailordCOP, 8, 250, 253, 254
tEVcop, 5, 105, 110, 117, 124, 259
INDEX

uvlmoms, 7, 25, 27, 73, 114, 120, 122, 137, 169, 219, 258, 262, 273
uvskew, 7, 8, 140
uvskew (uvlmoms), 262
vuongCop, 8, 166, 171, 191, 230, 245, 252, 264
W, 4, 28, 29, 102, 103, 112, 119, 136, 137, 151, 154, 179, 180, 183, 184, 194, 196, 198, 202, 249, 255, 270
wolfCop, 6, 7, 27, 73, 101, 114, 122, 127, 138, 140, 219, 258, 271