Package ‘copula’

February 6, 2020

Version 0.999-20

VersionNote Last CRAN: 0.999-19 on 2018-12-19

Date 2020-02-03

Title Multivariate Dependence with Copulas

Depends R (>= 3.2.0)

Imports stats, graphics, methods, stats4, Matrix, lattice, colorspace, gsl, ADGofTest, stabledist (>= 0.6-4), mvtnorm, pcaPP, pspline, numDeriv

Suggests MASS, KernSmooth, sfsmisc, scatterplot3d, Rmpfr, bbmle, knitr, abind, crop, gridExtra, lccopula, mev, mvnormtest, parallel, partitions, polynom, qrng, randtoolbox, rugarch, Runuran, tseries, VGAM, VineCopula, zoo

SuggestsNote packages {abind, ..., zoo} (last lines above) are only used in vignettes, demos and a few tests.

VignetteBuilder knitr

Enhances nor1mix, copulaData

Description Classes (S4) of commonly used elliptical, Archimedean, extreme-value and other copula families, as well as their rotations, mixtures and asymmetrizations. Nested Archimedean copulas, related tools and special functions. Methods for density, distribution, random number generation, bivariate dependence measures, Rosenblatt transform, Kendall distribution function, perspective and contour plots. Fitting of copula models with potentially partly fixed parameters, including standard errors. Serial independence tests, copula specification tests (independence, exchangeability, radial symmetry, extreme-value dependence, goodness-of-fit) and model selection based on cross-validation. Empirical copula, smoothed versions, and non-parametric estimators of the Pickands dependence function.

License GPL (>= 3) | file LICENCE

ByteCompile yes

R topics documented:

- contour-methods .. 37
- contourplot2-methods 38
- copFamilies ... 40
- Copula .. 43
- copula-class .. 45
- corKendall .. 47
- dDiag .. 48
- describeCop .. 49
- dnacopula .. 50
- ellipCopula .. 51
- ellipCopula-class 53
- emde .. 54
- emle .. 56
- empCopula .. 59
- empCopula-class ... 63
- enacopula ... 63
- estim.misc ... 65
- evCopula .. 68
- evCopula-class ... 70
- evTestA ... 71
- evTestC ... 72
- evTestK ... 74
- exchEVTest ... 75
- exchTest .. 77
- fgmCopula .. 78
- fgmCopula-class ... 79
- fhCopula ... 81
- fhCopula-class ... 82
- fitCopula ... 82
- fitCopula-class .. 88
- fitLambda ... 89
- fitMvdc ... 90
- fixParam .. 93
- gasoil ... 94
- generator ... 95
- getAcop ... 97
- getTheta .. 98
- ggraph-tools ... 99
- gnacopula .. 101
- gofCopula .. 103
- gofEVCopula .. 107
- gofOtherTstat ... 109
- gofTstat .. 110
- htrafo .. 112
- indepCopula ... 114
- indepCopula-class 115
- indepTest .. 116
- initOpt ... 118
120
121
122
127
130
131
132
133
134
135
137
139
140
141
142
144
146
148
149
150
151
152
153
155
156
157
161
163
164
165
166
167
168
171
172
173
174
176
177
178
180
181
182
184
185
186
188
190
Description

The copula package provides (S4) classes of commonly used elliptical, (nested) Archimedean, extreme value and other copula families; methods for density, distribution, random number generation, and plots.

Fitting copula models and goodness-of-fit tests. Independence and serial (univariate and multivariate) independence tests, and other copula related tests.

Details

The DESCRIPTION file:

Package: copula
Version: 0.999-20
VersionNote: Last CRAN: 0.999-19 on 2018-12-19
Date: 2020-02-03
Title: Multivariate Dependence with Copulas
Authors@R: c(person("Marius", "Hofert", role = "aut", email = "marius.hofert@uwaterloo.ca", comment = c(ORCID = "0000-0001-9634-4796"))
Depends: R (>= 3.2.0)
Imports: stats, graphics, methods, stats4, Matrix, lattice, colorspace, gsl, ADGofTest, stabledist (>= 0.6-4), mvtnorm, pcaPP, pspline, numDeriv
Suggests: MASS, KernSmooth, sfsmisc, scatterplot3d, Rmpfr, bbmle, knitr, abind, crop, gridExtra, lcopula, mev, mvnormaltest, parallel, partitions, polynom, qrng, randtoolbox, rugarch, Runuran, tseries, VGAM, VineCopula, zoo
SuggestsNote: packages abind, ..., zoo (last lines above) are only used in vignettes, demos and a few tests.
VignetteBuilder: knitr
Enhances: nor1mix, copulaData
Description: Classes (S4) of commonly used elliptical, Archimedean, extreme-value and other copula families, as well as methods for density, distribution, random number generation, and plots. Empirical copula, smoothed versions, and non-parametric estimators of the Pickands dependence function.
License: GPL (>= 3) | file LICENCE
ByteCompile: yes
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copula-package</code></td>
<td>Multivariate Dependence Modeling with Copulas</td>
</tr>
<tr>
<td><code>corKendall</code></td>
<td>(Fast) Computation of Pairwise Kendall's Taus</td>
</tr>
<tr>
<td><code>dDiag</code></td>
<td>Density of the Diagonal of (Nested) Archimedean Copulas</td>
</tr>
<tr>
<td><code>describeCop</code></td>
<td>Copula (Short) Description as String</td>
</tr>
<tr>
<td><code>dnacopula</code></td>
<td>Density Evaluation for (Nested) Archimedean Copulas</td>
</tr>
<tr>
<td><code>ebeta</code></td>
<td>Various Estimators for (Nested) Archimedean Copulas</td>
</tr>
<tr>
<td><code>ellipCopula</code></td>
<td>Construction of Elliptical Copula Class Objects</td>
</tr>
<tr>
<td><code>ellipCopula-class</code></td>
<td>Class "ellipCopula" of Elliptical Copulas</td>
</tr>
<tr>
<td><code>emde</code></td>
<td>Minimum Distance Estimators for (Nested) Archimedean Copulas</td>
</tr>
<tr>
<td><code>emle</code></td>
<td>Maximum Likelihood Estimators for (Nested) Archimedean Copulas</td>
</tr>
<tr>
<td><code>empCopula</code></td>
<td>The Empirical Copula</td>
</tr>
<tr>
<td><code>empCopula-class</code></td>
<td>Class "empCopula" of Empirical Copulas</td>
</tr>
<tr>
<td><code>enacopula</code></td>
<td>Estimation Procedures for (Nested) Archimedean Copulas</td>
</tr>
<tr>
<td><code>evCopula</code></td>
<td>Construction of Extreme-Value Copula Objects</td>
</tr>
<tr>
<td><code>evCopula-class</code></td>
<td>Classes Representing Extreme-Value Copulas</td>
</tr>
<tr>
<td><code>evTestA</code></td>
<td>Bivariate Test of Extreme-Value Dependence Based on Pickands' Dependence Function</td>
</tr>
<tr>
<td><code>evTestC</code></td>
<td>Large-sample Test of Multivariate Extreme-Value Dependence</td>
</tr>
<tr>
<td><code>evTestK</code></td>
<td>Bivariate Test of Extreme-Value Dependence Based on Kendall's Distribution</td>
</tr>
<tr>
<td><code>exchEVTest</code></td>
<td>Test of Exchangeability for Certain Bivariate Copulas</td>
</tr>
<tr>
<td><code>exchTest</code></td>
<td>Test of Exchangeability for a Bivariate Copula</td>
</tr>
<tr>
<td><code>fgmCopula</code></td>
<td>Construction of a fgmCopula Class Object</td>
</tr>
<tr>
<td><code>fgmCopula-class</code></td>
<td>Class "fgmCopula" - Multivariate Multiparameter Farlie-Gumbel-Morgenstern Copulas</td>
</tr>
<tr>
<td><code>fhCopula</code></td>
<td>Construction of Fréchet-Hoeffding Bound Copula Objects</td>
</tr>
<tr>
<td><code>fhCopula-class</code></td>
<td>Class "fhCopula" of Fréchet-Hoeffding Bound Copulas</td>
</tr>
<tr>
<td><code>fitCopula</code></td>
<td>Fitting Copulas to Data - Copula Parameter Estimation</td>
</tr>
<tr>
<td><code>fitCopula-class</code></td>
<td>Classes of Fitted Multivariate Models: Copula, Mvdc</td>
</tr>
<tr>
<td><code>fitLambda</code></td>
<td>Non-parametric Estimators of the Matrix of Tail-Dependence Coefficients</td>
</tr>
<tr>
<td><code>fitMvdc</code></td>
<td>Estimation of Multivariate Models Defined via Copulas</td>
</tr>
<tr>
<td><code>fixParam</code></td>
<td>Fix a Subset of a Copula Parameter Vector</td>
</tr>
<tr>
<td><code>gasoil</code></td>
<td>Daily Crude Oil and Natural Gas Prices from</td>
</tr>
</tbody>
</table>
getAcop Get "acopula" Family Object by Name
getTheta Get the Parameter(s) of a Copula
gnacopula Goodness-of-fit Testing for (Nested) Archimedean Copulas
gofBTstat Various Goodness-of-fit Test Statistics
gofCopula Goodness-of-fit Tests for Copulas
gofEVCopula Goodness-of-fit Tests for Bivariate Extreme-Value Copulas
gofTstat Goodness-of-fit Test Statistics
htrafo GOF Testing Transformation of Hering and Hofert
iPsi Generator Functions for Archimedean and Extreme-Value Copulas
indepCopula Construction of Independence Copula Objects
indepCopula-class Class "indepCopula"
indepTest Test Independence of Continuous Random Variables via Empirical Copula
initOpt Initial Interval or Value for Parameter Estimation of Archimedean Copulas
interval Construct Simple "interval" Object
interval-class Class "interval" of Simple Intervals
khoudrajiCopula Construction of copulas using Khoudraji's device
khoudrajiCopula-class Class "khoudrajiCopula" and its Subclasses
log1mexp Compute \(f(a) = \log(1 + \exp(-a)) \) Numerically Optimally
loss LOSS and ALAE Insurance Data
margCopula Marginal copula of a Copula With Specified Margins
mixCopula Create Mixture of Copulas
mixCopula-class Class "mixCopula" of Copula Mixtures
moCopula The Marshall-Olkin Copula
moCopula-class Class "moCopula" of Marshall-Olkin Copulas
multIndepTest Independence Test Among Continuous Random Vectors Based on the Empirical Copula Process
multSerialIndepTest Serial Independence Test for Multivariate Time Series via Empirical Copula
mvdc-class Class "mvdc": Multivariate Distributions from Copulas
nacFrail.time Timing for Sampling Frailties of Nested Archimedean Copulas
nacPairthetas Pairwise Thetas of Nested Archimedean Copulas
nacopula-class Class "nacopula" of Nested Archimedean Copulas
nesdepth Nesting Depth of a Nested Archimedean Copula ("nacopula")
onacopula Constructing (Outer) Nested Archimedean Copulas
opower Outer Power Transformation of Archimedean Copulas
p2P Tools to Work with Matrices
pacR Distribution of the Radial Part of an Archimedean Copula
pairs2 Scatter-Plot Matrix ('pairs') for Copula Distributions with Nice Defaults
pairsRosenblatt Plots for Graphical GOF Test via Pairwise Rosenblatt Transforms
pairwiseCcop Computations for Graphical GOF Test via Pairwise Rosenblatt Transforms
persp-methods Methods for Function 'persp' in Package 'copula'
plackettCopula Construction of a Plackett Copula
plackettCopula-class Class "plackettCopula" of Plackett Copulas
plot-methods Methods for 'plot' in Package 'copula'
pnacopula Evaluation of (Nested) Archimedean Copulas
pobs Pseudo-Observations
polylog Polylogarithm Li_s(z) and Debye Functions
polynEval Evaluate Polynomials
printNacopula Print Compact Overview of a Nested Archimedean Copula ('nacopula')
prob Computing Probabilities of Hypercubes
qqplot2 Q-Q Plot with Rugs and Pointwise Asymptotic Confidence Intervals
rAntitheticVariates Variance-Reduction Methods
rFFrank Sample Univariate Distributions Involved in Nested Frank and Joe Copulas
rFFrank Sampling Distribution F for Frank and Joe
radSymTest Test of Exchangeability for a Bivariate Copula
dj Daily Returns of Three Stocks in the Dow Jones
restable Sampling Exponentially Tilted Stable Distributions
rlog Sampling Logarithmic Distributions
rnacModel Random nacopula Model
rnacopula Sampling Nested Archimedean Copulas
rnchild Sampling Child 'nacopula's
rotCopula Construction and Class of Rotated aka Reflected Copulas
rstable1 Random numbers from (Skew) Stable Distributions
safeUroot One-dimensional Root (Zero) Finding - Extra "Safety" for Convenience
serialIndepTest Serial Independence Test for Continuous Time Series Via Empirical Copula
setTheta Specify the Parameter(s) of a Copula
show-methods Methods for 'show()' in Package 'copula'
splom2-methods Methods for Scatter Plot Matrix 'splom2' in Package 'copula'
tau Dependence Measures for Bivariate Copulas
tauAMH Ali-Mikhail-Haq ('AMH')'s and Joe's Kendall's
The **copula** package provides

- Classes (S4) of commonly used copulas including elliptical (normal and t; *ellipCopula*), Archimedean (Clayton, Gumbel, Frank, Joe, and Ali-Mikhail-Haq; *archmCopula* and *acopula*), extreme value (Gumbel, Husler-Reiss, Galambos, Tawn, and t-EV; *evCopula*), and other families (Plackett and Farlie-Gumbel-Morgenstern).
- Methods for density, distribution, random number generation (*dCopula*, *pCopula* and *rCopula*); bivariate dependence measures (*rho*, *tau*, etc), perspective and contour plots.
- Functions (and methods) for fitting copula models including variance estimates (*fitCopula*).
- Independence tests among random variables and vectors.
- Serial independence tests for univariate and multivariate continuous time series.
- Goodness-of-fit tests for copulas based on multipliers, and the parametric bootstrap, with several transformation options.
- Bivariate and multivariate tests of extreme-value dependence.
- Bivariate tests of exchangeability.

Now with former package **nacopula** for working with nested Archimedean copulas. Specifically,

- it provides procedures for computing function values and cube volumes (*prob*),
• characteristics such as Kendall’s tau and tail dependence coefficients (via family objects, e.g.,
copGumbel),
• efficient sampling algorithms (rnacopula),
• various estimators and goodness-of-fit tests.
• The package also contains related univariate distributions and special functions such as the
Sibuya distribution (Sibuya), the polylogarithm (polylog), Stirling and Eulerian numbers
(Eulerian).

Further information is available in the following vignettes:

nacopula-pkg Nested Archimedean Copulas Meet R (.doc/nacopula-pkg.pdf)
Frank-Rmpfr Numerically Stable Frank via Multiprecision in R (.doc/Frank-Rmpfr)

For a list of exported functions, use help(package = "copula").

References

Kojadinovic, I. and Yan, J. (2010). Modeling Multivariate Distributions with Continuous Margins
org/v34/i09/.

See Also

The following CRAN packages currently use (‘depend on’) copula: CoClust, copulaedas, Depela,
HAC, ipptoolbox, vines.

Examples

Some of the more important functions (and their examples) are

eexample(fitCopula) ## fitting Copulas
example(fitMvdc) ## fitting multivariate distributions via Copulas
example(nacopula) ## nested Archimedean Copulas

eexample(inertiaTest) ## Testing for Independence
example(serialIndepTest) ## Testing for Serial Independence
Description

.pairsCond() is an internal function for plotting the pairwise Rosenblatt transforms, i.e., the pairwise conditional distributions, as returned by pairwiseCcop(), via the principal function pairsRosenblatt().

The intention is that pairsRosenblatt() be called, rather than this auxiliary function.

Usage

.pairsCond(gcu.u, panel = points, colList, col = par("col"), bg = par("bg"), labels, ..., text.panel = textPanel, label.pos = 0.5, cex.labels = NULL, font.labels = 1, gap = 0, axes = TRUE, panel.border = TRUE, key = TRUE, keyOpt = list(space = 2.5, width = 1.5, axis = TRUE, rug.at = numeric(), title = NULL, line = 5), main = NULL, main.centered = FALSE, line.main = if(is.list(main)) 5/4*par("cex.main")* rev(seq_along(main)) else 2, sub = NULL, sub.centered = FALSE, line.sub = 4)

Arguments

- **gcu.u** (n,d,d)-array of pairwise Rosenblatt-transformed u's as returned by pairwiseCcop().
- **panel** panel function, as for pairs().
- **colList** list of colors and information as returned by pairsColList().
- **col** instead of colList, specifying the points' color.
- **bg** instead of colList, specifying the constant background color.
- **labels** pairs() argument; can be missing (in which case a suitable default is chosen or can be "none" [or something else])
- **...** further arguments, as for pairs. These are passed to panel(), and axis, may also contain font.main, cex.main, and adj, for title adjustments; further, oma for modifying the default par("oma").
- **text.panel**, **label.pos**, **cex.labels**, **font.labels**, **gap** see pairs().
- **axes** logical indicating whether axes are drawn.
- **panel.border** logical indicating whether a border is drawn around the pairs (to mimic the behavior of image()).
- **key** logical indicating whether a color key is drawn.
- **keyOpt** a list of options for the color key:
 - **space**: white space in height of characters in inch to specify the distance of the key to the pairs plot.
absdPsiMC

width: key width in height of characters in inch.
axis: logical indicating whether an axis for the color key is drawn.
rug.at: values where rugs are plotted at the key.
title: key title.
line: key placement (horizontal distance from color key in lines).

main title
main.centered logical indicating if the title should be centered or not; the default FALSE centers it according to the pairs plot, not the whole plotting region.
line.main title placement (vertical distance from pairs plot in lines).
sub sub-title
sub.centered logical indicating if the sub-title should be centered or not; see main.centered.
line.sub sub-title placement, see line.main.

Note

based on pairs.default() and filled.contour() from R-2.14.1 - used in Hofert and Maechler (2013)

Author(s)

Marius Hofert and Martin Maechler

See Also

pairsRosenblatt(), the principal function, calling .pairsCond().

Description

Computes the absolute values of the dth generator derivative $\psi^{(d)}$ via Monte Carlo simulation.

Usage

```r
absdPsiMC(t, family, theta, degree = 1, n.MC,
    method = c("log", "direct", "pois.direct", "pois"),
    log = FALSE, is.log.t = FALSE)
```
Arguments

\textbf{t} \hspace{1cm} \textbf{numeric} vector of evaluation points.

\textbf{family} \hspace{1cm} Archimedean family (name or object).

\textbf{theta} \hspace{1cm} parameter value.

\textbf{degree} \hspace{1cm} order \(d\) of the derivative.

\textbf{n.MC} \hspace{1cm} Monte Carlo sample size.

\textbf{method} \hspace{1cm} different methods:

- "log": evaluates the logarithm of the sum involved in the Monte Carlo approximation in a numerically stable way;
- "direct": directly evaluates the sum;
- "pois.direct": interprets the sum in terms of the density of a Poisson distribution and evaluates this density directly;
- "pois": as for method="pois" but evaluates the logarithm of the Poisson density in a numerically stable way.

\textbf{log} \hspace{1cm} if TRUE the logarithm of absdPsi is returned.

\textbf{is.log.t} \hspace{1cm} if TRUE the argument \(t\) contains the logarithm of the “mathematical” \(t\), i.e., conceptually, \(\psi(t,*) = \psi(\log(t),*,\text{is.log.t}=\text{TRUE})\), where the latter may potentially be numerically accurate, e.g., for \(t = 10^{500}\), where as the former would just return \(\psi(\text{Inf},*) = 0\).

Details

The absolute value of the \(d\)th derivative of the Laplace-Stieltjes transform \(\psi = \mathcal{L}S[F]\) can be approximated via

\[
(-1)^d \psi^{(d)}(t) = \int_0^\infty x^d \exp(-tx) \, dF(x) \approx \frac{1}{N} \sum_{k=1}^{N} V_k^d \exp(-V_k t), \quad t > 0,
\]

where \(V_k \sim F, \ k \in \{1, \ldots, N\}\). This approximation is used where \(d = \text{degree}\) and \(N = \text{n.MC}\). Note that this is comparably fast even if \(t\) contains many evaluation points, since the random variates \(V_k \sim F, \ k \in \{1, \ldots, N\}\) only have to be generated once, not depending on \(t\).

Value

\textbf{numeric} vector of the same length as \(t\) containing the absolute values of the generator derivatives.

References

See Also

\textit{acopula-families}.
Examples

t <- c(0:100, Inf)
set.seed(1)
(ps <- absdPsiMC(t, family="Gumbel", theta=2, degree=10, n.MC=10000, log=TRUE))
Note: The absolute value of the derivative at 0 should be Inf for
Gumbel, however, it is always finite for the Monte Carlo approximation
set.seed(1)
ps2 <- absdPsiMC(log(t), family="Gumbel", theta=2, degree=10,
 n.MC=10000, log=TRUE, is.log.t = TRUE)
stopifnot(all.equal(ps[-1], ps2[-1], tolerance=1e-14))
Now is there an advantage of using "is.log.t" ?
sapply(eval(formals(absdPsiMC)$method), function(MM)
 absdPsiMC(780, family="Gumbel", method = MM,
 theta=2, degree=10, n.MC=10000, log=TRUE, is.log.t = TRUE))
not really better, yet...

acopula-class

Class "acopula" of Archimedean Copula Families

Description

This class "acopula" of Archimedean Copula Families is mainly used for providing objects of
known Archimedean families with all related functions.

Objects from the Class

Objects can be created by calls of the form new("acopula", ...). For several well-known Archi-
medean copula families, the package copula already provides such family objects.

Slots

name: A string (class "character") describing the copula family, for example, "AMH" (or simply
"A"), "Clayton" ("C"), "Frank" ("F"), "Gumbel" ("G"), or "Joe" ("J").
theta: Parameter value, a numeric, where NA means "unspecified".
psi, iPsi: The (Archimedean) generator \(\psi \) (with \(\psi(t) = \exp(-t) \) being the generator of the indepen-
dence copula) and its inverse (function). iPsi has an optional argument log which, if TRUE
returns the logarithm of inverse of the generator.

absdPsi: A function which computes the absolute value of the derivative of the generator \(\psi \)
for the given parameter theta and of the given degree (defaults to 1). Note that there is
no informational loss by computing the absolute value since the derivatives alternate in sign
(the generator derivative is simply \((-1)^{\text{degree}} \times \text{absdPsi} \)). The number n.MC denotes the
sample size for a Monte Carlo evaluation approach. If n.MC is zero (the default), the generator
derivatives are evaluated with their exact formulas. The optional parameter log (defaults to
FALSE) indicates whether or not the logarithmic value is returned.

absdIPsi: a function computing the absolute value of the derivative of the generator inverse
(iPsI()) for the given parameter theta. The optional parameter log (defaults to FALSE) indi-
cates whether the logarithm of the absolute value of the first derivative of iPsi() is returned.
dDiag: a function computing the density of the diagonal of the Archimedean copula at \(u \) with parameter \(\theta \). The parameter \(\log \) is as described before.

dacopula: a function computing the density of the Archimedean copula at \(u \) with parameter \(\theta \). The meanings of the parameters \(n.MC \) and \(\log \) are as described before.

score: a function computing the derivative of the density with respect to the parameter \(\theta \).

uscore: a function computing the derivative of the density with respect to the each of the arguments.

paraInterval: Either NULL or an object of class "interval", which is typically obtained from a call such as \texttt{interval("[a,b]")}.

paraConstr: A function of \(\theta \) returning \(\text{TRUE} \) if and only if \(\theta \) is a valid parameter value. Note that \texttt{paraConstr} is built automatically from the interval, whenever the \texttt{paraInterval} slot is valid. "interval".

nestConstr: A function, which returns \(\text{TRUE} \) if and only if the two provided parameters \(\theta_0 \) and \(\theta_1 \) satisfy the sufficient nesting condition for this family.

\(V_0 \): A function which samples \(n \) random variates from the distribution \(F \) with Laplace-Stieltjes transform \(\psi \) and parameter \(\theta \).

d\(V_0 \): A function which computes either the probability mass function or the probability density function (depending on the Archimedean family) of the distribution function whose Laplace-Stieltjes transform equals the generator \(\psi \) at the argument \(x \) (possibly a vector) for the given parameter \(\theta \). An optional argument \(\log \) indicates whether the logarithm of the mass or density is computed (defaults to \(\text{FALSE} \)).

\(V_{01} \): A function which gets a vector of realizations of \(V_0 \), two parameters \(\theta_0 \) and \(\theta_1 \) which satisfy the sufficient nesting condition, and which returns a vector of the same length as \(V_0 \) with random variates from the distribution function \(F_{01} \) with Laplace-Stieltjes transform \(\psi_{01} \) (see \texttt{dV01}) and parameters \(\theta_0 = \theta_0, \theta_1 = \theta_1 \).

d\(V_{01} \): Similar to \texttt{dV0} with the difference being that this function computes the probability mass or density function for the Laplace-Stieltjes transform

\[
\psi_{01}(t; V_0) = \exp(-V_0 \psi^{-1}_0(\psi_1(t))),
\]

corresponding to the distribution function \(F_{01} \).

Arguments are the evaluation point(s) \(x \), the value(s) \(V_0 \), and the parameters \(\theta_0 \) and \(\theta_1 \). As for \texttt{dV0}, the optional argument \(\log \) can be specified (defaults to \(\text{FALSE} \)). Note that if \(x \) is a vector, \(V_0 \) must either have length one (in which case \(V_0 \) is the same for every component of \(x \)) or \(V_0 \) must be of the same length as \(x \) (in which case the components of \(V_0 \) correspond to the ones of \(x \)).

tau, iTau: Compute Kendall’s tau of the bivariate Archimedean copula with generator \(\psi \) as a function of \(\theta \), respectively, \(\theta \) as a function of Kendall’s tau.

\(\lambda_L, \lambda_U, \lambda_L^{-1}, \lambda_U^{-1} \): Compute the lower (upper) tail-dependence coefficient of the bivariate Archimedean copula with generator \(\psi \) as a function of \(\theta \), respectively, \(\theta \) as a function of the lower (upper) tail-dependence coefficient.

For more details about Archimedean families, corresponding distributions and properties, see the references.
Methods

- **initialize** signature(.Object = "acopula"): is used to automatically construct the function slot `paraConstr`, when the `paraInterval` is provided (typically via `interval()`).
- **show** signature("acopula"): compact overview of the copula.

References

See those of the families, for example, `copGumbel`.

See Also

Specific provided copula family objects, for example, `copAMH`, `copClayton`, `copFrank`, `copGumbel`, `copJoe`.
To access these, you may also use `getAcop`.

A nested Archimedean copula without child copulas (see class "nacopula") is a proper Archimedean copula, and hence, `onacopula()` can be used to construct a specific parametrized Archimedean copula; see the example below.

Alternatively, `setTheta` also returns such a (parametrized) Archimedean copula.

Examples

```r
## acopula class information
showClass("acopula")

## Information and structure of Clayton copulas
copClayton
str(copClayton)

## What are admissible parameters for Clayton copulas?
copClayton@paraInterval

## A Clayton "acopula" with Kendall's tau = 0.8 :
(cCl.2 <- setTheta(copClayton, iTau(copClayton, 0.8)))

## Can two Clayton copulas with parameters theta0 and theta1 be nested?
## Case 1: theta0 = 3, theta1 = 2
copClayton@nestConstr(theta0 = 3, theta1 = 2)
## -> FALSE as the sufficient nesting criterion is not fulfilled
## Case 2: theta0 = 2, theta1 = 3
copClayton@nestConstr(theta0 = 2, theta1 = 3) # TRUE

## For more examples, see help("acopula-families")
```
acR

Distribution of the Radial Part of an Archimedean Copula

Description

pacR() computes the distribution function F_R of the radial part of an Archimedean copula, given by

$$F_R(x) = 1 - \sum_{k=0}^{d-1} \left(-x \right)^k \frac{\psi^{(k)}(x)}{k!}, \quad x \in [0, \infty);$$

The formula (in a slightly more general form) is given by McNeil and G. Nešlehová (2009).

qacR() computes the quantile function of F_R.

Usage

pacR(x, family, theta, d, lower.tail = TRUE, log.p = FALSE, ...)
qacR(p, family, theta, d, log.p = FALSE, interval,
 tol = .Machine$double.eps^0.25, maxiter = 1000, ...)

Arguments

x numeric vector of nonnegative evaluation points for F_R.
p numeric vector of evaluation points of the quantile function.
family Archimedean family.
theta parameter θ.
d dimension d.
lower.tail logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
log.p logical; if TRUE, probabilities p are given as log p.
interval root-search interval.
tol see unifroot().
maxiter see unifroot().
... additional arguments passed to the procedure for computing derivatives.

Value

The distribution function of the radial part evaluated at x, or its inverse, the quantile at p.

References

Examples
setup
family <- "Gumbel"
tau <- 0.5
m <- 256
dmax <- 20
x <- seq(0, 20, length.out=m)

compute and plot pacR() for various d's
y <- vapply(1:dmax, function(d) pacR(x, family=family, theta=iTau(archmCopula(family), tau), d=d), rep(NA_real_, m))
plot(x, y[,1], type="l", ylim=c(0,1), xlab = quote(italic(x)), ylab = quote(F[R](x)),
 main = substitute(italic(F[R](x))~~ "for" ~ d==1:.D, list(.D = dmax))
for(k in 2:dmax) lines(x, y[,k])

allComp

All Components of a (Inner or Outer) Nested Archimedean Copula

Description
Given the nested Archimedean copula x, return an integer vector of the indices of all components of the corresponding outer_nacopula which are components of x, either direct components or components of possible child copulas. This is typically only used by programmers investigating the exact nesting structure.

For an outer_nacopula object x, allComp(x) must be the same as 1:dim(x), whereas its “inner” component copulas will each contain a subset of those indices only.

Usage
allComp(x)

Arguments
x an R object inheriting from class nacopula.

Value
An integer vector of indices j of all components u_j as described in the description above.

Examples
C3 <- onacopula("AMH", C(0.7135, 1, C(0.943, 2:3)))
allComp(C3) # components are 1:3
allComp(C3@childCops[[1]]) # for the child, only (2, 3)
Description

Bivariate and multivariate versions of the nonparametric rank-based estimators of the Pickands dependence function A, studied in Genest and Segers (2009) and Gudendorf and Segers (2011).

Usage

\begin{verbatim}
An.biv(x, w, estimator = c("CFG", "Pickands"), corrected = TRUE,
ties.method = eval(formals(rank)$ties.method))
An(x, w, ties.method = eval(formals(rank)$ties.method))
\end{verbatim}

Arguments

- **x**: a data matrix that will be transformed to pseudo-observations. If `An.biv` is called, `x` has to have two columns.
- **w**: if `An.biv` is called, a vector of points in $[0,1]$ where to evaluate the estimated bivariate Pickands dependence function. If the multivariate estimator `An` is used instead, `w` needs to be a matrix with the same number of columns as `x` whose lines are elements of the multivariate unit simplex (see the last reference).
- **estimator**: specifies which nonparametric rank-based estimator of the unknown Pickands dependence function to use in the bivariate case; can be either "CFG" (Capéraà-Fougères-Genest) or "Pickands".
- **corrected**: TRUE means that the bivariate estimators will be corrected to ensure that their value at 0 and 1 is 1.
- **ties.method**: character string specifying how ranks should be computed if there are ties in any of the coordinate samples of `x`; passed to `pobs`.

Details

More details can be found in the references.

Value

`An.biv()` returns a vector containing the values of the estimated Pickands dependence function at the points in `w` (and is the same as former `Anfun()`).

The function `An` computes simultaneously the three corrected multivariate estimators studied in Gudendorf and Segers (2011) at the points in `w` and returns a list whose components are

- **P**: values of the Pickands estimator at the points in `w`.
- **CFG**: values of the CFG estimator at the points in `w`.
- **HT**: values of the Hall-Tajvidi estimator at the points in `w`.
An

References

See Also

evCopula, A, and evTestA. Further, evTestC, evTestK, exchEVTest, and gofEVCopula.

Examples

```r
## True Pickands dependence functions
curve(A(gumbelCopula(4), x), 0, 1)
curve(A(gumbelCopula(2), x), add=TRUE, col=2)
curve(A(gumbelCopula(1.33), x), add=TRUE, col=3)

## CFG estimator
curve(An.biv(rCopula(1000, gumbelCopula(4)), x), lty=2, add=TRUE)
curve(An.biv(rCopula(1000, gumbelCopula(2)), x), lty=2, add=TRUE, col=2)
curve(An.biv(rCopula(1000, gumbelCopula(1.33)), x), lty=2, add=TRUE, col=3)

## Pickands estimator
curve(An.biv(rCopula(1000, gumbelCopula(4)), x, estimator="Pickands"),
      lty=3, add=TRUE)
curve(An.biv(rCopula(1000, gumbelCopula(2)), x, estimator="Pickands"),
      lty=3, add=TRUE, col=2)
curve(An.biv(rCopula(1000, gumbelCopula(1.33)), x, estimator="Pickands"),
      lty=3, add=TRUE, col=3)

legend("bottomleft", paste0("Gumbel(", format(c(4, 2, 1.33)),")"),
        lwd=1, col=1:3, bty="n")
legend("bottomright", c("true", "CFG est.", "Pickands est."), lty=1:3, bty="n")

## Relationship between An.biv and An
u <- c(runif(100), 0, 1)  # include 0 and 1
x <- rCopula(1000, gumbelCopula(4))
r <- An(x, cbind(1-u, u))
all.equal(r$CFG, An.biv(x, u))
all.equal(r$P, An.biv(x, u, estimator="Pickands"))

## A trivariate example
x <- rCopula(1000, gumbelCopula(4, dim = 3))
u <- matrix(runif(300), 100, 3)
w <- u / apply(u, 1, sum)
r <- An(x, w)

## Endpoint corrections are applied
An(x, cbind(1, 0, 0))
An(x, cbind(0, 1, 0))
An(x, cbind(0, 0, 1))
```
archmCopula Construction of Archimedean Copula Class Object

Description

Constructs an Archimedean copula class object with its corresponding parameter and dimension.

Usage

archmCopula(family, param = NA_real_, dim = 2, ...)

claytonCopula(param = NA_real_, dim = 2,
 use.indepC = c("message", "TRUE", "FALSE"))
frankCopula(param = NA_real_, dim = 2,
 use.indepC = c("message", "TRUE", "FALSE"))
gumbelCopula(param = NA_real_, dim = 2,
 use.indepC = c("message", "TRUE", "FALSE"))
amhCopula(param = NA_real_, dim = 2,
 use.indepC = c("message", "TRUE", "FALSE"))
joeCopula(param = NA_real_, dim = 2,
 use.indepC = c("message", "TRUE", "FALSE"))

Arguments

family a character string specifying the family of an Archimedean copula. Currently supported families are "clayton", "frank", "amh", "gumbel", and "joe".
param number (numeric) specifying the copula parameter.
dim the dimension of the copula.
... further arguments, passed to the individual creator functions (claytonCopula(), etc).
use.indepC a string specifying if the independence copula indepCopula, should be returned in the case where the parameter \(\theta \), param, is at the boundary or limit case where the corresponding Archimedean copula is the independence copula. The default does return indepCopula() with a message, using "TRUE" does it without a message. This makes the resulting object more useful typically, but does not return a formal Archimedean copula of the desired family, something needed e.g., for fitting purposes, where you’d use use.indepC="FALSE".

Details

archmCopula() is a wrapper for claytonCopula(), frankCopula(), gumbelCopula(), amhCopula() and joeCopula.

For the mathematical definitions of the respective Archimedean families, see copClayton.
For $d = 2$, i.e. $\dim = 2$, the AMH, Clayton and Frank copulas allow to model negative Kendall’s tau (τ) behavior via negative θ, for AMH and Clayton $-1 \leq \theta$, and for Frank $-\infty < \theta$. The respective boundary cases are

AMH: $\tau(\theta = -1) = -0.1817258$,

Clayton: $\tau(\theta = -1) = -1$,

Frank: $\tau(\theta = -\infty) = -1$ (as limit).

For the Ali-Mikhail-Haq copula family (“amhCopula”), only the bivariate case is available; however `copAMH` has no such limitation.

Note that in all cases except for Frank and AMH, and $d = 2$ and $\theta < 0$, the densities (dCopula() methods) are evaluated via the dacopula slot of the corresponding acopula-classed Archimedean copulas, implemented in a numeric stable way without any restriction on the dimension d.

Similarly, the (cumulative) distribution function (“the copula”” $C()$) is evaluated via the corresponding acopula-classed Archimedean copula’s functions in the psi and iPsi slots.

Value

An Archimedean copula object of class "claytonCopula", "frankCopula", "gumbelCopula", "amhCopula", or "joeCopula".

References

See Also

acopula-classed Archimedean copulas, such as `copClayton`, `copGumbel`, etc, notably for mathematical definitions including the meaning of param.

`fitCopula` for fitting such copulas to data.

`ellipCopula`, `evCopula`.

Examples

```r
clayton.cop <- claytonCopula(2, dim = 3)
## scatterplot3d(rCopula(1000, clayton.cop))
## negative param (= theta) is allowed for dim = 2 :
tau(claytonCopula(-0.5)) ## = -1/3
tauClayton <- Vectorize(function(theta) tau(claytonCopula(theta, dim=2)))
plot(tauClayton, -1, 10, xlab=quote(theta), ylim = c(-1,1), n=1025)
abline(h=-1:1,v=0, col="#11111150", lty=2); axis(1, at=-1)

tauFrank <- Vectorize(function(theta) tau(frankCopula(theta, dim=2)))
plot(tauFrank, -40, 50, xlab=quote(theta), ylim = c(-1,1), n=1025)
abline(h=-1:1,v=0, col="#11111150", lty=2)
## tauAMH() is function in our package
iTau(amhCopula(), -1) # -1 with a range warning
```
iTau(amhCopula(), (5 - 8*log(2)) / 3) # -1 with a range warning

ic <- frankCopula(0) # independence copula (with a "message")
stopifnot(identical(ic,
 frankCopula(0, use.indepC = "TRUE")))# indep.copula without message
(FC <- frankCopula(0, use.indepC = "FALSE"))
a Frank copula which corresponds to the indep.copula (but is not)

frankCopula(dim = 3)# with NA parameters
frank.cop <- frankCopula(3)# dim=2
persp(frank.cop, dCopula)

gumbel.cop <- archmCopula("gumbel", 5)
stopifnot(identical(gumbel.cop, gumbelCopula(5)))
contour(gumbel.cop, dCopula)

amh.cop <- amhCopula(0.5)

u. <- as.matrix(expand.grid(u=(0:10)/10, v=(0:10)/10, KEEP.OUT.ATTRS=FALSE))

du <- dCopula(u., amh.cop)
stopifnot(is.finite(du) | apply(u. == 0, 1,any)| apply(u. == 1, 1,any))

A 7-dim Frank copula
frank.cop <- frankCopula(3, dim = 7)
x <- rCopula(5, frank.cop)

A 7-dim Gumbel copula
gumbe1C.7 <- gumbelCopula(2, dim = 7)
dCopula(x, gumbe1C.7)

A 12-dim Joe copula
joe.cop <- joeCopula(iTau(joeCopula(), 0.5), dim = 12)
x <- rCopula(5, joe.cop)
dCopula(x, joe.cop)

Class "archmCopula"

Description

Archimedean copula class.

Objects from the Class

Created by calls of the form new("archmCopula",...) or rather typically by archmCopula(). Implemented families are Clayton, Gumbel, Frank, Joe, and Ali-Mikhail-Haq.
Slots

exprdist: Object of class "expression": expressions of the cdf and pdf of the copula. These
expressions are used in function pCopula and dCopula.
dimension, parameters, etc: all inherited from the super class copula.

Methods

dCopula signature(copula = "claytonCopula"): ...
pCopula signature(copula = "claytonCopula"): ...
rCopula signature(copula = "claytonCopula"): ...
dCopula signature(copula = "frankCopula"): ...
pCopula signature(copula = "frankCopula"): ...
rCopula signature(copula = "frankCopula"): ...
dCopula signature(copula = "gumbelCopula"): ...
pCopula signature(copula = "gumbelCopula"): ...
rCopula signature(copula = "gumbelCopula"): ...
dCopula signature(copula = "amhCopula"): ...
pCopula signature(copula = "amhCopula"): ...
rCopula signature(copula = "amhCopula"): ...
dCopula signature(copula = "joeCopula"): ...
pCopula signature(copula = "joeCopula"): ...
rCopula signature(copula = "joeCopula"): ...

Extends

Class "archmCopula" extends class "copula" directly. Class "claytonCopula", "frankCopula",
"gumbelCopula", "amhCopula" and "joeCopula" extends class "archmCopula" directly.

Note

"gumbelCopula" is also of class "evCopula".

See Also

archmCopula, for constructing such copula objects; copula-class.
Dependence Measures for Bivariate Copulas

Description

These functions compute Kendall’s tau, Spearman’s rho, and the tail dependence index for bivariate copulas. iTau and iRho, sometimes called “calibration” functions are the inverses: they determine (“calibrate”) the copula parameter (which must be one-dimensional!) given the value of Kendall’s tau or Spearman’s rho.

Usage

\[
\begin{align*}
tau & \quad (\text{copula}, \ldots) \\
rho & \quad (\text{copula}, \ldots) \\
lambda & \quad (\text{copula}, \ldots) \\
iTau & \quad (\text{copula}, \tau, \ldots) \\
iRho & \quad (\text{copula}, \rho, \ldots)
\end{align*}
\]

Arguments

- **copula**: an R object of class "copula" (or also "acopula" or "nacopula"; note however that some methods may not be available for some copula families).
- **tau**: a numerical value of Kendall’s tau in [-1, 1].
- **rho**: a numerical value of Spearman’s rho in [-1, 1].
- ... currently nothing.

Details

The calibration functions iTau() and iRho() in fact return a moment estimate of the parameter for one-parameter copulas.

When there are no closed-form expressions for Kendall’s tau or Spearman’s rho, the calibration functions use numerical approximation techniques (see the last reference). For closed-form expressions, see Frees and Valdez (1998). For the t copula, the calibration function based on Spearman’s rho uses the corresponding expression for the normal copula as an approximation.

References

See Also

The acopula class objects have slots, tau, lambdaL, and lambdaU providing functions for tau(), and the two tail indices lambda(), and slot iTau for iTau(), see the examples and copGumbel, etc.
Examples

```r
bern.cop <- gumbelCopula(3)
tau(bern.cop)
rho(bern.cop)
lambda(bern.cop)
iTau(joeCopula(), 0.5)

stopifnot(all.equal(tau(bern.cop), copGumbel@tau(3)),
          all.equal(lambda(bern.cop),
                    c(copGumbel@lambdaL(3), copGumbel@lambdaU(3)),
                    check.attributes=FALSE),
          all.equal(iTau(bern.cop, 0.681),
                    copGumbel@iTau(0.681))
)

## let us compute the sample versions
x <- rCopula(200, bern.cop)
cor(x, method = "kendall")
cor(x, method = "spearman")

## compare with the true parameter value 3
iTau(bern.cop, cor(x, method="kendall")[1,2])
iRho(bern.cop, cor(x, method="spearman")[1,2])
```

Bernoulli

Compute Bernoulli Numbers

Description

Compute the \(n \)th Bernoulli number, or generate all Bernoulli numbers up to the \(n \)th, using diverse methods, that is, algorithms.

NOTE the current default methods will be changed – to get better accuracy!

Usage

```r
Bernoulli(n, method = c("sumBin", "sumRamanujan", "asymptotic"),
          verbose = FALSE)
Bernoulli.all(n, method = c("A-T", "sumBin", "sumRamanujan", "asymptotic"),
              precBits = NULL, verbose = getOption("verbose"))
```

Arguments

- **n**: positive integer, indicating the index of the largest (and last) of the Bernoulli numbers needed.
- **method**: character string, specifying which method should be applied. The default for Bernoulli.all(), "A-T" stands for the Akiyama-Tanigawa algorithm which is nice and simple but has bad numerical properties. It can however work with
high precision "mpfr"-numbers, see precBits. "sumRamanujan" is somewhat more efficient but not yet implemented.

precBits currently only for method = "A-T" – NULL or a positive integer indicating the precision of the initial numbers in bits, using "Rmpfr"'s package multiprecision arithmetic.

verbose (for "A-T"): logical indicating if the intermediate results of the algorithm should be printed.

Value

Bernoulli(): a number

Bernoulli.all(): a numeric vector of length n, containing B(n)

References

Kaneko, Masanobu (2000) The Akiyama-Tanigawa algorithm for Bernoulli numbers; Journal of Integer Sequences 3, article 00.2.9

See Also

Eulerian, Stirling1, etc.

Examples

The example for the paper
MASS::fractions(Bernoulli.all(8, verbose=TRUE))

B10 <- Bernoulli.all(10)
MASS::fractions(B10)

system.time(B50 <- Bernoulli.all(50))# (does not cache) -- still "no time"
system.time(B100 <- Bernoulli.all(100))# still less than a milli second

Using Bernoulli() is not much slower, but hopefully *more* accurate!
Check first - TODO
system.time(B.1c <- Bernoulli(100))# caches ..
system.time(B1c. <- Bernoulli(100))# == much faster
stopifnot(identical(B.1c, B1c.))

if(FALSE)## reset the cache:
assign("Bern.tab", list(), envir = copula:::.nacopEnv)

More experiments in the source of the copula package ../tests/Stirling-etc.R
Sample and Population Version of Blomqvist's Beta for Archimedean Copulas

Description

Compute the population (\texttt{beta.()}) and sample (\texttt{betan()}) version of Blomqvist's beta for an Archimedean copula.

See the reference below for definitions and formulas.

Usage

\begin{verbatim}
beta.(cop, theta, d, scaling=FALSE)
betan(u, scaling=FALSE)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{cop} an Archimedean copula (of dimension \texttt{d}) to be estimated.
 \item \texttt{theta} copula parameter.
 \item \texttt{d} dimension.
 \item \texttt{scaling} logical, if true, the factors $2^{(d-1)}/(2^{(d-1)}-1)$ and $2^{(1-d)}$ in Blomqvist's beta are omitted.
 \item \texttt{u} For \texttt{betan}: $(n \times d)$-matrix of \texttt{d}-dimensional observations distributed according to the copula.
\end{itemize}

Value

\begin{itemize}
 \item \texttt{beta.}: a number, being the population version of Blomqvist’s beta for the corresponding Archimedean copula;
 \item \texttt{betan}: a number, being the sample version of Blomqvist’s beta for the given data.
\end{itemize}

References

See Also

\begin{verbatim}
acopula
\end{verbatim}
Examples

\[
\beta(\text{copGumbel}, 2.5, d = 5)
\]

d.set <- c(2:6, 8, 10, 15, 20, 30)
cols <- adjustcolor(colorRampPalette(c("red", "orange", "blue"),
space = "Lab")(length(d.set)), 0.8)

AMH:
for(i in seq_along(d.set))
 curve(Vectorize(beta.,"theta")(copAMH, x, d = d.set[i]), 0, .999999,
 main = "Blomqvist's beta(.) for AMH",
 xlab = quote(theta), ylab = quote(beta(theta, AMH)),
 add = (i > 1), lwd=2, col=cols[i])
mtext("NB: d=2 and d=3 are the same")
legend("topleft", paste("d =",d.set), bty="n", lwd=2, col=cols)

Gumbel:
for(i in seq_along(d.set))
 curve(Vectorize(beta.,"theta")(copGumbel, x, d = d.set[i]), 1, 10,
 main = "Blomqvist's beta(.) for Gumbel",
 xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
 add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

Clayton:
for(i in seq_along(d.set))
 curve(Vectorize(beta.,"theta")(copClayton, x, d = d.set[i]), 5, 10,
 main = "Blomqvist's beta(.) for Clayton",
 xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
 add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

Joe:
for(i in seq_along(d.set))
 curve(Vectorize(beta.,"theta")(copJoe, x, d = d.set[i]), 1, 10,
 main = "Blomqvist's beta(.) for Joe",
 xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
 add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

Frank:
for(i in seq_along(d.set))
 curve(Vectorize(beta.,"theta")(copFrank, x, d = d.set[i]), 1e-5, 50,
 main = "Blomqvist's beta(.) for Frank",
 xlab = quote(theta), ylab = quote(beta(theta, Gumbel)),
 add=(i > 1), lwd=2, col=cols[i])
legend("bottomright", paste("d =",d.set), bty="n", lwd=2, col=cols)

Shows the numeric problems:
curve(Vectorize(beta.,"theta")(copFrank, x, d = 29), 35, 42, col="violet")
cCopula

Description

Compute the conditional distribution function \(C(u_d \mid u_1, \ldots, u_{d-1}) \) of \(u_d \) given \(u_1, \ldots, u_{d-1} \).

Usage

\[
cCopula(u, \text{copula}, \text{indices} = 1: \text{dim(copula)}, \text{inverse} = \text{FALSE}, \text{log} = \text{FALSE}, \text{drop} = \text{FALSE}, \ldots)
\]

Deprecated (use cCopula() instead):
\[
rtrafo(u, \text{copula}, \text{indices} = 1: \text{dim(copula)}, \text{inverse} = \text{FALSE}, \text{log} = \text{FALSE})
\]
\[
cacopula(u, \text{cop}, \text{n.MC} = 0, \text{log} = \text{FALSE})
\]

Arguments

- **u**: data matrix in \([0, 1]^{n \times d}\) of \(U(0, 1)^d \) samples if \text{inverse} = \text{FALSE} and (pseudo-/copula-)observations if \text{inverse} = \text{TRUE}.
- **copula, cop**: copula, i.e., an object of class "Copula" with specified parameters; currently, the conditional distribution is only provided for Archimedean and elliptical copulas.
- **indices**: vector of indices \(j \) (in \(\{1, \ldots, d\} \) \((d = \text{copula dimension}); unique; sorted in increasing order) for which \(C_{j\mid1,\ldots,j\mid1}(u_j \mid u_1, \ldots, u_{j-1}) \) (or, if \text{inverse} = \text{TRUE}, \(C_{j\mid1,\ldots,j\mid1}(u_j \mid u_1, \ldots, u_{j-1}) \)) is computed.
- **inverse**: \text{logical} indicating whether the inverse \(C_{j\mid1,\ldots,j\mid1}(u_j \mid u_1, \ldots, u_{j-1}) \) is returned.
- **n.MC**: integer Monte Carlo sample size; for Archimedean copulas only, used if positive.
- **log**: a \text{logical} indicating whether the logarithmic values are returned.
- **drop**: a \text{logical} indicating whether a vector should be returned (instead of a 1-row matrix) when \text{n} is 1.
- **\ldots**: additional arguments (currently only used if \text{inverse} = \text{TRUE} in which case they are passed on to the underlying \text{uniroot()}).

Details

By default and if fed with a sample of the corresponding copula, \text{cCopula()} computes the Rosenblatt transform; see Rosenblatt (1952). The involved high-order derivatives for Archimedean copulas were derived in Hofert et al. (2012).

Sampling, that is, random number generation, can be achieved by using \text{inverse}=\text{TRUE}. In this case, the inverse Rosenblatt transformation is used, which, for sampling purposes, is also known as **conditional distribution method**. Note that, for Archimedean copulas not being Clayton, this can be slow as it involves numerical root finding in each (but the first) component.
Value

An \((n,k)\)-matrix (unless \(n == 1\) and drop is true, where a \(k\)-vector is returned) where \(k\) is the length of indices. This matrix contains the conditional copula function values \(C_{j|1,...,j-1}(u_j \mid u_1, \ldots, u_{j-1})\) or, if inverse = TRUE, their inverses \(C_{j|1,...,j-1}^{-1}(u_j \mid u_1, \ldots, u_{j-1})\) for all \(j\) in indices.

Note

For some (but not all) families, this function also makes sense on the boundaries (if the corresponding limits can be computed).

References

See Also

htrafo; acopula-families.

Examples

```r
## 1) Sampling from a conditional distribution of a Clayton copula given u_1

## Define the copula
tau <- 0.5
theta <- iTau(claytonCopula(), tau = tau)
d <- 2
cc <- claytonCopula(theta, dim = d)
n <- 1000
set.seed(271)

## A small u_1
u1 <- 0.05
U <- cCopula(cbind(u1, runif(n)), copula = cc, inverse = TRUE)
plot(U[,2], ylab = quote(U[2]))

## A large u_1
u1 <- 0.95
U <- cCopula(cbind(u1, runif(n)), copula = cc, inverse = TRUE)
plot(U[,2], ylab = quote(U[2]))

## 2) Sample via conditional distribution method and then apply the
## Rosenblatt transform
## Note: We choose the numerically more involved (and thus slower)
## Gumbel case here
```
Define the copula

tau <- 0.5
theta <- iTau(gumbelCopula(), tau = tau)
d <- 5
gc <- gumbelCopula(theta, dim = d)
n <- 200
set.seed(271)
U. <- matrix(runif(n*d), ncol = d) # U(0,1)^d

Transform to Gumbel sample via conditional distribution method
U <- cCopula(U., copula = gc, inverse = TRUE) # slow for ACs except Clayton
splom2(U) # scatter-plot matrix copula sample

Rosenblatt transform back to U(0,1)^d (as a check)
U. <- cCopula(U, copula = gc)
splom2(U.) # U(0,1)^d again

3) cCopula() for elliptical copulas

tau <- 0.5
theta <- iTau(claytonCopula(), tau = tau)
d <- 5
cc <- claytonCopula(theta, dim = d)
set.seed(271)
n <- 1000
U <- rCopula(n, copula = cc)
X <- qnorm(U) # X now follows a meta-Clayton model with N(0,1) marginals
U <- pobs(X) # build pseudo-observations
fN <- fitCopula(normalCopula(dim = d), data = U) # fit a Gauss copula
U.RN <- cCopula(U, copula = fN@copula)
splom2(U.RN, cex = 0.2) # visible but not so clearly

f.t <- fitCopula(tCopula(dim = d), U)
U.Rt <- cCopula(U, copula = f.t@copula) # transform with a fitted t copula
splom2(U.Rt, cex = 0.2) # still visible but not so clear

Inverse (and check consistency)
U.N <- cCopula(U.RN, copula = fN @copula, inverse = TRUE)
U.t <- cCopula(U.Rt, copula = f.t@copula, inverse = TRUE)

tol <- 1e-14
stopifnot(
 all.equal(U, U.N),
 all.equal(U, U.t),
 all.equal(log(U.RN),
 cCopula(U, copula = fN @copula, log = TRUE), tolerance = tol),
 all.equal(log(U.Rt),
 cCopula(U, copula = f.t@copula, log = TRUE), tolerance = tol)
)
4) cCopula() for a more sophisticated mixture copula (bivariate case only!)

tau <- 0.5
cc <- claytonCopula(iTau(claytonCopula(), tau = tau)) # first mixture component
tc <- tCopula(iTau(tCopula(), tau = tau), df = 3) # t_3 copula
tc90 <- rotCopula(tc, flip = c(TRUE, FALSE)) # t copula rotated by 90 degrees
wts <- c(1/2, 1/2) # mixture weights
mc <- mixCopula(list(cc, tc90), w = wts) # mixture copula with one copula rotated

set.seed(271)
U <- rCopula(n, copula = mc)
U. <- cCopula(U, copula = mc) # Rosenblatt transform back to U(0,1)^2 (as a check)
plot(U., xlab = quote(U*"/" Var[1]), ylab = quote(U*"/" Var[2])) # check for uniformity

cloud2-methods

Description

Function and Methods cloud2() to draw (lattice) cloud plots of two-dimensional distributions from package copula.

Usage

S4 method for signature 'matrix'

cloud2(x,
 xlim = range(x[,1], finite = TRUE),
 ylim = range(x[,2], finite = TRUE),
 zlim = range(x[,3], finite = TRUE),
 xlab = NULL, ylab = NULL, zlab = NULL,
 scales = list(arrows = FALSE, col = "black"),
 par.settings = standard.theme(color = FALSE), ...)

S4 method for signature 'data.frame'

cloud2(x,
 xlim = range(x[,1], finite = TRUE),
 ylim = range(x[,2], finite = TRUE),
 zlim = range(x[,3], finite = TRUE),
 xlab = NULL, ylab = NULL, zlab = NULL,
 scales = list(arrows = FALSE, col = "black"),
 par.settings = standard.theme(color = FALSE), ...)

S4 method for signature 'Copula'

cloud2(x, n,
 xlim = 0:1, ylim = 0:1, zlim = 0:1,
 xlab = quote(U[1]), ylab = quote(U[2]), zlab = quote(U[3]), ...)

S4 method for signature 'mvdc'

cloud2(x, n,
 xlim = NULL, ylim = NULL, zlim = NULL,
 xlab = quote(X[1]), ylab = quote(X[2]), zlab = quote(X[3]), ...)
Arguments

- **x**: a "matrix", "data.frame", "Copula" or a "mvdc" object.
- **xlim**, **ylim**, **zlim**: the x-, y- and z-axis limits.
- **xlab**, **ylab**, **zlab**: the x-, y- and z-axis labels.
- **scales**: a list determining how the axes are drawn; see `cloud()`.
- **par.settings**: see `cloud()`.
- **n**: when x is not matrix-like: The sample size of the random sample drawn from x.
- **...**: additional arguments passed to the underlying `cloud()`.

Value

An object of class “trellis” as returned by `cloud()`.

Methods

Cloud plots for objects of class "matrix", "data.frame", "Copula" or "mvdc".

See Also

The `lattice`-based `splom2-methods` for data, and `wireframe2-methods` and `contourplot2-methods` for functions.

Examples

```r
## For 'matrix' objects
cop <- gumbelCopula(2, dim = 3)
n <- 1000
set.seed(271)
U <- rCopula(n, copula = cop)
cloud2(U, xlab = quote(U[1]), ylab = quote(U[2]), zlab = quote(U[3]))

## For 'Copula' objects
set.seed(271)
cloud2(cop, n = n) # same as above

## For 'mvdc' objects
mvNN <- mvdc(cop, c("norm", "norm", "exp"),
             list(list(mean = 0, sd = 1), list(mean = 1), list(rate = 2)))
cloud2(mvNN, n = n)
```
Description

Compute the coefficients \(a_{d,k}(\theta) \) involved in the generator (psi) derivatives and the copula density of Gumbel copulas.

For non-small dimensions \(d \), these are numerically challenging to compute accurately.

Usage

\[
\text{coeffG}(d, \alpha, \text{method} = c("sort", "horner", "direct", "dsumSibuya",
paste("dsSib", eval(formals(dsumSibuya)$method), sep = ".")),
\log = \text{FALSE}, \text{verbose} = \text{FALSE})
\]

Arguments

- **d**: number of coefficients, (the copula dimension), \(d \geq 1 \).
- **alpha**: parameter \(1/\theta \) in \((0,1]\); you may use \text{mpfr}(\alpha, \text{precBits} = <n_prec>) for higher precision methods ("Rmpfr*") from package \text{Rmpfr}.
- **method**: a \text{character} string, one of
 - "sort": compute coefficients via \(\exp(\log()) \) pulling out the maximum, and sort.
 - "horner": uses polynomial evaluation, our internal \text{polynEval}().
 - "direct": brute force approach.
 - "dsSib.<FOO>": uses \text{dsumSibuya}(..., \text{method} = "<FOO>").
- **log**: logical determining if the logarithm (\log) is to be returned.
- **verbose**: logical indicating if some information should be shown, currently for method == "sort" only.

Value

A numeric vector of length \(d \), of values

\[
a_k(\theta, d) = (-1)^{d-k} \sum_{j=k}^{d} \alpha^j * s(d, j) * S(j, k), k \in \{1, \ldots, d\}.
\]

Note

There are still known numerical problems (with non-"Rmpfr" methods; and those are slow), e.g., for \(d=100, \alpha=0.8 \) and \(\text{sign}(s(n,k)) = (-1)^{n-k} \).

As a consequence, the methods and its defaults may change in the future, and so the exact implementation of \text{coeffG}() is still considered somewhat experimental.
Examples

a.k <- coeffG(16, 0.55)
plot(a.k, xlab = quote(k), ylab = quote(a[k]),
 main = "coeffG(16, 0.55)", log = "y", type = "o", col = 2)
a.kH <- coeffG(16, 0.55, method = "horner")
stopifnot(all.equal(a.k, a.kH, tol = 1e-11)) # 1.10e-13 (64-bit Lnx, nb-mm4)

Methods for Contour Plots in Package 'copula'

Description

Methods for function contour to draw contour lines aka a level plot for objects from package copula.

Usage

S4 method for signature 'Copula'
contour(x, FUN,
 n.grid = 26, delta = 0,
 xlab = quote(u[1]), ylab = quote(u[2]),
 box01 = TRUE, ...)
S4 method for signature 'mvdc'
contour(x, FUN, xlim, ylim, n.grid = 26,
 xlab = quote(x[1]), ylab = quote(x[2]),
 box01 = FALSE, ...)

Arguments

x a "Copula" or a "mvdc" object.
FUN the function to be plotted; typically dCopula or pCopula.
n.grid the number of grid points used in each dimension. This can be a vector of length two, giving the number of grid points used in x- and y-direction, respectively; the function FUN will be evaluated on the corresponding (x,y)-grid.
delta a small number in $[0, \frac{1}{2}]$, influencing the evaluation boundaries. The x- and y-vectors will have the range $[0+\text{delta}, 1-\text{delta}]$, the default being $[0, 1]$.
xlab, ylab the x-axis and y-axis labels.
xlim, ylim the range of the x and y variables, respectively.
box01 a logical specifying if a faint rectangle should be drawn on the boundary of $[0, 1]^2$ (often useful for copulas, but typically not for general multivariate distributions ("mvdc")).

... further arguments for (the default method of) contour(), e.g., nlevels, levels, etc.
Methods

Contour lines are drawn for "Copula" or "mvdc" objects, see x in the Arguments section.

See Also

The persp-methods for “perspective” aka “3D” plots.

Examples

contour(frankCopula(-0.8), dCopula)
contour(frankCopula(-0.8), dCopula, delta=1e-6)
contour(frankCopula(-1.2), pCopula)
contour(claytonCopula(2), pCopula)

the Gumbel copula density is “extreme”
--> use fine grid (and enough levels):
r <- contour(gumbelCopula(3), dCopula, n=200, nlevels=100)
range(r$z)[0, 125.912]
Now superimpose contours of three resolutions:
contour(r, levels = seq(1, max(r$z), by=2), lwd=1.5)
contour(r, levels = (1:13)/2, add=TRUE, col=adjustcolor(1,3/4), lty=2)
contour(r, levels = (1:13)/4, add=TRUE, col=adjustcolor(2,1/2),
 lty=3, lwd=3/4)
x <- mvdc(gumbelCopula(3), c("norm", "norm"),
 list(list(mean = 0, sd =1), list(mean = 1)))
contour(x, dMvdc, xlim=c(-2, 2), ylim=c(-1, 3))
contour(x, pMvdc, xlim=c(-2, 2), ylim=c(-1, 3))
```r
col.regions = gray(seq(0.4, 1, length.out = max(100, 4*cuts)))
```

```r
## S4 method for signature 'Copula'
contourplot2(x, FUN, n.grid = 26, delta = 0,
xlim = 0:1, ylim = 0:1,
xlab = quote(u[1]), ylab = quote(u[2]), ...)
```

```r
## S4 method for signature 'mvdc'
contourplot2(x, FUN, n.grid = 26, xlim, ylim,
xlab = quote(x[1]), ylab = quote(x[2]), ...)
```

Arguments

- **x**: a "matrix", "data.frame", "Copula" or a "mvdc" object.
- **aspect**: the aspect ratio.
- **xlim, ylim**: the x- and y-axis limits.
- **xlab, ylab**: the x- and y-axis labels. If at least one is NULL, useful xlab and ylab are determined automatically; the behavior depends on the class of x.
- **cuts**: the number of levels; see `contourplot()`. Note that specifying `useRaster = TRUE` is often considerably more efficient notably for larger values of cuts.
- **labels, pretty**: `logicals` indicating whether the contour lines are labeled and whether pretty labels are enforced; in `copula` versions before 0.999-18, implicitly `pretty = TRUE` was used (giving unequal z-cut spacing), see `contourplot()`.
- **scales**: a list determining how the axes are drawn; see `contourplot()`.
- **region**: a `logical` indicating whether regions between contour lines should be filled as in a level plot; see `contourplot()`.
- **col.regions**: the colors of the regions if `region = TRUE`; see `contourplot()`.
- **FUN**: the `function` to be plotted; typically `dCopula` or `pCopula`.
- **n.grid**: the number of grid points used in each dimension. This can be a vector of length two, giving the number of grid points used in x- and y-direction, respectively; the function `FUN` will be evaluated on the corresponding (x,y)-grid.
- **delta**: a small number in \([0, \frac{1}{2}]\) influencing the evaluation boundaries. The x- and y-vectors will have the range \([0+\delta, 1-\delta]\), the default being \([0, 1]\).
- **...**: additional arguments passed to the underlying `contourplot()`.

Value

An object of class “trellis” as returned by `contourplot()`.

Methods

Contourplot plots for objects of class "matrix", "data.frame", "Copula" or "mvdc".

See Also

The `contour-methods` for drawing perspective plots via base graphics.
The `lattice`-based `wireframe2-methods` for functions, and `cloud2-methods` and `splom2-methods` for data.
Examples

```r
## For 'matrix' objects
## The Fréchet–Hoeffding bounds W and M
n.grid <- 26
u <- seq(0, 1, length.out = n.grid)
W <- function(u) pmax(0, rowSums(u) - 1) # lower bound W
M <- function(u) apply(u, 1, min) # upper bound M
x.W <- cbind(grid, "W(u[1],u[2])" = W(grid)) # evaluate W on 'grid'
x.M <- cbind(grid, "M(u[1],u[2])" = M(grid)) # evaluate M on 'grid'
contourplot2(x.W) # contour plot of W
contourplot2(x.M) # contour plot of M

## For 'Copula' objects
cop <- frankCopula(-4)
contourplot2(cop, pCopula) # the copula
contourplot2(cop, pCopula, xlab = "x", ylab = "y") # adjusting the labels
contourplot2(cop, dCopula) # the density

## For 'mvdc' objects
mvNN <- mvdc(gumbelCopula(3), c("norm", "norm"),
            list(list(mean = 0, sd = 1), list(mean = 1)))
xl <- c(-2, 2)
yl <- c(-1, 3)
contourplot2(mvNN, FUN = dMvdc, xlim = xl, ylim = yl, contour = FALSE)
contourplot2(mvNN, FUN = dMvdc, xlim = xl, ylim = yl)
contourplot2(mvNN, FUN = dMvdc, xlim = xl, ylim = yl, region = FALSE, labels = FALSE)
contourplot2(mvNN, FUN = dMvdc, xlim = xl, ylim = yl, region = FALSE)
contourplot2(mvNN, FUN = dMvdc, xlim = xl, ylim = yl,
            col.regions = colorRampPalette(c("royalblue3", "maroon3"), space="Lab"))
```

copFamilies

Specific Archimedean Copula Families ("acopula" Objects)

Description

Specific Archimedean families ("acopula" objects) implemented in the package copula.
These families are “classical” as from p. 116 of Nelsen (2007). More specifically, see Table 1 of Hofert (2011).

Usage

copAMH
copClayton
copFrank
copGumbel
copJoe
Details

All these are objects of the formal class "acopula".

copAMH: Archimedean family of Ali-Mikhail-Haq with parametric generator
\[
\psi(t) = (1 - \theta)/(\exp(t) - \theta), \quad t \in [0, \infty],
\]
with \(\theta \in [0, 1) \). The range of admissible Kendall’s tau is \([0, 1/3]\).

Note that the lower and upper tail-dependence coefficients are both zero, that is, this copula family does not allow for tail dependence.

copClayton: Archimedean family of Clayton with parametric generator
\[
\psi(t) = (1 + t)^{-1/\theta}, \quad t \in [0, \infty],
\]
with \(\theta \in (0, \infty) \). The range of admissible Kendall’s tau, as well as that of the lower tail-dependence coefficient, is \((0,1)\). For dimension \(d = 2 \), \(\theta \in (-1, \infty) \) is admissible where negative \(\theta \) allow negative Kendall’s taus. Note that this copula does not allow for upper tail dependence.

copFrank: Archimedean family of Frank with parametric generator
\[
-\log(1 - (1 - e^{-\theta})\exp(-t))/\theta, \quad t \in [0, \infty]
\]
with \(\theta \in (0, \infty) \). The range of admissible Kendall’s tau is \((0,1)\). Note that this copula family does not allow for tail dependence.

copGumbel: Archimedean family of Gumbel with parametric generator
\[
\exp(-t^{1/\theta}), \quad t \in [0, \infty]
\]
with \(\theta \in [1, \infty) \). The range of admissible Kendall’s tau, as well as that of the upper tail-dependence coefficient, is \([0,1)\). Note that this copula does not allow for lower tail dependence.

copJoe: Archimedean family of Joe with parametric generator
\[
1 - (1 - \exp(-t))^{1/\theta}, \quad t \in [0, \infty]
\]
with \(\theta \in [1, \infty) \). The range of admissible Kendall’s tau, as well as that of the upper tail-dependence coefficient, is \([0,1)\). Note that this copula does not allow for lower tail dependence.

Note that staying within one of these Archimedean families, all of them can be nested if two (generic) generator parameters \(\theta_0, \theta_1 \) satisfy \(\theta_0 \leq \theta_1 \).

Value

A "acopula" object.

References

See Also

The class definition, “acopula”, onacopula and setTheta for such Archimedean copulas with specific parameters. getAcop accesses these families “programmatically”.

Examples

```r
## Print a copAMH object and its structure
copAMH
str(copAMH)

## Show admissible parameters for a Clayton copula
copClayton@paraInterval

## Generate random variates from a Log(p) distribution via V0 of Frank
p <- 1/2
copFrank@V0(100, -log(1-p))

## Plot the upper tail-dependence coefficient as a function in the
## parameter for Gumbel’s family
curve(copGumbel@lambdaU(x), xlim = c(1, 10), ylim = c(0,1), col = 4)

## Plot Kendall’s tau as a function in the parameter for Joe’s family
curve(copJoe@tau(x), xlim = c(1, 10), ylim = c(0,1), col = 4)

## ------- Plot psi() and tau() - and properties of all families ----

## The copula families currently provided:
(famNms <- ls("package:copula", patt="^cop[A-Z]"))

op <- par(mfrow= c(length(famNms), 2),
mar = .6+ c(2,1.4,1,1), mgp = c(1.1, 0.4, 0))
for(nm in famNms) { Cf <- get(nm)
  thet <- Cf@iTau(0.3)
  curve(Cf@psi(x, theta = thet), 0, 5,
xlab = quote(x), ylab="", ylim=0:1, col = 2,
main = substitute(list(NAM ~~~ psi(x, theta == TH),
  list(NAM=Cf@name, TH=thet)))
  I <- Cf@paraInterval
  Iu <- pmin(10, I[2])
  curve(Cf@tau(x), I[1], Iu, col = 3,
xlab = bquote(theta %in% .(format(I))), ylab = ",
main = substitute(NAM ~~ tau(theta), list(NAM=Cf@name)))
}
par(op)

## Construct a bivariate Clayton copula with parameter theta
theta <- 2
C2 <- onacopula("Clayton", C(theta, 1:2))
C2@copula # is an “acopula” with specific parameter theta
curve(C2@copula@psi(x, C2@copula@theta),
```
main = quote("Generator" ~~ psi ~~ " of Clayton A.copula"),
xlab = quote(theta1), ylab = quote(psi(theta1)),
xlim = c(0,5), ylim = c(0,1), col = 4)

What is the corresponding Kendall's tau?
C2@copula@tau(theta) # 0.5

What are the corresponding tail-dependence coefficients?
C2@copula@lambdaL(theta)
C2@copula@lambdaU(theta)

Generate n pairs of random variates from this copula
U <- rnacopula(n = 1000, C2)
and plot the generated pairs of random variates
plot(U, asp=1, main = "n = 1000 from Clayton(theta = 2)"

Copula Density, Evaluation, and Random Number Generation for Copula Functions

Description

Density (dCopula), distribution function (pCopula), and random generation (rCopula) for a copula object.

Usage

dCopula(u, copula, log=FALSE, ...)
pCopula(u, copula, ...)
rCopula(n, copula, ...)

Arguments

copula an R object of class "Copula", (i.e., "copula" or "nacopula").
u a vector of the copula dimension d or a matrix with d columns, giving the points where the density or distribution function needs to be evaluated. Note that in all cases, values outside of the cube \([0,1]^d\) are treated equivalently to those on the cube boundary. So, e.g., the density is zero.
log logical indicating if the log(\(f(\cdot)\)) should be returned instead of \(f(\cdot)\).
n (for rCopula():) number of observations to be generated.
... further optional arguments for some methods, e.g., method.

Details

The density (dCopula) and distribution function (pCopula) methods for Archimedean copulas now use the corresponding function slots of the Archimedean copula objects, such as copClayton, copGumbel, etc.
If an \(u_j \) is outside \((0, 1)\) we declare the density to be zero, and this is true even when another \(u_k, k \neq j \) is NA or NaN; see also the “outside” example.

The distribution function of a t copula uses \texttt{pmvt} from package \texttt{mvtnorm}; similarly, the density (\texttt{dCopula}) calls \texttt{dmvt} from \texttt{mvtnorm}. The \texttt{normalCopula} methods use \texttt{dmvnorm} and \texttt{pmvnorm} from the same package.

The random number generator for an Archimedean copula uses the conditional approach for the bivariate case and the Marshall-Olkin (1988) approach for dimension greater than 2.

Value

\texttt{dCopula()} gives the density, \texttt{pCopula()} gives the distribution function, and \texttt{rCopula()} generates random variates.

References

Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. *Journal of Hydrologic Engineering* 12, 347–368.

See Also

the \texttt{copula} and \texttt{acopula} classes, the acopula families, \texttt{acopula-families}. Constructor functions such as \texttt{ellipCopula}, \texttt{archmCopula}, \texttt{fgmCopula}.

Examples

```r
norm.cop <- normalCopula(0.5)
norm.cop
## one d-vector \(\text{<=} 1\)-row matrix, works too :
dCopula(c(0.5, 0.5), norm.cop)
PCopula(c(0.5, 0.5), norm.cop)

u <- rCopula(100, norm.cop)
plot(u)
dCopula(u, norm.cop)
PCopula(u, norm.cop)
persp (norm.cop, dCopula)
contour(north.cop, pCopula)

## a 3-dimensional normal copula
u <- rCopula(1000, normalCopula(0.5, dim = 3))
if(require(scatterplot3d))
scatterplot3d(u)
```
a 3-dimensional clayton copula

```r
c13 <- claytonCopula(2, dim = 3)
v <- rCopula(1000, c13)
pairs(v)
if(require(scatterplot3d))
  scatterplot3d(v)
```

```r
## Compare with the "nacopula" version :
f1 <- dCopula(v, c13)
f2 <- copClayton@dacopula(v, theta = 2)
F1 <- pCopula(v, c13)
F2 <- pCopula(v, onacopula("Clayton", C(2.0, 1:3)))
## The density and cumulative values are the same:
stopifnot(all.equal(f1, f2, tolerance= 1e-14),
  all.equal(F1, F2, tolerance= 1e-15))
```

```r
## NA and "outside" u[]
u <- v[1:12,]
## replace some by values outside (0,1) and some by NA/NaN
u[1, 2:3] <- c(1.5, NaN); u[2, 1] <- 2; u[3, 1:2] <- c(NA, -1)
u[cbind(4:9, 1:3)] <- c(NA, NaN)
f <- dCopula(u, c13)
cbind(u, f) # note: f(.) == 0 at [1] and [3] inspite of NaN/NA
stopifnot(f[1:3] == 0, is.na(f[4:9]), 0 < f[10:12])
```

copula-class

Mother Classes "Copula", etc of all Copulas in the Package

Description

A copula is a multivariate distribution with uniform margins. The virtual class "Copula" is the mother (or "super class") of all copula classes in the package copula which encompasses classes of the former packages nacopula and copula.

The virtual class "parCopula" extends "Copula" and is the super class of all copulas that can be fully parametrized and hence fitted to data. For these, at least the dim() method must be well defined.

The virtual class "dimCopula" extends "Copula" and has an explicit slot dimension, with corresponding trivial dim() method.

The virtual class "copula" extends bot "dimCopula" and "parCopula" and is the mother of all copula classes from former package copula. It has set of slots for (the dimension and) parameter vector, see below.

The virtual class "xcopula" extends "parCopula" and contains a slot copula; an ("actual") class example are the rotated copulas, rotCopula.

Objects from the Class

Objects are typically created by are by tCopula(), evCopula(), etc.
Slots

Class "dimCopula" and its subclasses, notably "copula", have a slot

dimension: an "integer" (of length 1), the copula dimension \(d \).

Class "copula" (and its subclasses) have additional slots

parameters: numeric vector of parameter values, can be NA (i.e., NA_real_).
param.names: "character" vector of parameter names (and hence of the same length as parameters).
param.lowbnd: lower bounds for the parameters, of class "numeric".
param.upbnd: upper bounds for the parameters, of class "numeric".
fullname: deprecated; object of class "character", family names of the copula.

Warning

This implementation is still at the experimental stage and is subject to change during the development.

Note

The "copula" class is extended by the evCopula, archmCopula, and ellipCopula classes. Instances of such copulas can be created via functions evCopula, archmCopula and ellipCopula.

"plackettCopula" and fgmCopula are special types of copulas which do not belong to either one of the three classes above.

See Also

Help for the (sub)classes archmCopula, ellipCopula, evCopula, and fgmCopula.

The Archimedean and nested Archimedean classes (from former package nacopula), with a more extensive list of slots (partly instead of methods), acopula, and nacopula.

Examples

hc <- evCopula("husler", 1.25)
dim(hc)
smoothScatter(u <- rCopula(2*11, hc))
lambda (hc)
tau (hc)
rho(hc)
str(hc)
Description

For a data matrix x, compute the Kendall's tau “correlation” matrix, i.e., all pairwise Kendall's taus between the columns of x.

By default and when x has no missing values (NAs), the fast $O(n \log(n))$ algorithm of cor.fk() is used.

Usage

corKendall(x, checkNA = TRUE,
 use = if(checkNA && anyNA(x)) "pairwise" else "everything")

Arguments

- **x**: data, a $n \times p$ matrix (or less efficiently a data.frame), or a numeric vector which is treated as $n \times 1$ matrix.
- **checkNA**: logical indicating if x should be checked for NAs and in the case of NA's and when use is not specified (missing), cor(*,use = "pairwise") should be used. Note that corKendall(x,checkNA = FALSE) will produce an error when x has NA's.
- **use**: a string to determine the treatment of NAs in x, see cor; its default determined via checkNA. When this differs from "everything", R's cor is used; otherwise pcaPP’s cor.fk() which cannot deal with NAs.

Value

The $p \times p$ matrix K of pairwise Kendall’s taus, with $K[i,j] := \tau(x[,i],x[,j])$.

See Also

cor.fk() from pcaPP (used by default when there are no missing values (NAs) in x).
etau() or fitCopula(*,method = "itau") make use of corKendall().

Examples

```r
## If there are no NA's, corKendall() is faster than cor(*, "kendall")
## and gives the same :

system.time(C1 <- cor(swiss, method="kendall"))
system.time(C2 <- corKendall(swiss))
stopifnot(all.equal(C1, C2, tol = 1e-5))

## In the case of missing values (NA), corKendall() reverts to
## cor(*, "kendall", use = "pairwise") {no longer very fast} :
```
dDiag <- swiss # shorter names and three missings:
colnames(swM) <- abbreviate(colnames(swiss), min=6)
(C3 <- corKendall(swM)) # now automatically uses the same as
stopifnot(identical(C3, cor(swM, method="kendall", use="pairwise")))
and is quite close to the non-missing "truth":
stopifnot(all.equal(unname(C3), unname(C2), tol = 0.06)) # rel.diff.= 0.055

try(corKendall(swM, checkNA=FALSE)) # --> Error
the error is really from pcaPP::cor.fk(swM)

dDiag

Density of the Diagonal of (Nested) Archimedean Copulas

Description

Evaluate the density of the diagonal of a d-dimensional (nested) Archimedean copula. Note that the diagonal of a copula is a cumulative distribution function. Currently, only Archimedean copulas are implemented.

Usage

dDiag(u, cop, log=FALSE)

Arguments

- **u**: a numeric vector of evaluation points.
- **cop**: a (nested) Archimedean copula object of class "outer_nacopula". This also determines the dimension via the comp slot.
- **log**: logical indicating if the log of the density of the diagonal should be returned instead of just the diagonal density.

Value

A numeric vector containing the values of the density of the diagonal of the Archimedean copula at u.

References

See Also

acopula class, dnacopula.
Examples

```r
th. <- c(0.1, 0.2, 0.5, 0.8, 1.4, 2., 5.)
curve(dDiag(x, cop=onacopulaL("Clayton", list(th.[1], 1:3))), 0, 1,
n=1000, ylab="dDiag(x, *)", main="Diagonal densities of Clayton")
abline(h=0, lty=3)
for(j in 2:length(th.))
  curve(dDiag(x, cop=onacopulaL("Clayton", list(th.[j], 1:3))), add=TRUE,
  col=j, n=1000)
legend("topleft", do.call(expression, lapply(th., function(th)
    substitute(theta == TH, list(TH=th)))),
  lty = 1, col=seq_along(th.), bty="n")
```

Description

Describe a copula object, i.e., its basic properties as a string. This is a utility used when `print()`ing or `plot()`ing copulas, e.g., after a fitting.

Usage

```r
describeCop(x, kind = c("short", "very short", "long"), prefix = ",", ...)```

**Arguments**

- `x` a copula object, or a generalization such as `parCopula`.
- `kind` a character string specifying the size (or “complexity”) of the copula description desired.
- `prefix` a string to be prefixed to the returned string, which can be useful for indentation in describing extended copulas such as Khoudraji copulas.
- `...` further arguments; unused currently.

**Value**

a character string.

**Methods**

```r
signature(x = "archmCopula", kind = "ANY") ..
signature(x = "copula", kind = "character") ..
signature(x = "copula", kind = "missing") ..
signature(x = "ellipCopula", kind = "character") ..
signature(x = "fgmCopula", kind = "ANY") ..
signature(x = "xcopula", kind = "ANY") ..
```
See Also
Copula class definition \texttt{copula};

Examples

```r
FIXME
dnacopula
```

---

**dnacopula**  
*Density Evaluation for (Nested) Archimedean Copulas*

**Description**
For a (nested) Archimedean copula (object of class \texttt{nacopula}) \(x\), \(\text{dCopula}(u,x)\) (or also currently still \(\text{dnacopula}(x,u)\)) evaluates the density of \(x\) at the given vector or matrix \(u\).

**Usage**

```r
S4 method for signature 'matrix,nacopula'
dCopula(u, copula, log=FALSE, ...)
```

```r
Deprecated:
dnacopula(x, u, log=FALSE, ...)
```

**Arguments**

- \texttt{copula}, \texttt{x}  
an object of class "\texttt{outer_nacopula}".
- \texttt{u}  
argument of the copula \(x\). Note that \(u\) can be a matrix in which case the density is computed for each row of the matrix and the vector of values is returned.
- \texttt{log}  
logical indicating if the \texttt{log} of the density should be returned.
- \texttt{...}  
optional arguments passed to the copula's \texttt{dacopula} function (slot), such as \texttt{n.MC} (non-negative integer) for possible Monte Carlo evaluation (see \texttt{dacopula} in \texttt{acopula}).

**Details**
If it exists, the density of an Archimedean copula \(C\) with generator \(\psi\) at \(u \in (0,1)^d\) is given by

\[
c(u) = \psi(d)(\psi^{-1}(u_1) + \ldots + \psi^{-1}(u_d)) \prod_{j=1}^d (\psi^{-1}(u_j))' = \frac{\psi(d)(\psi^{-1}(u_1) + \ldots + \psi^{-1}(u_d))'}{\prod_{j=1}^d \psi'(\psi^{-1}(u_j))}.
\]

**Value**
A \texttt{numeric} vector containing the values of the density of the Archimedean copula at \(u\).

**Note**
\texttt{dCopula}(u,copula) is a \texttt{generic} function with methods for \texttt{all} our copula classes, see \texttt{dCopula}. 
References


See Also

For more details about the derivatives of an Archimedean generator, see, for example, `absdPsi` in class `acopula`.

Examples

```r
Construct a twenty-dimensional Gumbel copula with parameter chosen
such that Kendall's tau of the bivariate margins is 0.25.
theta <- copJoe@iTau(.25)
C20 <- onacopula("J", C(theta, 1:20))

Evaluate the copula density at the point u = (0.5,...,0.5)
u <- rep(.5, 20)
dCopula(u, C20)

the same with Monte Carlo based on 10000 simulated "frailties"
dCopula(u, C20, n.MC = 10000)

Evaluate the exact log-density at several points
u <- matrix(runif(100), ncol=20)
dCopula(u, C20, log = TRUE)

Back-compatibility check
stopifnot(identical(dCopula (u, C20), suppressWarnings(dnacopula(C20, u))),
 identical(dCopula (u, C20, log = TRUE), suppressWarnings(dnacopula(C20, u, log = TRUE))))
```

ellipCopula

*Construction of Elliptical Copula Class Objects*

Description

Constructs an elliptical copula class object with its corresponding parameters and dimension.

Usage

```r
ellipCopula (family, param, dim = 2, dispstr = "ex", df = 4, ...)
normalCopula(param, dim = 2, dispstr = "ex")
tCopula(param, dim = 2, dispstr = "ex", df = 4, df.fixed = FALSE, df.min = 0.01)
```
ellipCopula

Arguments

- **family**: a character string specifying the family of an elliptical copula. Must be "normal" (the default) or "t".
- **param**: a numeric vector specifying the parameter values; `P2p()` accesses this vector, whereas `p2P()` and `getSigma()` provide the corresponding "P" matrix, see below.
- **dim**: the dimension of the copula.
- **dispstr**: a character string specifying the type of the symmetric positive definite matrix characterizing the elliptical copula. Currently available structures are "ex" for exchangeable, "ar1" for AR(1), "toep" for Toeplitz (toeplitz), and "un" for unstructured.
- **df**: integer value specifying the number of degrees of freedom of the multivariate t distribution used to construct the t copulas.
- **df.fixed**: logical specifying if the degrees of freedom `df` will be considered as a parameter (to be estimated) or not. The default, FALSE, means that `df` is to be estimated if the object is passed as argument to `fitCopula`.
- **df.min**: non-negative number; the strict lower bound for `df`, mainly during fitting when `df.fixed=FALSE`, with `fitCopula`.
- **...**: currently nothing.

Value

An elliptical copula object of class "normalCopula" or "tCopula".

Note

`ellipCopula()` is a wrapper for `normalCopula()` and `tCopula()`.

The `pCopula()` methods for the normal- and t-copulas accept optional arguments to be passed to the underlying (numerical integration) algorithms from package `mvtnorm`'s `pmvnorm` and `pmvt`, respectively, notably algorithm, see `GenzBretz`, or `abseps` which defaults to 0.001. ## For smaller copula dimension 'd', alternatives are available and ## non-random, see `GenzBretz` from package 'mvtnorm'

See Also

`p2P()`, and `getSigma()` for construction and extraction of the dispersion matrix `P` or `Sigma` matrix of (generalized) correlations.

`archmCopula`, `fitCopula`.

Examples

```r
norm.cop <- normalCopula(c(0.5, 0.6, 0.7), dim = 3, dispstr = "un")
t.cop <- tCopula(c(0.5, 0.3), dim = 3, dispstr = "toep",
 df = 2, df.fixed = TRUE)
getSigma(t.cop) # P matrix (with diagonal = 1)
```
## dispersion "AR1":

\[ nC.7 <- normalCopula(0.8, \text{dim} = 7, \text{dispstr} = "ar1") \]

getSigma(nC.7) \#-> toeplitz( (1 0.8 0.8^2 0.8^3 ... 0.8^6) ) matrix

## from the wrapper

\[
\text{norm.cop} <- \text{ellipCopula}(\text{"normal"}, \text{param} = c(0.5, 0.6, 0.7), \\
\text{dim} = 3, \text{dispstr} = "un")
\]

if(require("scatterplot3d") && dev.interactive(orNone=TRUE)) {
  ## 3d scatter plot of 1000 random observations
  scatterplot3d(rCopula(1000, norm.cop))
  scatterplot3d(rCopula(1000, t.cop))
}

set.seed(12)

\[
\text{uN} <- \text{rCopula}(512, \text{norm.cop})
\]

set.seed(2); \[ \text{pN1} <- \text{pCopula}(\text{uN}, \text{norm.cop}) \]

set.seed(3); \[ \text{pN2} <- \text{pCopula}(\text{uN}, \text{norm.cop}) \]

stopifnot(all.equal(pN1, pN2, 1e-4)) # see 5.711e-5

(Xtras <- copula:::doExtras())

if(Xtras) { ## a bit more accurately:
  set.seed(4); \[ \text{pN1.} <- \text{pCopula}(\text{uN}, \text{norm.cop}, \text{abseps} = 1e-9) \]
  set.seed(5); \[ \text{pN2.} <- \text{pCopula}(\text{uN}, \text{norm.cop}, \text{abseps} = 1e-9) \]

  stopifnot(all.equal(pN1., pN2., 1e-5)) # see 3.397e-6
  ## but increasing the required precision (e.g., abseps=1e-15) does *NOT* help
}

## For smaller copula dimension 'd', alternatives are available and
## non-random, see ?GenzBretz from package 'mvtnorm':

require("mvtnorm")# -> GenzBretz(), Miva(), and TVPACK() are available

## Note that Miwa() would become very slow for dimensions 5, 6, ..

set.seed(4); \[ \text{pN1.M} <- \text{pCopula}(\text{uN}, \text{norm.cop}, \text{algorithm} = \text{Miwa}(\text{steps} = 512)) \]

set.seed(5); \[ \text{pN2.M} <- \text{pCopula}(\text{uN}, \text{norm.cop}, \text{algorithm} = \text{Miwa}(\text{steps} = 512)) \]

stopifnot(all.equal(pN1.M, pN2.M, tol= 1e-15)) # *no* randomness

set.seed(4); \[ \text{pN1.T} <- \text{pCopula}(\text{uN}, \text{norm.cop}, \text{algorithm} = \text{TVPACK}(\text{abseps} = 1e-10)) \]

set.seed(5); \[ \text{pN2.T} <- \text{pCopula}(\text{uN}, \text{norm.cop}, \text{algorithm} = \text{TVPACK}(\text{abseps} = 1e-14)) \]

stopifnot(all.equal(pN1.T, pN2.T, tol= 1e-15)) # *no* randomness (but no effect of 'abseps')

## Versions with unspecified parameters:

tCopula()

\[ \text{allEQ} <- \text{function}(u,v) \text{ all.equal}(u, v, \text{tolerance}=0) \]

stopifnot(allEQ(ellipCopula("norm"), normalCopula()),
  allEQ(ellipCopula("t"), tCopula()))

tCopula(dim=3)

tCopula(dim=4, df.fixed=TRUE)

tCopula(dim=5, disp = "toep", df.fixed=TRUE)

normalCopula(dim=4, disp = "un")

---

eLLiPcOpULA-Class 

Class "ellipCopula" of Elliptical Copulas
Description

Copulas generated from elliptical multivariate distributions, notably Normal- and t-copulas (of specific class "normalCopula" or "tCopula", respectively).

Objects from the Class

Objects are typically created by ellipCopula(), normalCopula(), or tCopula().

Slots

- dispstr: "character" string indicating how the dispersion matrix is parameterized; one of "ex", "ar1", "toep", or "un", see the dispstr argument of ellipCopula().
- dimension: Object of class "numeric", dimension of the copula.
- parameters: a numeric, (vector of) the parameter value(s).
- param.names: character vector with names for the parameters slot, of the same length.
- param.lowbnd: numeric vector of lower bounds for the parameters slot, of the same length.
- param.upbnd: upper bounds for parameters, analogous to parm.lowbnd.
- fullname: deprecated; object of class "character", family names of the copula.

Extends

Class "ellipCopula" extends class copula directly. Classes "normalCopula" and "tCopula" extend "ellipCopula" directly.

Methods

Many methods are available, notably dCopula, pCopula, and rCopula. Use, e.g., methods(class = "tCopula") to find others.

See Also

ellipCopula which also documents tCopula() and normalCopula(); copula-class.

Description

Compute minimum distance estimators for (nested) Archimedean copulas.

Usage

```r
emde(u, cop,
 method=c("mde.chisq.CvM", "mde.chisq.KS",
 "mde.gamma.CvM", "mde.gamma.KS"),
 interval=initOpt(cop@copula@name),
 include.K = FALSE, repara = TRUE, ...)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$n \times d$-matrix of (pseudo-)observations (each value in $[0, 1]$) from the copula, where $n$ denotes the sample size and $d$ the dimension.</td>
</tr>
<tr>
<td>cop</td>
<td>outer_nacopula to be estimated (currently only Archimedean copulas are provided).</td>
</tr>
</tbody>
</table>
| method   | a character string specifying the distance method, which has to be one (or a unique abbreviation) of:
  - "mde.chisq.CvM" map to an Erlang distribution and using a chi-square distribution and Cramér-von Mises distance;
  - "mde.chisq.KS" map to an Erlang distribution and using a chi-square distribution and Kolmogorov-Smirnov distance;
  - "mde.gamma.CvM" map to an Erlang distribution and using an Erlang distribution and Cramér-von Mises distance;
  - "mde.gamma.KS" map to an Erlang distribution and using a Kolmogorov-Smirnov distance. |
| interval | bivariate vector denoting the interval where optimization takes place. The default is computed as described in Hofert et al. (2013). |
| include.K | logical indicating whether the last component, the (possibly numerically challenging) Kendall distribution function $K$, is used (include.K=TRUE) or not. Note that the default is FALSE here, where it is TRUE in the underlying htrafo() function. |
| repara   | logical indicating whether the distance function to be optimized is reparametrized (the default); see the code for more details. |

Details

First, htrafo is applied to map the $n \times d$-matrix of given realizations to a $n \times d$-matrix or $n \times (d-1)$-matrix, depending on whether the last component is included (include.K=TRUE) or not. Second, using either the sum of squares of the standard normal quantile function (method="mde.chisq.CvM" and method="mde.chisq.KS") or the sum of negative logarithms (method="mde.gamma.CvM" and method="mde.gamma.KS"), a map to a chi-square or an Erlang distribution is applied, respectively. Finally, a Cramér-von Mises (method="mde.chisq.CvM" and method="mde.gamma.CvM") or Kolmogorov-Smirnov (method="mde.chisq.KS" and method="mde.gamma.KS") distance is applied. This is repeated in an optimization until the copula parameter is found such that this distance is minimized.

Note that the same transformations as described above are applied for goodness-of-fit testing; see the ‘See Also’ section).

Value

list as returned by optimize, including the minimum distance estimator.
References


See Also

`enacopula` (wrapper for different estimators), `gofCopula` (wrapper for different goodness-of-fit tests), `htrafo` (transformation to a multivariate uniform distribution), and `K` (Kendall distribution function).

Examples

```r
tau <- 0.25
(theta <- copGumbel@iTau(tau)) # 4/3
d <- 20
(cop <- onacopulaL("Gumbel", list(theta,1:d)))

set.seed(1)
n <- 200
U <- rnacopula(n, cop)

(meths <- eval(formals(emde)$method)) # "mde.chisq.CvM", ...
fun <- function(meth, u, cop, theta){
 run.time <- system.time(val <- emde(u, cop=cop, method=meth)$minimum)
 list(value=val, error=val-theta, utime.ms=1000*run.time[[1]])
}
(res <- sapply(meths, fun, u=U, cop=cop, theta=theta))
```

---

**emle**  
*Maximum Likelihood Estimators for (Nested) Archimedean Copulas*

**Description**

Compute (simulated) maximum likelihood estimators for (nested) Archimedean copulas.

**Usage**

```r
emle(u, cop, n.MC=0, optimizer="optimize", method,
 interval=initOpt(cop@copula@name),
 start=list(theta=initOpt(cop@copula@name, interval=FALSE, u=u)),
 ...)
.emle(u, cop, n.MC=0,
 interval=initOpt(cop@copula@name), ...)
```
Arguments

- **u**: $n 	imes d$-matrix of (pseudo-)observations (each value in $[0, 1]$) from the copula, with $n$ the sample size and $d$ the dimension.
- **cop**: `outer_nacopula` to be estimated (currently only non-nested, that is, Archimedean copulas are admitted).
- **n.MC**: integer, if positive, *simulated* maximum likelihood estimation (SMLE) is used with sample size equal to n.MC; otherwise (n.MC=0), MLE. In SMLE, the $d$th generator derivative and thus the copula density is evaluated via (Monte Carlo) simulation, whereas MLE uses the explicit formulas for the generator derivatives; see the details below.
- **optimizer**: a string or NULL, indicating the optimizer to be used, where NULL means to use `optim` via the standard R function `mle()` from package `stats4`, whereas the default, “optimize” uses `optimize` via the R function `mle2()` from package `bbmle`.
- **method**: only when optimizer is NULL or "optim", the method to be used for `optim`.
- **interval**: bivariate vector denoting the interval where optimization takes place. The default is computed as described in Hofert et al. (2012).
- **start**: list of initial values, passed through.
- **...**: additional parameters passed to `optimize`.

Details

Exact formulas for the generator derivatives were derived in Hofert et al. (2012). Based on these formulas one can compute the (log-)densities of the Archimedean copulas. Note that for some densities, the formulas are numerically highly non-trivial to compute and considerable efforts were put in to make the computations numerically feasible even in large dimensions (see the source code of the Gumbel copula, for example). Both MLE and SMLE showed good performance in the simulation study conducted by Hofert et al. (2013) including the challenging 100-dimensional case. Alternative estimators (see also `enacopula`) often used because of their numerical feasibility, might break down in much smaller dimensions.

Note: SMLE for Clayton currently faces serious numerical issues and is due to further research. This is only interesting from a theoretical point of view, since the exact derivatives are known and numerically non-critical to evaluate.

Value

- **emle** an R object of class "mle2" (and thus useful for obtaining confidence intervals) with the (simulated) maximum likelihood estimator.
- **.emle** list as returned by `optimize()` including the maximum likelihood estimator (does not confidence intervals but is typically faster).

References

58


See Also

`mle2` from package `bbmle` and `mle` from `stats4` on which `mle2` is modeled. `enacopula` (wrapper for different estimators). `demo(opC-demo)` and `demo(GIG-demo)` for examples of two-parameter families.

Examples

```r
tau <- 0.25
(theta <- copGumbel@iTau(tau)) # 4/3
d <- 20
(cop <- onacopulaL("Gumbel", list(theta,1:d)))

set.seed(1)
n <- 200
U <- rnacopula(n,cop)

Estimation
system.time(efm <- emle(U, cop))
summary(efm) # using bblme's 'mle2' method

Profile likelihood plot [using S4 methods from bbmle/stats4] :
pfm <- profile(efm)
ci <- confint(pfm, level=0.95)
ci
stopifnot(ci[1] <= theta, theta <= ci[2])
plot(pfm, absVal=FALSE, # z against theta
 show.points=TRUE) # showing how it's interpolated
and show the true theta:
abline(v=theta, col="lightgray", lwd=2, lty=2)
axis(1, pos = 0, at=theta, label=quote(theta[0]))

Plot of the log-likelihood, MLE and conf.int.:
logL <- function(x) -efm@minuslogl(x)
 # == -sum(copGumbel@dacopula(U, theta=x, log=TRUE))
logL. <- Vectorize(logL)
I <- c(cop@copula@iTau(0.1), cop@copula@iTau(0.4))
curve(logL., from=I[1], to=I[2], xlab=quote(theta),
ylab="log-likelihood",
main="log-likelihood for Gumbel")
abline(v = c(theta, efm@coef), col="magenta", lwd=2, lty=2)
axis(1, at=c(theta, efm@coef), padj = c(-0.5, -0.8), hadj = -0.2,
 col.axis="magenta", label= expression(theta[0], hat(theta)[n]))
abline(v=ci, col="gray30", lwd=2, lty=3)
text(ci[2], extendrange(par("usr"))[3:4], f=-.04)[1],
 "95% conf. int.", col="gray30", adj = -0.1)
```
Description

Computes the empirical copula (according to a provided method) and auxiliary tools.

Usage

```r
empCopula(X, smoothing = c("none", "beta", "checkerboard"), offset = 0,
 ties.method = c("max", "average", "first", "last", "random", "min"))
C.n(u, X, smoothing = c("none", "beta", "checkerboard"), offset = 0,
 ties.method = c("max", "average", "first", "last", "random", "min"))
dCn(u, U, j.ind = 1:d, b = 1/sqrt(nrow(U)), ...)
F.n(x, X, offset = 0, smoothing = c("none", "beta", "checkerboard"))
Cn(x, w) #<-- deprecated! use C.n(w, x) instead!
toEmpMargins(U, x, ...)
```

Arguments

- **X**
  - an \((n,d)\)-matrix of pseudo-observations with \(d\) columns (as \(x\) or \(u\)). Recall that a multivariate random sample can be transformed to pseudo-observations via `pobs()`. For `F.n()` and if `smoothing != "none"`, \(X\) can also be a general, multivariate sample, in which case the empirical distribution function is computed.

- **u,w**
  - an \((m,d)\)-matrix with elements in \([0,1]\) whose rows contain the evaluation points of the empirical copula.

- **U**
  - an \((n,d)\)-matrix of pseudo- (or copula-) observations (elements in \([0,1]\), same number \(d\) of columns as \(u\) (for `dCn()`) or \(x\) (for `toEmpMargins()`).

- **x**
  - an \((m,d)\)-matrix whose rows contain the evaluation points of the empirical distribution function (if `smoothing = "none"`) or copula (if `smoothing != "none"`).

- **smoothing**
  - character string specifying whether the empirical distribution function (for `F.n()` or copula (for `C.n()`) is computed (if `smoothing = "none"`), or whether the empirical beta copula (smoothing = "beta") or the empirical checkerboard copula (smoothing = "checkerboard") is computed.

- **ties.method**
  - character string specifying how ranks should be computed if there are ties in any of the coordinate samples of \(x\); passed to `pobs()`.

- **j.ind**
  - integer vector of indices \(j\) between 1 and \(d\) indicating the dimensions with respect to which first-order partial derivatives are approximated.

- **b**
  - numeric giving the bandwidth for approximating first-order partial derivatives.

- **offset**
  - used in scaling the result which is of the form \(\text{sum}(...) / (n+offset)\); defaults to zero.

- **...**
  - additional arguments passed to `dCn()` or `sort()` underlying `toEmpMargins()`.
Details
Given pseudo-observations from a distribution with continuous margins and copula $C$, the empirical copula is the (default) empirical distribution function of these pseudo-observations. It is thus a natural nonparametric estimator of $C$. The function $C(n)$ computes the empirical copula or two alternative smoothed versions of it: the empirical beta copula or the empirical checkerboard copula; see Eqs. (2.1) and (4.1) in Segers, Sibuya and Tsukahara (2017), and the references therein. $empCopula()$ is the constructor of an object of class $empCopula$.

The function $dCn()$ approximates first-order partial derivatives of the unknown copula using the empirical copula.

The function $F.n()$ computes the empirical distribution function of a multivariate sample. Note that $C.n(u,X,smoothing="none",*)$ simply calls $F.n(u,pobs(X),*)$ after checking $u$.

There are several asymptotically equivalent definitions of the empirical copula. $C.n(,smoothing = "none")$ is simply defined as the empirical distribution function computed from the pseudo-observations, that is,

$$C_n(u) = \frac{1}{n} \sum_{i=1}^{n} 1\{\hat{U}_i \leq u\},$$

where $\hat{U}_i$, $i \in \{1, \ldots, n\}$, denote the pseudo-observations and $n$ the sample size. Internally, $C.n(,smoothing = "none")$ is just a wrapper for $F.n()$ and is expected to be fed with the pseudo-observations.

The approximation for the $j$th partial derivative of the unknown copula $C$ is implemented as, for example, in Rémillard and Scaillet (2009), and given by

$$\hat{C}_{jn}(u) = \frac{C_n(u_1, \ldots, u_{j-1}, min(u_j + b, 1), u_{j+1}, \ldots, u_d) - C_n(u_1, \ldots, u_{j-1}, max(u_j - b, 0), u_{j+1}, \ldots, u_d)}{2b},$$

where $b$ denotes the bandwidth and $C_n$ the empirical copula.

Value
$empCopula()$ is the constructor for objects of class $empCopula$.
$C.n()$ returns the empirical copula of the pseudo-observations $X$ evaluated at $u$ (or a smoothed version of it).
$dCn()$ returns a vector (length(j.ind) is 1) or a matrix (with number of columns equal to length(j.ind)), containing the approximated first-order partial derivatives of the unknown copula at $u$ with respect to the arguments in j.ind.
$F.n()$ returns the empirical distribution function of $X$ evaluated at $x$ if smoothing = "none", the empirical beta copula evaluated at $x$ if smoothing = "beta" and the empirical checkerboard copula evaluated at $x$ if smoothing = "checkerboard".
$toEmpMargins()$ transforms the copula sample $U$ to the empirical margins based on the sample $x$.

Note
The first version of our empirical copula implementation, $Cn()$, had its two arguments reversed compared to $C.n()$, and is deprecated now. You must swap its arguments to transform to new code.

The use of the two smoothed versions assumes implicitly no ties in the component samples of the data.
empCopula

References


See Also

`pobs()` for computing pseudo-observations.

Examples

```r
Generate data X (from a meta-Gumbel model with N(0,1) margins)
n <- 100
d <- 3
family <- "Gumbel"
theta <- 2
cop <- onacopulaL(family, list(theta=theta, 1:d))
set.seed(1)
X <- qnorm(rCopula(n, cop)) # meta-Gumbel data with N(0,1) margins

Evaluate empirical copula
u <- matrix(runif(n*d), n, d) # random points were to evaluate the empirical copula
ec <- C.n(u, X = X)

Compare the empirical copula with the true copula
pc <- pCopula(u, copula = cop)
mean(abs(pc - ec)) # ~= 0.012 -- increase n to decrease this error

The same for the two smoothed versions
beta <- C.n(u, X, smoothing = "beta")
mean(abs(pc - beta))
check <- C.n(u, X, smoothing = "checkerboard")
mean(abs(pc - check))

Compare the empirical copula with F.n(pobs())
U <- pobs(X) # pseudo-observations
stopifnot(identical(ec, F.n(u, X = pobs(U)))) # even identical

Compare the empirical copula based on U at U with the Kendall distribution
Note: Theoretically, C(U) ~ K, so K(C.n(U, U = U)) should approximately be U(0,1)
plot(ecdf(pK(C.n(U, X), cop = cop@copula, d = d)), asp = 1, xaxs="i", yaxs="i")
segments(0,0, 1,1, col=adjustcolor("blue",1/3), lwd=5, lty = 2)
abline(v=0:1, col="gray70", lty = 2)
```
## Compare the empirical copula and the true copula on the diagonal

```r
C.n.diag <- function(u) C.n(do.call(cbind, rep(list(u), d)), X = X) # diagonal of C_n
C.diag <- function(u) pCopula(do.call(cbind, rep(list(u), d)), cop) # diagonal of C
```

```r
curve(C.n.diag, from = 0, to = 1, main = paste("True vs empirical diagonal of a", family, "copula"), xlab = "u", ylab = quote("True C(u,...,u) and empirical\"C[n](u,...,u)\""))
curve(C.diag, lty = 2, add = TRUE) # add true copula diagonal
legend("bottomright", lty = 2:1, bty = "n", inset = 0.02,
legend = expression(C, C[n]))
```

## Approximate partial derivatives w.r.t. the 2nd and 3rd component

```r
j.ind <- 2:3 # indices w.r.t. which the partial derivatives are computed
```

```r
Partial derivatives based on the empirical copula and the true copula
```

```r
j.ind <- 2:3 # indices w.r.t. which the partial derivatives are computed
der23 <- dCn(u, U = pobs(U), j.ind = j.ind)
der23. <- copula:::dCdu(archmCopula(family, param=theta, dim=d), u=u)[,,j.ind]
```

## Approximation error

```r
summary(as.vector(abs(der23-der23.)))
```

## For an example of using F.n(), see help(mvdc)% ./Mvdc.Rd

## Generate a bivariate empirical copula object (various smoothing methods)

```r
n <- 10 # sample size
d <- 2 # dimension
```

```r
set.seed(271)
X <- rCopula(n, copula = claytonCopula(3, dim = d))
ecop.orig <- empCopula(X) # smoothing = "none"
ecop.beta <- empCopula(X, smoothing = "beta")
ecop.check <- empCopula(X, smoothing = "checkerboard")
```

## Sample from these (smoothed) empirical copulas

```r
m <- 50
U.orig <- rCopula(m, copula = ecop.orig)
U.beta <- rCopula(m, copula = ecop.beta)
U.check <- rCopula(m, copula = ecop.check)
```

## Note: They all obviously just resample from the original n = 10 observations

## Plot

```r
wireframe2(ecop.orig, FUN = pCopula, draw.4.pCplines = FALSE)
wireframe2(ecop.beta, FUN = pCopula)
wireframe2(ecop.check, FUN = pCopula)
```

## Density (only exists when smoothing = "beta")

```r
wireframe2(ecop.beta, FUN = dCopula)
```

## Transform a copula sample to empirical margins

```r
set.seed(271)
X <- qexp(rCopula(1000, copula = claytonCopula(2))) # multivariate distribution
U <- rCopula(917, copula = gumbelCopula(2)) # new copula sample
X. <- toEmpMargins(U, x = X) # transform U to the empirical margins of X
plot(X.) # Gumbel sample with empirical margins of X
```
empCopula-class

Class "empCopula" of Empirical Copulas

Description

Empirical Copula class.

Objects from the Class

Created by calls of the form new("empCopula", ...) or rather typically by empCopula() based on a matrix X of pseudo-observations. Smoothing options are available, see there.

Slots

X: matrix of pseudo-observations based on which the empirical copula is constructed.
smoothing: character string determining the smoothing method.
offset: numeric giving the shift in the normalizing factor for computing the empirical copula.
ties.method: a string indicating rank()’s ties method for computing the empirical copula.

See Also

The class constructor are empCopula(), also for examples.

enacopula

Estimation Procedures for (Nested) Archimedean Copulas

Description

A set of ten different estimators, currently for one-parameter Archimedean copulas, of possibly quite high dimensions.

Usage

enacopula(u, cop,
    method = c("mle", "smle", "dmle",
               "mde.chisq.CvM", "mde.chisq.KS",
               "mde.gamma.CvM", "mde.gamma.KS",
               "tau.tau.mean", "tau.theta.mean", "beta"),
    n.MC = if (method == "smle") 10000 else 0,
    interval = initOpt(cop@copula@name),
    xargs = list(), ...)
Arguments

\(u\) \(n \times d\)-matrix of (pseudo-)observations (each value in \([0,1]\)) from the copula to be estimated, where \(n\) denotes the sample size and \(d\) the dimension. Consider applying the function `pobs` first in order to obtain \(u\).

cop \ `outer_nacopula` to be estimated (currently only Archimedean copulas are provided).

method a character string specifying the estimation method to be used, which has to be one (or a unique abbreviation) of

"mle" maximum likelihood estimator (MLE) computed via `.emle`.

"smle" simulated maximum likelihood estimator (SMLE) computed with the function `.emle`, where \(n.MC\) gives the Monte Carlo sample size.

"dmle" MLE based on the diagonal (DMLE); see `edmle`.

"mde.chisq.CvM" minimum distance estimator based on the chisq distribution and Cramér-von Mises distance; see `emde`.

"mde.chisq.KS" minimum distance estimation based on the chisq distribution and Kolmogorov-Smirnov distance; see `emde`.

"mde.gamma.CvM" minimum distance estimation based on the Erlang distribution and Cramér-von Mises distance; see `emde`.

"mde.gamma.KS" minimum distance estimation based on the Erlang distribution and Kolmogorov-Smirnov distance; see `emde`.

"tau.tau.mean" averaged pairwise Kendall’s tau estimator

"tau.theta.mean" average of pairwise Kendall’s tau estimators

"beta" multivariate Blomqvist’s beta estimator

\(n.MC\) only for method = "smle": integer, sample size for simulated maximum likelihood estimation.

interval bivariate vector denoting the interval where optimization takes place. The default is computed as described in Hofert et al. (2012). Used for all methods except "tau.tau.mean" and "tau.theta.mean".

xargs list of additional arguments for the chosen estimation method.

... additional arguments passed to `optimize`.

Details

`enacopula` serves as a wrapper for the different implemented estimators and provides a uniform framework to utilize them. For more information, see the single estimators as given in the section ‘See Also’.

Note that Hofert, Mächler, and McNeil (2013) compared these estimators. Their findings include a rather poor performance and numerically challenging problems of some of these estimators. In particular, the estimators obtained by method="mde.gamma.CvM", method="mde.gamma.KS", method="tau.theta.mean", and method="beta" should be used with care (or not at all). Overall, MLE performed best (by far).

Value

the estimated parameter, \(\hat{\theta}\), that is, currently a number as only one-parameter Archimedean copulas are considered.
Various Estimators for (Nested) Archimedean Copulas

Description

Various Estimators for (Nested) Archimedean Copulas, namely,

**ebeta**  Method-of-moments-like estimator based on (a multivariate version of) Blomqvist’s beta.

**edmle** Maximum likelihood estimator based on the diagonal of a (nested) Archimedean copula.

**etau**  Method-of-moments-like estimators based on (bivariate) Kendall’s tau.

References


See Also

`emle` which returns an object of "mle" providing useful methods not available for other estimators. `demo(opc-demo)` and `vignette("GIG",package="copula")` for examples of two-parameter families. `edmle` for the diagonal maximum likelihood estimator. `emde` for the minimum distance estimators. `etau` for the estimators based on Kendall’s tau. `ebeta` for the estimator based on Blomqvist’s beta.

Examples

```
tau <- 0.25
(theta <- copGumbel@iTau(tau)) # 4/3
d <- 12
(cop <- onacopulaL("Gumbel", list(theta,1:d)))

set.seed(1)
n <- 100
U <- rnacopula(n, cop)

meths <- eval(formals(enacopula)$method)

fun <- function(meth, u, cop, theta) {
 run.time <- system.time(val <- enacopula(u, cop=cop, method=meth))
 list(value=val, error=val-theta, utime.ms=100*run.time[[1]])
}
t(res <- sapply(meths, fun, u=U, cop=cop, theta=theta))
```
Usage

\texttt{ebeta(u, cop, interval = initOpt(cop@copula@name), \ldots)}
\texttt{edmle(u, cop, interval = initOpt(cop@copula@name), warn=TRUE, \ldots)}
\texttt{etau(u, cop, method = c("tau.mean", "theta.mean"), warn=TRUE, \ldots)}

Arguments

\textbf{u} \hspace{1cm} \text{n} \times \text{d}-\text{matrix of (pseudo-)observations (each value in } [0, 1]) \text{ from the copula, where } n \text{ denotes the sample size and } d \text{ the dimension.}

\textbf{cop} \hspace{1cm} \text{\texttt{outer_nacopula} to be estimated (currently only Archimedean copulas are provided).}

\textbf{interval} \hspace{1cm} \text{bivariate vector denoting the interval where optimization takes place. The default is computed as described in Hofert et al. (2013).}

\textbf{method} \hspace{1cm} \text{a character string specifying the method (only for etau), which has to be one (or a unique abbreviation) of}

\texttt{"tau.mean"} \hspace{1cm} \text{method-of-moments-like estimator based on the average of pairwise sample versions of Kendall’s tau;}

\texttt{"theta.mean"} \hspace{1cm} \text{average of the method-of-moments-like Kendall’s tau estimators.}

\textbf{warn} \hspace{1cm} \text{logical indicating if warnings are printed:}

\texttt{edmle()} \hspace{1cm} \text{for the family of "Gumbel" if the diagonal maximum-likelihood estimator is smaller than 1.}

\texttt{etau()} \hspace{1cm} \text{for the family of "AMH" if tau is outside } [0, 1/3] \text{ and in general if at least one of the computed pairwise sample versions of Kendall’s tau is negative.}

\ldots \hspace{1cm} \text{additional arguments passed to \texttt{corKendall} (for etau, but see ‘Details’), to \texttt{optimize} (for edmle), or to \texttt{safeUroot} (for ebeta).}

Details

For \texttt{ebeta}, the parameter is estimated with a method-of-moments-like procedure such that the population version of the multivariate Blomqvist’s beta matches its sample version.

Note that the copula diagonal is a distribution function and the maximum of all components of a random vector following the copula is distributed according to this distribution function. For \texttt{edmle}, the parameter is estimated via maximum-likelihood estimation based on the diagonal.

For \texttt{etau}, \texttt{corKendall(u, \ldots)} is used and if there are no \texttt{NAs} in \texttt{u}, by default (if no additional arguments are provided), \texttt{corKendall()} calls the \texttt{O(nlog(n))} fast \texttt{cor.fk()} from package \texttt{pcaPP} instead of the \texttt{O(n^2)} \texttt{cor(*,method="kendall")}. Conversely, when \texttt{u} has \texttt{NAs}, by default, \texttt{corKendall(u, \ldots)} will use \texttt{cor(u,method="kendall",use = "pairwise")} such that \texttt{etau(u,\ast\ast)} will work.

Furthermore, \texttt{method="tau.mean"} means that the average of sample versions of Kendall’s tau are computed first and then the parameter is determined such that the population version of Kendall’s tau matches this average (if possible); the \texttt{method="theta.mean"} stands for first computing all pairwise Kendall’s tau estimators and then returning the mean of these estimators.

For more details, see Hofert et al. (2013).

Note that these estimators should be used with care; see the performance results in Hofert et al. (2013). In particular, \texttt{etau} should be used with the (default) method \texttt{"tau.mean"} since \texttt{"theta.mean"} is both slower and more prone to errors.
Value

ebeta  the return value of safeUroot (that is, typically almost the same as the value of uniroot) giving the Blomqvist beta estimator.
edmle list as returned by optimize, including the diagonal maximum likelihood estimator.
etau  method-of-moments-like estimator based on Kendall’s tau for the chosen method.

References


See Also

corKendall().
The more sophisticated estimators emle (Maximum Likelihood) and emde (Minimum Distance).
enacopula (wrapper for different estimators).

Examples

tau <- 0.25
(theta <- copGumbel@iTau(tau)) # 4/3 = 1.333..
d <- 20
(cop <- onacopulaL("Gumbel", list(theta,1:d)))

set.seed(1)
n <- 200
U <- rnacopula(n, cop)

system.time(theta.hat.beta <- ebeta(U, cop=cop))
theta.hat.beta$root

system.time(theta.hat.dmle <- edmle(U, cop=cop))
theta.hat.dmle$minimum

system.time(theta.hat.etau <- etau(U, cop=cop, method="tau.mean"))
theta.hat.etau

system.time(theta.hat.etau. <- etau(U, cop=cop, method="theta.mean"))
theta.hat.etau.

## etau() in the case of missing values (NA's)
## ------ ---------------------
## @title add Missing Values completely at random
## @param x matrix or vector
## @param prob desired probability ("fraction") of missing values (\code{NA}s).
## @return x[] with some (100*prob percent) entries replaced by \code{NA}s.
addNAs <- function(x, prob) {
  np <- length(x)
  x[sample.int(np, prob*np)] <- NA
x
}

## UM[] := U[] with 5% missing values
set.seed(7); UM <- addNAs(U, p = 0.05)
mean(is.na(UM)) # 0.05

## This error if x has NA's was happening for etau(UM, cop=cop)
## before copula version 0.999-17 (June 2017):
try(eM <- etau(UM, cop=cop, use = "everything"))
# --> Error ... NA/NaN/Inf in foreign function call

## The new default:
eM0 <- etau(UM, cop=cop, use = "pairwise")
eM1 <- etau(UM, cop=cop, use = "complete")
## use = "complete" is really equivalent to dropping all obs. with with missing values:
stopifnot(all.equal(eM1, etau(na.omit(UM), cop=cop), tol = 1e-15))
## but use = "pairwise" ---> cor(*, use = "pairwise") is much better:
rbind(etau.U = theta.hat.etau, etau.UM.pairwise = eM0, etau.UM.complete = eM1)

---

**evCopula**  
*Construction of Extreme-Value Copula Objects*

**Description**

Constructs an extreme-value copula class object with its corresponding parameter.

**Usage**

```r
evCopula(family, param, dim = 2, ...)
galambosCopula(param)
huslerReissCopula(param)
tawnCopula(param)
tevCopula(param, df = 4, df.fixed = FALSE)
```

**Arguments**

- **family**  
a character string specifying the family of an extreme-value copula. Currently implemented are "galambos", "gumbel", "huslerReiss", "tawn", "tev".
- **param**  
a numeric vector specifying the parameter values.
- **dim**  
the dimension of the copula. Currently, only "gumbel" allows dim > 2.
- **df**  
a number specifying the degrees of freedom of the t extreme-value copula, tevCopula().
- **df.fixed**  
logical; if true, the degrees of freedom will never be considered as a parameter to be estimated; FALSE means that df will be estimated if the object is passed as argument to fitCopula.
- **...**  
currently nothing.
evCopula

Value

An object of class "gumbelCopula", "galambosCopula", "huslerReissCopula", "tawnCopula", or "tevCopula".

Note

The Gumbel copula is both an Archimedean and an extreme-value copula, with principal documentation on gumbelCopula (or archmCopula).

See Also

ellipCopula, archmCopula, gofEVCopula, An.

Examples

## Gumbel is both
stopifnot(identical( evCopula("gumbel"), gumbelCopula()),
    identical(archmCopula("gumbel"), gumbelCopula()))

## For a given degree of dependence these copulas are strikingly similar:

tau <- 1/3
gumbel.cop <- gumbelCopula (iTau(gumbelCopula(), tau))
galambos.cop <- galambosCopula (iTau(galambosCopula(), tau))
huslerReiss.cop <- huslerReissCopula(iTau(huslerReissCopula(), tau))
tawn.cop <- tawnCopula (iTau(tawnCopula(), tau))
tev.cop <- tevCopula (iTau(tevCopula(), tau))

curve(A(gumbel.cop, x), 0, 1, ylab = "A(<cop>( iTau(<cop>(), tau)), x)",
    main = paste("A(x) for five Extreme Value cop. w/ tau =", format(tau)))
curve(A(galambos.cop, x), lty=2, add=TRUE)
curve(A(huslerReiss.cop, x), lty=3, add=TRUE)
curve(A(tawn.cop, x), lty=4, add=TRUE)
curve(A(tev.cop, x), lty=5, col=2, add=TRUE)# very close to Gumbel

## And look at the differences
curve(A(gumbel.cop, x) - A(tawn.cop, x), ylim = c(-1,1)*0.005,
    ylab = '', main = "A(<Gumbel>, x) - A(<EV-Cop.>, x)"

abline(h=0, lty=2)
curve(A(gumbel.cop, x) - A(galambos.cop, x), add=TRUE, col=2)
curve(A(gumbel.cop, x) - A(huslerReiss.cop, x), add=TRUE, col=3)
curve(A(gumbel.cop, x) - A(tev.cop, x), add=TRUE, col=4, lwd=2)

## the t-EV-copula has always positive tau:
curve(vapply(x, function(x) tau(tevCopula(x)), 0.), -1, 1,
    n=257, ylim=0:1, xlab=quote(rho),ylab=quote(tau),
    main= quote(tau( tevCopula(rho) )), col = 2, lwd = 2)
rect(-1,0,1,1, lty = 2, border = adjustcolor("black", 0.5))
evCopula-class

Classes Representing Extreme-Value Copulas

Description

Class evCopula is the virtual (mother) class of all extreme-value copulas. There currently are five subclasses, "galambosCopula", "huslerReissCopula", "tawnCopula", "tevCopula", and "gumbelCopula", the latter of which is also an Archimedean copula, see the page for class "archmCopula".

Objects from the Class

evCopula is a virtual class: No objects may be created from it. Objects of class "galambosCopula" etc, can be created by calls of the form new("galambosCopula",...), but typically rather by galambosCopula(), etc, see there.

Slots

All slots are inherited from the mother class "copula", see there.

Methods

dCopula signature(copula = "galambosCopula"): ...  
pCopula signature(copula = "galambosCopula"): ...  
rCopula signature(copula = "galambosCopula"): ...  
dCopula signature(copula = "huslerReissCopula"): ...  
pCopula signature(copula = "huslerReissCopula"): ...  
rCopula signature(copula = "huslerReissCopula"): ...

Extends

Class "evCopula" extends class "copula" directly. Classes "galambosCopula", "huslerReissCopula", "tawnCopula", and "tevCopula" extend class "evCopula" directly.

Note

Objects of class "gumbelCopula" are also of class "archmCopula".

See Also

evCopula, evTestC, evTestK, gofEVCopula, copula-class.
Bivariate Test of Extreme-Value Dependence Based on Pickands’ Dependence Function

Description

Test of bivariate extreme-value dependence based on the process comparing the empirical copula with a natural nonparametric estimator of the unknown copula derived under extreme-value dependence. The test statistics are defined in the third reference. Approximate p-values for the test statistics are obtained by means of a multiplier technique.

Usage

evTestA(x, N = 1000, derivatives = c("An","Cn"),
    ties.method = eval(formals(rank)$ties.method),
    trace.lev = 0, report.err = FALSE)

Arguments

- **x**: a data matrix that will be transformed to pseudo-observations.
- **N**: number of multiplier iterations to be used to simulate realizations of the test statistic under the null hypothesis.
- **derivatives**: string specifying how the derivatives of the unknown copula are estimated, either "An" or "Cn". The former gives better results for samples smaller than 400 but is slower.
- **ties.method**: character string specifying how ranks should be computed if there are ties in any of the coordinate samples of x; passed to pobs.
- **trace.lev**: integer indicating the level of diagnostic tracing to be printed to the console (from low-level algorithm).
- **report.err**: logical indicating if numerical integration errors should be reported in a summary way.

Details

More details are available in the third reference. See also Genest and Segers (2009) and Remillard and Scaillet (2009).

Value

An object of class htest which is a list, some of the components of which are

- **statistic**: value of the test statistic.
- **p.value**: corresponding approximate p-value.
Note

This test was derived under the assumption of continuous margins, which implies that ties occur with probability zero. The presence of ties in the data might substantially affect the approximate p-value.

References


See Also


Examples

```r
Do these data come from an extreme-value copula?
set.seed(63)
uG <- rCopula(100, gumbelCopula(3))
uC <- rCopula(100, claytonCopula(3))
these two take 21 sec on nb-mm4 (Intel Core i7-5600U @ 2.60GHz):
evTestA(uG)
evTestA(uC) # significant even though Clayton is *NOT* an extreme value copula

These are fast:
evTestA(uG, derivatives = "Cn")
evTestA(uC, derivatives = "Cn") # small p-value even though Clayton is *NOT* an EV copula.
```

---

**evTestC**  
*Large-sample Test of Multivariate Extreme-Value Dependence*

**Description**

Test of multivariate extreme-value dependence based on the empirical copula and max-stability. The test statistics are defined in the second reference. Approximate p-values for the test statistics are obtained by means of a *multiplier* technique.

**Usage**

`evTestC(x, N = 1000)`
evTestC

Arguments

x    a data matrix that will be transformed to pseudo-observations.
N    number of multiplier iterations to be used to simulate realizations of the test statistic under the null hypothesis.

Details

More details are available in the second reference. See also Remillard and Scaillet (2009).

Value

An object of class htest which is a list, some of the components of which are

statistic    value of the test statistic.
p.value      corresponding approximate p-value.

Note

This test was derived under the assumption of continuous margins, which implies that ties occur with probability zero. The presence of ties in the data might substantially affect the approximate p-value.

References


See Also


Examples

```r
Do these data come from an extreme-value copula?
evTestC(rCopula(200, gumbelCopula(3)))
evTestC(rCopula(200, claytonCopula(3)))

Three-dimensional examples
evTestC(rCopula(200, gumbelCopula(3, dim=3)))
evTestC(rCopula(200, claytonCopula(3, dim=3)))
```
**Description**

Test of extreme-value dependence based on the bivariate probability integral transformation. The test statistic is defined in Ben Ghorbal, G. Nešlehová, and Genest (2009).

**Usage**

```r
evTestK(x, method = c("fsample","asymptotic","jackknife"), ties = NA, N = 100)
```

**Arguments**

- `x` a data matrix.
- `method` specifies the variance estimation method; can be either "fsample" (finite-sample, the default), "asymptotic" or "jackknife".
- `ties` logical; if TRUE, the original test is adapted to take the presence of ties in the coordinate samples of x into account; the default value of NA indicates that the presence/absence of ties will be checked for automatically.
- `N` number of samples to be used to estimate a bias term if ties = TRUE.

**Details**

The code for this test was generously provided by Johanna G. Nešlehová. More details are available in Appendix B of Ben Ghorbal, G. Nešlehová and Genest (2009).

**Value**

An object of class htest which is a list, some of the components of which are

- `statistic` value of the test statistic.
- `p.value` corresponding p-value.

**References**


**See Also**

Examples

set.seed(321)
## Do the data come from an extreme-value copula?
evTestK(Ug <- rCopula(200, gumbelCopula(3))) # not significant => yes, EV
dim(Uc <- rCopula(200, claytonCopula(3)))
## Clayton: tests are highly significant => no, not EV
(K1 <- evTestK(Uc))
(K2 <- evTestK(Uc, method = "asymptotic"))

system.time(print(K3 <- evTestK(Uc, method = "jackknife")))
## slower: 1.06 sec (2015 intel core i7)

Description

Test for assessing the exchangeability of the underlying bivariate copula when it is either extreme-value or left-tail decreasing. The test uses the nonparametric estimators of the Pickands dependence function studied by Genest and Segers (2009).

The test statistic is defined in the second reference. An approximate p-value for the test statistic is obtained by means of a multiplier technique if there are no ties in the component series of the bivariate data, or by means of an appropriate bootstrap otherwise.

Usage

exchEVTest(x, N = 1000, estimator = c("CFG", "Pickands"),
ties = NA, ties.method = eval(formals(rank)$ties.method),
m = 100, derivatives = c("Cn", "An"))

Arguments

x a data matrix that will be transformed to pseudo-observations.
N number of multiplier or bootstrap iterations to be used to simulate realizations of the test statistic under the null hypothesis.
estimator string specifying which nonparametric estimator of the Pickands dependence function A() to use; can be either "CFG" or "Pickands"; see Genest and Segers (2009).
ties logical; if FALSE, approximate p-values are computed by means of a multiplier bootstrap; if TRUE, a bootstrap adapted to the presence of ties in any of the coordinate samples of x is used; the default value of NA indicates that the presence/absence of ties will be checked for automatically.
ties.method string specifying how ranks should be computed if there are ties in any of the coordinate samples of x; passed to pobs.
derivatives a string specifying how the derivatives of the unknown copula are estimated; can be either "An" or "Cn". The former should be used under the assumption of extreme-value dependence. The latter is faster; see the second reference.

m integer specifying the size of the integration grid for the statistic.

Details

More details are available in the references.

Value

An object of class htest which is a list, some of the components of which are

statistic value of the test statistic.
pvalue corresponding approximate p-value.

References


See Also

exchTest, radSymTest, gofCopula.

Examples

```r
Data from an exchangeable left-tail decreasing copulas
exchEVTest(rCopula(200, gumbelCopula(3)))
exchEVTest(rCopula(200, claytonCopula(3)))

An asymmetric Khoudraji-Gumbel-Hougaard copula
kc <- khoudrajiCopula/copula1 = indepCopula(),
copula2 = gumbelCopula(4),
shapes = c(0.4, 0.95))
exchEVTest(rCopula(200, kc))
```
Test of Exchangeability for a Bivariate Copula

Description

Test for assessing the exchangeability of the underlying bivariate copula based on the empirical copula. The test statistics are defined in the first two references. Approximate p-values for the test statistics are obtained by means of a multiplier technique if there are no ties in the component series of the bivariate data, or by means of an appropriate bootstrap otherwise.

Usage

```r
exchTest(x, N = 1000, ties = NA,
 ties.method = eval(formals(rank)$ties.method), m = 0)
```

Arguments

- **x**: a data matrix that will be transformed to pseudo-observations.
- **N**: number of multiplier or bootstrap iterations to be used to simulate realizations of the test statistic under the null hypothesis.
- **ties**: logical; if FALSE, approximate p-values are computed by means of a multiplier bootstrap; if TRUE, a bootstrap adapted to the presence of ties in any of the coordinate samples of `x` is used; the default value of NA indicates that the presence/absence of ties will be checked for automatically.
- **ties.method**: string specifying how ranks should be computed if there are ties in any of the coordinate samples of `x`; passed to `pobs`.
- **m**: if m=0, integration in the Cramér–von Mises statistic is carried out with respect to the empirical copula; if m > 0, integration is carried out with respect to the Lebesgue measure and m specifies the size of the integration grid.

Details

More details are available in the references.

Value

An object of class `htest` which is a list, some of the components of which are

- **statistic**: value of the test statistic.
- **p.value**: corresponding approximate p-value.
References


See Also

radSymTest, exchEVTest, gofCopula.

Examples

```r
Data from an exchangeable copulas
exchTest(rCopula(200, gumbelCopula(3)))
exchTest(rCopula(200, claytonCopula(3)))
An asymmetric Khoudraji-Clayton copula
kc <- khoudrajiCopula(copula1 = indepCopula(),
 copula2 = claytonCopula(6),
 shapes = c(0.4, 0.95))
exchTest(rCopula(200, kc))
```

---

### fgmCopula

**Construction of a fgmCopula Class Object**

**Description**

Constructs a multivariate multiparameter Farlie-Gumbel-Morgenstern copula class object with its corresponding parameters and dimension.

**Usage**

fgmCopula(param, dim = 2)

**Arguments**

- **param**
  - a numeric vector specifying the parameter values.
- **dim**
  - the dimension of the copula.

**Value**

A Farlie-Gumbel-Morgenstern copula object of class "fgmCopula".
Note

The verification of the validity of the parameter values is of high complexity and may not work for high dimensional copulas.

The random number generation needs to be properly tested, especially for dimensions higher than 2.

References


See Also

Copula, copula-class, fitCopula.

Examples

```r
a bivariate example
fgm.cop <- fgmCopula(1)
x <- rCopula(1000, fgm.cop)
cor(x, method = "kendall")
tau(fgm.cop)
cor(x, method = "spearman")
rho(fgm.cop)
persp(fgm.cop, dCopula)
contour(fgm.cop, dCopula)

a trivariate example with wrong parameter values
try(
 fgm2.cop <- fgmCopula(c(1,1,1,1), dim = 3)
) # Error: "Bad vector of parameters"

a trivariate example with satisfactory parameter values
fgm2.cop <- fgmCopula(c(.2,-.2,-.4,.6), dim = 3)
fgm2.cop
```

---

### fgmCopula-class

Class "fgmCopula" - Multivariate Multiparameter Farlie-Gumbel-Morgenstern Copulas

Description

The class of multivariate multiparameter Farlie-Gumbel-Morgenstern copulas are typically created via `fgmCopula(..)`.

Objects from the Class

Objects are typically created by `fgmCopula(..)`, or more low-level by (careful) calls to `new("fgmCopula", ..).`
Slots

exprdist: Object of class "expression", expressions for the cdf and pdf of the copula. These expressions are used in function pCopula() and dCopula().

subsets.char: Object of class "character", containing the subsets of integers used for naming the parameters.

dimension: Object of class "numeric", the dimension of the copula.

parameters: Object of class "numeric", parameter values.

param.names: Object of class "character", parameter names.

param.lowbnd: Object of class "numeric", parameter lower bound.

param.upbnd: Object of class "numeric", parameter upper bound.

fullname: Object of class "character", family names of the copula (deprecated).

Methods

dCopula signature(copula = "fgmCopula"): ...

pCopula signature(copula = "fgmCopula"): ...

rCopula signature(copula = "fgmCopula"): ...

Extends

Class "fgmCopula" extends class "copula" directly.

Note

The verification of the validity of the parameter values is of high complexity and may not work for high dimensional copulas.

The random number generation needs to be properly tested, especially for dimensions higher than 2.

References


See Also

copula-class, fgmCopula-class: to create such objects, use fgmCopula(); see there, also for examples.
Description

Constructs the Fréchet-Hoeffding lower and upper bound copulas aka $W$ and $M$.

Usage

\[
\text{fhCopula}(\text{family} = \text{c("upper", "lower")}, \text{dim} = 2L)
\]

\[
\text{lowfhCopula}(\text{dim} = 2L)
\]

\[
\text{upfhCopula}(\text{dim} = 2L)
\]

Arguments

- family: a character string specifying the Fréchet-Hoeffding bound copula.
- dim: the dimension of the copula; note that the lower Fréchet-Hoeffding bound is only available in the bivariate case.

Value

A copula object of class "lowfhCopula" or "upfhCopula".

Note

fhCopula() is a wrapper for lowfhCopula() and upfhCopula().

The dCopula() method will simply return an error for these copulas (as their density does not exist). Also, since the Fréchet-Hoeffding bound copulas are not parametric, certain methods available for parametric copulas are not available.

Examples

```r
Lower bound W : -------------------------
try(W <- lowfhCopula(dim = 3)) # lower bound is *not* a copula for dim > 2
W <- lowfhCopula()
wireframe2(W, FUN = pCopula)
plot(W, n=100) # perfect anti-correlation (rho = tau = -1)

Upper bound M : -------------------------
wireframe2(upfhCopula(dim = 2), pCopula)
M <- upfhCopula(dim = 3)
set.seed(271)
splom2(M, n = 100) # "random" data: all perfectly correlated
```
fhCopula-class

Class "fhCopula" of Fréchet-Hoeffding Bound Copulas

Description

Fréchet-Hoeffding bound copula class.

Objects from the Class

Created by calls of the form new("fhCopula",...) or rather typically by fhCopula(), lowfhCopula(), or upfhCopula(). Actual (sub) classes are the lower and upper Fréchet-Hoeffding bound copulas lowfhCopula() (W), and upfhCopula() (M).

Slots

dimension: inherited from super class "dimCopula".

dexprdist: an expression of length two, named "cdf" with the R expression of the CDF, and "pdf" which is empty as the PDF does not exist (everywhere).

See Also

ellipCopula, archmCopula, evCopula.

The class constructors are fhCopula(), lowfhCopula(), and upfhCopula(). See there for examples.

fitCopula

Fitting Copulas to Data – Copula Parameter Estimation

Description

Parameter estimation of copulas, i.e., fitting of a copula model to multivariate (possibly “pseudo”) observations.

Usage

loglikCopula(param, u, copula)

## Generic [and "rotCopula" method] :
fitCopula(copula, data, ...)
## S4 method for signature 'copula'
fitCopula(copula, data, 
method = c("mpl", "ml", "itau", "irho", "itau.mpl"),
posDef = is(copula, "ellipCopula"),
start = NULL, lower = NULL, upper = NULL,
optim.method = optimMeth(copula, method, dim = d),


optim.control = list(maxit=1000),
estimate.variance = NA, hideWarnings = FALSE, ...)

optimMeth(copula, method, dim)

Arguments

param vector of parameter values.

u $n \times d$-matrix of (pseudo-)observations in $[0, 1]^d$ for computing the copula log-likelihood, where $n$ denotes the sample size and $d$ the dimension. Consider applying the function $\text{pobs}()$ first in order to obtain such data.

data as $u$, an $n \times d$-matrix of data. For method being "mpl", "ml" or "itau.mpl", this has to be data in $[0, 1]^d$. For method being "itau" or "irho", it can either be data in $[0, 1]^d$ or in the whole $d$-dimensional space.

copula a "copula" object.

method a character string specifying the copula parameter estimator used. This can be one of:

"mpl" Maximum pseudo-likelihood estimator (based on "pseudo-observations" in $[0, 1]^d$, typical obtained via $\text{pobs}()$).

"ml" As "mpl" just with a different variance estimator. For this to be correct (thus giving the true MLE), data are assumed to be observations from the true underlying copula whose parameter is to be estimated.

"itau" Inversion of Kendall’s tau estimator. data can be either in $[0, 1]^d$ (true or pseudo-observations of the underlying copula to be estimated) or in the $d$-dimensional space.

"irho" As "itau" just with Spearman’s rho instead of Kendall’s tau.

"itau.mpl" This is the estimator of t copula parameters suggested by Mashal and Zeevi (2002) based on the idea of inverting Kendall’s tau for estimating the correlation matrix as introduced in a RiskLab report in 2001 later published as Embrechts et al. (2003); see also Demarta and McNeil (2005). The given data has to be in $[0, 1]^d$ (either true or pseudo-observations of the underlying copula to be estimated). Note that this method requires dispstr = "un".

posDef a logical indicating whether a proper correlation matrix is computed.

start a vector of starting values for the parameter optimization via $\text{optim}()$.

lower, upper Lower or upper parameter bounds for the optimization methods "Brent" or "L-BFGS-B".

optim.control a list of control parameters passed to $\text{optim}(\cdot, \text{control} = \text{optim.control})$.

optim.method a character string specify the optimization method or a function which when called with arguments (copula, method, dim) will return such a character string, see $\text{optim}()$’s method; only used when method = "mpl" or "ml".

The default has been changed (for copula 0.999-16, in Aug. 2016) from "BFGS" to the result of $\text{optimMeth}(\text{copula}, \text{method}, \text{dim})$ which is often "L-BFGS-B".

dim integer, the data and copula dimension, $d \geq 2$. 
estimate.variance

- **estimate.variance**
  - **a logical** indicating whether the estimator's asymptotic variance is computed (if available for the given copula; the default NA computes it for the methods "itau" and "irho", cannot (yet) compute it for "itau.mpl" and only computes it for "mpl" or "ml" if the optimization converged).

hideWarnings

- **hideWarnings**
  - **a logical**, which, if **TRUE**, suppresses warnings from the involved likelihood maximization (typically when the likelihood is evaluated at invalid parameter values).

... additional arguments passed to method specific auxiliary functions, e.g., `traceOpt = TRUE` for tracing `optimize` for method "itau.mpl", and for "manual" tracing with method "ml" or "mpl" (notably for `optim.method="Brent"`).

### Details

The only difference between "mpl" and "ml" is in the variance-covariance estimate, **not** in the parameter ($\theta$) estimates.

If method "mpl" in `fitCopula()` is used and if `start` is not assigned a value, estimates obtained from method "itau" are used as initial values in the optimization. Standard errors are computed as explained in Genest, Ghoudi and Rivest (1995); see also Kojadinovic and Yan (2010, Section 3). Their estimation requires the computation of certain partial derivatives of the (log) density. These have been implemented for six copula families thus far: the Clayton, Gumbel-Hougaard, Frank, Plackett, normal and $t$ copula families. For other families, numerical differentiation based on `grad()` from package `numDeriv` is used (and a warning message is displayed).

In the multiparameter elliptical case and when the estimation is based on Kendall’s tau or Spearman’s rho, the estimated correlation matrix may not always be positive-definite. In that case, `nearPD(*,corr=TRUE)` (from `Matrix`) is applied to get a proper correlation matrix.

For normal and $t$ copulas, `fitCopula`, `method = "mpl"`) and `fitCopula`, `method = "ml"`) maximize the log-likelihood based on `mvtnorm`’s `dmvnorm()` and `dmvt()`, respectively. The latter two functions set the respective densities to zero if the correlation matrices of the corresponding distributions are not positive definite. As such, the estimated correlation matrices will be positive definite.

If methods "itau" or "irho" are used in `fitCopula()`, an estimate of the asymptotic variance (if available for the copula under consideration) will be correctly computed only if the argument data consists of pseudo-observations (see `pobs()`).

Consider the $t$ copula with `df.fixed=FALSE` (see `ellipCopula()`). In this case, the methods "itau" and "irho" cannot be used in `fitCopula()` as they cannot estimate the degrees of freedom parameter `df`. For the methods "mpl" and "itau.mpl" the asymptotic variance cannot be (fully) estimated (yet). For the methods "ml" and "mpl", when `start` is not specified, the starting value for `df` is set to `copula@df`, typically 4.

To implement the **Inference Functions for Margins** (IFM) method (see, e.g., Joe 2005), set `method="ml"` and note that data need to be parametric pseudo-observations obtained from `fitted` parametric marginal distribution functions. The returned large-sample variance will then underestimate the true variance (as the procedure cannot take into account the (unknown) estimation error for the margins).

The fitting procedures based on `optim()` generate warnings because invalid parameter values are tried during the optimization process. When the number of parameters is one and the param-
parameter space is bounded, using `optim.method="Brent"` is likely to give less warnings. Furthermore, from experience, `optim.method="Nelder-Mead"` is sometimes a more robust alternative to `optim.method="BFGS"` or "L-BFGS-B".

There are methods for `vcov()`, `coef()`, `logLik()`, and `nobs()`.

**Value**

`loglikCopula()` returns the copula log-likelihood evaluated at the parameter (vector) `param` given the data `u`.

The return value of `fitCopula()` is an object of class "fitCopula" (inheriting from hidden class "fittedMV"), containing (among others!) the slots

- **estimate** The parameter estimates.
- **var_est** The large-sample (i.e., asymptotic) variance estimate of the parameter estimator; (filled with) NA if `estimate.variance=FALSE`.
- **copula** The fitted copula object.

The `summary()` method for "fitCopula" objects returns an S3 “class” "summary.fitCopula", which is simply a list with components `method`, `loglik`, and `convergence`, all three from the corresponding slots of the "fitCopula" objects, and `coefficients` (a matrix of estimated coefficients, standard errors, t values and p-values).

**References**


Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. *Journal of Hydrologic Engineering* 12, 347–368.

See Also

Copula, fitMvdc for fitting multivariate distributions including the margins, gofCopula for goodness-of-fit tests.

For maximum likelihood of (nested) Archimedean copulas, see emle, etc.

Examples

(Xtras <- copula:::doExtras()) # determine whether examples will be extra (long)
if(Xtras) 200 else 64 # sample size
n <- if(Xtras) 200 else 64 # sample size

## A Gumbel copula
set.seed(7) # for reproducibility
gumbel.cop <- gumbelCopula(3, dim=2)
x <- rCopula(n, gumbel.cop) # "true" observations (simulated)
u <- pobs(x) # pseudo-observations

## Inverting Kendall's tau
fit.tau <- fitCopula(gumbelCopula(), u, method="itau")
fit.tau
confint(fit.tau) # work fine !
confint(fit.tau, level = 0.98)
summary(fit.tau) # a bit more, notably "Std. Error"s

## Inverting Spearman's rho
fit.rho <- fitCopula(gumbelCopula(), u, method="irho")
summary(fit.rho)
fit.mpl <- fitCopula(gumbelCopula(), u, method="mpl")
fit.ml <- fitCopula(gumbelCopula(), x, method="ml")
confint(fit.ml) # now prints a bit more than simple 'fit.ml'
summary(fit.ml) # now prints a bit more than simple 'fit.ml'

## Maximum pseudo-likelihood
fit.ml <- fitCopula(gumbelCopula(), u, method="mpl")
summary(fit.ml)

## A Gauss/normal copula
set.seed(6) # for reproducibility
normal.cop <- normalCopula(c(0.6, 0.36, 0.6), dim=3, dispstr="un")
x <- rCopula(n, normal.cop) # "true" observations (simulated)
u <- pobs(x) # pseudo-observations

## Inverting Kendall's tau
fit.tau <- fitCopula(normalCopula(dim=3, dispstr="un"), u, method="itau")
fit.tau

## Inverting Spearman's rho
fit.rho <- fitCopula(normalCopula(dim=3, dispstr="un"), u, method="irho")
fit.rho

## Maximum pseudo-likelihood
fit.mpl <- fitCopula(normalCopula(dim=3, dispstr="un"), u, method="mpl")
summary(fit.mpl)
coef(fit.mpl) # named vector
coef(fit.mpl, SE = TRUE) # the matrix, with SE
## Maximum likelihood (use 'x', not 'u' !)
fit.ml <- fitCopula(normalCopula(dim=3, dispstr="un"), x, method="ml")
summary(fit.ml)
confint(fit.ml)
confint(fit.ml, level = 0.999) # clearly non-0

## Fix some of the parameters
param <- c(.6, .3, NA_real_)
attr(param, "fixed") <- c(TRUE, FALSE, FALSE)
cmp <- normalCopula(param = param, dim = 3, dispstr = "un")
fixedParam(ncp) <- c(TRUE, TRUE, FALSE)
summary(Fxf.mpl <- fitCopula(ncp, u, method = "mpl"))
Fxf.mpl@copula # reminding of the fixed param. values

## With dispstr = "toep" : normal.cop.toep <- normalCopula(c(0, 0), dim=3, dispstr="toep")
## Inverting Kendall's tau
fit.tau <- fitCopula(normalCopula(dim=3, dispstr="toep"), u, method="itau")
fit.tau
## Inverting Spearman's rho
fit.rho <- fitCopula(normalCopula(dim=3, dispstr="toep"), u, method="irho")
summary(fit.rho)
## Maximum pseudo-likelihood
fit.ml <- fitCopula(normalCopula(dim=3, dispstr="toep"), x, method="ml")
fit.ml
## Maximum likelihood (use 'x', not 'u' !)
fit.ml <- fitCopula(normalCopula(dim=3, dispstr="toep"), x, method="ml")
summary(fit.ml)

## With dispstr = "ar1" normal.cop.ar1 <- normalCopula(c(0), dim=3, dispstr="ar1")
## Inverting Kendall's tau
summary(fit.tau <- fitCopula(normalCopula(dim=3, dispstr="ar1"), u, method="itau"))
## Inverting Spearman's rho
summary(fit.rho <- fitCopula(normalCopula(dim=3, dispstr="ar1"), u, method="irho"))
## Maximum pseudo-likelihood
summary(fit.ml <- fitCopula(normalCopula(dim=3, dispstr="ar1"), u, method="ml"))
## Maximum likelihood (use 'x', not 'u' !)
fit.ml <- fitCopula(normalCopula(dim=3, dispstr="ar1"), x, method="ml")
summary(fit.ml)

## A t copula with variable df (df-fixed=FALSE)
(tCop <- tCopula(c(0.2,0.4,0.6), dim=3, dispstr="un", df=5))
set.seed(101)
x <- rCopula(n, tCop) # "true" observations (simulated)
## Maximum likelihood (start = (rho[1:3], df))
summary(tc.ml <- fitCopula(tCopula(dim=3, dispstr="un"), x, method="ml",
                        start = c(0,0,0,10)))
## Maximum pseudo-likelihood (the asymptotic variance cannot be estimated)
u <- pobs(x)  # pseudo-observations
tc.mpl <- fitCopula(tcCopula(dim=3, dispstr="un"),
  u, method="mpl", estimate.variance=FALSE,
  start= c(0,0,0, 10))
summary(tc.mpl)

fitCopula-class  Classes of Fitted Multivariate Models: Copula, Mvdc

Description
Classes and summary methods related to copula model fitting.

Objects from the Class
Objects can be created by calls to `fitCopula` or `fitMvdc`, respectively or to their summary methods.

Slots
The “mother class”, "fittedMV" has the slots
estimate: numeric, the estimated parameters.
var.est: numeric, variance matrix estimate of the parameter estimator. See note below.
loglik: numeric, log likelihood evaluated at the maximizer.
nsample: numeric, integer representing the sample size.
fitting.stats: a list, currently containing the numeric convergence code from `optim`, the counts, message, and all the control arguments explicitly passed to `optim`.

In addition, the “fitCopula” class has a slot
copula: the fitted copula, of class "copula".

whereas the "fitMvdc" has
mvdc: the fitted distribution, of class "mvdc".

Extends
Classes “fitCopula” and “fitMvdc” extend class "fittedMV", directly.

Methods

`summary` signature(object = "fitMvdc"): ...

`summary` signature(object = "fitCopula"): ...

Further, there are S3 methods (class "fittedMV") for `coef()`, `vcov()` and `logLik()`, see `fitMvdc`. 
References


---

**fitLambda**

*Non-parametric Estimators of the Matrix of Tail-Dependence Coefficients*

**Description**

Computing non-parametric estimators of the (matrix of) tail-dependence coefficients.

**Usage**

```r
gfitLambda(u, method = c("Schmid.Schmidt", "t"), p = min(100/ncol(u), 0.1),
lower.tail = TRUE, verbose = FALSE, ...)
```

**Arguments**

- **u** \( n \times d \)-matrix of (pseudo-)observations in \([0, 1]^d\) for estimating the (matrix of) tail-dependence coefficients.
- **method** the method with which the tail-dependence coefficients are computed:
  - `method = "t"`: fits pairwise \( t \) copulas and returns the implied tail-dependence coefficient.
- **p** (small) cut-off parameter in \([0, 1]\) below (for `tail = "lower"`) or above (for `tail = "upper"`) which the estimation takes place.
- **lower.tail** logical indicating whether the lower (the default) or upper tail-dependence coefficient is computed.
- **verbose** a logical indicating whether a progress bar is displayed.
- **...** additional arguments passed to the underlying functions (at the moment only to `optimize()` in case `method = "t"`).

**Details**

As seen in the examples, be careful using nonparametric estimators, they might not perform too well (depending on `p` and in general). After all, the notion of tail dependence is a limit, finite sample sizes might not be able to capture well.

**Value**

The matrix of pairwise coefficients of tail dependence; for `method = "t"` a list with components `Lambda`, the matrix of pairwise estimated correlation coefficients `P` and the matrix of pairwise estimated degrees of freedom `Nu`. 
References


See Also

`lambda()` computes the true (lower and upper) tail coefficients for a given copula.

Examples

```r
n <- 10000 # sample size
p <- 0.01 # cut-off

Bivariate case
d <- 2
cop <- claytonCopula(2, dim = d)
set.seed(271)
U <- rCopula(n, copula = cop) # generate observations (unrealistic)
(lam.true <- lambda(cop)) # true tail-dependence coefficients lambda
(lam.C <- c(lower = fitLambda(U, p = p)[2,1],
 upper = fitLambda(U, p = p, lower.tail = FALSE)[2,1])) # estimate lambdas
=> pretty good
U. <- pobs(U) # pseudo-observations (realistic)
(lam.C. <- c(lower = fitLambda(U., p = p)[2,1],
 upper = fitLambda(U., p = p, lower.tail = FALSE)[2,1])) # estimate lambdas
=> The pseudo-observations do have an effect...

Higher-dimensional case
(d <- 5)
cop <- claytonCopula(2, dim = d)
set.seed(271)
U <- rCopula(n, copula = cop) # generate observations (unrealistic)
(lam.true <- lambda(cop)) # true tail-dependence coefficients lambda
(Lam.C <- list(lower = fitLambda(U, p = p),
 upper = fitLambda(U, p = p, lower.tail = FALSE))) # estimate Lambdas
=> Not too good
U. <- pobs(U) # pseudo-observations (realistic)
(Lam.C. <- list(lower = fitLambda(U., p = p),
 upper = fitLambda(U., p = p, lower.tail = FALSE))) # estimate Lambdas
=> Performance not too great here in either case
```
Description

Fitting copula-based multivariate distributions ("mvdc") to multivariate data, estimating both the marginal and the copula parameters.

If you assume non parametric margins, in other words, take the empirical distributions for all margins, you can use fitCopula(*,pobs(x)) instead.

Usage

loglikMvdc(param, x, mvdc)
fitMvdc(data, mvdc, start, optim.control = list(), method = "BFGS",
        lower = -Inf, upper = Inf,
        estimate.variance = fit$convergence == 0, hideWarnings = TRUE)

## S3 method for class 'fittedMV'
coef(object, SE = FALSE, ...)
## S3 method for class 'fittedMV'
logLik(object, ...)
## S3 method for class 'fittedMV'
vcov(object, ...)

Arguments

param a vector of parameter values. When specifying parameters for mvdc objects, the parameters must be ordered with the marginals first and the copula parameters last. When the mvdc object has marginsIdentical = TRUE, only the parameters of one marginal must be specified.
x a data matrix.
mvdc a "mvdc" object.
data a data matrix.
start a vector of starting value for "param". See "param" above for ordering of this vector.
optim.control a list of controls to be passed to optim.
method the method for optim.
lower, upper bounds on each parameter, passed to optim, typically "box constraints" for method = "L-BFGS-B".
estimate.variance logical; if true (as by default, if the optimization converges), the asymptotic variance is estimated.
hideWarnings logical indicating if warning messages from likelihood maximization, e.g., from evaluating at invalid parameter values, should be suppressed (via suppressWarnings).
object an R object of class "fitMvdc".
SE for the coef method, a logical indicating if standard errors should be returned in addition to the estimated parameters (in a matrix). This is equivalent, but more efficient than, e.g., coef(summary(object)).
... potentially further arguments to methods.
Value

The return value `loglikMvdc()` is the log likelihood evaluated for the given value of `param`.

The return value of `fitMvdc()` is an object of class "fitMvdc" (see there), containing slots (among others!):

- `estimate` the estimate of the parameters.
- `var.est` large-sample (i.e., asymptotic) variance estimate of the parameter estimator (filled with NA if `estimate.variance = FALSE`).
- `mvdc` the fitted multivariate distribution, see `mvdc`.

The `summary()` method for "fitMvdc" objects returns a S3 "class" "summary.fitMvdc", simply a list with components method, loglik, and convergence, all three from corresponding slots of the "fitMvdc" objects, and

- `coefficients` a matrix of estimated coefficients, standard errors, t values and p-values.

Note

User-defined marginal distributions can be used as long as the "{dpq}" functions are defined. See vignette("AR_Clayton",package="copula").

When covariates are available for marginal distributions or for the copula, one can construct the loglikelihood function and feed it to "optim" to estimate all the parameters.

Finally, note that some of the fitting functions generate error messages because invalid parameter values are tried during the optimization process (see `optim`). This should be rarer since 2013, notably for likelihood based methods (as the likelihood is now rather set to -Inf than giving an error).

Previously, `loglikMvdc()` had an argument `hideWarnings`; nowadays, do use `suppressWarnings(..)` if you are sure you do not want to see them.

See Also

`mvdc` and `mvdc`; further, `Copula`, `fitCopula`, `gofCopula`.

For fitting univariate marginals, `fitdistr()`.

Examples

```r
G3 <- gumbelCopula(3, dim=2)
gMvd2 <- mvdc(G3, c("exp","exp"),
 param = list(list(rate=2), list(rate=4)))
with identical margins:
gMvd.I <- mvdc(G3, "exp",
 param = list(rate=3), marginsIdentical=TRUE)

(Xtras <- copula:::doExtras()) # determine whether examples will be extra (long)
n <- if(Xtras) 10000 else 200 # sample size (realistic vs short for example)
set.seed(11)
x <- rMvdc(n, gMvd2)
```
### Description

It is sometimes useful to keep fixed some components of a copula parameter vector whereas the others are “free” and will be estimated, e.g., by `fitCopula`.

The first two functions set or modify the “fixedness”, whereas `isFree()`, `isFreeP()` and `nParam()` are utilities enquiring about the “fixedness” of the parameters (of a copula).

### Usage

```r
fixParam(param, fixed = TRUE)
fixedParam(copula) <- value

isFree(param)
S4 method for signature 'copula'
isFree(copula)
and specific '*Copula' methods
isFreeP(copula)
S4 method for signature 'copula'
nParam(copula, freeOnly = FALSE)
and specific '*Copula' methods
```

```r
fit2 <- fitMvdc(x, gMvd2, start = c(1,1, 2))
fit2
confint(fit2)
summary(fit2) # slightly more
The estimated, asymptotic var-cov matrix [was used for confint()]:
vcov(fit2)

with even more output for the "identical margin" case:
fitI <- fitMvdc(x, gMvd.I, start = c(3, 2),
 optim.control=list(trace= TRUE, REPORT= 2))
summary(fitI)
coef(fitI, SE = TRUE)
stopifnot(is.matrix(coef(fitI, SE = TRUE)),
 is.matrix(print(confint(fitI))))

a wrong starting value can already be *the* problem:
f2 <- try(fitMvdc(x, gMvd.I, start = c(1, 1),
 optim.control=list(trace= TRUE, REPORT= 2)))
##--> Error in optim(...) : non-finite finite-difference value [2]

Suggestion: Using a more robust (but slower) optim() method:
fI.2 <- fitMvdc(x, gMvd.I, start = c(1, 1), method = "Nelder",
 optim.control=list(trace= TRUE))
fI.2
```
Arguments

- **param**: numeric parameter vector
- **fixed, value**: logical vector of the same length as `param` indicating for each component `param[j]` if it is (going to be) fixed or not.
- **copula**: a "copula" object.
- **freeOnly**: logical (scalar) indicating if only free parameters should be counted or all.

Value

`fixParam(param)` returns a numeric vector with attribute "fixed" (a logical, either TRUE or vector of the same length as `param`) to indicate which components of `param` are to be held fixed or not.

`fixedParam<`, a generic function, returns a "copula" object with a partly fixed parameter (slot), i.e., corresponding to `fixParam()` above.

See Also

- `fitCopula` for fitting; t-copulas, `tCopula(*, df.fixed=TRUE)` now uses parameter fixing for "df".
- `setTheta()` for setting or changing the non-fixed parameter values.

Examples

```r
nc1 <- normalCopula(dim = 3, fixParam(c(.6,.3,.2), c(TRUE, FALSE,FALSE)),
 dispstr = "un")
nc1
nc13 <- nc12 <- nc1
fixedParam(nc12) <- c(TRUE, TRUE, FALSE) ; nc12
fixedParam(nc13) <- c(TRUE, FALSE, TRUE) ; nc13
set.seed(17); x <- rCopula(100, nc1)
summary(f.13 <- fitCopula(nc13, x, method = "ml"))
f.13@copula # 'rho.2' is estimated; the others kept fixed

Setting to 'FALSE' (removes the "fixed" parts completely):
nc0 <- nc13; fixedParam(nc0) <- FALSE
nc0
stopifnot(is.null(attributes(nc0@parameters)))
```

gasoil

*Daily Crude Oil and Natural Gas Prices from 2003 to 2006*

Description

Three years of daily prices (from July 2003 to July 2006) of crude oil and natural gas. These data should be very close to those analysed in Grégoire, Genest and Gendron (2008).
Usage

```r
data(gasoil, package="copula")
```

Format

A data frame of 762 daily prices from 2003 to 2006.

- `date` date (of class `Date`).
- `oil` daily price of crude oil
- `gas` daily price of natural gas

References


Examples

```r
data(gasoil)
Log Scaled Oil & Gas Prices :
lattice :: xyplot(oil + gas ~ date, data = gasoil, auto.key=TRUE,
 type = c("l","r"),
 scales=list(y = list(log = TRUE), equispaced.log = FALSE))
```

---

generator

**Generator Functions for Archimedean and Extreme-Value Copulas**

Description

Methods to evaluate the generator function, the inverse generator function, and derivatives of the inverse of the generator function for Archimedean copulas. For extreme-value copulas, the “Pickands dependence function” plays the role of a generator function.

Usage

```r
psi(copula, s)

iPsi(copula, u, ...)

diPsi(copula, u, degree=1, log=FALSE, ...)

A(copula, w)

dAdu(copula, w)
```
Arguments

copula an object of class "copula".
u, s, w numerical vector at which these functions are to be evaluated.
... further arguments for specific families.
degree the degree of the derivative (defaults to 1).
log logical indicating if the log of the absolute derivative is desired. Note that the
derivatives of psi alternate in sign.

Details

psi() and iPsi() are, respectively, the generator function \( \psi() \) and its inverse \( \psi^{(-1)} \) for an Archimedean copula, see pnacopula for definition and more details.
diPsi() computes (currently only the first two) derivatives of iPsi() (= \( \psi^{(-1)} \)).
A() the “Pickands dependence function”, can be seen as the generator function of an extreme-value copula. For instance, in the bivariate case, we have the following result (see, e.g., Gudendorf and Segers 2009):
A bivariate copula \( C \) is an extreme-value copula if and only if
\[
C(u, v) = (uv)^{A(\log(v)/\log(uv)), \quad (u, v) \in (0, 1]^2 \setminus \{(1, 1)\},
\]
where \( A : [0, 1] \to [1/2, 1] \) is convex and satisfies \( \max(t, 1 - t) \leq A(t) \leq 1 \) for all \( t \in [0, 1] \).
In the \( d \)-variate case, there is a similar characterization, except that this time, the Pickands dependence function \( A \) is defined on the \( d \)-dimensional unit simplex.
dAdu() returns a data.frame containing the 1st and 2nd derivative of \( A() \).

References


See Also

Nonparametric estimators for \( A() \) are available, see An.

Examples

## List the available methods (and their definitions):
showMethods("A")
showMethods("iPsi", incl=TRUE)


**getAcop**

Get "acopula" Family Object by Name

---

**Description**

Get one of our "acopula" family objects (see acopula-families by name.

Named strings for “translation” between different names and forms of Archimedean copulas.

**Usage**

```r
getAcop (family, check = TRUE)
getAname(family, objName = FALSE)
```

### Arguments

- **family**: either a character string, the short or longer form of the Archimedean family name (for example, "Clayton" or simply "C"; see the acopula-families documentation), or an acopula family object, or an object inheriting from class archmCopula.

- **check**: logical indicating whether the class of the return value should be checked to be "acopula".

- **objName**: logical indicating that the name of the R object should be returned, instead of the family name, e.g., "copClayton" instead of "Clayton".

**Value**

- getAcop() returns an "acopula" family object, typically one of our predefined ones.

- getAname() returns a character string, the name of an "acopula" family object.

- .as.longnames etc are named string constants, useful in programming for all our (five) standard Archimedean families.

**See Also**

Our predefined acopula-families; the class definition "acopula".

**Examples**

```r
getAcop("Gumbel")
```

## different ways of getting the same "acopula" family object:

```r
stopifnot(# Joe (three ways):
```
identical(getAcop("J"), getAcop("Joe")),
identical(getAcop("J"), copJoe),
## Frank (yet another two different ways):
identical(getAcop(frankCopula()), copFrank),
identical(getAcop("frankCopula"), copFrank))

stopifnot(
  identical(getAname(claytonCopula()), getAname("C")),
  identical(getAname(copClayton), "Clayton"), identical(getAname("J"), "Joe"),
  identical(getAname(amhCopula(), TRUE), "copAMH"),
  identical(getAname(joeCopula(), TRUE), "copJoe")
)

.ac.shortNames
.ac.longNames
.ac.objNames
.ac.classNames

---

**getTheta**

*Get the Parameter(s) of a Copula*

**Description**

Get the parameter (vector) \( \theta \) (theta) of a copula, see `setTheta` for more background.

**Usage**

```r
getTheta(copula, freeOnly = TRUE, attr = FALSE, named = attr)
```

**Arguments**

- `copula` an R object of class "parCopula", e.g., "copula".
- `freeOnly` logical indicating that only non-fixed aka “free” parameters are to be returned (as vector).
- `attr` logical indicating if attributes (such as lower and upper bounds for each parameters) are to be returned as well.
- `named` logical if the resulting parameter vector should have names.

**Value**

parameter vector of the copula, a numeric vector, possibly with names and other attributes (depending on the `attr` and `named` arguments).
Methods

signature(copula = "parCopula") a default method, returning numeric(0).
signature(copula = "copula") ..
signature(copula = "acopula") ..
signature(copula = "khoudrajiCopula") ..
signature(copula = "mixCopula") ..
signature(copula = "rotCopula") ..
signature(copula = "xcopula") ..

See Also

setTheta, its inverse.

Examples

showMethods("getTheta")

getTheta(setTheta(copClayton, 0.5)) # is 0.5

Description

Tools for computing a graphical goodness-of-fit (GOF) test based on pairwise Rosenblatt transformed data.

pairwiseCcop() computes a \((n, d, d)\)-array which contains pairwise Rosenblatt-transformed data.

pairwiseIndepTest() takes such an array as input and computes a \((d, d)\)-matrix of test results from pairwise tests of independence (as by indepTest()).

pviTest() can be used to extract the matrix of p-values from the return matrix of pairwiseIndepTest().

gpviTest() takes such a matrix of p-values and computes a global p-value with the method provided.

Usage

pairwiseCcop(u, copula, ...)
pairwiseIndepTest(cu, u, N=256,
  iTtest = indepTestSim(n, p=2, m=2, N=N, verbose = idT.verbose, ...),
  verbose=TRUE, idT.verbose = verbose, ...)

pviTest(piTest)
gpviTest(pvalues, method=p.adjust.methods, globalFun=min)
Arguments

- **u**  
  \((n, d)\)-matrix of copula data.

- **copula**  
  copula object used for the Rosenblatt transform (\(H_0\) copula).

- **...**  
  additional arguments passed to the internal function which computes the conditional copulas (for `pairwiseCcop()`). Can be used to pass, for example, the degrees of freedom parameter `df` for t-copulas.

- **for `pairwiseIndepTest()`...** are passed to `indepTestSim()`.

- **cu.u**  
  \((n, d, d)\)-array as returned by `pairwiseCcop()`.

- **N**  
  argument of `indepTestSim()`.

- **iTest**  
  the result of (a version of) `indepTestSim()`; as it does not depend on the data, and is costly to compute, it can be computed separately and passed here.

- **verbose**  
  integer (or `logical`) indicating if and how much progress should be printed during the computation of the tests for independence.

- **idT.verbose**  
  logical, passed as `verbose` argument to `indepTestSim()`.

- **piTest**  
  \((d, d)\)-matrix of indepTest objects as returned by `pairwiseIndepTest()`.

- **pvalues**  
  \((d, d)\)-matrix of p-values.

- **method**  
  character vector of adjustment methods for p-values; see `p.adjust.methods` for more details.

- **globalFun**  
  function determining how to compute a global p-value from a matrix of pairwise adjusted p-values.

Value

- **`pairwiseCcop()`**  
  \((n, d, d)\)-array `cu.u` with `cu.u[i, j]` containing \(C(u_i \mid u_j)\) for \(i \neq j\) and \(u_i\) for \(i = j\).

- **`pairwiseIndepTest()`**  
  \((d, d)\)-matrix of lists with test results as returned by `indepTest()`. The test results correspond to pairwise tests of independence as conducted by `indepTest()`.

- **pviTest**  
  \((d, d)\)-matrix of p-values.

- **gpviTest**  
  global p-values for the specified methods.

Note

If \(u\) are distributed according to or "perfectly" sampled from a copula, p-values on GOF tests for that copula should be uniformly distributed in \([0, 1]\).

References

Hofert and Mächler (2014), see `pairsRosenblatt`.

See Also

`pairsRosenblatt` for where these tools are used, including `demo(gof_graph)` for examples.

Examples

```r
demo(gof_graph)
```
gnacopula  Goodness-of-fit Testing for (Nested) Archimedean Copulas

Description

`gnacopula()` conducts a goodness-of-fit test for the given \((H_0,\text{cop})\)-copula \(\text{cop}\) based on the (copula-)data \(u\).

NOTE: `gnacopula()` is deprecated, call `gofCopula()` instead.

Usage

```r
gnacopula(u, cop, n.bootstrap,
estim.method = eval(formals(enacopula)$method),
include.K=TRUE, n.MC=0, trafo=c("Hering.Hofert", "Rosenblatt"),
method=eval(formals(gofTstat)$method), verbose=TRUE, ...)```

Arguments

- **u**: \(n \times d\)-matrix of values in \([0, 1]\); should be (pseudo-/copula-)observations from the copula to be tested. Consider applying the function `pobs()` first in order to obtain \(u\).
- **cop**: \(H_0\)-"outer_nacopula" with specified parameters to be tested for (currently only Archimedean copulas are provided).
- **n.bootstrap**: positive integer specifying the number of bootstrap replicates.
- **estim.method**: character string determining the estimation method; see `enacopula()`. We currently only recommend the default "mle" (or maybe "smle").
- **include.K**: logical indicating whether the last component, involving the Kendall distribution function \(K()\), is used in the transformation `htrafo()` of Hering and Hofert (2011). Note that this only applies to `trafo="Hering.Hofert"`.
- **n.MC**: parameter `n.MC` for `htrafo()` (and thus for `K()` if `trafo="Hering.Hofert"` and for `cCopula()` if `trafo="Rosenblatt"`.
- **trafo**: a character string specifying the multivariate transformation performed for goodness-of-fit testing, which has to be one (or a unique abbreviation) of "Hering.Hofert" for the multivariate transformation of Hering and Hofert (2011); see `htrafo()`.
 "Rosenblatt" for the multivariate transformation of Rosenblatt (1952); see `cCopula()`.
- **method**: a character string specifying the goodness-of-fit test statistic to be used; see `gofTstat()`.
- **verbose**: if TRUE, the progress of the bootstrap is displayed via `txtProgressBar`.
- **...**: additional arguments passed to `enacopula()`.
Details

The function `gnacopula()` performs a parametric bootstrap for the goodness-of-fit test specified by `trafo` and `method`. The transformation given by `trafo` specifies the multivariate transformation which is first applied to the (copula-) data `u` (typically, the pseudo-observations are used); see `htrafo()` or `ccCopula()` for more details. The argument `method` specifies the particular goodness-of-fit test carried out, which is either the Anderson-Darling test for the univariate standard uniform distribution (for `method="AnChisq"` or `method="AnGamma"`) in a one-dimensional setup or the tests described in Genest et al. (2009) for the multivariate standard uniform distribution directly in a multivariate setup. As estimation method, the method provided by `estim.method` is used.

Note that a finite-sample correction is made when computing p-values; see `gofCopula()` for details.

A word of warning: Do work carefully with the variety of different goodness-of-fit tests that can be performed with `gnacopula()`. For example, among the possible estimation methods at hand, only MLE is known to be consistent (under conditions to be verified). Furthermore, for the tests based on the Anderson-Darling test statistic, it is theoretically not clear whether the parametric bootstrap converges. Consequently, the results obtained should be treated with care. Moreover, several estimation methods are known to be prone to numerical errors (see Hofert et al. (2013)) and are thus not recommended to be used in the parametric bootstrap. A warning is given if `gnacopula()` is called with a method not being MLE.

Value

`gnacopula` returns an `R` object of class "htest". This object contains a list with the bootstrap results including the components

- `p.value`: the bootstrapped p-value;
- `statistic`: the value of the test statistic computed for the data `u`;
- `data.name`: the name of `u`;
- `method`: a `character` describing the goodness-of-fit test applied;
- `estimator`: the estimator computed for the data `u`;
- `bootStats`: a list with component `estimator` containing the estimators for all bootstrap replications and component `statistic` containing the values of the test statistic for each bootstrap replication.

References

See Also

`gofTstat()` for the implemented test statistics, `htrafo()` and `cCopula()` involved and `K()` for the Kendall distribution function.

`gofCopula()` for other (parametric bootstrap) based goodness-of-fit tests.

gofCopula

Goodness-of-fit Tests for Copulas

Description

The goodness-of-fit tests are based, by default, on the empirical process comparing the empirical copula with a parametric estimate of the copula derived under the null hypothesis, the default test statistic, "Sn", being the Cramer-von Mises functional S_n, defined in Equation (2) of Genest, Remillard and Beaudoin (2009). In that case, approximate p-values for the test statistic can be obtained either using a parametric bootstrap (see references two and three) or by means of a faster multiplier approach (see references four and five).

Alternative test statistics can be used, in particular if a parametric bootstrap is employed.

The principal function is `gofCopula()` which, depending on simulation either calls `gofPB()` or `gofMB()`.

Usage

```r
## Generic [and "rotCopula" method] ------ Main function ------
gofCopula(copula, x, ...)  
## S4 method for signature 'copula'
gofCopula(copula, x, N = 1000,  
  method = c("Sn", "SnB", "SnC", "Rn"),  
  estim.method = c("mpl", "ml", "itau", "irho", "itau.mpl"),  
  simulation = c("pb", "mult"), test.method = c("family", "single"),  
  verbose = interactive(), ties = NA,  
  ties.method = c("max", "average", "first", "last", "random", "min"),  
  fit.ties.meth = eval(formals(rank)$ties.method), ...)  
## (Deprecated) internal 'helper' functions : ---
gofPB(copula, x, N, method = c("Sn", "SnB", "SnC"),  
  estim.method = c("mpl", "ml", "itau", "irho", "itau.mpl"),  
  trafo.method = if(method == "Sn") "none" else c("cCopula", "htrafo"),  
  trafoArgs = list(), test.method = c("family", "single"),  
  verbose = interactive(), useR = FALSE, ties = NA,  
  ties.method = c("max", "average", "first", "last", "random", "min"),  
  fit.ties.meth = eval(formals(rank)$ties.method), ...)  
gofMB(copula, x, N, method = c("Sn", "Rn"),  
  estim.method = c("mpl", "ml", "itau", "irho"),  
  test.method = c("family", "single"), verbose = interactive(),
```
useR = FALSE, m = 1/2, zeta.m = 0, b = 1/sqrt(nrow(x)),
ties.method = c("max", "average", "first", "last", "random", "min"),
fit.ties.meth = eval(formals(rank)$ties.method), ...)

Arguments

copula
object of class "copula" representing the hypothesized copula family.

x
a data matrix that will be transformed to pseudo-observations using pobs().

N
number of bootstrap or multiplier replications to be used to obtain approximate realizations of the test statistic under the null hypothesis.

method
a character string specifying the goodness-of-fit test statistic to be used. For simulation = "pb", one of "Sn", "SnB" or "SnC" with trafo.method != "none" if method != "Sn". For simulation = "mult", one of "Sn" or "Rn", where the latter is Rn from Genest et al. (2013).

estim.method
a character string specifying the estimation method to be used to estimate the dependence parameter(s); see fitCopula().

simulation
a string specifying the resampling method for generating approximate realizations of the test statistic under the null hypothesis; can be either "pb" (parametric bootstrap) or "mult" (multiplier).

test.method
a character string specifying the test method to be used. Only in exceptional cases should this be different from the default test.method = "family". If test.method = "single", a test precisely for the provided copula (not its parametric family) is conducted. This makes sense only for specific applications such as testing random number generators.

verbose
a logical specifying if progress of the parametric bootstrap should be displayed via txtProgressBar.

...
for gofCopula, additional arguments passed to gofPB() or gofMB(); for gofPB() and gofMB(); additional arguments passed to fitCopula(). These may notably contain hideWarnings, and optim.method, optim.control, lower, or upper depending on the optim.method.

trafo.method
only for the parametric bootstrap ("pb"): String specifying the transformation to U[0,1]^d; either "none" or one of "cCopula", see cCopula(), or "htrafo", see htrafo(). If method != "Sn", one needs to set trafo.method != "none".

trafoArgs
only for the parametric bootstrap. A list of optional arguments passed to the transformation method (see trafo.method above).

useR
logical indicating whether an R or C implementation is used.

ties.method
string specifying how ranks should be computed, except for fitting, if there are ties in any of the coordinate samples of x; passed to pobs.

fit.ties.meth
string specifying how ranks should be computed when fitting by maximum pseudo-likelihood if there are ties in any of the coordinate samples of x; passed to pobs.

ties
only for the parametric bootstrap. Logical indicating whether a version of the parametric bootstrap adapted to the presence of ties in any of the coordinate samples of x should be used; the default value of NA indicates that the presence/absence of ties will be checked for automatically.
m, zeta.m only for the multiplier with method = "Rn", m is the power and zeta.m is the adjustment parameter ζ_m for the denominator of the test statistic.
b only for the multiplier. b is the bandwidth required for the estimation of the first-order partial derivatives based on the empirical copula.

Details

If the parametric bootstrap is used, the dependence parameters of the hypothesized copula family can be estimated by any estimation method available for the family, up to a few exceptions. If the multiplier is used, any of the rank-based methods can be used in the bivariate case, but only maximum pseudo-likelihood estimation can be used in the multivariate (multiparameter) case.

The price to pay for the higher computational efficiency of the multiplier is more programming work as certain partial derivatives need to be computed for each hypothesized parametric copula family. When estimation is based on maximization of the pseudo-likelihood, these have been implemented for six copula families thus far: the Clayton, Gumbel-Hougaard, Frank, Plackett, normal and t copula families. For other families, numerical differentiation based on grad() from package numDeriv is used (and a warning message is displayed).

Although the empirical processes involved in the multiplier and the parametric bootstrap-based test are asymptotically equivalent under the null, the finite-sample behavior of the two tests might differ significantly.

Both for the parametric bootstrap and the multiplier, the approximate p-value is computed as

$$(0.5 + \sum_{b=1}^{N} 1\{T_b \geq T\})/(N + 1),$$

where T and T_b denote the test statistic and the bootstrapped test statistic, respectively. This ensures that the approximate p-value is a number strictly between 0 and 1, which is sometimes necessary for further treatments. See Pesarin (2001) for more details.

For the normal and t copulas, several dependence structures can be hypothesized: "ex" for exchangeable, "ar1" for AR(1), "toep" for Toeplitz, and "un" for unstructured (see ellipCopula()). For the t copula, "df.fixed" has to be set to TRUE, which implies that the degrees of freedom are not considered as a parameter to be estimated.

The former argument print.every is deprecated and not supported anymore; use verbose instead.

Value

An object of class htest which is a list, some of the components of which are

- statistic value of the test statistic.
- p.value corresponding approximate p-value.
- parameter estimates of the parameters for the hypothesized copula family.

Note

These tests were theoretically studied and implemented under the assumption of continuous margins, which implies that ties in the component samples occur with probability zero. The presence of ties in the data might substantially affect the approximate p-values. Through argument ties, the user can however select a version of the parametric bootstrap adapted to the presence of ties. No such adaption exists for the multiplier for the moment.
References

See Also

`fitCopula()` for the underlying estimation procedure and `gofTstat()` for details on *some* of the available test statistics.

Examples

```r
## The following example is available in batch through
demo(gofCopula)

n <- 200; N <- 1000 # realistic (but too large for interactive use)
n <- 60; N <- 200 # (time (and tree !) saving ...)

## A two-dimensional data example -------------------------------
set.seed(271)
xx <- rCopula(n, claytonCopula(3))

## Does the Gumbel family seem to be a good choice (statistic "Sn")?
gofCopula(gumbelCopula(), xx, N=N)
## With "SnC", really s...l...o...w... --- with "SnB", *EVEN* slower
gofCopula(gumbelCopula(), xx, N=N, method = "SnC", trafo.method = "cCopula")
## What about the Clayton family?
gofCopula(claytonCopula(), xx, N=N)

## Similar with a different estimation method

gofCopula(gumbelCopula (), xx, N=N, estim.method="itau")
gofCopula(claytonCopula(), xx, N=N, estim.method="itau")
```
A three-dimensional example ------------------------------------

```r
x <- rCopula(n, tCopula(c(0.5, 0.6, 0.7), dim = 3, dispstr = "un"))
```

Does the Gumbel family seem to be a good choice?

```r
g.copula <- gumbelCopula(dim = 3)
gofCopula(g.copula, x, N=N)
```

What about the t copula?

```r
t.copula <- tCopula(dim = 3, dispstr = "un", df.fixed = TRUE)
if(FALSE) ## this is *VERY* slow currently
gofCopula(t.copula, x, N=N)
```

The same with a different estimation method

```r
gofCopula(g.copula, x, N=N, estim.method="itau")
```

The same using the multiplier approach

```r
gofCopula(g.copula, x, N=N, simulation="mult")
gofCopula(t.copula, x, N=N, simulation="mult")
if(FALSE) # no yet possible
gofCopula(t.copula, x, N=N, simulation="mult", estim.method="itau")
```

gofEVCopula

Goodness-of-fit Tests for Bivariate Extreme-Value Copulas

Description

Goodness-of-fit tests for extreme-value copulas based on the empirical process comparing one of the two nonparametric rank-based estimator of the Pickands dependence function studied in Genest and Segers (2009) with a parametric estimate of the Pickands dependence function derived under the null hypothesis. The test statistic is the Cramer-von Mises functional S_n defined in Equation (5) of Genest, Kojadinovic, G. Nešlehová, and Yan (2010). Approximate p-values for the test statistic are obtained using a parametric bootstrap.

Usage

```r
gofEVCopula(copula, x, N = 1000,
method = c("mpl", "ml", "itau", "irho"),
estimator = c("CFG", "Pickands"), m = 1000,
verbose = interactive(),
ties.method = c("max", "average", "first", "last", "random", "min"),
fit.ties.meth = eval(formals(rank)$ties.method), ...)
```

Arguments

- copula: object of class "evCopula" representing the hypothesized extreme-value copula family.
- x: a data matrix that will be transformed to pseudo-observations.
gofEVCopula

N number of bootstrap samples to be used to simulate realizations of the test statistic under the null hypothesis.

method estimation method to be used to estimate the dependence parameter(s); can be either "mpl" (maximum pseudo-likelihood), "itau" (inversion of Kendall’s tau) or "irho" (inversion of Spearman’s rho).

estimator specifies which nonparametric rank-based estimator of the unknown Pickands dependence function to use; can be either "CFG" (Caperaa-Fougeres-Genest) or "Pickands".

m number of points of the uniform grid on [0,1] used to compute the test statistic numerically.

verbose a logical specifying if progress of the bootstrap should be displayed via txtProgressBar.

ties.method string specifying how ranks should be computed, except for fitting, if there are ties in any of the coordinate samples of x; passed to pobs.

fit.ties.method string specifying how ranks should be computed when fitting by maximum pseudo-likelihood if there are ties in any of the coordinate samples of x; passed to pobs.

... further optional arguments, passed to fitCopula(), notably optim.method, the method for optim(). In copula versions 0.999-14 and earlier, the default for that was "Nelder-Mead", but now is the same as for fitCopula().

Details

More details can be found in the second reference.

The former argument print.every is deprecated and not supported anymore; use verbose instead.

Value

An object of class htest which is a list, some of the components of which are

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistic</td>
<td>value of the test statistic.</td>
</tr>
<tr>
<td>p.value</td>
<td>corresponding approximate p-value.</td>
</tr>
<tr>
<td>parameter</td>
<td>estimates of the parameters for the hypothesized copula family.</td>
</tr>
</tbody>
</table>

Note

For a given degree of dependence, the most popular bivariate extreme-value copulas are strikingly similar.

References

See Also

Examples

n <- 100; N <- 1000 # realistic (but too large currently for CRAN checks)
n <- 60; N <- 200 # (time (and tree !) saving ...)
x <- rCopula(n, claytonCopula(3))

Does the Gumbel family seem to be a good choice?
gofEVCopula(gumbelCopula(), x, N=N)

The same with different (and cheaper) estimation methods:
gofEVCopula(gumbelCopula(), x, N=N, method="itau")
gofEVCopula(gumbelCopula(), x, N=N, method="irho")

The same with different extreme-value copulas
gofEVCopula(galambosCopula(), x, N=N)
gofEVCopula(galambosCopula(), x, N=N, method="itau")
gofEVCopula(galambosCopula(), x, N=N, method="irho")
gofEVCopula(huslerReissCopula(), x, N=N)
gofEVCopula(huslerReissCopula(), x, N=N, method="itau")
gofEVCopula(huslerReissCopula(), x, N=N, method="irho")
gofEVCopula(tevCopula(df.fixed=TRUE), x, N=N)
gofEVCopula(tevCopula(df.fixed=TRUE), x, N=N, method="itau")
gofEVCopula(tevCopula(df.fixed=TRUE), x, N=N, method="irho")

gofOtherTstat

Various Goodness-of-fit Test Statistics

Description
gofBTstat() computes supposedly Beta distributed test statistics for checking uniformity of \(u \) on the unit sphere.

Usage
gofBTstat(u)

Arguments

\(u \) \((n, d)\)-matrix of values whose rows supposedly follow a uniform distribution on the unit sphere in \(\mathbb{R}^d \).
Value

An \((n, d - 1) \)-matrix where the \((i, k) \)th entry is

\[
B_{ik} = \frac{\sum_{j=1}^{k} u_{ij}^2}{\sum_{j=1}^{d} u_{ij}^2}.
\]

References

Examples

```r
## generate data on the unit sphere
n <- 360
d <- 5
set.seed(1)
x <- matrix(rnorm(n*d), ncol=d)
U <- x/sqrt(rowSums(x^2))

## compute the test statistics \( B_k \), \( k \) in \( \{1, \ldots, d-1\} \)
Bmat <- gofTstat(U)

## (graphically) check if \( Bmat[,k] \) follows a \( \text{Beta}(k/2, (d-k)/2) \) distribution
qqp <- function(k, Bmat) {
  d <- ncol(Bmat)+1L
  tit <- substitute(plain("Beta")(.A..B.)==\textbf{"Q-Q Plot"},
                  list(.A. = k/2, .B. = (d-k)/2))
  qqplot2(Bmat[,k], qF=function(p) qbeta(p, shape1=k/2, shape2=(d-k)/2),
          main.args=list(text=tit, side=3, cex=1.3, line=1.1, xpd=NA))
}
qqp(1, Bmat=Bmat) # k=1
qqp(3, Bmat=Bmat) # k=3
```

gofTstat

Goodness-of-fit Test Statistics

Description

gofTstat() computes various goodness-of-fit test statistics typically used in gofCopula(*,simulation = "pb"). gofT2stat() computes the two-sample goodness of fit test statistic of Rémillard and Scaillet (2009).

Usage

 useR = FALSE, ...)
gofT2stat(u1, u2, useR = FALSE)
Arguments

\(u \)
\(n \times d \)-matrix of values in \([0, 1]\), supposedly independent uniform observations in the hypercube, that is, \(U_i \sim U[0, 1]^d \), i.i.d., for \(i \in \{1, \ldots, n\} \).

\(u_1, u_2 \)
\(n \times d \)-matrices of copula samples to be compare against. The two matrices must have an equal number of columns \(d \) but can differ in \(n \) (number of rows).

\(\text{method} \)
a character string specifying the goodness-of-fit test statistic to be used, which has to be one (or a unique abbreviation) of

"Sn" for computing the test statistic \(S_n \) from Genest, Rémillard, Beaudoin (2009).

"SnB" for computing the test statistic \(S_n^{(B)} \) from Genest, Rémillard, Beaudoin (2009).

"SnC" for computing the test statistic \(S_n^{(C)} \) from Genest et al. (2009).

"AnChiSq" Anderson-Darling test statistic for computing (supposedly) \(U[0, 1] \)-distributed (under \(H_0 \)) random variates via the distribution function of the chi-square distribution with \(d \) degrees of freedom. To be more precise, the Anderson-Darling test statistic of the variates

\[
\chi^2_d \left(\sum_{j=1}^{d} (\Phi^{-1}(u_{ij}))^2 \right)
\]

is computed (via \text{ADGofTest}::\text{ad.test}), where \(\Phi^{-1} \) denotes the quantile function of the standard normal distribution function, \(\chi^2_d \) denotes the distribution function of the chi-square distribution with \(d \) degrees of freedom, and \(u_{ij} \) is the \(j \)th component in the \(i \)th row of \(u \).

"AnGamma" similar to \text{method}="AnChiSq" but based on the variates

\[
\Gamma_d \left(\sum_{j=1}^{d} (-\log u_{ij}) \right),
\]

where \(\Gamma_d \) denotes the distribution function of the gamma distribution with shape parameter \(d \) and shape parameter one (being equal to an Erlang(\(d \)) distribution function).

\(\text{useR} \)
logical indicating whether an \text{R} or \text{C} implementation is used.

\(\ldots \)
additional arguments passed for computing the different test statistics.

Details

These functions should be used with care. The different test statistics were implemented (partly) for different purposes and goodness-of-fit tests and should be used only with knowledge about such test (see the references for more details).

Value

The value of the test statistic, a \text{numeric}.
References

See Also
gofCopula() for goodness-of-fit tests where (some of) the test statistics of gofTstat() are used.

Examples

```r
## generate data
cop <- archmCopula("Gumbel", param=iTau(gumbelCopula(), 0.5), dim=5)
set.seed(1)
U <- rCopula(1000, cop)

## compute Sn (as is done in a parametric bootstrap, for example)
Uhat <- pobs(U) # pseudo-observations
u <- cCopula(Uhat, copula = cop) # Rosenblatt transformed data (with correct copula)
gofTstat(u, method = "Sn", copula = cop) # compute test statistic Sn; requires copula argument
```

htrafo

GOF Testing Transformation of Hering and Hofert

Description

The transformation described in Hering and Hofert (2014), for Archimedean copulas.

Usage

```r
htrafo(u, copula, include.K = TRUE, n.MC = 0, inverse = FALSE,
method = eval(formals(qK)$method), u.grid, ...)
```

Arguments

- `u`: $n \times d$-matrix with values in $[0,1]$. If `inverse=FALSE` (the default), `u` contains (pseudo-/copula-)observations from the copula `copula` based on which the transformation is carried out; consider applying the function `pobs()` first in order to obtain `u`. If `inverse=TRUE`, `u` contains $U/\{0,1\}^d$ distributed values which are transformed to copula-based (copula) ones.
copula an Archimedean copula specified as "outer_nacopula" or "archmCopula".
include.K logical indicating whether the last component, involving the Kendall distribution function K, is used in htrafo().
n.MC parameter n.MC for K.
inverse logical indicating whether the inverse of the transformation is returned.
method method to compute qK().
u.grid argument of qK() (for method="discrete").
... additional arguments passed to qK() if inverse = TRUE.

Details

Given a d-dimensional random vector U following an Archimedean copula C with generator ψ, Hering and Hofert (2014) showed that $U' \sim U[0,1]^d$, where

$$
U'_j = \left(\frac{\sum_{k=1}^{j} \psi^{-1}(U_k)}{\sum_{k=1}^{j+1} \psi^{-1}(U_k)} \right)^j, \quad j \in \{1, \ldots, d-1\}, \quad U'_d = K(C(U)).
$$

htrafo applies this transformation row-wise to u and thus returns either an $n \times d$- or an $n \times (d-1)$-matrix, depending on whether the last component U'_d which involves the (possibly numerically challenging) Kendall distribution function K is used (include.K=TRUE) or not (include.K=FALSE).

Value

htrafo() returns an $n \times d$- or $n \times (d-1)$-matrix (depending on whether include.K is TRUE or FALSE) containing the transformed input u.

References

Examples

```r
## Sample and build pseudo-observations (what we normally have available)
## of a Clayton copula
tau <- 0.5
tau <- iTau(claytonCopula(), tau = tau)
d <- 5
theta <- iTau(claytonCopula(), tau = tau)
cc <- claytonCopula(theta, dim = d)
set.seed(271)
n <- 1000
U <- rCopula(n, copula = cc)
X <- qnorm(U) # X now follows a meta-Gumbel model with N(0,1) marginals
U <- pobs(X) # build pseudo-observations

## Graphically check if the data comes from a meta-Clayton model
## with the transformation of Hering and Hofert (2014):
U.H <- htrafo(U, copula = cc) # transform the data
splom2(U.H, cex = 0.2) # looks good
```
The same for an 'outer_nacopula' object
cc. <- onacopula("Clayton", list(theta, 1:d))
U.H. <- htrafo(U, copula = cc.)
splom2(U.H., cex = 0.2) # looks good

What about a meta-Gumbel model?
The parameter is chosen such that Kendall's tau equals (the same) tau
gc <- gumbelCopula(iTau(gumbelCopula()), tau = tau, dim = d)

Plot of the transformed data (Hering and Hofert (2014)) to see the
deviations from uniformity
U.H.. <- htrafo(U, copula = gc)
splom2(U.H.., cex = 0.2) # deviations visible

indepCopula

Construction of Independence Copula Objects

Description

Constructs an independence copula with its corresponding dimension.

Usage

```r
indepCopula(dim = 2)
```

Arguments

- `dim`
 the dimension of the copula.

Value

An independence copula object of class "indepCopula".

See Also

Mathematically, the independence copula is also a special (boundary) case of e.g., classes "archmCopula", "ellipCopula", and "evCopula".

Examples

```r
indep.cop <- indepCopula(3)
x <- rCopula(10, indep.cop)
dCopula(x, indep.cop)
persp(indepCopula(), pCopula)
```
Description

Independence copula class.

Objects from the Class

Objects can be created by calls of the form `new("indepCopula", . . .)` or by function `indepCopula()`. Such objects can be useful as special cases of parametric copulas, bypassing copula-specific computations such as distribution, density, and sampler.

Slots
dimension: Object of class "numeric", dimension of the copula.
exprdist: an expression of length two, for the “formulas” of the cdf and pdf of the copula.

Methods

- `signature(copula = "indepCopula")`: ...
- `dCopula signature(copula = "indepCopula")`: ...
- `pCopula signature(copula = "indepCopula")`: ...
- `rCopula signature(copula = "indepCopula")`: ...

Extends

Class "indepCopula" directly extends classes "dimCopula" and "parCopula".

See Also

indepCopula; documentation for classes dimCopula and parCopula.

Examples

getClass("indepCopula")
Description

Multivariate independence test based on the empirical copula process as proposed by Christian Genest and Bruno Rémillard. The test can be seen as composed of three steps: (i) a simulation step, which consists of simulating the distribution of the test statistics under independence for the sample size under consideration; (ii) the test itself, which consists of computing the approximate p-values of the test statistics with respect to the empirical distributions obtained in step (i); and (iii) the display of a graphic, called a dependogram, enabling to understand the type of departure from independence, if any. More details can be found in the articles cited in the reference section.

Usage

indepTestSim(n, p, m = p, N = 1000, verbose = interactive())
indepTest(x, d, alpha=0.05)
dependogram(test, pvalues = FALSE, print = FALSE)

Arguments

- **n**: sample size when simulating the distribution of the test statistics under independence.
- **p**: dimension of the data when simulating the distribution of the test statistics under independence.
- **m**: maximum cardinality of the subsets of variables for which a test statistic is to be computed. It makes sense to consider $m \ll p$ especially when p is large.
- **N**: number of repetitions when simulating under independence.
- **verbose**: a logical specifying if progress should be displayed via `txtProgressBar`.
- **x**: data frame or data matrix containing realizations (one per line) of the random vector whose independence is to be tested.
- **d**: object of class "indepTestDist" as returned by the function `indepTestSim()`. It can be regarded as the empirical distribution of the test statistics under independence.
- **alpha**: significance level used in the computation of the critical values for the test statistics.
- **test**: object of class "indepTest" as returned by `indepTest()`.
- **pvalues**: logical indicating whether the dependogram should be drew from test statistics or the corresponding p-values.
- **print**: logical indicating whether details should be printed.
Details

The current (C code) implementation of `indepTestSim()` uses (RAM) memory of size $O(n^2 p)$, and time $O(Nn^2 p)$. This renders it unfeasible when n is large.

See the references below for more details, especially Genest and Rémillard (2004).

The former argument `print.every` is deprecated and not supported anymore; use `verbose` instead.

Value

The function `indepTestSim()` returns an object of class "indepTestDist" whose attributes are: `sample.size`, `data.dimension`, `max.card.subsets`, `number.repetitions`, `subsets` (list of the subsets for which test statistics have been computed), `subsets.binary` (subsets in binary 'integer' notation), `dist.statistics.independence` (a $N \times \text{line}$ matrix containing the values of the test statistics for each subset and each repetition) and `dist.global.statistic.independence` (a vector a length N containing the values of the global Cramér-von Mises test statistic for each repetition – see Genest et al (2007), p.175).

The function `indepTest()` returns an object of class "indepTest" whose attributes are: `subsets`, `statistics`, `critical.values`, `pvalues`, `fisher.pvalue` (a p-value resulting from a combination à la Fisher of the subset statistic p-values), `tippett.pvalue` (a p-value resulting from a combination à la Tippett of the subset statistic p-values), `alpha` (global significance level of the test), `beta` (1 - beta is the significance level per statistic), `global.statistic` (value of the global Cramér-von Mises statistic derived directly from the independence empirical copula process - see Genest et al (2007), p.175) and `global.statistic.pvalue` (corresponding p-value).

References

See Also

`serialIndepTest`, `multIndepTest`, `multSerialIndepTest`.

Examples

```r
## Consider the following example taken from
## Genest and Remillard (2004), p 352:
set.seed(2004)
```
x <- matrix(rnorm(500),100,5)
x[,1] <- abs(x[,1]) * sign(x[,2] * x[,3])
x[,5] <- x[,4]/2 + sqrt(3) * x[,5]/2

In order to test for independence "within" x, the first step consists
in simulating the distribution of the test statistics under
independence for the same sample size and dimension,
i.e. n=100 and p=5. As we are going to consider all the subsets of
(1,...,5) whose cardinality is between 2 and 5, we set p=m=5.

For a realistic N = 1000 (default), this takes a few seconds:
N. <- if(copula:::doExtras()) 1000 else 120
N.
system.time(d <- indepTestSim(100, 5, N = N.))
For N=1000, 2 seconds (lynne 2015)
You could save 'd' for future use, via saveRDS()

The next step consists of performing the test itself (and print its results):
(iTst <- indepTest(x,d))

Display the dependogram with the details:
dependogram(iTst, print=TRUE)

We could have tested for a weaker form of independence, for instance,
by only computing statistics for subsets whose cardinality is between 2
and 3. Consider for instance the following data:
y <- matrix(runif(500),100,5)
and perform the test:
system.time(d <- indepTestSim(100,5,3, N=N.))
iTy <- indepTest(y,d)
iTy
dependogram(iTy, print=TRUE)

--

initOpt

Initial Interval or Value for Parameter Estimation of Archimedean Copulas

Description

Compute an initial interval or initial value for optimization/estimation routines (only a heuristic; if this fails, choose your own interval or value).

Usage

```r
initOpt(family, tau.range=NULL, interval = TRUE, u,
method = c("tau.Gumbel","tau.mean"), warn = TRUE, ...)
```
Arguments

family Archimedean family to find an initial interval for.
tau.range numeric vector containing lower and upper admissible Kendall’s tau, or NULL which chooses family-specific defaults, see the function definition.
interval logical indicating whether an initial interval (the default) or an initial value should be returned.
u matrix of realizations following the copula family specified by family. Note that u can be omitted if interval=TRUE.
method a character string specifying the method to be used to compute an estimate of Kendall’s tau. This has to be one (or a unique abbreviation) of “tau.Gumbel” an estimator based on the diagonal maximum-likelihood estimator for Gumbel is used.
“tau.mean” an estimator based on the mean of pairwise sample versions of Kendall’s tau is applied.
warn logical indicating if warnings are printed for method="tau.Gumbel" when the diagonal maximum-likelihood estimator is smaller than 1.
... additional arguments passed to cor() when method="tau.mean". Note that otherwise (no additional arg.), the much faster cor.fk() from package pcaPP is used.

Details

For method="tau.mean" and interval=FALSE, the mean of pairwise sample versions of Kendall’s tau is computed as an estimator of the Kendall’s tau of the Archimedean copula family provided. This can be slow, especially if the dimension is large. Method method="tau.Gumbel" (the default) uses the explicit and thus very fast diagonal maximum-likelihood estimator for Gumbel’s family to find initial values. Given this estimator $\hat{\theta}^G$, the corresponding Kendall’s tau is $\tau^G(\hat{\theta}^G)$ where $\tau^G(\theta) = (\theta - 1)/\theta$ denotes Kendall’s tau for Gumbel. This provides an estimator of Kendall’s tau which is typically much faster to evaluate than, pairwise Kendall’s taus. Given the estimated ‘amount of concordance’ based on Kendall’s tau, one can obtain an initial value for the provided family by applying τ^{-1}, that is, the inverse of Kendall’s tau of the family for which the initial value is to be computed. Note that if the estimated Kendall’s tau does not lie in the range of Kendall’s tau as provided by the bivariate vector tau.range, the point in tau.range closest to the estimated Kendall’s tau is chosen.

The default (interval=TRUE) returns a reasonably large initial interval; see the default of tau.range in the definition of initOpt for the chosen values (in terms of Kendall’s tau). These default values cover a large range of concordance. If this interval is (still) too small, one can adjust it by providing tau.range. If it is too large, a ‘distance to concordance’ can be used to determine parameter values such that the corresponding Kendall’s taus share a certain distance to the initial value. For more details, see Hofert et al. (2012). Finally, let us note that for the case interval=TRUE, u is not required.

Value

initial interval which can be used for optimization (for example, for emle).
References

See Also

`enacopula`, `emle`, `edmle`, `emde`, and `ebeta` (where `initOpt` is applied to find initial intervals).

Examples

```r
## Definition of the function:
initOpt

## Generate some data:
tau <- 0.25
(theta <- copGumbel@iTau(tau)) # 4/3
d <- 20
(cop <- onacopulaL("Gumbel", list(theta,1:d)))

set.seed(1)
n <- 200
U <- rnacopula(n, cop)

## Initial interval:
initOpt("Gumbel") # contains theta

## Initial values:
initOpt("Gumbel", interval=FALSE, u=U) # 1.3195
initOpt("Gumbel", interval=FALSE, u=U, method="tau.mean") # 1.2844
```

interval

Construct Simple "interval" Object

Description

Easy construction of an object of class `interval`, using typical mathematical notation.

Usage

`interval(ch)`

Arguments

- `ch`
 a character string specifying the interval.

Value

an `interval` object.
See Also

the interval class documentation, notably its reference to more sophisticated interval classes available for R.

Examples

 interval("[0, 1)")

 ## Two ways to specify open interval borders:
 identical(interval("]-1,1["),
 interval("(-1,1)"))

 ## infinite :
 interval("[0, Inf)")

 ## arithmetic with scalars works:
 4 + 2 * interval("[0, 1.5") # -> [4, 7)

 ## str() to look at internals:
 str(interval("[1.2, 7]")

interval-class

Class "interval" of Simple Intervals

Description

The S4 class "interval" is a simple class for numeric intervals.
"maybeInterval" is a class union (see setClassUnion) of "interval" and "NULL".

Objects from the Class

Objects can be created by calls of the form new("interval",...), but typically they are built via interval().

Slots

.Data: numeric vector of length two, specifying the interval ranges.
open: logical vector of length two, specifying if the interval is open or closed on the left and right, respectively.

Extends

Class "interval" extends "numeric", from data part, and "maybeInterval", directly.
Methods
"%in%" signature(x = "numeric", table = "interval"): check if x is inside the interval, carefully differentiating open and closed intervals.

format signature(x = "interval"): ...
show signature(object = "interval"): ...

Summary signature(x = "interval"): Group methods, notably range(), min(), etc.

Note
There are more sophisticated interval classes, functions and methods, notably in package Intervals. We only use this as a simple interface in order to specify our copula functions consistently.

See Also
interval constructs "interval" objects conveniently.

Examples
-1:2 %in% interval("(0, Inf)")
0 is *not* inside

Kendall Distribution Function for Archimedean Copulas

Description
The Kendall distribution of an Archimedean copula is defined by
\[K(u) = P(C(U_1, U_2, \ldots, U_d) \leq u), \]
where \(u \in [0, 1] \), and the \(d \)-dimensional \((U_1, U_2, \ldots, U_d)\) is distributed according to the copula \(C \). Note that the random variable \(C(U_1, U_2, \ldots, U_d) \) is known as “probability integral transform”. Its distribution function \(K \) is equal to the identity if \(d = 1 \), but is non-trivial for \(d \geq 2 \).

\(Kn() \) computes the empirical Kendall distribution function, \(pK() \) the distribution function (so \(K() \) itself), \(qK() \) the quantile function, \(dK() \) the density, and \(rK() \) random number generation from \(K() \) for an Archimedean copula.

Usage

Kn(u, x, method = c("GR", "GNZ")) # empirical Kendall distribution function
dK(u, copula, d, n.MC = 0, log.p = FALSE) # density
pK(u, copula, d, n.MC = 0, log.p = FALSE) # df
qK(p, copula, d, n.MC = 0, log.p = FALSE, # quantile function
 method = c("default", "simple", "sort", "discrete", "monoH.FC"),
 u.grid, xtraChecks = FALSE, ...)
rK(n, copula, d) # random number generation
Arguments

- **u**: evaluation point(s) (in \([0, 1]\)).
- **x**: data (in the \(d\)-dimensional space) based on which the Kendall distribution function is estimated.
- **copula**: acopula with specified parameter, or (currently for \(rK\) only) a outer_nacopula.
- **d**: dimension (not used when copula is an outer_nacopula).
- **n.MC**: integer, if positive, a Monte Carlo approach is applied with sample size equal to \(n.MC\) to evaluate the generator derivatives involved; otherwise (\(n.MC = 0\)) the exact formula is used based on the generator derivatives as found by Hofert et al. (2012).
- **log.p**: logical; if TRUE, probabilities \(p\) are given as \(\log p\).
- **p**: probabilities or log-probabilities if \(log.p\) is true.
- **method**: for \(qK()\), character string for the method how to compute the quantile function of \(K\); available are:
 - "default": default method. Currently chooses method="monoH.FC" with \(u.grid = 0:1/128\). This is fast but not too accurate (see example).
 - "simple": straightforward root finding based on \texttt{uniroot}.
 - "sort": root finding based on \texttt{uniroot} but first sorting \(u\).
 - "discrete": first, \(K\) is evaluated at the given grid points \(u.grid\) (which should contain 0 and 1). Based on these probabilities, quantiles are computed with \texttt{findInterval}.
 - "monoH.FC": first, \(K\) is evaluated at the given grid points \(u.grid\). A monotone spline is then used to approximate \(K\). Based on this approximation, quantiles are computed with \texttt{uniroot}.
- **Kn()**: character string indicating the method according to which the empirical Kendall distribution is computed; available are:
 - "GR": the default. Computed as in Genest and Rivest (1993, Equations (4) and (5)).
 - "GNZ": computed as in Genest et al. (2011, Equation (19) and Lemma 1); this is guaranteed to satisfy that the estimator lies above the diagonal at any point in \([0, 1]\).
- **u.grid**: (for method="discrete"): The grid on which \(K\) is evaluated, a numeric vector.
- **xtraChecks**: experimental logical indicating if extra checks should be done before calling \texttt{uniroot()} in some cases.
- **...**: additional arguments passed to \texttt{uniroot} (for method="default", method="simple", method="sort", and method="monoH.FC") or \texttt{findInterval} (for method="discrete"), notably \texttt{tol} (\texttt{uniroot}) for increased accuracy.
- **n**: sample size for \(rK\).

Details

For a completely monotone Archimedean generator \(\psi\),

\[
K(u) = \sum_{k=0}^{d-1} \frac{\psi^{(k)}(\psi^{-1}(u))}{k!} (-\psi^{-1}(u))^k, \quad u \in [0, 1];
\]
see Barbe et al. (1996). The corresponding density is

\[
(-1)^d \psi(d) \left(\psi^{-1}(u) \right) \\
(d-1)! \left(-\left(\psi^{-1}(u) \right)'(\psi^{-1}(u)) \right)^{d-1}
\]

Value

The empirical Kendall distribution function, density, distribution function, quantile function and random number generator.

Note

Currently, the "default" method of qK() is fast but not very accurate, see the ‘Examples’ for more accuracy (with more CPU effort).

References

See Also

htrafo or emde (where K is used); splinefun(*,"monoHC") for that method.

Examples

tau <- 0.5
(theta <- copGumbel@iTau(tau)) # 2
d <- 20
(cop <- onacopulaL("Gumbel", list(theta,1:d)))

Basic check of the empirical Kendall distribution function
set.seed(271)
n <- 1000
U <- rCopula(n, copula = cop)
X <- qnorm(U)
K.sample <- pCopula(U, copula = cop)
u <- seq(0, 1, length.out = 256)
edfK <- ecdf(K.sample)
plot(u, edfK(u), type = "l", ylim = 0:1,
 xlab = quote(italic(u)), ylab = quote(K[n](italic(u)))) # simulated
K.n <- Kn(u, x = X)
lines(u, K.n, col = "royalblue3") # Kn
Difference at 0
edfK(0) # edf of K at 0
K.n[1] # K_n(0); this is > 0 since K.n is the edf of a discrete distribution
=> therefore, Kn(K.sample, x = X) is not uniform
plot(Kn(K.sample, x = X), ylim = 0:1)
Note: Kn(0) -> 0 for n -> Inf

Compute Kendall distribution function
u <- seq(0,1, length.out = 255)
Ku <- pK(u, copula = cop@copula, d = d) # exact
Ku.MC <- pK(u, copula = cop@copula, d = d, n.MC = 1000) # via Monte Carlo
stopifnot(all.equal(log(Ku),
 pK(u, copula = cop@copula, d = d, log.p=TRUE)))# rel.err 3.2e-16

Build sample from K
set.seed(1)
n <- 200
W <- rK(n, copula = cop)

Plot empirical distribution function based on W
and the corresponding theoretical Kendall distribution function
(exact and via Monte Carlo)
plot(ecdf(W), col = "blue", xlim = 0:1, verticals=TRUE,
 main = quote("Empirical" ~ F[n](C(U)) ~
 "and its Kendall distribution" ~ K(u)),
 do.points = FALSE, asp = 1)
abline(0,1, lty = 2); abline(h = 0:1, v = 0:1, lty = 3, col = "gray")
lines(u, Ku.MC, col = "red") # not quite monotone
lines(u, Ku, col = "black") # strictly monotone:
stopifnot(diff(Ku) >= 0)
legend(.25, .75, expression(F[n], K[MC](u), K(u)),
 col=c("blue" , "red", "black"), lty = 1, lwd = 1.5, bty = "n")

if(require("Rmpfr")) { # pK() now also works with high precision numbers:
 uM <- mpfr(0:255, 99)/256
 if(FALSE) {
 # not yet, now fails in polyG() :
 KuM <- pK(uM, copula = cop@copula, d = d)
 ## debug(copula:::.pK)
 debug(copula:::polyG)
 }
}# if(Rmpfr)

Testing qK
pexpr <- quote(0:63/63); p <- eval(pexpr)
d <- 10
cop <- onacopula("Gumbel", list(theta = 2, 1:d))
system.time(qK0 <- qK(p, copula = cop@copula, d = d)) # "default" - fast
system.time(qK1 <- qK(p, copula= cop@copula, d=d, method = "simple"))
system.time(qK1. <- qK(p, copula= cop@copula, d,d, method = "simple", tol = 1e-12))
system.time(qK2 <- qK(p, copula= cop@copula, d=d, method = "sort"))
system.time(qK2. <- qK(p, copula= cop@copula, d=d, method = "sort", tol = 1e-12))
system.time(qK3 <- qK(p, copula= cop@copula, d=d, method = "discrete", u.grid = 0:1e4/1e4))
system.time(qK4 <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e2/5e2))
system.time(qK4. <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e3/5e3, tol = 1e-12))
system.time(qK5 <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = 0:5e3/5e3))
system.time(qK5. <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = (0:5e3/5e3)^2))
system.time(qK6 <- qK(p, copula= cop@copula, d=d, method = "monoH.FC", u.grid = (0:5e3/5e3)^2, tol = 1e-12))

Visually they all coincide:
cols <- adjustcolor(c("gray50", "gray80", "light blue",
"royal blue", "purple3", "purple4", "purple"), 0.6)
matplot(p, cbind(qK0, qK1, qK2, qK3, qK4, qK5, qK6), type = "l", lwd = 2*7:1, lty = 1:7, col = cols,
xlab = bquote(p == .(pexpr)), ylab = quote({K^{-1}}(u)),
main = "qK(p, method = *)")
legend("topleft", col = cols, lwd = 2*7:1, lty = 1:7, bty = "n", inset = .03,
legend= paste0("method= ",
sQuote(c("default", "simple", "sort",
"discrete(1e4)", "monoH.FC(500)", "monoH.FC(5e3)", "monoH.FC(*^2)"))))

See they *are* inverses (but only approximately!):
eqInv <- function(qK) all.equal(p, pK(qK, cop@copula, d=d), tol=0)
eqInv(qK0) # "default" 0.03 worst
eqInv(qK1) # "simple" 0.0011 - best
eqInv(qK1.) # "simple", e-12 0.00000 (8.73 e-13) !
eqInv(qK2) # "sort" 0.0013 (close)
eqInv(qK2.) # "sort", e-12 0.00000 (7.32 e-12)
eqInv(qK3) # "discrete" 0.0026
eqInv(qK4) # "monoH.FC(500)" 0.0095
eqInv(qK4.) # "m.H.FC(5c)e-12" 0.00963
eqInv(qK5) # "monoH.FC(5e3)" 0.001148
eqInv(qK5.) # "m.H.FC(5k)e-12" 0.000989
eqInv(qK6) # "monoH.FC(*^2)" 0.001111
eqInv(qK6.) # "m.H.FC(*^2)e-12"0.00000 (1.190 e-09)

and ensure the differences are not too large
stopifnot(
 all.equal(qK0, qK1, tol = 1e-2) # !,
 all.equal(qK1, qK2, tol = 1e-4),
 all.equal(qK2, qK3, tol = 1e-3),
 all.equal(qK3, qK4, tol = 1e-3),
)
all.equal(qK4, qK0, tol = 1e-2) # !

stopifnot(all.equal(p, pK(qK0, cop@copula, d=d), tol = 0.04))

khoudrajiCopula
Construction of copulas using Khoudraji’s device

Description

Creates an object representing a copula constructed using *Khoudraji’s device* (Khoudraji, 1995). The resulting R object is either of class "*khoudrajiBivCopula*, "*khoudrajiExplicitCopula*" or "*khoudrajiCopula*".

In the bivariate case, given two copulas \(C_1 \) and \(C_2 \), Khoudraji’s device consists of defining a copula whose c.d.f. is given by:

\[
C_1(u_1^{1-a_1}, u_2^{1-a_2})C_2(u_1^{a_1}, u_2^{a_2})
\]

where \(a_1 \) and \(a_2 \) are shape parameters in \([0,1]\).

The construction principle (see also Genest et al. 1998) is a special case of that considered in Liebscher (2008).

Usage

```r
khoudrajiCopula(copula1 = indepCopula(), copula2 = indepCopula(dim = d),
                shapes = rep(NA_real_, dim(copula1)))
```

Arguments

- `copula1`, `copula2`

each a copula (possibly generalized, e.g., also a "rotCopula") of the same dimension \(d \). By default independence copulas, where copula2 gets the dimension from copula1.

- `shapes` numeric vector of length \(d \), with values in \([0,1]\).

Details

If the argument copulas are bivariate, an object of class "*khoudrajiBivCopula*" will be constructed. If they are exchangeable and \(d \)-dimensional with \(d > 2 \), and if they have explicit p.d.f. and c.d.f. expressions, an object of class "*khoudrajiExplicitCopula*" will be constructed. For the latter two classes, density evaluation is implemented, and fitting and goodness-of-fit testing can be attempted. If \(d > 2 \) but one of the argument copulas does not have explicit p.d.f. and c.d.f. expressions, or is not exchangeable, an object of class "*khoudrajiCopula*" will be constructed, for which density evaluation is not possible.
A new object of class "khoudrajiBivCopula" in dimension two or of class "khoudrajiExplicitCopula" or "khoudrajiCopula" when $d > 2$.

References

Examples
```r
## A bivariate Khoudraji-Clayton copula
kc <- khoudrajiCopula(copula2 = claytonCopula(6),
                      shapes = c(0.4, 0.95))
class(kc) # "khoudraji..Biv_Copula"
kc
contour(kc, dCopula, nlevels = 20, main = "dCopula(<khoudrajiBivCopula>)")

## A Khoudraji-Clayton copula with second shape parameter fixed
kcf <- khoudrajiCopula(copula2 = claytonCopula(6),
                       shapes = fixParam(c(0.4, 0.95), c(FALSE, TRUE)))
kcf. <- setTheta(kcf, c(3, 0.2)) # (change *free* param's only)
validObject(kcf) & validObject(kcf.)

## A "nested" Khoudraji bivariate copula
kgkcf <- khoudrajiCopula(copula1 = gumbelCopula(3),
                         copula2 = kcf,
                         shapes = c(0.7, 0.25))
kgkcf # -> 6 parameters (1 of 6 is 'fixed')
contour(kgkcf, dCopula, nlevels = 20,
        main = "dCopula(<khoudrajiBivC.(nested)>)")
```
start = c(1.1, 0.5, 0.5), data = pobs(u),
optim.method = "Nelder-Mead"
)
summary(f.IC)
confint(f.IC) # (only interesting for reasonable sample size)

Because of time, don’t run these by default:

Second shape parameter fixed to 0.95
kcf2 <- khoudrajiCopula(copula2 = claytonCopula(),
shapes = fixParam(c(NA_real_, 0.95), c(FALSE, TRUE)))

With a different optimization method

if(Xtras >= 2) { # really S.L.O.W... --------
GOF example
optim.method <- "Nelder-Mead" # try "BFGS" as well
gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method)
gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method,
sim = "mult")
The goodness-of-fit tests should hold their level
but this would need to be tested

Another example under the alternative
u <- rCopula(n, gumbelCopula(4))
gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method)
gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method,
sim = "mult")
}
------ end { really slow gofC*() } --------

Higher-dimensional constructions

A three dimensional Khoudraji-Clayton copula
kcd3 <- khoudrajiCopula(copula1 = indepCopula(dim=3),
copula2 = claytonCopula(6, dim=3),
shapes = c(0.4, 0.95, 0.95))

n <- if(Xtras) 1000 else 100 # sample size (realistic vs short for example)
u <- rCopula(n, kcd3)
splom2(u)
v <- matrix(runif(15), 5, 3)
dCopula(v, kcd3)

A four dimensional Khoudraji-Normal copula
knd4 <- khoudrajiCopula(copula1 = indepCopula(dim=4),
 copula2 = normalCopula(.9, dim=4),
 shapes = c(0.4, 0.95, 0.95, 0.95))

knd4
stopifnot(class(knd4) == "khoudrajiCopula")

u <- rCopula(n, knd4)
splom2(u)

TODO :
dCopula(v, knd4) ## not implemented

khoudrajiCopula-class

Class "khoudrajiCopula" and its Subclasses

Description

The virtual class "asymCopula" of (conceptually) all asymmetric copulas and its 'subclass' "asym2copula" of those which are constructed from two copulas.

More specifically, the class "khoudrajiCopula" and its two subclasses "khoudrajiBivCopula" and "khoudrajiExplicitCopula" represent copulas constructed using Khoudraji's device from two copulas of the same dimension; see `khoudrajiCopula()` for more details.

Objects from the Class

Objects are typically created via `khoudrajiCopula(...)`.

Slots

As these classes extend "copula", they have all its slots: dimension, parameters, param.names, param.lowbnd, param.upbnd, and fullname. The classes "khoudrajiCopula" and "khoudrajiBivCopula" have the extra slots

- copula1: object of class "copula".
- copula2: second object of class "copula".

In addition to these, the class "khoudrajiExplicitCopula" has the slots

- exprdist: an expression, ...
- derExprs1: an expression of length d, ...
- derExprs2: an expression of length d, ...

Methods

When possible, methods are defined at the "khoudrajiCopula" class level. The implementation of method `dCopula` for instance is however not possible at that level. In addition, it differs for "khoudrajiBivCopula" and "khoudrajiExplicitCopula" classes.
References

See Also
khoudrajiCopula()

Examples
```r
showClass("khoudrajiCopula") # two subclasses

## all methods applicable to these subclasses:
(meths <- sapply(names(getClass("khoudrajiCopula")@subclasses),
    function(CL) methods(class = CL),
    simplify=FALSE))
```

Description
(Compute \(f(a) = \log(1 + \exp(-a)) \)) Numerically Optimally

Usage
```r
log1mexp(a, cutoff = log(2))
log1pexp(x, c0 = -37, c1 = 18, c2 = 33.3)
```

Arguments

- **a**: numeric vector of positive values
- **x**: numeric vector
- **cutoff**: positive number; \(\log(2) \) is “optimal”, but the exact value is unimportant, and anything in \([0.5, 1]\) is fine.
- **c0, c1, c2**: cutoffs for \(\log1pexp \); see below.

Value

- \(f(a) = \log(1 - \exp(-a)) = \log1p(-\exp(-a)) = \log(-\expm1(-a)) \)
- or
- \(g(x) = \log(1 + \exp(x)) = \log1p(\exp(x)) \)

computed accurately and quickly
References

Examples

```r
a <- 2^seq(-58, 10, length = 256)
fExpr <- expression(
  log(1 - exp(-a)),
  log(-expm1(-a)),
  log1p(-exp(-a)),
  log1mexp(a))
names(fExpr) <- c("DEF", "expm1", "log1p", "F")
str(fa <- do.call(cbind, as.list(fExpr)))
head(fa)# expm1() works here
tail(fa)# log1p() works here
```

```r
## graphically:
lwd <- 1.5*(5:2); col <- adjustcolor(1:4, 0.4)
op <- par(mfcol=c(1,2), mgp = c(1.25, .6, 0), mar = .1+c(3,2,1,1))
  matplot(a, fa, type = "l", log = "x", col=col, lwd=lwd)
  legend("topleft", fExpr, col=col, lwd=lwd, lty=1:4, bty="n")
  # expm1() & log1mexp() work here

  matplot(a, -fa, type = "l", log = "xy", col=col, lwd=lwd)
  legend("left", paste("-",fExpr), col=col, lwd=lwd, lty=1:4, bty="n")
  # log1p() & log1mexp() work here
par(op)
```

```r
curve(log1pexp, -10, 10, asp=1)
abline(0,1, h=0,v=0, lty=3, col="gray")
```

```r
## Cutoff c1 for log1pexp() -- not often "needed":
curve(log1p(exp(x)) - log1pexp(x), 16, 20, n=2049)
## need for *some* cutoff:
x <- seq(700, 720, by=2)
cbind(x, log1p(exp(x)), log1pexp(x))
```

```r
## Cutoff c2 for log1pexp():
curve((x+exp(-x)) - x, 20, 40, n=1025)
curve((x+exp(-x)) - x, 33.1, 33.5, n=1025)
```

loss

LOSS and ALAE Insurance Data

Description

Indemnity payment and allocated loss adjustment expense from an insurance company.
Usage

data(loss, package="copula")

Format

A data frame with 1500 observations of the following 4 variables:

- **loss**: a numeric vector of loss amount up to the limit.
- **alae**: a numeric vector of the corresponding allocated loss adjustment expense.
- **limit**: a numeric vector of limit (-99 means no limit).
- **censored**: 1 means censored (limit reached) and 0 otherwise.

References

Examples

data(loss)

margCopula

Marginal copula of a Copula With Specified Margins

Description

The marginal copula of a copula $C(u_1, \ldots, u_d)$ is simply the restriction of C on a subset of the the coordinate (directions) u_1, \ldots, u_d.

Usage

margCopula(copula, keep)

Arguments

- **copula**: a "copula" (R object) of dimension, d, say.
- **keep**: logical vector (of length d) indicating which margins to keep.

Details

The marginal copula of a copula is needed in practical data analysis when one or more of the components of some multivariate observations is missing. For normal/t/Archimedean copulas, the marginal copulas can be easily obtained. For a general copula, this may not be an easy problem.

The current implementation only supports normal/t/Archimedean copulas. margCopula is generic function with methods for the different copula classes.
Value

The marginal copula of the specified margin(s).

Examples

tc <- tCopula(8:2 / 10, dim = 8, dispstr = "toep")
margCopula(tc, c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE))

nc <- normalCopula(.8, dim = 8, dispstr = "ar1")
mnc <- margCopula(nc, c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE))
mnc7 <- margCopula(nc, (1:8) != 1)
stopifnot(dim(nc) == 8, dim(mnc) == 4, dim(mnc7) == 7)

gc <- gumbelCopula(2, dim = 8)
margCopula(gc, c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE))

math-fun

Sinc, Zolotarev’s, and Other Mathematical Utility Functions

Description

sinc(x) computes the sinc function \(s(x) = \frac{\sin(x)}{x} \) for \(x \neq 0 \) and \(s(0) = 1 \), such that \(s() \) is continuous, also at \(x = 0 \).

A..Z(x,a) computes Zolotarev’s function to the power 1-a.

Usage

sinc(x)
A..Z(x, alpha, I.alpha = 1 - alpha)

Arguments

x numeric argument in \([0, \pi]\), typically a vector.
alpha parameter in \((0,1]\).
I.alpha must be = 1 - alpha, maybe more accurately when alpha is very close to 1.

Details

For more details about Zolotarev’s function, see, for example, Devroye (2009).

Value

A..Z(x,alpha) is \(\hat{A}_Z(x, \alpha) \), defined as

\[
\frac{\sin(\alpha x)^\alpha \sin((1 - \alpha)x)^{1-\alpha}}{\sin(x)}, \ x \in [0, \pi],
\]

where \(\alpha \in (0, 1) \) is alpha.
References

See Also

retstable internally makes use of these functions.

Examples

```r
curve(sinc, -15, 25); abline(h=0, v=0, lty=2)
curve(A..Z(x, 0.25), xlim = c(-4,4),
    main = "Zolotarev's function A(x) ^ 1-alpha")
```

Description

`p2P()` creates a matrix from a given vector of parameters. `P2p()` creates a numeric vector from a given matrix, currently useful for elliptical copulas. `getSigma()` returns the \(d \times d\) symmetric matrix \(\Sigma\) which is called “Rho” as well, written (capital Greek \(\rho\)) as \(P\) (and hence sometimes erroneously pronounced "Pee"). Note that `getSigma()` works for all elliptical copulas and uses `p2P()` for the “unstructured” case, `dispstr = "un".

`extremePairs()` identifies pairs with the largest (or smallest or both) entries in a symmetric matrix.

Usage

```r
p2P(param, d = floor(1 + sqrt(2*length(param))))
P2p(P)
getSigma(copula)
extremePairs(x, n = 6, method = c("largest", "smallest", "both"),
    use.names = FALSE)
```

Arguments

- `param` a parameter vector.
- `d` dimension of the resulting matrix. The default is correct under the assumption (of `p2P()` in general!) that `param` is the lower-triangular part of a correlation matrix \(P\) and hence corresponds to `ellipCopula(..., dispstr = "un")`.
- `P` a matrix which should be converted to a vector.
- `copula` an elliptical copula, i.e., an object (extending) class `ellipCopula`; typically resulting from `tCopula()` or `normalCopula()`.
- `x` a symmetric matrix.
- `n` the number of pairs with smallest (or largest) values to be displayed.
method

A character string indicating the method to be used (with "largest" to compute the n pairs with largest entries in x (sorted in decreasing order); with "smallest" to compute the n pairs with smallest entries in x (sorted in increasing order); and with "both" to compute the 2n pairs with n largest entries and n smallest entries (sorted in decreasing order)).

use.names

A logical indicating whether colnames(x) are used as labels (if !is.null(colnames(x))).

Details

These auxiliary functions are often used when working with elliptical copulas.

Value

p2P: a symmetric matrix with ones on the diagonal and the values of param filled column-wise below the diagonal (which corresponds to row-wise filling above the diagonal).

P2p: vector of column-wise below-diagonal entries of P (equal to the row-wise above-diagonal entries in case of a symmetric matrix).

getSigma: matrix as from p2P() for all cases of elliptical copulas.

extremePairs: a data.frame consisting of three columns (row (index or name), col (index or name), value).

See Also

ellipCopula, tCopula, normalCopula.

Examples

```r
## display the definitions
p2P
P2p
extremePairs

param <- (2:7)/10
tC <- tCopula(param, dim = 4, dispstr = "un", df = 3)
## consistency of the three functions :
P <- p2P(param) # (using the default 'd')
stopifnot(identical(param, P2p(P)),
         identical(P, getSigma(tC)))

## Toeplitz case:
(tCt <- tCopula((2:6)/10, dim = 6, disp = "toep"))
(rhoP <- tCt@getRho(tCt))
stopifnot(identical(getSigma(tCt),
                    toeplitz(c(1, rhoP))))

## "AR1" case:
nc.7 <- normalCopula(0.8, dim = 7, dispstr = "ar1")
(Sar1.7 <- getSigma(nc.7))
0.8^((0:(7-1)))  # 1 0.8 0.64 0.512 ...
stopifnot(all.equal(Sar1.7, toeplitz(0.8^((0:(7-1)))))
```
mixCopula

Description

A mixture of \(m \) copulas of dimension \(d \) with weights \(w_j, j = 1, 2, \ldots, m \) is itself a \(d \)-dimensional copula, with cumulative distribution function

\[
C(x) = \sum_{j=1}^{m} w_j C_j(x),
\]

and (probability) density function

\[
c(x) = \sum_{j=1}^{m} w_j c_j(x),
\]

where \(C_j \) are the CDFs and \(c_j \) are the densities of the \(m \) component copulas, \(j = 1, 2, \ldots, m \).

Usage

mixCopula(coplist, w = NULL)

Arguments

coplist a list of length \(m(\geq 1) \) copulas (each inheriting from parCopula), all of the same dimension.
w numeric vector of length \(m \) of non-negative mixture weights, or NULL, which means equal weights.

Details

It easy to see that the tail dependencies \(\lambda() \) and Spearman’s rank correlation \(\rho() \) can be computed as mixture of the individual measures.

Value

an object of class \texttt{mixCopula}

See Also

\texttt{khoudrajiCopula}, \texttt{rotCopula} also create new copula models from existing ones.
Examples

```r
mC <- mixCopula(list(gumbelCopula(2.5, dim=3),
                    claytonCopula(pi, dim=3),
                    tCopula(0.7, dim=3)),
               c(2,2,4)/8)

mC
stopifnot(dim(mC) == 3)

set.seed(17)
uM <- rCopula(600, mC)
splom2(uM, main = "mixCopula( (gumbel, clayton, t-Cop) )")
d.uM <- dCopula(uM, mC)
p.uM <- pCopula(uM, mC)

## mix a Gumbel with a rotated Gumbel (with equal weights 1/2):
mGG <- mixCopula(list(gumbelCopula(2), rotCopula(gumbelCopula(1.5))))
rho(mGG)  # 0.57886
lambda(mGG)# both lower and upper tail dependency

loglikCopula(c(2.5, pi, rho.1=0.7, df = 4, w = c(2,2,4)/8),
             u = uM, copula = mC)

ll.df <- Vectorize(function(df, rho)
                    loglikCopula(c(2.5, pi, rho.1=rho, df=df, w = c(2,2,4)/8),
                                  uM, mC))

(df. <- 1/rev(seq(1/8, 1/2, length=21)))# in [2, 8] equidistant in 1/. scale

ll. <- ll.df(df., rho = (rh1 <- 0.7))
plot(df., ll., type = "b", main = "loglikCopula((.,.,rho = 0.7, df, ..), u, <mixCopula>)")

if(!exists("Xtras")) Xtras <- copula:::doExtras()
if (Xtras) {
  Rhos <- seq(0.55, 0.70, by = 0.01)
  ll.m <- matrix(NA, nrow=length(df.), ncol=length(Rhos))
  for(k in seq_along(Rhos)) ll.m[,k] <- ll.df(df., rho = Rhos[k])

  tit <- "loglikelihood(<tCop>, true param. for rest)"
  persp (df., Rhos, ll.m, phi=30, theta = 50, ticktype="detailed", main = tit)
  filled.contour(df., Rhos, ll.m, xlab="df", ylab = "rho", main = tit)
}

## fitCopula() example with "fixed weights" -- (only these are "ok" !!) ---------

(mNt <- mixCopula(list(normalCopula(0.95), tCopula(-0.7)), w = c(1, 2) / 3))
set.seed(1452) ; U <- pobs(rCopula(1000, mNt))
(m1 <- mixCopula(list(normalCopula(), tCopula()), w = mNt@w))

getTheta(m1, freeOnly = TRUE, attr = TRUE)
getTheta(m1, named=TRUE)
copula:::isFree(m1)
fixedParam(m1) <- fx <- c(FALSE, FALSE, FALSE, TRUE, TRUE)
stopifnot(identical(copula:::isFree(m1), !fx))
```
mixCopula-class

139

if (Xtras) {
time
print(system.time(
 fit <- fitCopula(m1, start = c(0, 0, 10), data = U)))
16 sec (nb-mm4)
print(fit)
print(summary(fit))#-> incl ‘Std.Error’ (which seems small for rho1 !)
} #{Xtras}

mixCopula-class Class "mixCopula" of Copula Mixtures

Description

The class "mixCopula" is the class of all finite mixtures of copulas.
These are given by (a list of) m “arbitrary” copulas, and their respective m non-negative probability weights.

Objects from the Class

Objects are typically created by mixCopula().

Slots

w: Object of class "mixWeights", basically a non-negative numeric vector of length, say m, which sums to one.
cops: Object of class "parClist", a list of (parametrized) copulas, "parCopula".

Extends

Class "parCopula", directly. Class "Copula", by class "parCopula", distance 2.

Methods

dim signature(x = "mixCopula"): dimension of copula.
rho signature(x = "mixCopula"): Spearman's rho of copula x.
lambda signature(x = "mixCopula"): lower and upper tail dependencies lambda, (\lambda[L], \lambda[U]), of the mixture copula.

Note

As the probability weights must sum to one (1), which is part of the validity (see validObject) of an object of class "mixWeights", the number of "free" parameters inherently is (at most) one less than the number of mixture components m.
Because of that, it does not make sense to fix (see fixParam or fixedParam<-) all but one of the weights: Either all are fixed, or at least two must be free. Further note, that the definition of free or fixed parameters, and the meaning of the methods (for mixCopula) of getTheta, setTheta and fixedParam<- will probably change in a next release of package copula, where it is planned to use a reparametrization better suited for fitCopula.
moCopula

Description
Computes Marshall-Olkin copulas in the bivariate case.

Usage
moCopula(param = NA_real_, dim = 2L)

Arguments
param numeric vector of length two specifying the copula parameters (in [0, 1]).
dim the dimension of the copula.

Value
moCopula() is the constructor for objects of class moCopula.

Note
Marshall-Olkin copulas are only implemented for dim = 2L.

See Also
The "moCopula" class, its mathematical definition, etc.

Examples
```r
alpha <- c(0.2, 0.7)
MO <- moCopula(alpha)
tau(MO) # 0.18
lambda(MO)
stopifnot(all.equal(lambda(MO),
            c(lower = 0, upper = 0.2)))
wireframe2(MO, FUN = pCopula) # if you look carefully, you can see the kink
contourplot2(MO, FUN = pCopula)
set.seed(271)
plot(rCopula(1000, MO))
```
Description

The Marshall-Olkin copula class.

The (2-dimensional) "MO" copula with parameter $\theta \in [0, 1]^2$ is (i.e., its CDF is)

$$C(u_1, u_2) = \min(u_1 * u_2(1 - \theta_2), u_1(1 - \theta_1) * u_2).$$

Consequently, the density is undefined on a curve (in $[0, 1]^2$), namely for the points $u = (u_1, u_2)$ where two expressions in the above $\min(f(u), g(u))$ are equal, $f(u) = g(u)$. It is easy to see that that is equivalent to

$$u_1^{\theta_1} = u_2^{\theta_2}.$$

Objects from the Class

Objects can be created by `new("moCopula",...)` but are typically produced by `moCopula(...)`.

Slots

- `dimension`: Numeric (scalar), the dimension of the copula.
- `exprdist`: a length two `expression` with expressions for the CDF and PDF of the copula.
- `parameters`: numeric vector of two parameter values in $[0, 1]$.
- `param.names`: "character" vector of length two.
- `param.lowbnd`: numeric vector of two values in $[0, 1]$.
- `param.upbnd`: numeric vector of two values in $[0, 1]$.
- `fullname`: (deprecated; do not use!)

Methods

Typical copula methods work, see "moCopula" and use methods(class = "moCopula").

Extends

Class "moCopula" extends class "copula" directly.

References

See Also

`moCopula` for constructing them; `copula-class`.
Examples

```r
moCopula()@exprdist[["cdf"]]
```
a simple definition

```r
methods(class = "moCopula")
contourplot2(moCopula(c(.1, .8)), pCopula, main = "moCopula((0.1, 0.8))")
```

```r
Xmo <- rCopula(5000, moCopula(c(.2, .5)))
try(  # gives an error, as there is no density (!):
    loglikCopula(c(.1, .2), Xmo, moCopula())
)
```

```r
plot(moCopula(c(.9, .2)), n = 10000, xaxs = "i", yaxs = "i",
    # opaque color (for "density effect"):
    pch = 16, col = adjustcolor("black", 0.3))
```

`multIndepTest`

Independence Test Among Continuous Random Vectors Based on the Empirical Copula Process

Description

Analog of the independence test based on the empirical copula process proposed by Christian Genest and Bruno Rémillard (see `indepTest`) for random vectors. The main difference comes from the fact that critical values and p-values are obtained through the bootstrap/permutation methodology, since, here, test statistics are not distribution-free.

Usage

```r
multIndepTest(x, d, m = length(d), N = 1000, alpha = 0.05,
    verbose = interactive())
```

Arguments

- `x` data frame (`data.frame`) or matrix containing realizations (one per line) of the random vectors whose independence is to be tested.
- `d` dimensions of the random vectors whose realizations are given in `x`. It is required that `sum(d) == ncol(x)`.
- `m` maximum cardinality of the subsets of random vectors for which a test statistic is to be computed. It makes sense to consider `m << p` especially when `p` is large.
- `N` number of bootstrap/permutation samples.
- `alpha` significance level used in the computation of the critical values for the test statistics.
- `verbose` a logical specifying if progress should be displayed via `txtProgressBar`.

Details

See the references below for more details, especially the last one.
multIndepTest

Value

The function "multIndepTest" returns an object of class "indepTest" whose attributes are:
- subsets, statistics, critical.values, pvalues, fisher.pvalue (a p-value resulting from a combination à la Fisher of the subset statistic p-values), tippett.pvalue (a p-value resulting from a combination à la Tippett of the subset statistic p-values), alpha (global significance level of the test), beta (1 - beta is the significance level per statistic), global.statistic (value of the global Cramér-von Mises statistic derived directly from the independence empirical copula process - see In in the last reference) and global.statistic.pvalue (corresponding p-value).

The former argument print.every is deprecated and not supported anymore; use verbose instead.

References

See Also

indepTest, serialIndepTest, multSerialIndepTest, dependogram.

Examples

Consider the following example taken from
Kojadinovic and Holmes (2008):

n <- 100

Generate data
y <- matrix(rnorm(6*n),n,6)
y[,1] <- y[,2]/2 + sqrt(3)/2*y[,1]
y[,3] <- y[,4]/2 + sqrt(3)/2*y[,3]
y[,5] <- y[,6]/2 + sqrt(3)/2*y[,5]
nc <- normalCopula(0.3,dim=3)
x <- cbind(y,rCopula(n, nc),rCopula(n, nc))
x[,1] <- abs(x[,1]) * sign(x[,3] * x[,5])
x[,2] <- abs(x[,2]) * sign(x[,3] * x[,5])
multSerialIndepTest

Serial Independence Test for Multivariate Time Series via Empirical Copula

Description
Analog of the serial independence test based on the empirical copula process proposed by Christian Genest and Bruno Rémillard (see serialIndepTest) for multivariate time series. The main difference comes from the fact that critical values and p-values are obtained through the bootstrap/permutation methodology, since, here, test statistics are not distribution-free.

Usage
multSerialIndepTest(x, lag.max, m = lag.max+1, N = 1000, alpha = 0.05, verbose = interactive())

Arguments
- x: data frame or matrix of multivariate continuous time series whose serial independence is to be tested.
- lag.max: maximum lag.
- m: maximum cardinality of the subsets of 'lags' for which a test statistic is to be computed. It makes sense to consider $m \ll \text{lag.max}+1$ especially when lag.max is large.
- N: number of bootstrap/permutation samples.
- alpha: significance level used in the computation of the critical values for the test statistics.
- verbose: a logical specifying if progress should be displayed via txtProgressBar.

Details
See the references below for more details, especially the last one.
The former argument print.every is deprecated and not supported anymore; use verbose instead.
Value

The function "multSerialIndepTest" returns an object of class "indepTest" whose attributes are: subsets, statistics, critical.values, pvalues, fisher.pvalue (a p-value resulting from a combination à la Fisher of the subset statistic p-values), tippett.pvalue (a p-value resulting from a combination à la Tippett of the subset statistic p-values), alpha (global significance level of the test), beta (1 - beta is the significance level per statistic), global.statistic (value of the global Cramér-von Mises statistic derived directly from the independence empirical copula process - see In in the last reference) and global.statistic.pvalue (corresponding p-value).

References

See Also

serialIndepTest, indepTest, multIndepTest, dependogram

Examples

```r
## A multivariate time series (minimal example for demo purposes)
d <- 2
n <- 100 # sample size *and* "burn-in" size
param <- 0.25
A <- matrix(param,d,d) # the bivariate AR(1)-matrix
set.seed(17)
ar <- matrix(rnorm(2*n * d), 2*n,d) # used as innovations
for (i in 2:(2*n))
ar[i,] <- A %*% ar[i-1,] + ar[i,]
## drop burn-in :
x <- ar[(n+1):(2*n),]
## Run the test
test <- multSerialIndepTest(x,3)
test
## Display the dependogram
dependogram(test,print=TRUE)
```
Multivariate Distributions Constructed from Copulas

Description
Density, distribution function, and random generator for a multivariate distribution via copula and parametric margins.

For likelihood and fitting these distributions to data, see fitMvdc.

Usage
mvdc(copula, margins, paramMargins, marginsIdentical = FALSE, check = TRUE, fixupNames = TRUE)
dMvdc(x, mvdc, log=FALSE)
pMvdc(x, mvdc)
rMvdc(n, mvdc)

Arguments
copula an object of "copula".
margins a character vector specifying all the parametric marginal distributions. See details below.
paramMargins a list whose each component is a list (or numeric vectors) of named components, giving the parameter values of the marginal distributions. See details below.
marginsIdentical logical variable restricting the marginal distributions to be identical.
check logical indicating to apply quick checks about existence of margins "p*" and "d*" functions.
fixupNames logical indicating if the parameters of the margins should get automatic names (from formals(p<mar_i>).
mvdc a "mvdc" object.
x a numeric vector of length the copula dimension, say d, or a matrix with the number of columns being d, giving the coordinates of the points where the density or distribution function needs to be evaluated.
log logical indicating if the log density should be returned.
n number of observations to be generated.

Details
The characters in argument margins are used to construct density, distribution, and quantile function names. For example, norm can be used to specify marginal distribution, because dnorm, pnorm, and qnorm are all available.
A user-defined distribution, for example, fancy, can be used as margin provided that dfancy, pfancy, and qfancy are available.

Each component list in argument paramMargins is a list with named components which are used to specify the parameters of the marginal distributions. For example, the list

\[
\text{paramMargins} = \text{list(list(mean } = 0, \text{ sd } = 2), \text{ list(rate } = 2)}
\]

can be used to specify that the first margin is normal with mean 0 and standard deviation 2, and the second margin is exponential with rate 2.

Value

\text{mvdc()} constructs an object of class "mvdc". \text{dMvdc()} gives the density, \text{pMvdc()} gives the cumulative distribution function, and \text{rMvdc()} generates random variates.

Note

\text{mvdc()}, \text{fitMvdc}, etc, are only for parametric margins. If you do not want to model all margins parametrically, use the standard copula approach, transforming the data by their empirical margins via \text{pobs} and modelling the copula alone, e.g., using \text{fitCopula}, i.e., conceptually, using

\[
\text{fitCopula}(\ldots, \text{pobs}(x))
\]

See Also

\text{ellipCopula}, \text{archmCopula}; the classes \text{mvdc} and \text{copula}.

Examples

```r
## construct a bivariate distribution whose marginals
## are normal and exponential respectively, coupled
## together via a normal copula
mv.NE <- mvdc(normalCopula(0.75), c("norm", "exp"),
              list(list(mean = 0, sd = 2), list(rate = 2)))
dim(mv.NE)
mv.NE # using its print() / show() method

persp(mv.NE, dMvdc, xlim = c(-4, 4), ylim = c(0, 2), main = "dMvdc(mv.NE)"
persp(mv.NE, pMvdc, xlim = c(-4, 4), ylim = c(0, 2), main = "pMvdc(mv.NE)"
contour(mv.NE, dMvdc, xlim = c(-4, 4), ylim = c(-5, 2))

# Generate (bivariate) random numbers from that, and visualize
x.samp <- rMvdc(250, mv.NE)
plot(x.samp)
summary(fx <- dMvdc(x.samp, mv.NE))
summary(Fx <- pMvdc(x.samp, mv.NE))
op <- par(mfcol=c(1,2))
pp <- persp(mv.NE, pMvdc, xlim = c(-5, 5), ylim = c(0,2),
           main = "pMvdc(mv.NE)", ticktype="detail")
px <- copula:::perspMvdc(x.samp, FUN = F.n, xlim = c(-5, 5), ylim = c(0, 2),
```

```
mvdc-class

Class "mvdc": Multivariate Distributions from Copulas

Description
"mvdc" is a class representing multivariate distributions constructed via copula and margins, using Sklar's theorem.

Objects from the Class
Objects are typically created by mvdc(), or can be created by calls of the form new("mvdc",...).

Slots
copula: Object of class "copula", specifying the copula.
margins: Object of class "character", specifying the marginal distributions.
paramMargins: Object of class "list", whose each component is a list of named components, giving the parameter values of the marginal distributions. See mvdc.
marginsIdentical: Object of class "logical", that, if TRUE, restricts the marginal distributions to be identical, default is FALSE.

Methods
contour signature(x = "mvdc"): ...
dim signature(x = "mvdc"): the dimension of the distribution; this is the same as dim(x@copula).
persp signature(x = "mvdc"): ...
show signature(object = "mvdc"): quite compactly display the content of the "mvdc" object.

See Also
mvdc, also for examples; for fitting, fitMvdc.
nacFrail.time

Timing for Sampling Frailties of Nested Archimedean Copulas

Description

This function provides measurements of user run times for the frailty variables involved in a nested Archimedean copula.

Usage

nacFrail.time(n, family, taus, digits = 3, verbose = FALSE)

Arguments

n integer specifying the sample size to be used for the random variates \( V_0 \) and \( V_{01} \).

family the Archimedean family (class "acopula") for which \( V_0 \) and \( V_{01} \) are sampled.

taus numeric vector of Kendall’s taus. This vector is converted to a vector of copula parameters \( \theta \), which then serve as \( \theta_0 \) and \( \theta_1 \) for a three-dimensional fully nested Archimedean copula of the specified family. First, for each \( \theta_0 \), \( n \) random variates \( V_0 \) are generated. Then, given the particular \( \theta_0 \) and the realizations \( V_0 \), \( n \) random variates \( V_{01} \) are generated for each \( \theta_1 \) fulfilling the sufficient nesting condition; see paraConstr in acopula.

digits number of digits for the output.

verbose logical indicating if nacFrail.time output should generated while the random variates are generated (defaults to FALSE).

Value

A \( k \times k \) matrix of user run time measurements in milliseconds \( 1000 \times \text{system.time(.)[1]} \) where \( k \) is length(taus). The first column contains the run times for generating the \( V_0 \)s. For the submatrix that remains if the first column is removed, row \( i \) (for \( \theta_0_i \)) contains the run times for the \( V_{01} \)s for a particular \( \theta_0 \) and all the admissible \( \theta_1 \)s.

See Also

The class acopula and our predefined "acopula" family objects in acopula-families. For some timings on a standard notebook, see demo(timings) (or the file ‘timings.R’ in the demo folder).

Examples

### takes about 7 seconds:% so we rather test a much smaller set in R CMD check

nacFrail.time(10000, "Gumbel", taus = c(0.05,(1:9)/10, 0.95))

system.time(
  print( nacFrail.time(1000, "Gumbel", taus = c(0.5,1,6,9)/10) )
)


Class "nacopula" of Nested Archimedean Copulas

Description

Class of nested Archimedean Copulas, "nacopula", and its specification "outer
nacopula" differ only by the validation method, which is stricter for the outer
most copula (the root copula).

Objects from the Class

Objects can be created by calls of the form new("nacopula",...), which is only intended for
experts. Root copulas are typically constructed by onacopula(.).

Slots

copula: an object of class "acopula", denoting the top-level Archimedean copula of the nested
Archimedean copula, that is, the root copula.

comp: an integer vector (possibly of length 0) of indices of components in 1:d which are not
nested Archimedean copulas. Here, d denotes the dimension of the random vectors under
consideration; see the dim() method below.

childCops: a (possibly empty) list of further nested Archimedean copulas (child copulas), that
is, objects of class "nacopula". The "nacopula" objects therefore contain "acopula" objects
as special cases.

Methods

dim signature(x = "nacopula"): returns the dimension d of the random vector U following x.

show signature("nacopula"): calling printNacopula for a compact overview of the nested
Archimedean copula under consideration.

See Also

onacopula for building (outer) "nacopula" objects. For the class definition of the copula compo-
nent, see acopula.

Examples

## nacopula and outer_nacopula class information
showClass("nacopula")
showClass("outer_nacopula")

## Construct a three-dimensional nested Frank copula with parameters
## chosen such that the Kendall's tau of the respective bivariate margins
## are 0.2 and 0.5.
theta0 <- copFrank@iTau(.2)
theta1 <- copFrank@iTau(.5)
C3 <- onacopula("F", C(theta0, 1, C(theta1, c(2,3))))
C3 # displaying it, using show(C3); see help(printNacopula)

## What is the dimension of this copula?
Dim(C3)

## What are the indices of direct components of the root copula?
C3@comp

## How does the list of child nested Archimedean copulas look like?
C3@childCops # only one child for this copula, components 2, 3

---

### nacPairthetas

**Pairwise Thetas of Nested Archimedean Copulas**

**Description**

Return a \(d \times d\) matrix of pairwise thetas for a nested Archimedean copula (nacopula) of dimension \(d\).

**Usage**

nacPairthetas(x)

**Arguments**

- **x**: an (outer) nacopula (with thetas sets).

**Value**

a \((d \times d)\) matrix of thetas, say \(T\), where \(T[j,k] = \text{theta of the bivariate Archimedean copula } C(U_j, U_k)\).

**See Also**

the class nacopula (with its dim method).

**Examples**

```r
test with
options(width=97)

(mm <- rnacModel("Gumbel", d=15, pr.comp = 0.25, order="random"))
stopifnot(isSymmetric(PT <- nacPairthetas(mm)))
round(PT, 2)

The tau's -- "Kendall's correlation matrix":
round(copGumbel@tau(PT), 2)
```
## do this several times:

```r
m1 <- rnacModel("Gumbel", d=15, pr.comp = 1/8, order="seq")
stopifnot(isSymmetric(PT <- nacPairthetas(m1)))
m1; PT
```

```r
m100 <- rnacModel("Gumbel", d= 100, pr.comp = 1/16, order="seq")
system.time(PT <- nacPairthetas(m100))# how slow (non-optimal algorithm)?
##-- very fast, still!
stopifnot(isSymmetric(PT))
m100
```

```r
image(PT)# not ok -- want one color per theta
nt <- length(th0 <- unique(sort(PT[!is.na(PT)])))
ths <- (th1[-1]+th1[-(nt+2)])/2
image(log(PT), breaks = ths, col = heat.colors(nt))
```

```r
Nicer and easier:
require(Matrix)
image(as(log(PT),"Matrix"), main = "log(nacPairthetas(m100))",
 useAbs=FALSE, useRaster=TRUE, border=NA)
```

---

### nesdepth

The `nesdepth` function computes the nesting depth of a nested Archimedean copula, which is the length of the longest branch in the tree representation of the copula, and hence at least one.

#### Usage

```r
nesdepth(x)
```

#### Arguments

- **x**: object of class "nacopula".

#### Value

An integer, the nesting depth of the nested Archimedean copula. An (unnested) Archimedean copula has depth 1.

#### See Also

- `dim` of nacopulas.
onacopula

Examples

F2 <- onacopula("F", C(1.9, 1, C(4.5, c(2,3))))
F2
F3 <- onacopula("Clayton", C(1.5, 3:1,
    C(2.5, 4:5,
    C(15, 9:6))))
nesdepth(F2) # 2
nesdepth(F3) # 3

onacopula Constructing (Outer) Nested Archimedean Copulas

Description

Constructing (outer) nested Archimedean copulas (class outer_nacopula) is most conveniently done via onacopula(), using a nested C(...) notation.

Slightly less conveniently, but with the option to pass a list structure, onacopulaL() can be used, typically from inside another function programmatically.

Usage

onacopula (family, nacStructure)
onacopulaL(family, nacList)
nac2list(x)

Arguments

family either a character string, the short or longer form of the Archimedean family name (for example, "Clayton" or simply "C"); see the acopula-families documentation, or an acopula family object.
nacStructure a “formula” of the form

C(θ, c(i₁,...,iₖ), list(C(..),...,C(..))).

Note that C() has (maximally) three arguments: the first is the copula parameter (vector) θ, the second a (possibly empty) vector of integer indices of components (for the comp slot in nacopulas), and finally a (possibly empty) list of child copulas, each specified with in the C(…) notation themselves.
nacList a list of length 3 (or 2), with elements

1. theta: θ
2. comp: components c(i₁,...,iₖ)
3. children: a list which must be a nacList itself and may be missing to denote the empty list().

x an “nacopula”, (typically "outer_nacopula") object.
onacopula[L](): An outer nested Archimedean copula object, that is, of class "outer_nacopula".
	nac2list: a list exactly like the naclist argument to onacopulaL.

References

Those of the Archimedean families, for example, copGumbel.

See Also

The class definitions "nacopula", "outer_nacopula", and "acopula".

Examples

## Construct a ten-dimensional Joe copula with parameter such that
## Kendall's tau equals 0.5
theta <- copJoe@iTau(0.5)
C10 <- onacopula("J",C(theta,1:10))

## Equivalent construction with onacopulaL():
C10. <- onacopulaL("J",list(theta,1:10))
stopifnot(identical(C10, C10.),
identical(nac2list(C10), list(theta, 1:10)))

## Construct a three-dimensional nested Gumbel copula with parameters
## such that Kendall's tau of the respective bivariate margins are 0.2
## and 0.5.
theta0 <- copGumbel@iTau(.2)
theta1 <- copGumbel@iTau(.5)
C3 <- onacopula("G", C(theta0, 1, C(theta1, c(2,3))))

## Equivalent construction with onacopulaL():
str(NAlis <- list(theta0, 1, list(list(theta1, c(2,3)))))
C3. <- onacopulaL("Gumbel", NAlis)
stopifnot(identical(C3, C3.))

## An exercise: assume you got the copula specs as character string:
na3spec <- "C(theta0, 1, C(theta1, c(2,3)))"
n3call <- parse(text = na3spec)[[1]]
C3.s <- onacopula("Gumbel", na3call)
stopifnot(identical(C3, C3.s))

## Good error message if the component ("coordinate") indices are wrong
## or do not match:
err <- try(onacopula("G", C(theta0, 2, C(theta1, c(3,2)))))

## Compute the probability of falling in [0,.01]^3 for this copula
pCopula(rep(.01,3), C3)

## Compute the probability of falling in the cube [.99,1]^3
prob(C3, rep(.99, 3), rep(1, 3))
## Construct a 6-dimensional, partially nested Gumbel copula of the form
## \( C_0(C_1(u_1, u_2), C_2(u_3, u_4), C_3(u_5, u_6)) \)
theta <- 2:5
copG <- onacopulaL("Gumbel", list(theta[1], NULL, list(list(theta[2], c(1,2)),
                         list(theta[3], c(3,4)),
                         list(theta[4], c(5,6)))))
set.seed(1)
U <- rCopula(5000, copG)
pairs(U, pch=".", gap=0, labels = as.expression( lapply(1:dim(copG),
                          function(j) bquote(italic(U[.(j)])))) )

---

### opower

**Outer Power Transformation of Archimedean Copulas**

**Description**

Build a new Archimedean copula by applying the outer power transformation to a given Archimedean copula.

**Usage**

opower(copbase, thetabase)

**Arguments**

- **copbase**: a "base" copula, that is, a copula of class `acopula`. Must be one of the predefined families.
- **thetabase**: the univariate parameter \( \theta \) for the generator of the base copula `copbase`. Hence, the copula which is transformed is fixed, that is, does not depend on a parameter.

**Value**

A new `acopula` object, namely the outer power copula based on the provided copula family `copbase` with fixed parameter `thetabase`. The transform introduces a parameter `theta`, so one obtains a parametric Archimedean family object as return value.

The environment of all function slots contains objects `cOP` (which is the outer power copula itself), `copbase`, and `thetabase`.

**References**

Hofert, M. (2010), *Sampling Nested Archimedean Copulas with Applications to CDO Pricing*, Suedwestdeutscher Verlag fuer Hochschulschriften AG & Co. KG.

**See Also**

The class `acopula` and our predefined "acopula" family objects in `acopula-families`. 
Examples

```r
Construct an outer power Clayton copula with parameter thetabase such
that Kendall's tau equals 0.2
thetabase <- copClayton@iTau(0.2)
opC <- opower(copClayton, thetabase) # "acopula" obj. (unspecified theta)

Construct a 3d nested Archimedean copula based on opC, that is, a nested
outer power Clayton copula. The parameters theta are chosen such that
Kendall's tau equals 0.4 and 0.6 for the outer and inner sector,
respectively.
theta0 <- opC@iTau(0.4)
theta1 <- opC@iTau(0.6)
opC3d <- onacopulaL(opC, list(theta0, 1, list(list(theta1, 2:3))))
or opC3d <- onacopula(opC, C(theta0, 1, C(theta1, c(2,3))))

Compute the corresponding lower and upper tail-dependence coefficients
rbind(theta0 = c(
 lambdaL = opC@lambdaL(theta0),
 lambdaU = opC@lambdaU(theta0) # => opC3d has upper tail dependence
),
 theta1 = c(
 lambdaL = opC@lambdaL(theta1),
 lambdaU = opC@lambdaU(theta1) # => opC3d has upper tail dependence
))

Sample opC3d
n <- 1000
U <- rnacopula(n, opC3d)

Plot the generated vectors of random variates of the nested outer
power Clayton copula.
splom2(U)

Construct such random variates "by hand"
(1) draw V0 and V01
V0 <- opC@V0(n, theta0)
V01 <- opC@V01(V0, theta0, theta1)
(2) build U
U <- cbind(
 opC@psi(rexp(n)/V0, theta0),
 opC@psi(rexp(n)/V01, theta1),
 opC@psi(rexp(n)/V01, theta1))
```

**Description**

A version of `graphics` package `pairs()`, particularly useful for visualizing dependence in multivariate (copula) data.
pairsRosenblatt

Usage

pairs2(x, labels = NULL, labels.null.lab = "U", ...)  

Arguments

x  
a numeric matrix or an R object for which as.matrix(x) returns such a matrix.

labels  
the variable names, typically unspecified.

labels.null.lab  
the character string determining the “base name” of the variable labels in case labels is NULL and x does not have all column names given.

...  
further arguments, passed to pairs().

Value

invisible()

See Also

splom2() for a similar function based on splom().

Examples

## Create a 100 x 7 matrix of random variates from a t distribution
## with four degrees of freedom and plot the generated data
U <- matrix(rt(700, df = 4), ncol = 7)
pairs2(U, pch = ".")

pairsRosenblatt  
Plots for Graphical GOF Test via Pairwise Rosenblatt Transforms

Description

pairsColList() creates a list containing information about colors for a given matrix of (approximate aka “pseudo”) p-values. These colors are used in pairsRosenblatt() for visualizing a graphical goodness-of-fit test based on pairwise Rosenblatt transformed data.

Usage

pairsRosenblatt(cu.u, pvalueMat=pviTest(pairwiseIndepTest(cu.u)),
               method = c("scatter", "QQchisq", "QQgamma",
                          "PPchisq", "PPgamma", "none"),
g1, g2, col = "B&W.contrast",
collist = pairsColList(pvalueMat, col=col),
main=NULL,  
sub = gpviString(pvalueMat, name = "pp-values"),
panel = NULL, do.qqline = TRUE,
keyOpt = list(title="pp-value", rug.at=pvalueMat), ...)
pairsRosenblatt

pairsColList(P, pdiv = c(1e-04, 0.001, 0.01, 0.05, 0.1, 0.5),
  signif.P = 0.05, pmin0 = 1e-05, bucketCols = NULL,
  fgColMat = NULL, bgColMat = NULL, col = "B&W.contrast",
  BWcutoff = 170,
  bg.col = c("ETHCL", "zurich", "zurich.by.fog", "baby",
             "heat", "greenish"),
  bg.ncol.gap = floor(length(pdiv)/3),
  bg.col.bottom = NULL, bg.col.top = NULL, ...)

Arguments

- **cu.u** *(n,d,d)-array* of pairwise Rosenblatt-transformed observations as returned by `pairwiseCcop()`.
- **pvalueMat** *(d,d)-matrix* of p-values (or pp-values).
- **method** *character* indicating the plot method to be used. Currently possible are:
  - "scatter" a simple scatter plot.
  - "QQchisq" a Q-Q plot after a map to the $\chi^2$ distribution.
  - "QQgamma" a Q-Q plot after a map to the gamma distribution.
  - "PPchisq" a P-P plot after a map to the $\chi^2$ distribution.
  - "PPgamma" a P-P plot after a map to the gamma distribution.
  - "none" no points are plotted.
  Note: These methods merely just set $g_1$ and $g_2$ correctly; see the code for more details.
- **g1** *function* from $[0, 1]^n \rightarrow [0, 1]^n$ applied to "x" for plotting in one panel.
- **g2** *function* from $[0, 1]^{n \times 2} \rightarrow [0, 1]^n$ applied to "y" for plotting in one panel.
- **colList** *list* of colors and information as returned by `pairsColList()`.
- **main** title.
- **sub** sub-title with a smart default containing a global (p)p-value.
- **panel** a panel function as for `pairs`, or, by default, NULL, where the panel is set as points or "points + qqline" if the method is "QQ...." and do.qqline is true.
- **do.qqline** if method = "QQ....", specify if the plot panels should also draw a `qqline()`.
- **keyOpt** argument passed to `.pairsCond()` for options for the key.
- **...** additional arguments passed to `.pairsCond()` (for `pairsRosenblatt()`) and to `heat_hcl()` (for `pairsColList`; used to generate the color palette), see Details.
- **P** *(d \times d)* matrix of p-values.
- **pdiv** numeric vector of strictly increasing p-values in (0,1) that determine the “buckets” for the background colors of `.pairsCond()` which creates the pairs-like goodness-of-fit plot.
- **signif.P** significance level (must be an element of `pdiv`).
- **pmin0** a numeric indicating the lower endpoint of the p-value buckets if `pmin` is zero. If set to 0, the lowest value of the p-value buckets will also be 0.
  Note that `pmin0` should be in $\min(0, \min(pdiv))$ when using `pairsColList()` for `.pairsCond()`.
bucketCols: vector of length as pdiv containing the colors for the buckets. If not specified, either bg.col.bottom and bg.col.top are used (if provided) or bg.col (if provided).

fgColMat: (d, d)-matrix with foreground colors (the default will be black if the background color is bright and white if it is dark; see also BWcutoff).

bgColMat: (d, d)-matrix of background colors; do not change this unless you know what you are doing.

col: foreground color (defaults to "B&W.contrast" which switches black/white according to BWcutoff), passed to .pairsCond(). If colList is not specified, this color is used to construct the points' color.

BWcutoff: number in (0, 255) for switching foreground color if col="B&W.contrast".

bg.col: color scheme for the background colors.

bg.ncol.gap: number of colors left out as "gap" for color buckets below/above signif.P (to make significance/non-significance more visible).

bg.col.bottom: vector of length 3 containing a HCL color specification. If bg.col.bottom is provided and bucketCols is not, bg.col.bottom is used as the color for the bucket of smallest p-values.

bg.col.top: vector of length 3 containing a HCL color specification. If bg.col.top is provided and bucketCols is not, bg.col.top is used as the color for the bucket of largest p-values.

Details

Extra arguments of pairsRosenblatt() are passed to .pairsCond(), these notably may include key, true by default, which draws a color key for the colors used as panel background encoding (pseudo) p-values.

pairsColList() is basically an auxiliary function to specify the colors used in the graphical goodness-of-fit test as conducted by pairsRosenblatt(). The latter is described in detail in Hofert and Mächler (2013). See also demo(gof_graph).

Value

pairsRosenblatt: invisibly, the result of .pairsCond().
pairsColList: a named list with components
  fgColMat: matrix of foreground colors.
  bgColMat: matrix of background colors (corresponding to P).
  bucketCols: vector containing the colors corresponding to pvalueBuckets as described above.
  pvalueBuckets: vector containing the endpoints of the p-value buckets.

References

See Also

pairwiseCcop() for the tools behind the scenes. demo(gof_graph) for examples.

Examples

```r
2-dim example (d = 2) ===============
"t" Copula with 22. degrees of freedom; and (pairwise) tau = 0.5
nu <- 2.2 # degrees of freedom
Define the multivariate distribution
tCop <- ellipCopula("t", param=iTau(ellipCopula("t", df=nu), tau = 0.5),
 dim=2, df=nu)
set.seed(19)
X <- qexp(rCopula(n = 400, tCop))
H0 (wrongly): a Normal copula, with correct tau
copH0 <- ellipCopula("normal", param=iTau(ellipCopula("normal"), tau = 0.5))
create array of pairwise copH0-transformed data columns
cu.u <- pairwiseCcop(pobs(X), copula = copH0)
compute pairwise matrix of p-values and corresponding colors
pwIT <- pairwiseIndepTest(cu.u, N=200) # (d,d)-matrix of test results
round(pmat <- pviTest(pwIT), 3) # pick out p-values
.286 and .077
pairsRosenblatt(cu.u, pvalueMat= pmat)

A shortened version of demo(gof_graph) -------------------------------
N <- 32 # too small, for "testing"; realistically, use a larger one:
if(FALSE)
 N <- 100
5d Gumbel copula
n <- 250 # sample size
d <- 5 # dimension
family <- "Gumbel" # copula family
tau <- 0.5
set.seed(17)
define and sample the copula (= H0 copula), build pseudo-observations
cop <- getAcop(family)
th <- cop@iTau(tau) # correct parameter value
copH0 <- onacopulaL(family, list(th, 1:d)) # define H0 copula
U. <- pobs(rCopula(n, cop=copH0))
create array of pairwise copH0-transformed data columns
cu.u <- pairwiseCcop(U., copula = copH0)
```
## compute pairwise matrix of p-values and corresponding colors

pwIT <- pairwiseIndepTest(cu.u, N=N, verbose=interactive())  # (d,d)-matrix of test results
round(pmat <- pvITest(pwIT), 3)  # pick out p-values

## Here (with seed=1): no significant ones, smallest = 0.0603

### Plots ---------------------

### plain (too large plot symbols here)

pairsRosenblatt(cu.u, pvalueMat=pmat, pch=".")

### with title, no subtitle

pwRoto <- "Pairwise Rosenblatt transformed observations"

pairsRosenblatt(cu.u, pvalueMat=pmat, pch=".", main=pwRoto, sub=NULL)

### two-line title including expressions, and centered

title <- list(paste(pwRoto, "to test"),
               substitute(italic(H[0]:C~~bold("is Gumbel with"~~tau==tau.")
               list(tau.=tau)))

line.main <- c(4, 1.4)

pairsRosenblatt(cu.u, pvalueMat=pmat, pch=".",
               main=title, line.main=line.main, main.centered=TRUE)

### Q-Q plots -- can, in general, better detect outliers

pairsRosenblatt(cu.u, pvalueMat=pmat, method="QQchisq", cex=0.2)

---

### persp-methods

#### Methods for Function ‘persp’ in Package ‘copula’

**Description**

Methods for function `persp` to draw perspective plots (of two dimensional distributions from package `copula`).

**Usage**

```r
S4 method for signature 'Copula'
persp(x, FUN, n.grid = 26, delta = 0,
 xlab = "u1", ylab = "u2",
 zlab = deparse(substitute(FUN))[1], zlim = NULL,
 theta = -30, phi = 30, expand = 0.618,
 ticktype = "detail", ...)
S4 method for signature 'mvdc'
persp(x, FUN, xlim, ylim, n.grid = 26,
 xlab = "x1", ylab = "x2", zlab = deparse(substitute(FUN))[1],
 theta = -30, phi = 30, expand = 0.618,
 ticktype = "detail", ...)
```
Arguments

- **x**: a "Copula" or a "mvdc" object.
- **FUN**: the function to be plotted; typically `dCopula` or `pCopula`.
- **n.grid**: the number of grid points used in each dimension. This can be a vector of length two, giving the number of grid points used in x- and y-direction, respectively; the function FUN will be evaluated on the corresponding (x,y)-grid.
- **delta**: A small number in \([0, \frac{1}{2}]\) influencing the evaluation boundaries. The x- and y-vectors will have the range \([0+delta, 1-delta]\), the default being \([0, 1]\).
- **xlim, ylim**: The range of the x and y variables, respectively.
- **xlab, ylab, zlab, zlim, theta, phi, expand, ticktype, ...**: Arguments for (the default method of) `persp()`, the ones enumerated here all with different defaults than there.

Value

- **invisible**: a list with the following components:
  - **x, y**: The numeric vectors, as passed to `persp.default`.
  - **z**: The matrix of evaluated FUN values on the grid as passed to `persp.default`.
  - **persp**: the 4 × 4 transformation matrix returned by `persp.default`.

Methods

- Perspective plots for both "copula" or "mvdc" objects, see x in the Arguments section.

See Also

- The `contour-methods` for drawing contour lines of the same functions.

Examples

```r
persp(claytonCopula(2), pCopula, main = "CDF of claytonCopula(2)"
persp(frankCopula(1.5), dCopula, main = "Density of frankCopula(1.5)"
persp(frankCopula(1.5), dCopula, main = "c_{frank(1.5)}(.)", zlim = c(0,2))

Examples with negative tau:
(th1 <- iTau(amhCopula(), -0.1))
persp(amhCopula(th1), dCopula)
persp(amhCopula(th1), pCopula, ticktype = "simple") # no axis ticks
persp(frankCopula(iTau(frankCopula(), -0.1)), dCopula)
persp(claytonCopula(iTau(claytonCopula(), -0.1)), dCopula)

MVDC Examples ------------------------------------
vN <- mvdc(gumbelCopula(3), c("norm", "norm"),
```

```r
MVDC Examples "copula" or "mvdc" objects, see x in the Arguments section.
```
plackettCopula

Construction of a Plackett Copula

Description

Constructs a Plackett copula (class "plackettCopula") with its corresponding parameter.

Usage

plackettCopula(param)

Arguments

param a number (numeric vector of length one) specifying the non negative parameter.

Value

A Plackett copula object of class "plackettCopula".

References


See Also

The "plackettCopula" class; ellipCopula, archmCopula.

Examples

plackett.cop <- plackettCopula(param=2)
lambda(plackett.cop) # 0 0 : no tail dependencies
# For really large param values (here, 1e20 and Inf are equivalent):
set.seed(1); Xe20 <- rCopula(5000, plackettCopula(1e20))
set.seed(1); Xinf <- rCopula(5000, plackettCopula(Inf))
stopifnot(all.equal(Xe20, Xinf))
**plackettCopula-class**  
*Class "plackettCopula" of Plackett Copulas*

**Description**

The Plackett copula class.

**Objects from the Class**

Objects can be created by `new("plackettCopula",...)` but are typically produced by `plackettCopula(alpha)`.

**Slots**

- `dimension`: Numeric (scalar), the dimension of the copula.
- `exprdist`: a length two expression with expressions for the CDF and PDF of the copula.
- `parameters`: a number (numeric vector of length one) specifying the non negative parameter.
- `param.names`: the "character" string "alpha".
- `param.lowbnd`: the number 0.
- `param.upbnd`: the number Inf.
- `fullname`: (deprecated; do not use!)

**Methods**

Typical copula methods work, see "plackettCopula" and use `methods(class = "plackettCopula")`.

**Extends**

Class "plackettCopula" extends class "copula" directly.

**References**


**See Also**

copula-class, plackettCopula.

**Examples**

```r
str(plackettCopula())
plackettCopula()@exprdist[["cdf"]]
methods(class = "plackettCopula")
contourplot2(plackettCopula(7), pCopula)
contourplot2(plackettCopula(5), pCopula)
wireframe2(plackettCopula(5), dCopula, main = "plackettCopula(5)")
```
Methods for 'plot' in Package 'copula'

Description

Methods for plot() to draw a scatter plot of a random sample from bivariate distributions from package copula.

Usage

## S4 method for signature 'Copula,ANY'
plot(x, n, xlim = 0:1, ylim = 0:1,
     xlab = quote(U[1]), ylab = quote(U[2]), main = NULL, ...)

## S4 method for signature 'mvdc,ANY'
plot(x, n, xlim = NULL, ylim = NULL,
     xlab = quote(X[1]), ylab = quote(X[2]), ...)

Arguments

x
a bivariate "matrix", "data.frame", "Copula" or a "mvdc" object.

n
when x is not matrix-like: The sample size of the random sample drawn from x.

xlim, ylim
the x- and y-axis limits.

xlab, ylab
the x- and y-axis labels.

main
the main title; when true, shows the call’s x “expression”. By default, when NULL and the x expression matches "[Cc]opula" that expression is used as well. This smart default is somewhat experimental; feedback is welcome.

...
additional arguments passed to plot methods, i.e., typically plot.default.

Value

invisible().

See Also

splom2() for a scatter-plot matrix based on splom().

Examples

## For 2-dim. 'copula' objects ------------------------------
## Plot uses n copula samples
n <- 1000 # sample size
set.seed(271) # (reproducibility)
plot(tCopula(-0.8, df = 1.25), n = n) # automatic main title!

nu <- 3 # degrees of freedom
tau <- 0.5 # Kendall's tau
th <- iTau(tCopula(df = nu), tau) # corresponding parameter
cop <- tCopula(th, df = nu) # define 2-d copula object
plot(cop, n = n)

## For 2-dim. 'mvdc' objects -------------------------------
mvNN <- mvdc(cop, c("norm", "norm"),
            list(list(mean = 0, sd = 1), list(mean = 1)))
plot(mvNN, n = n)

---

### Evaluation of (Nested) Archimedean Copulas

**Description**

For a (nested) Archimedean copula (object of class \texttt{nacopula}) \texttt{x}, \texttt{pCopula(u, x)} (or also currently still \texttt{pnacopula(x, u)}) evaluates the copula \texttt{x} at the given vector or matrix \texttt{u}.

**Usage**

```r
S4 method for signature 'matrix,nacopula'
pCopula(u, copula, ...)
Deprecated:
pnacopula(x, u)
```

**Arguments**

- \texttt{copula, x} (nested) Archimedean copula of dimension \texttt{d}, that is, an object of class \texttt{nacopula}, typically from \texttt{onacopula}(...).
- \texttt{u} a numeric vector of length \texttt{d} or matrix with \texttt{d} columns.
- \texttt{...} unused: potential optional arguments passed from and to methods.

**Details**

The value of an Archimedean copula \( C \) with generator \( \psi \) at \( u \) is given by

\[
C(u) = \psi(\psi^{-1}(u_1) + \ldots + \psi^{-1}(u_d)), \quad u \in [0,1]^d.
\]

The value of a nested Archimedean copula is defined similarly. Note that a \texttt{d}-dimensional copula is called \texttt{nested Archimedean} if it is an Archimedean copula with arguments possibly replaced by other nested Archimedean copulas.

**Value**

A numeric in \( [0, 1] \) which is the copula evaluated at \( u \). (Currently not parallelized.)

**Note**

\texttt{pCopula(u, copula)} is a generic function with methods for \texttt{all} our copula classes, see \texttt{pCopula}.
Examples

```r
Construct a three-dimensional nested Joe copula with parameters
chosen such that the Kendall's tau of the respective bivariate margins
are 0.2 and 0.5.
theta0 <- copJoe@iTau(.2)
theta1 <- copJoe@iTau(.5)
C3 <- onacopula("J", C(theta0, 1, C(theta1, c(2,3))))

Evaluate this copula at the vector u
u <- c(.7,.8,.6)
pCopula(u, C3)

Evaluate this copula at the matrix v
v <- matrix(runif(300), ncol=3)
pCopula(v, C3)

Back-compatibility check
stopifnot(identical(pCopula (u, C3), suppressWarnings(
pnacopula(C3, u))),
 identical(pCopula (v, C3), suppressWarnings(
pnacopula(C3, v))))
```

---

**pobs**  

**Pseudo-Observations**

**Description**

Compute the pseudo-observations for the given data matrix.

**Usage**

`pobs(x, na.last = "keep",
      ties.method = eval(formals(rank)$ties.method), lower.tail = TRUE)`

**Arguments**

- `x`  
  `n x d`-matrix (or `d`-vector) of random variates to be converted to pseudo-observations.
- `na.last`  
  string passed to `rank`; see there.
- `ties.method`  
  string specifying how ranks should be computed if there are ties in any of the coordinate samples of `x`; passed to `rank`.
- `lower.tail`  
  logical which, if `FALSE`, returns the pseudo-observations when applying the empirical marginal survival functions.
Details

Given \( n \) realizations \( x_i = (x_{i1}, \ldots, x_{id})^T, i \in \{1, \ldots, n\} \) of a random vector \( X \), the pseudo-observations are defined via \( u_{ij} = r_{ij}/(n + 1) \) for \( i \in \{1, \ldots, n\} \) and \( j \in \{1, \ldots, d\} \), where \( r_{ij} \) denotes the rank of \( x_{ij} \) among all \( x_{kj}, k \in \{1, \ldots, n\} \). When there are no ties in any of the coordinate samples of \( x \), the pseudo-observations can thus also be computed by component-wise applying the marginal empirical distribution functions to the data and scaling the result by \( n/(n+1) \). This asymptotically negligible scaling factor is used to force the variates to fall inside the open unit hypercube, for example, to avoid problems with density evaluation at the boundaries. Note that \( \text{pobs}(, \text{lower.tail} = \text{FALSE}) \) simply returns \( 1 - \text{pobs}() \).

Value

\( \text{matrix} \) (or \( \text{vector} \)) of the same dimensions as \( x \) containing the pseudo-observations.

Examples

```r
Simple definition of the function:
pobs

Draw from a multivariate normal distribution
d <- 10
set.seed(1)
P <- Matrix::nearPD(matrix(pmin(pmax(runif(d*d), 0.3), 0.99), ncol=d))$mat
diag(P) <- rep(1, d)
n <- 500
x <- MASS::mvrnorm(n, mu = rep(0, d), Sigma = P)

Compute pseudo-observations (should roughly follow a Gauss
copula with correlation matrix \(P \))
u <- pobs(x)
plot(u[,5],u[,10], xlab=quote(italic(U)[1]), ylab=quote(italic(U)[2]))

All components: pairwise plot
pairs(u, gap=0, pch=".", labels =
 as.expression(lapply(1:d, function(j) bquote(italic(U[.(j)])))))
```

---

polylog

**Polylogarithm \( \text{Li}_s(z) \) and Debye Functions**

Description

Compute the polylogarithm function \( \text{Li}_s(z) \), initially defined as the power series,

\[
\text{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s},
\]

for \( |z| < 1 \), and then more generally (by analytic continuation) as

\[
\text{Li}_1(z) = -\log(1 - z),
\]
and

\[ \text{Li}_{s+1}(z) = \int_0^z \frac{\text{Li}_s(t)}{t} \, dt. \]

Currently, mainly the case of negative integer \( s \) is well supported, as that is used for some of the Archimedean copula densities.

For \( s = 2 \), \( \text{Li}_2(z) \) is also called ‘dilogarithm’ or “Spence’s function”. The "default" method uses the \texttt{dilog} or \texttt{complex_dilog} function from package \texttt{gsl}, respectively when \( s = 2 \).

Also compute the Debye\_n functions, for \( n = 1 \) and \( n = 2 \), in a slightly more general manner than the \texttt{gsl} package functions \texttt{debye\_1} and \texttt{debye\_2} (which cannot deal with non-finite \( x \)).

Usage

\begin{verbatim}
polylog(z, s,
    method = c("default", "sum", "negI-s-Stirling",
               "negI-s-Eulerian", "negI-s-asymp-w"),
    logarithm = FALSE, is.log.z = FALSE, is.logmlog = FALSE,
    asymp.w.order = 0, n.sum)

debye1(x)
debye2(x)
\end{verbatim}

Arguments

\begin{itemize}
  \item \textbf{z} \hspace{1cm} numeric or complex vector
  \item \textbf{s} \hspace{1cm} complex number; current implementation is aimed at \( s \in \{0, -1, \ldots\} \)
  \item \textbf{method} \hspace{1cm} a string specifying the algorithm to be used.
  \item \textbf{logarithm} \hspace{1cm} logical; if TRUE, the specified \( z \) argument is really \( w = \log(z) \); that is, we compute \( \text{Li}_s(\exp(w)) \), and we typically have \( w < 0 \), or equivalently, \( z < 1 \).
  \item \textbf{is.log.z} \hspace{1cm} logical; if TRUE, the specified argument \( z \) is \( lw = \log(-w) = \log(-\log(z)) \) (where as above, \( w = \log(z) \)).
  \item \textbf{asymp.w.order} \hspace{1cm} currently only default is implemented.
  \item \textbf{n.sum} \hspace{1cm} for \text{method}="sum" only: the number of terms used.
  \item \textbf{x} \hspace{1cm} numeric vector, may contain Inf, NA, and negative values.
\end{itemize}

Details

Almost entirely taken from \url{http://en.wikipedia.org/wiki/Polylogarithm}:

For integer values of the polylogarithm order, the following explicit expressions are obtained by repeated application of \( z \frac{d}{dz} \) to \( \text{Li}_1(z) \):

\[
\begin{align*}
\text{Li}_1(z) &= -\log(1-z), \\
\text{Li}_0(z) &= \frac{z}{1-z}, \\
\text{Li}_{-1}(z) &= \frac{z}{(1-z)^2}, \\
\text{Li}_{-2}(z) &= \frac{z(1+z)}{(1-z)^3}, \\
\text{Li}_{-3}(z) &= \frac{z(1+4z+z^2)}{(1-z)^4},
\end{align*}
\]

\( \text{Li}_{-4}(z) \) and others.
Accordingly, the polylogarithm reduces to a ratio of polynomials in \( z \), and is therefore a rational function of \( z \), for all nonpositive integer orders. The general case may be expressed as a finite sum:

\[
\text{Li}_n(z) = \left( \frac{z}{1-z} \right)^n = \sum_{k=0}^{n} k! \cdot S(n + 1, k + 1) \left( \frac{z}{1-z} \right)^{k+1} \quad (n = 0, 1, 2, \ldots),
\]

where \( S(n, k) \) are the Stirling numbers of the second kind.

Equivalent formulae applicable to negative integer orders are (Wood 1992, § 6) ...

\[
\text{Li}_{-n}(z) = \frac{1}{(1-z)^{n+1}} \sum_{k=0}^{n-1} \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle z^{n-k} = \frac{z}{(1-z)^{n+1}} \sum_{k=0}^{n-1} \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle z^k, \quad (n = 1, 2, 3, \ldots),
\]

where \( \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \) are the Eulerian numbers; see also Eulerian.

Value

numeric/complex vector as \( z \), or \( x \), respectively.

References


See Also

The polylogarithm is used in MLE for some Archimedean copulas; see emle;
The Debye functions are used for tau or rho computations of the Frank copula.

Examples

```r
The dilogarithm, polylog(z, s = 2) = Li_2(.) -- mathematically defined on C \ [1, Inf)
so x -> 1 is a limit case:
polylog(z = 1, s = 2)
in the limit, should be equal to pi^2 / 6
```

```r
Default method uses GSL's dilog():
rLi2 <- curve(polylog(x, 2), -5, 1, n= 1+ 6*64, col=2, lwd=2)
abline(c(0,1), h=0,v=0:1, lty=3, col="gray40")
"sum" method gives the same for |z| < 1 and large number of terms:
```
ii <- which(abs(rLi2$x) < 1)
stopifnot(all.equal(rLi2$y[ii],
polylog(rLi2$x[ii], 2, "sum", n.sum = 1e5),
tolerance = 1e-15))

z1 <- c(0.95, 0.99, 0.995, 0.999, 0.9999)
L <- polylog(z1, s=-3,method="negI-s-Euler") # close to Inf
LL <- polylog(log(z1), s=-3,method="negI-s-Euler",is.log.z=TRUE)
LLL <- polylog(log(-log(z1)),s=-3,method="negI-s-Euler",is.logmlog=TRUE)
all.equal(L, LL)
all.equal(L, LLL)

p.Li <- function(s.set, from = -2.6, to = 1/4, ylim = c(-1, 0.5),
            colors = c("orange","brown", palette()), n = 201, ...)
{
  s.set <- sort(s.set, decreasing = TRUE)
  s <- s.set[1] # <_ for auto-ylab
  curve(polylog(x, s, method="negI-s-Stirling"), from, to,
        col=colors[1], ylim=ylim, n=n, ...)
  abline(h=0,v=0, col="gray")
  for(is in seq_along(s.set)[2:length(s.set)])
    curve(polylog(x, s=s.set[is], method="negI-s-Stirling"),
          add=TRUE, col = colors[is], n=n)
  s <- rev(s.set)
  legend("bottomright",paste("s =",s), col=colors[2-s], lty=1, bty="n")
}

## yellow is unbearable (on white):
p.Li(-1:-3, ylim= c(-.8, 0.6), colors = c(2:4,6:7))

## and a bit more:
p.Li(-1:-5)

## For the range we need it:
ccol <- c(NA,NA, rep(palette(),10))
p.Li(-1:-20, from=0, to=.99, colors=ccol, ylim = c(0, 10))

## log-y scale:
p.Li(-1:-20, from=0, to=.99, colors=ccol, ylim = c(.01, 1e7),
    log = "y", yaxt = "n")
if(require(sfsmisc)) eaxis(2) else axis(2)
Description

Evaluate a univariate polynomial at x (typically a vector), that is, compute, for a given vector of coefficients coef, the polynomial \( 	ext{coef}[1] + \text{coef}[2] x + \ldots + \text{coef}[p+1] x^p \).

Usage

\text{polynEval(coef, x)}

Arguments

\begin{description}
\item[coef] numeric vector. If a vector, x can be an array and the result matches x.
\item[x] numeric vector or array.
\end{description}

Details

The stable Horner rule is used for evaluation. Using the C code speeds up the already fast \texttt{R} code available in \texttt{polyn.eval()} in package \texttt{sfsmisc}.

Value

numeric vector or array, with the same dimensions as x, containing the polynomial values \( p(x) \).

See Also

For a much more sophisticated treatment of polynomials, use the \texttt{polynom} package (for example, evaluation can be done via \texttt{predict.polynomial}).

Examples

\begin{verbatim}
polynEval(c(1,-2,1), x = -2:7) # (x - 1)^2
polynEval(c(0, 24, -50, 35, -10, 1), 
          x = matrix(0:5, 2,3)) # 5 zeros!
\end{verbatim}

printNacopula

Print Compact Overview of a Nested Archimedean Copula ("nacopula")

Description

Print a compact overview of a nested Archimedean copula, that is, an object of class "nacopula". Calling \texttt{printNacopula} explicitly allows to customize the printing behavior. Otherwise, the \texttt{show()} method calls \texttt{printNacopula} with default arguments only.

Usage

\texttt{printNacopula(x, labelKids=NA, deltaInd=, indent.str="", digits=getOption("digits"), width=getOption("width"), ...)}
Arguments

x an R object of class nacopula.

labelKids logical specifying if child copulas should be labeled; If NA (as per default), on each level, children are labeled only if they are not only-child.

deltaInd by how much should each child be indented more than its parent? (non-negative integer). The default is three with labelKids being the default or TRUE, otherwise it is five (for labelKids=FALSE).

indent.str a character string specifying the indentation, that is, the string that should be prepended on the first line of output, and determine the amount of blanks for the remaining lines.

digits, width number of significant digits, and desired print width; see print.default.

... potentially further arguments, passed to methods.

Value

invisibly, x.

Examples

```
C8 <- onacopula("F", C(1.9, 1,
 list(K1 = C(5.7, c(2,5)),
 abc= C(5.0, c(3,4,6),
 list(L2 = C(11.5, 7:8))))
)
C8 # -> printNacopula(C8)
printNacopula(C8, delta=10)
printNacopula(C8, labelKids=TRUE)
```

prob  Computing Probabilities of Hypercubes

Description

Compute probabilities of a \(d\)–dimensional random vector \(U\) distributed according to a given copula \(x\) to fall in a hypercube \([l, u]\), where \(l\) and \(u\) denote the lower and upper corners of the hypercube, respectively.

Usage

```r
prob(x, l, u)
```

Arguments

x copula of dimension \(d\), that is, an object inheriting from Copula.
1, u \(d\)-dimensional, numeric, lower and upper hypercube boundaries, respectively, satisfying \(0 \leq l_i \leq u_i \leq 1\), for \(i \in 1, \ldots, d\).
Value

A \textit{numeric} in $[0, 1]$ which is the probability $P(l_i < U_i \leq u_i)$.

See Also

\texttt{pCopula(.)}.

Examples

```r
Construct a three-dimensional nested Joe copula with parameters
chosen such that the Kendall's tau of the respective bivariate margins
are 0.2 and 0.5.
theta0 <- copJoe@iTau(.2)
theta1 <- copJoe@iTau(.5)
C3 <- onacopula("J", C(theta0, 1, C(theta1, c(2,3))))

Compute the probability of a random vector distributed according to
this copula to fall inside the cube with lower point l and upper
point u.
l <- c(.7,.8,.6)
u <- c(1,1,1)
prob(C3, l, u)

ditto for a bivariate normal copula with rho = 0.8 :
prob(normalCopula(0.8), c(.2,.4), c(.3,.6))
```

---

**qqplot2**

\textit{Q-Q Plot with Rugs and Pointwise Asymptotic Confidence Intervals}

Description

A Q-Q plot (possibly) with rugs and pointwise approximate (via the Central Limit Theorem) two-sided 1-$\alpha$ confidence intervals.

Usage

```r
qqplot2(x, qF, log = "", qqline.args = if(log="x" || log="y")
 list(untf=TRUE) else list(),
 rug.args = list(tcl=-0.6*par("tcl")),
 alpha = 0.05, CI.args = list(col="gray40"),
 CI.mtext = list(text=paste0("Pointwise asymptotic ", 100*(1-alpha),
 "\% confidence intervals"), side=4,
 cex=0.6*par("cex.main"), adj=0, col="gray40"),
 main = quote(bold(italic(F)~~"Q-Q plot")),
 main.args = list(text=main, side=3, line=1.1, cex=par("cex.main"),
 font=par("font.main"), adj=par("adj"), xpd=NA),
 xlab = "Theoretical quantiles", ylab = "Sample quantiles",
 file="", width=6, height=6, ...)```
Arguments

- **x**: numeric.
- **qF**: (theoretical) quantile function against which the Q-Q plot is created.
- **log**: character string indicating whether log-scale should be used; see ?plot.default.
- **qqline.args**: argument list passed to `qqline()` for creating the Q-Q line. Use `qqline.args=NULL` to omit the Q-Q line.
- **rug.args**: argument list passed to `rug()` for creating the rugs. Use `rug.args=NULL` to omit the rugs.
- **alpha**: significance level.
- **CI.args**: argument list passed to `lines()` for plotting the confidence intervals. Use `CI.args=NULL` to omit the confidence intervals.
- **CI.mtext**: argument list passed to `mtext()` for plotting information about the confidence intervals. Use `CI.mtext=NULL` to omit the information.
- **main**: title (can be an expression; use "" for no title).
- **main.args**: argument list passed to `mtext()` for plotting the title. Use `main.args=NULL` to omit the title.
- **xlab**: x axis label.
- **ylab**: y axis label.
- **file**: file name including the extension ".pdf".
- **width**: width parameter of `pdf()`.
- **height**: height parameter of `pdf()`.
- **...**: additional arguments passed to `plot()` based for plotting the points.

Details

See the source code for how the confidence intervals are constructed precisely.

Value

`invisible()`.

See Also

- `plot()` for the underlying plot function, `qqline()` for how the Q-Q line is implemented, `rug()` for how the rugs are constructed, `lines()` for how the confidence intervals are drawn, and `mtext()` for how the title and information about the confidence intervals is printed. `pdf()` for plotting to pdf.

Examples

```r
n <- 250
df <- 7
set.seed(1)
x <- rchisq(n, df=df)

## Q-Q plot against the true quantiles (of a chi^2_3 distribution)
```
qqplot2(x, qF = function(p) qchisq(p, df=df),
 main = substitute(bold(italic(chi[NU])~~"Q-Q Plot"), list(NU=df)))

in log-log scale
qqplot2(x, qF = function(p) qchisq(p, df=df), log="xy",
 main = substitute(bold(italic(chi[NU])~~"Q-Q Plot"), list(NU=df)))

Q-Q plot against wrong quantiles (of an Exp(1) distribution)
qqplot2(x, qF=qexp, main = quote(bold(Exp(1)~~"Q-Q Plot")))

radSymTest

Test of Exchangeability for a Bivariate Copula

Description

Test for assessing the radial symmetry of the underlying multivariate copula based on the empirical copula. The test statistic is a multivariate extension of the definition adopted in the first reference. An approximate p-value for the test statistic is obtained by means of an appropriate bootstrap which can take the presence of ties in the component series of the data into account; see the second reference.

Usage

`radSymTest(x, N = 1000, ties = NA)`

Arguments

- `x` a data matrix that will be transformed to pseudo-observations.
- `N` number of bootstrap iterations to be used to simulate realizations of the test statistic under the null hypothesis.
- `ties` logical; if TRUE, the bootstrap procedure is adapted to the presence of ties in any of the coordinate samples of `x`; the default value of NA indicates that the presence/absence of ties will be checked for automatically.

Details

More details are available in the second reference.

Value

An object of class `htest` which is a list, some of the components of which are

- `statistic` value of the test statistic.
- `p.value` corresponding approximate p-value.
References

See Also
exchTest, exchEVTest, gofCopula.

Examples
```r
## Data from radially symmetric copulas
radSymTest(rCopula(200, frankCopula(3)))
radSymTest(rCopula(200, normalCopula(0.7, dim = 3)))

## Data from non radially symmetric copulas
radSymTest(rCopula(200, claytonCopula(3)))
radSymTest(rCopula(200, gumbelCopula(2, dim=3)))
```

rdj

Daily Returns of Three Stocks in the Dow Jones

Description
Five years of daily log-returns (from 1996 to 2000) of Intel (INTC), Microsoft (MSFT) and General Electric (GE) stocks. These data were analysed in Chapter 5 of McNeil, Frey and Embrechts (2005).

Usage
data(rdj, package="copula")

Format

Date the date, of class "Date".

INTC daily log-return of the Intel stock

MSFT daily log-return of the Microsoft stock

GE daily log-return of the General Electric

References
Examples

data(rdj)
str(rdj)# 'Date' is of class "Date"

with(rdj, {
 matplot(Date, rdj[, -1], type = "o", xaxt = "n", ylim = .15 * c(-1,1),
 main = paste("rdj - data; n =", nrow(rdj)))
 Axis(Date, side = 1)
})
legend("top", paste(1:3, names(rdj[, -1])), col = 1:3, lty = 1:3, bty = "n")

x <- rdj[, -1] # '-1': not the Date
a t-copula (with a vague initial guess of Rho entries)
tCop <- tCopula(rep(.2, 3), dim = 3, dispstr = "un", df = 10, df.fixed = TRUE)
ft <- fitCopula(tCop, data = pobs(x))
ft@copula # the fitted t-copula as tCopula object

retstable

Sampling Exponentially Tilted Stable Distributions

Description

Generating random variates of an exponentially tilted stable distribution of the form

\[\tilde{S}(\alpha, 1, (\cos(\alpha \pi / 2)V_0)^{1/\alpha}, V_01_{\{\alpha=1\}}, h1_{\{\alpha \neq 1\}}; 1), \]

with parameters \(\alpha \in (0, 1], V_0 \in (0, \infty) \), and \(h \in [0, \infty) \) and corresponding Laplace-Stieltjes transform

\[\exp(-V_0((h + t)^\alpha - h^\alpha)), t \in [0, \infty]; \]

see the references for more details about this distribution.

Usage

retstable(alpha, V0, h = 1, method = NULL)
retstableR(alpha, V0, h = 1)
Arguments

alpha parameter in (0, 1].
V0 vector of values in (0, ∞) (for example, when sampling nested Clayton copulas, these are random variates from F_0), that is, the distribution corresponding to ψ_0.
h parameter in [0, ∞).
method a character string denoting the method to use, currently either "MH" (Marius Hofert’s algorithm) or "LD" (Luc Devroye’s algorithm). By default, when NULL, a smart choice is made to use the fastest of these methods depending on the specific values of V_0.

Details

retstableR is a pure R version of "MH", however, not as fast as retstable (implemented in C, based on both methods) and therefore not recommended in simulations when run time matters.

Value

A vector of variates from ˆS(α, 1, …..); see above.

References

See Also

rstable1 for sampling stable distributions.

Examples

Draw random variates from an exponentially tilted stable distribution
with given alpha, V0, and h = 1
alpha <- .2
V0 <- rgamma(200, 1)
rETS <- retstable(alpha, V0)

Distribution plot the random variates -- log-scaled
hist(log(rETS), prob=TRUE)
lines(density(log(rETS)), col=2)
rug (log(rETS))
Sample Univariate Distributions Involved in Nested Frank and Joe Copulas

Description

rF01Frank: Generate a vector of random variates $V_{01} \sim F_{01}$ with Laplace-Stieltjes transform

$$
\psi_{01}(t; V_0) = \left(1 - (1 - \exp(-t)(1 - e^{-\theta_1}))^{\theta_0/\theta_1} \right) V_0.
$$

for the given realizations V_0 of Frank’s F_0 and the parameters $\theta_0, \theta_1 \in (0, \infty)$ such that $\theta_0 \leq \theta_1$. This distribution appears on sampling nested Frank copulas. The parameter rej is used to determine the cut-off point of two algorithms that are involved in sampling F_{01}. If $\text{rej} < V_0 \theta_0 (1 - e^{-\theta_0}) V_0^{-1}$ a rejection from F_{01} of Joe is applied (see rF01Joe; the meaning of the parameter approx is explained below), otherwise a sum is sampled with a logarithmic envelope for each summand.

rF01Joe: Generate a vector of random variates $V_{01} \sim F_{01}$ with Laplace-Stieltjes transform

$$
\psi_{01}(t; V_0) = (1 - (1 - \exp(-t))^\alpha) V_0.
$$

for the given realizations V_0 of Joe’s F_0 and the parameter $\alpha \in (0, 1]$. This distribution appears on sampling nested Joe copulas. Here, $\alpha = \theta_0/\theta_1$, where $\theta_0, \theta_1 \in [1, \infty)$ such that $\theta_0 \leq \theta_1$. The parameter approx denotes the largest number of summands in the sum-representation of V_{01} before the asymptotic

$$
V_{01} = V_0^{1/\alpha} S(\alpha, 1, \cos^{1/\alpha}(\alpha \pi/2), 1_{\{\alpha=1\}}; 1)
$$

is used to sample V_{01}.

Usage

```
rF01Frank(V0, theta0, theta1, rej, approx)
rF01Joe(V0, alpha, approx)
```

Arguments

- **V0**: a vector of random variates from F_0.
- **theta0, theta1, alpha**: parameters θ_0, θ_1 and α as described above.
- **rej**: parameter value as described above.
- **approx**: parameter value as described above.

Value

A vector of positive integers of length n containing the generated random variates.

References

See Also

`rFFrank`, `rFJoe`, `rSibuya`, and `rnacopula`.

Examples

```r
## Sample n random variates V0 ~ F0 for Frank and Joe with parameter
## chosen such that Kendall's tau equals 0.2 and plot histogram
n <- 1000
theta0.F <- copFrank@iTau(0.2)
V0.F <- copFrank@V0(n, theta0.F)
hist(log(V0.F), prob=TRUE); lines(density(log(V0.F)), col=2, lwd=2)
theta0.J <- copJoe@iTau(0.2)
V0.J <- copJoe@V0(n, theta0.J)
hist(log(V0.J), prob=TRUE); lines(density(log(V0.J)), col=2, lwd=2)

## Sample corresponding V01 ~ F01 for Frank and Joe and plot histogram
## copFrank@V01 calls rF01Frank(V0, theta0, theta1, rej=1, approx=10000)
## copJoe@V01 calls rF01Joe(V0, alpha, approx=10000)
theta1.F <- copFrank@iTau(0.5)
V01.F <- copFrank@V01(V0.F, theta0.F, theta1.F)
hist(log(V01.F), prob=TRUE); lines(density(log(V01.F)), col=2, lwd=2)
theta1.J <- copJoe@iTau(0.5)
V01.J <- copJoe@V01(V0.J, theta0.J, theta1.J)
hist(log(V01.J), prob=TRUE); lines(density(log(V01.J)), col=2, lwd=2)
```

rFFrankJoe

Sampling Distribution F for Frank and Joe

Description

Generate a vector of variates \(V \sim F \) from the distribution function \(F \) with Laplace-Stieltjes transform

\[
(1 - (1 - \exp(-t))(1 - e^{-\theta_0}))^\alpha / (1 - e^{-\theta_1}),
\]

for Frank, or

\[
1 - (1 - \exp(-t))^\alpha,
\]

for Joe, respectively, where \(\theta_0 \) and \(\theta_1 \) denote two parameters of Frank (that is, \(\theta_0, \theta_1 \in (0, \infty) \)) and Joe (that is, \(\theta_0, \theta_1 \in [1, \infty) \)) satisfying \(\theta_0 \leq \theta_1 \) and \(\alpha = \theta_0 / \theta_1 \).

Usage

```r
rFFrank(n, theta0, theta1, rej)
rFJoe(n, alpha)
```
Arguments

- **n**: number of variates from \(F \).
- **theta0**: parameter \(\theta_0 \).
- **theta1**: parameter \(\theta_1 \).
- **rej**: method switch for \(\text{rFFrank} \): if \(\text{theta0} > \text{rej} \) a rejection from Joe’s family (Sibuya distribution) is applied (otherwise, a logarithmic envelope is used).
- **alpha**: parameter \(\alpha = \theta_0/\theta_1 \) in \((0,1]\) for \(\text{rFJoe} \).

Details

\(\text{rFFrank}(n, \text{theta0}, \text{theta1}, \text{rej}) \) calls \(\text{rF01Frank}(\text{rep}(1,n), \text{theta0}, \text{theta1}, \text{rej}, 1) \) and \(\text{rFJoe}(n, \text{alpha}) \) calls \(\text{rSibuya}(n, \text{alpha}) \).

Value

numeric vector of random variates \(V \) of length \(n \).

See Also

r\text{f01Frank}, r\text{f01Joe}, also for references. \text{rSibuya}, and \text{rnacopula}.

Examples

```r
## Simple definition of the functions:
rFFrank
rFJoe

### Simple definition of the functions:
rlog
```

Description

Generating random variates from a Log\((p)\) distribution with probability mass function

\[
p_k = \frac{p^k}{-\log(1-p)^k}, \quad k \in \mathbb{N},
\]

where \(p \in (0,1) \). The implemented algorithm is the one named “LK” in Kemp (1981).

Usage

r\(\log(n, p, I_p = 1 - p)\)

Arguments

- **n**: sample size, that is, length of the resulting vector of random variates.
- **p**: parameter in \((0,1)\).
- **Ip**: = \(1 - p \), possibly more accurate, e.g., when \(p \approx 1 \).
Details

For documentation and didactical purposes, \texttt{rlogR} is a pure-\texttt{R} implementation of \texttt{rlog}. However, \texttt{rlogR} is not as fast as \texttt{rlog} (the latter being implemented in C).

Value

A vector of positive integers of length \(n\) containing the generated random variates.

Note

In the \texttt{copula} package, the Log\((p)\) distribution is needed only for generating Frank copula observations, namely in \texttt{copFrank@V0()}, where \(p = 1 - \exp(-\theta)\), i.e., \(p = -\expm1(-\theta)\) and \(Ip = \exp(-\theta)\).

For large \(\theta\) it would be desirable to pass \(-\theta\) to \texttt{rlog()} instead of \(p\). This has not yet been implemented.

References

Examples

```r
## Sample \(n\) random variates from a Log\((p)\) distribution and plot a
## "histogram"

n <- 1000
p <- .5
X <- rlog(n, p)
table(X) # distribution on the integers \(\{1, 2, \ldots\}\)
## ==> The following plot is more reasonable than a hist(X, prob=TRUE) :
plot(table(X)/n, type="h", lwd=10, col="gray70")

## case closer to numerical boundary:
Ip <- log10(V <- rlog(10000, Ip = 2e-9)) # Ip = exp(-\theta) \iff \theta \approx 20
hV <- hist(lV, plot=FALSE)
dV <- density(lV)

## Plot density and histogram on log scale with nice axis labeling & ticks:
plot(dV, xaxt="n", ylim = c(0, max(hV$density, dV$y)),
     main = "Density of [log-transformed] Log\((p)\), \(p=0.999999..\)"
     abline(h=0, lty=3); rug(lV); lines(hV, freq=FALSE, col = "light blue"); lines(dV)
rx <- range(pretty(par("usr")[1:2]))
sx <- outer(1:9, 10^ (max(0,rx[1]):rx[2]))
axis(1, at=log10(sx), labels= FALSE, tcl = -0.3)
axis(1, at=log10(sx[1,]), labels= formatC(sx[1,], tcl = -0.75)
```
rnacModel Random nacopula Model

Description
Randomly construct a nested Archimedean copula model.

Usage
rnacModel(family, d, pr.comp, rtau0 = function() rbeta(1, 2,4),
 order=c("random", "each", "seq"), digits.theta = 2)

Arguments
- family: the Archimedean family
- d: integer >=2; the dimension
- pr.comp: probability of a direct component on each level
- rtau0: a function to generate a (random) tau, corresponding to theta0, the outermost theta.
- order: string indicating how the component IDs are selected.
- digits.theta: integer specifying the number of digits to round the theta values.

Value
an object of outer_nacopula.

See Also
rnacopula for generating d-dimensional observations from an (outer) nacopula, e.g., from the result of rnacModel().

Examples
Implicitly tests the function {with validity of outer_nacopula ..}
set.seed(11)
for(i in 1:40) {
 m1 <- rnacModel("Gumbel", d=sample(20:25, 1), pr.comp = 0.3,
 rtau0 = function() 0.25)
 m2 <- rnacModel("Joe", d=3, pr.comp = 0.1, order="each")
 mC <- rnacModel("Clayton", d=20, pr.comp = 0.3,
 rtau0 = function() runif(1, 0.1, 0.5))
 mF <- rnacModel("Frank", d=sample(20:25, 1), pr.comp = 0.3, order="seq")
}
rnacopula

Sampling Nested Archimedean Copulas

Description
Random number generation for nested Archimedean copulas (of class outer_nacopula, specifically), aka sampling nested Archimedean copulas will generate \(n \) random vectors of dimension \(d (= \text{dim}(x)) \).

Usage
rnacopula(n, copula, x, ...)

Arguments

- **n**: integer specifying the sample size, that is, the number of copula-distributed random vectors \(U_i \), to be generated.
- **copula**: an \(R \) object of class "outer_nacopula", typically from onacopula().
- **x**: only for back compatibility: former name of copula argument.
- **...**: possibly further arguments for the given copula family.

Details
The generation happens by calling rnchild() on each child copula (which itself recursively descends the tree implied by the nested Archimedean structure). The algorithm is based on a mixture representation of the generic distribution functions \(F_0 \) and \(F_{01} \) and is presented in McNeil (2008) and Hofert (2011a). Details about how to efficiently sample the distribution functions \(F_0 \) and \(F_{01} \) can be found in Hofert (2010), Hofert (2012), and Hofert and Mächler (2011).

Value
numeric matrix containing the generated vectors of random variates from the nested Archimedean copula object copula.

References

See Also

rnchild: classes "nacopula" and "outer_nacopula"; see also onacopula(). rncModel creates random nacopula models, i.e., the input copula for rnacopula(n, copula).

Further, those of the Archimedean families, for example, copGumbel.

Examples

```r
## Construct a three-dimensional nested Clayton copula with parameters
## chosen such that the Kendall's tau of the respective bivariate margins
## are 0.2 and 0.5:
C3 <- onacopula("C",
    C(copClayton@iTau(0.2), 1,
    C(copClayton@iTau(0.5), c(2,3))))
C3

## Sample n vectors of random variates from this copula. This involves
## sampling exponentially tilted stable distributions
n <- 1000
U <- rnacopula(n, C3)

## Plot the drawn vectors of random variates
splom2(U)
```

rnchild

Method for generating vectors of random numbers of nested Archimedean copulas which are child copulas.

Usage

```r
rnchild(x, theta0, V0, ...)
```

Arguments

- `x`: an "nacopula" object, typically emerging from an "outer_nacopula" object constructed with onacopula().
- `theta0`: the parameter (vector) of the parent Archimedean copula which contains `x` as a child.
- `V0`: a numeric vector of realizations of V_0 following F_0 whose length determines the number of generated vectors, that is, for each realization V_0, a vector of variates from x is generated.
- `...`: possibly further arguments for the given copula family.
The generation is done recursively, descending the tree implied by the nested Archimedean structure. The algorithm is based on a mixture representation and requires sampling $V_{01} \sim F_{01}$ given random variates $V_0 \sim F_0$. Calling "rnchild" is only intended for experts. The typical call of this function takes place through rnacopula()

Value

a list with components

- \(U \): a numeric matrix containing the vector of random variates from the child copula. The number of rows of this matrix therefore equals the length of \(V_0 \) and the number of columns corresponds to the dimension of the child copula.

- \(\text{indcol} \): an integer vector of indices of \(U \) (the vector following a nested Archimedean copula of which \(x \) is a child) whose corresponding components of \(U \) are arguments of the nested Archimedean copula \(x \).

See Also

rnacopula, also for the references. Further, classes "nacopula" and "outer_nacopula"; see also onacopula().

Examples

```r
## Construct a three-dimensional nested Clayton copula with parameters
## chosen such that the Kendall's tau of the respective bivariate margins
## are 0.2 and 0.5.
theta0 <- copClayton@iTau(.2)
theta1 <- copClayton@iTau(.5)
C3 <- onacopula("C", C(theta0, 1, C(theta1, c(2,3))))
## Sample n random variates \( V_0 \sim F_0 \) (a Gamma(1/theta0,1) distribution)
set.seed(7)
n <- 1000
V0 <- copClayton@V0(n, theta0)
## Given these variates \( V_0 \), sample the child copula, that is, the bivariate
## nested Clayton copula with parameter theta1
U23 <- rnchild(C3@childCops[[1]], theta0, V0)
## Now build the three-dimensional vectors of random variates by hand
U1 <- copClayton@psi(rexp(n)/V0, theta0)
U <- cbind(U1, U23$U)
## Plot the vectors of random variates from the three-dimensional nested
## Clayton copula
splom2(U)
```
Description

Constructs a “reflected” or “rotated” copula from an initial copula and a vector of logicals indicating which dimension to “flip”.

Usage

\[\text{rotCopula}(\text{copula}, \text{flip} = \text{TRUE}) \]

Arguments

- \text{copula} \hspace{1cm} \text{an object of class } "\text{Copula}".
- \text{flip} \hspace{1cm} \text{logical vector (of length 1 or } \text{dim(copula)}) \text{ indicating which dimension should be “flipped”; by default, all the components are flipped, implying that the resulting copula is the “survival copula”.

Value

A “rotated” or “reflected” copula object of class ”rotCopula”.

Slots

of a ”rotCopula” object

- \text{copula: Object of class } "\text{copula}".
- \text{flip: logical vector of length } d \text{ (the copula dimension) specifying which margins are flipped; corresponds to the flip argument of } \text{rotCopula}()\text{.}
- \text{dimension: the copula dimension } d, \text{ an integer.}
- \text{parameters: numeric vector specifying the parameters.}
- \text{param.lowbnd, and param.upbnd: numeric vector of the same length as parameters, specifying (component wise) bounds for each of the parameters.}
- \text{param.names: character vector (of same length as parameters) with parameter names.}
- \text{fullname: deprecated; a character string describing the rotated copula.}

Note

When there are an even number of flips, the resulting copula can be seen as a rotated version of \text{copula}. In the other cases, e.g., \text{flip} = c(\text{FALSE, TRUE}) in 2d, it is rather a a reflected or “mirrored” copula.

See Also

\text{fitCopula} for fitting such copulas to data, \text{gofCopula} for goodness-of-fit tests for such copulas.
Examples

Two-dimensional examples: First the Clayton(3) survival copula:

SurvC <- rotCopula(claytonCopula(3)) # default: flip = 'all TRUE'
contourplot2(SurvC, dCopula)

Now, a reflected Clayton copula:

r10C <- rotCopula(claytonCopula(3), flip = c(TRUE, FALSE))
contourplot2(r10C, dCopula, nlevels = 20, main = "dCopula(<rotCopula>)")
contourplot2(r10C, pCopula, nlevels = 20, main = "pCopula(<rotCopula>)")
rho(r10C)
tau(r10C) # -0.6

n <- 1000
u <- rCopula(n, r10C)
rho.n <- cor(u[,1], u[,2], method = "spearman")
tau.n <- cor(u[,1], u[,2], method = "kendall")

"Calibration"
rc. <- rotCopula(claytonCopula(), flip = c(TRUE, FALSE))
iRho(rc., rho.n)
iTau(rc., tau.n)

Fitting
fitCopula(rc., data = pobs(u), method = "irho")
fitCopula(rc., data = pobs(u), method = "itau")
fitCopula(rc., data = pobs(u), method = "mpl")

Goodness-of-fit testing -- the first, parametric bootstrap, is *really* slow
Not run: gofCopula(rc., x = u)
gofCopula(rc., x = u, simulation = "mult")

A four-dimensional example: a rotated Frank copula

rf <- rotCopula(frankCopula(10, dim = 4),
 flip = c(TRUE, FALSE, TRUE, FALSE))

n <- 1000
u <- rCopula(n, rf)
splom2(u)
pCopula(c(0.6,0.7,0.6,0.8), rf)
C.n(cbind(0.6,0.7,0.6,0.8), u)

Fitting
(rf. <- rotCopula(frankCopula(dim=4),
 flip = c(TRUE, FALSE, TRUE, FALSE)))
fitCopula(rf., data = pobs(u), method = "irho")
FITME above: not related to rotCopula but frankCopula
fitCopula(rf., data = pobs(u), method = "itau")
fitCopula(rf., data = pobs(u), method = "mpl")

Goodness-of-fit testing (first ("PB") is really slow, see above):
Not run: gofCopula(rf., x = u)

RSpobs

Pseudo-Observations of Radial and Uniform Part of Elliptical and Archimedean Copulas

Description

Given a matrix of iid multivariate data from a meta-elliptical or meta-Archimedean model, RSpobs() computes pseudo-observations of the radial part R and the vector S which follows a uniform distribution on the unit sphere (for elliptical copulas) or the unit simplex (for Archimedean copulas). These quantities can be used for (graphical) goodness-of-fit tests, for example.

Usage

RSpobs(x, do.pobs = TRUE, method = c("ellip", "archm"), ...)

Arguments

- **x**: an (n, d)-matrix of data; if do.pobs=FALSE, the rows of x are assumed to lie in the d-dimensional unit hypercube (if they do not, this leads to an error).
- **do.pobs**: logical indicating whether pobs() is applied to x for transforming the data to the d-dimensional unit hypercube.
- **method**: character string indicating the assumed underlying model, being meta-elliptical if method="ellip" (in which case S should be approximately uniform on the d-dimensional unit sphere) or meta-Archimedean if method="archm" (in which case S should be approximately uniform on the d-dimensional unit simplex).
- **...**: additional arguments passed to the implemented methods. These can be
 - method="ellip" qQg() (the quantile function of the (assumed) distribution function G_g as given in Genest, Hofert, G. Nešlehová (2014)); if provided, qQg() is used in the transformation for obtaining pseudo-observations of R and S (see the code for more details).
 - method="archm" iPsi() (the assumed underlying generator inverse); if provided, iPsi() is used in the transformation for obtaining pseudo-observations of R and S (see the code for more details).

Details

The construction of the pseudo-observations of the radial part and the uniform distribution on the unit sphere/simplex is described in Genest, Hofert, G. Nešlehová (2014).

Value

A list with components R (an n-vector containing the pseudo-observations of the radial part) and S (an (n, d)-matrix containing the pseudo-observations of the uniform distribution (on the unit sphere/simplex)).
References

See Also

`pobs()` for computing the “classical” pseudo-observations.

Examples

```r
set.seed(100)
n <- 250 # sample size
d <- 5 # dimension
nu <- 3 # degrees of freedom

## Build a mean vector and a dispersion matrix, # and generate multivariate t_nu data:
mu <- rev(seq_len(d)) # d, d-1, ..., 1
L <- diag(d) # identity in dim d
L[lower.tri(L)] <- 1:(d*(d-1)/2)/d # Cholesky factor (diagonal > 0)
Sigma <- crossprod(L) # pos.-def. dispersion matrix (*not* covariance of X)
X <- rep(mu, each=n) + mvtnorm::rmvt(n, sigma=Sigma, df=nu) # multiv. t_nu data

## note: this is *wrong*: mvtnorm::rmvt(n, mean=mu, sigma=Sigma, df=nu)
RS.t <- RSpobs(X, method="ellip", qQg=function(p) qt(p, df=nu)) # correct
RS.norm <- RSpobs(X, method="ellip", qQg=qnorm) # for testing *wrong* distribution
stopifnot(length(RS.norm$R) == n, length(RS.t$R) == n,
dim(RS.norm$S) == c(n,d), dim(RS.t$S) == c(n,d))

## 1) Graphically testing the radial part and uniform distribution
## once for 1a), once for 1b) below
RS.t <- RSpobs(X, method="ellip", qQg=function(p) qt(p, df=nu)) # 'correct'
RS.norm <- RSpobs(X, method="ellip", qQg=qnorm) # for testing 'wrong' distribution
stopifnot(length(RS.norm$R) == n, length(RS.t$R) == n,
dim(RS.norm$S) == c(n,d), dim(RS.t$S) == c(n,d))

## 1a) Q-Q plot of R against the correct quantiles
qqplot2(RS.t$R, qF=function(p) sqrt(d*qf(p, df1=d, df2=nu)),
main.args=list(text= substitute(bold(italic(F[d]),nu]))="Q-Q Plot"),
side=3, cex=1.3, line=1.1, xpd=NA))

## 1b) Q-Q plot of R against the quantiles of F_R for a multivariate normal
distribution
qqplot2(RS.norm$R, qF=function(p) sqrt(qchisq(p, df=d)),
main.args=list(text= substitute(bold(italic(chi[d]))="Q-Q Plot"), list(D=d)),
side=3, cex=1.3, line=1.1, xpd=NA))

## 2) Graphically testing the angular distribution

## auxiliary function
qqp <- function(k, Bmat) {
d <- ncol(Bmat) + 1
qqplot2(Bmat[,k],
qF = function(p) qbeta(p, shape1=k/2, shape2=(d-k)/2),
...}
```
2a) Q-Q plot of the 'correct' angular distribution

$B_{\text{mat}[,k]}$ should follow a Beta($k/2$, $(d-k)/2$) distribution.

```r
Bmat.t <- gofBTstat(RS.t$S)
qqp(1, Bmat=Bmat.t) # k=1
qqp(3, Bmat=Bmat.t) # k=3
```

2b) Q-Q plot of the 'wrong' angular distribution

```r
Bmat.norm <- gofBTstat(RS.norm$S)
qqp(1, Bmat=Bmat.norm) # k=1
qqp(3, Bmat=Bmat.norm) # k=3
```

3) Graphically check independence between radial part and B_1 and B_3

'correct' distributions (multivariate t)

```r
plot(pobs(cbind(RS.t$R, Bmat.t[,1])), # k = 1
     xlab=quote(italic(R)), ylab=quote(italic(B)[1]),
     main=quote(bold("Rank plot between"~~italic(R)~~"and"~~italic(B)[1])))
```

'wrong' distributions (multivariate normal)

```r
plot(pobs(cbind(RS.norm$R, Bmat.norm[,1])), # k = 1
     xlab=quote(italic(R)), ylab=quote(italic(B)[1]),
     main=quote(bold("Rank plot between"~~italic(R)~~"and"~~italic(B)[1])))
```

rstable1

Random numbers from (Skew) Stable Distributions

Description

Generate random numbers of the stable distribution

$$S(\alpha, \beta, \gamma, \delta; k)$$

with characteristic exponent $\alpha \in (0, 2]$, skewness $\beta \in [-1, 1]$, scale $\gamma \in [0, \infty)$, and location $\delta \in \mathbb{R}$; see Nolan (2010) for the parameterization $k \in \{0, 1\}$. The case $\gamma = 0$ is understood as the unit jump at δ.

Usage

```r
rstable1(n, alpha, beta, gamma = 1, delta = 0, pm = 1)
```
Arguments

- **n**: an integer, the number of observations to generate.
- **alpha**: characteristic exponent \(\alpha \in (0, 2] \).
- **beta**: skewness \(\beta \in [-1, 1] \).
- **gamma**: scale \(\gamma \in [0, \infty) \).
- **delta**: location \(\delta \in \mathbb{R} \).
- **pm**: 0 or 1, denoting which parametrization (as by Nolan) is used.

Details

We use the approach of John Nolan for generating random variates of stable distributions. The function `rstable1` provides two basic parametrizations, by default, \(pm = 1 \), the so-called “S”, “S1”, or “1” parameterization. This is the parameterization used by Samorodnitsky and Taqqu (1994), and is a slight modification of Zolotarev’s (A) parameterization. It is the form with the most simple form of the characteristic function; see Nolan (2010, p. 8).

\(pm = 0 \) is the “S0” parameterization: based on the (M) representation of Zolotarev for an alpha stable distribution with skewness beta. Unlike the Zolotarev (M) parameterization, gamma and delta are straightforward scale and shift parameters. This representation is continuous in all 4 parameters.

Value

A numeric vector of length \(n \) containing the generated random variates.

References

See Also

`rstable` which also allows the 2-parametrization and provides further functionality for stable distributions.

Examples

```r
# Generate and plot a series of stable random variates
set.seed(1953)
r <- rstable1(n = 1000, alpha = 1.9, beta = 0.3)
plot(r, type = "l", main = "stable: alpha=1.9 beta=0.3",
     col = "steelblue"); grid()

hist(r, "Scott", prob = TRUE, ylim = c(0,0.3),
     main = "Stable S(1.9, 0.3; 1)"
lines(density(r), col="red2", lwd = 2)
```
safeUroot

One-dimensional Root (Zero) Finding - Extra "Safety" for Convenience

Description

safeUroot() as a “safe” version of uniroot() searches for a root (that is, zero) of the function \(f \) with respect to its first argument.

“Safe” means searching for the correct interval = \(c(\text{lower}, \text{upper}) \) if \(\text{sign}(f(x)) \) does not satisfy the requirements at the interval end points; see the ‘Details’ section.

Usage

safeUroot(f, interval, ..., lower = min(interval), upper = max(interval), f.lower = f(lower, ...), f.upper = f(upper, ...), Sig = NULL, check.conv = FALSE, tol = .Machine$double.eps^0.25, maxiter = 1000, trace = 0)

Arguments

\(f \) function

interval interval

... additional named or unnamed arguments to be passed to \(f \)

lower, upper lower and upper endpoint of search interval

f.lower, f.upper function value at lower or upper endpoint, respectively.

Sig desired sign of \(f(\text{upper}) \), or \text{NULL}.

check.conv logical indicating whether a convergence warning of the underlying uniroot should be caught as an error.

tol the desired accuracy, that is, convergence tolerance.

maxiter maximal number of iterations

trace number determining tracing

Details

If it is known how \(f \) changes sign at the root \(x_0 \), that is, if the function is increasing or decreasing there, \(\text{Sig} \) can be specified, typically as \(S := \pm 1 \), to require \(S = \text{sign}(f(x_0 + \epsilon)) \) at the solution. In that case, the search interval \([l, u] \) must be such that \(S * f(l) <= 0 \) and \(S * f(u) >= 0 \). Otherwise, by default, when \(\text{Sig} = \text{NULL} \), the search interval \([l, u] \) must satisfy \(f(l) * f(u) <= 0 \).

In both cases, when the requirement is not satisfied, safeUroot() tries to enlarge the interval until the requirement is satisfied.

serialIndepTest

Value

A list with four components, root, f.root, iter and estim.prec; see **uniroot**.

See Also

uniroot.

Examples

```r
f1 <- function(x) (121 - x^2)/(x^2+1)
f2 <- function(x) exp(-x)*(x - 12)

try(uniroot(f1, c(0,10)))
try(uniroot(f2, c(0,2)))
###---> error: f() .. end points not of opposite sign

# where as safeUroot() simply first enlarges the search interval:
safeUroot(f1, c(0,10),trace=1)
safeUroot(f2, c(0,2), trace=2)

### no way to find a zero of a positive function:
try( safeUroot(exp, c(0,2), trace=TRUE) )

### Convergence checking :
safeUroot(sinc, c(0,5), maxiter=4) #'- just' a warning
try( # an error, now with check.conv=TRUE
    safeUroot(sinc, c(0,5), maxiter=4, check.conv=TRUE) )
```

serialIndepTest
Serial Independence Test for Continuous Time Series Via Empirical Copula

Description

Computes the serial independence test based on the empirical copula process as proposed in Ghoudi et al.(2001) and Genest and Rémillard (2004). The test, which is the serial analog of **indepTest**, can be seen as composed of three steps:

(i) a simulation step, which consists in simulating the distribution of the test statistics under serial independence for the sample size under consideration;

(ii) the test itself, which consists in computing the approximate p-values of the test statistics with respect to the empirical distributions obtained in step (i);

(iii) the display of a graphic, called a dependogram, enabling to understand the type of departure from serial independence, if any.

More details can be found in the articles cited in the reference section.
Usage

serialIndepTestSim(n, lag.max, m=lag.max+1, N=1000, verbose = interactive())
serialIndepTest(x, d, alpha=0.05)

Arguments

n
length of the time series when simulating the distribution of the test statistics
under serial independence.

lag.max
maximum lag.

m
maximum cardinality of the subsets of 'lags' for which a test statistic is to be
computed. It makes sense to consider m << lag.max+1 especially when lag.max
is large.

N
number of repetitions when simulating under serial independence.

verbose
a logical specifying if progress should be displayed via txtProgressBar.

x
numeric vector containing the time series whose serial independence is to be
tested.

d
object of class serialIndepTestDist as returned by the function serialIndepTestSim.
It can be regarded as the empirical distribution of the test statistics under serial
independence.

alpha
significance level used in the computation of the critical values for the test statistics.

Details

See the references below for more details, especially the third and fourth ones.

Value

The function serialIndepTestSim() returns an object of S3 class "serialIndepTestDist" with
list components sample.size, lag.max, max.card.subsets, number.repetitions, subsets (list
of the subsets for which test statistics have been computed), subsets.binary (subsets in binary
'integer' notation), dist.statistics.independence (a N line matrix containing the values of the
test statistics for each subset and each repetition) and dist.global.statistic.independence (a
vector a length N containing the values of the serial version of the global Cramér-von Mises test
statistic for each repetition — see last reference p.175).

The function serialIndepTest() returns an object of S3 class "indepTest" with list components
subsets, statistics, critical.values, pvalues, fisher.pvalue (a p-value resulting from a
combination à la Fisher of the subset statistic p-values), tippett.pvalue (a p-value resulting from
a combination à la Tippett of the subset statistic p-values), alpha (global significance level of the
test), beta (1 - beta is the significance level per statistic), global.statistic (value of the global
Cramér-von Mises statistic derived directly from the serial independence empirical copula process
— see last reference p 175) and global.statistic.pvalue (corresponding p-value).

The former argument print.every is deprecated and not supported anymore; use verbose instead.
References

See Also

indepTest, multIndepTest, multSerialIndepTest, dependogram

Examples

AR 1 process

```r
ar <- numeric(200)
ar[1] <- rnorm(1)
for (i in 2:200)
  ar[i] <- 0.5 * ar[i-1] + rnorm(1)
x <- ar[101:200]
```

In order to test for serial independence, the first step consists in simulating the distribution of the test statistics under serial independence for the same sample size, i.e. n=100. As we are going to consider lags up to 3, i.e., subsets of {1,...,4} whose cardinality is between 2 and 4 containing {1}, we set lag.max=3. This may take a while...

d <- serialIndepTestSim(100,3)

The next step consists in performing the test itself:

test <- serialIndepTest(x,d)

Let us see the results:

test

Display the dependogram:

dependogram(test,print=TRUE)

NB: In order to save d for future use, the saveRDS() function can be used.
setTheta

Specify the Parameter(s) of a Copula

Description

Set or change the parameter θ (theta) of a copula. The name ‘theta’ has been from its use in (nested) Archimedean copulas, where x is of class "acopula" or "outer_nacopula". This is used for constructing copula models with specified parameter, as, for example, in onacopula(), or also gofCopula.

Usage

setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE, ...)

S4 method for signature 'acopula,ANY'
setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE, ...)

S4 method for signature 'copula,ANY'
setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE, ...)

S4 method for signature 'xcopula,ANY'
setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE, ...)

S4 method for signature 'outer_nacopula,numeric'
setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE, ...)

S4 method for signature 'khoudrajiCopula,ANY'
setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE, ...)

S4 method for signature 'mixCopula,ANY'
setTheta(x, value, na.ok = TRUE, noCheck = FALSE, freeOnly = TRUE,
treat.negative = c("set.0", "warn.set0", "stop"), ...)

Arguments

x an R object of class Copula, i.e., any copula from package copula.

value parameter value or vector, numeric or NA (when na.ok is true), corresponding to the “free” parameters.

... further arguments for methods.

na.ok logical indicating if NA values are ok for theta.

noCheck logical indicating if parameter constraint checks should be skipped.

freeOnly logical indicating that only non-fixed aka “free” parameters are to be set. If true as by default, setTheta() modifies only the free parameters of the copula; see also fixParam.

treat.negative a character string indicating how negative mixture weights should be handled. If not "stop" which produces an error via stop, negative mixture weights are replaced by zero.
Value

an R object of the same class as x, with the main parameter (vector) (often called theta) set to value.

See Also

the “inverse” function, a “getter” method, is getTheta().

Examples

```r
myC <- setTheta(copClayton, 0.5)
myC
## Frank copula with Kendall's tau = 0.8 :
(myF.8 <- setTheta(copFrank, iTau(copFrank, tau = 0.8)))

# negative theta is ok for dim = 2 :
myF <- setTheta(copFrank, -2.5, noCheck=TRUE)
myF@tau(myF@theta) # -0.262

myT <- setTheta(tCopula(df.fixed=TRUE), 0.7)
stopifnot(all.equal(myT, tCopula(0.7, df.fixed=TRUE), tolerance=0))

(myT2 <- setTheta(tCopula(dim=3, df.fixed=TRUE), 0.7))
## Setting 'rho' and 'df' --- for default df.fixed=FALSE :
(myT3 <- setTheta(tCopula(dim=3), c(0.7, 4)))
```

Description

Methods for function `show()` in Package `copula`.

Methods

- `object = "parCopula"` see Copula.
- `object = "fitMvdc"` (see fitMvdc); and
- `object = "fitCopula"` (see fitCopula): these call the (hidden) print method, with its default argument. Using print() instead, allows to set digits, e.g.
- `object = "fitMvdc"` see fitCopula.
Description

The Sibuya distribution $\text{Sib}(\alpha)$ can be defined by its Laplace transform

$$1 - (1 - \exp(-t))^\alpha, \ t \in [0, \infty),$$

its distribution function

$$F(k) = 1 - (-1)^k \binom{\alpha - 1}{k} = 1 - \frac{1}{kB(k, 1 - \alpha)}, \ k \in \mathbb{N}$$

(where B denotes the beta function) or its probability mass function

$$p_k = \binom{\alpha}{k} (-1)^{k-1}, \ k \in \mathbb{N},$$

where $\alpha \in (0, 1]$.

$pSibuya$ evaluates the distribution function.

dSibuya evaluates the probability mass function.

$rSibuya$ generates random variates from $\text{Sib}(\alpha)$ with the algorithm described in Hofert (2011), Proposition 3.2.

dsumSibuya gives the probability mass function of the n-fold convolution of Sibuya variables, that is, the sum of n independent Sibuya random variables, $S = \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Sib}(\alpha)$.

This probability mass function can be shown (see Hofert (2010, pp. 99)) to be

$$\sum_{j=1}^{n} \binom{n}{j} \binom{j\alpha}{k} (-1)^{k-j}, \ k \in \{n, n+1, \ldots\}.$$

Usage

rSibuya(n, alpha)
dSibuya(x, alpha, log=FALSE)
pSibuya(x, alpha, lower.tail=TRUE, log.p=FALSE)
dsumSibuya(x, n, alpha, method=c("log", "direct", "diff", "exp.log", "Rmpfr", "Rmpfr0", "RmpfrM", "Rmpfr0M"), mpfr.ctrl = list(minPrec = 21, fac = 1.25, verbose=TRUE), log=FALSE)
Arguments

n for rSibuya: sample size, that is, length of the resulting vector of random variates.
for dsumSibuya: the number n of summands.
alpha parameter in \((0, 1]\).
x vector of integer values ("quantiles") \(x\) at which to compute the probability mass or cumulative probability.

log, log.p logical; if TRUE, probabilities p are given as \(\log(p)\).
lower.tail logical; if TRUE (the default), probabilities are \(P(X \leq x)\), otherwise, \(P(X > x)\).
method character string specifying which computational method is to be applied. Implemented are:
"log" evaluates the logarithm of the sum
\[
\sum_{j=1}^{n} \binom{n}{j} (j\alpha)^x (-1)^{x-j}
\]
in a numerically stable way;
"direct" directly evaluates the sum;
"Rmpfr*" are as method="direct" but use high-precision arithmetic; "Rmpfr" and "Rmpfr0" return doubles whereas "RmpfrM" and "Rmpfr0M" give mpfr high-precision numbers. Whereas "Rmpfr" and "RmpfrM" each adapt to high enough precision, the "Rmpfr0*" ones do not adapt.

For all "Rmpfr*" methods, alpha can be set to a mpfr number of specified precision and this will determine the precision of all parts of the internal computations.
"diff" interprets the sum as a forward difference and computes it via diff;
"exp.log" is as method="log" but without numerically stable evaluation (not recommended, use with care).

mpfr.ctrl for method = "Rmpfr" or "RmpfrM" only: a list of
minPrec: minimal (estimated) precision in bits,
fac: factor with which current precision is multiplied if it is not sufficient.
verbose: determining if and how much is printed.

Details

The Sibuya distribution has no finite moments, that is, specifically infinite mean and variance.
For documentation and didactical purposes, rSibuyaR is a pure-R implementation of rSibuya, of course slower than rSibuya as the latter is implemented in C.
Note that the sum to evaluate for dsumSibuya is numerically highly challenging, even already for small \(\alpha\) values (for example, \(n \geq 10\)), and therefore should be used with care. It may require high-precision arithmetic which can be accessed with method="Rmpfr" (and the Rmpfr package).
Value

- **rSibuya**: A vector of positive integer s of length \(n \) containing the generated random variates.
- **dSibuya, pSibuya**: a vector of probabilities of the same length as \(x \).
- **dsumSibuya**: a vector of probabilities, positive if and only if \(x \geq n \) and of the same length as \(x \) (or \(n \) if that is longer).

References

See Also

- `rFJoe` and `rF01Joe` (where `rSibuya` is applied).

Examples

```r
## Sample n random variates from a Sibuya(alpha) distribution and plot a
## histogram
n <- 1000
alpha <- .4
X <- rSibuya(n, alpha)
hist(log(X), prob=TRUE); lines(density(log(X)), col=2, lwd=2)
```

SMI.12

SMI Data – 141 Days in Winter 2011/2012

Description

SMI.12 contains the close prices of all 20 constituents of the Swiss Market Index (SMI) from 2011-09-09 to 2012-03-28.

Usage

data(SMI.12)

Format

SMI.12 is conceptually a multivariate time series, here simply stored as numeric matrix, where the rownames are dates of week days.

The format is:

```
num [1:141, 1:20] 16.1 15.7 15.7 16.1 16.6 ... 
attr(*, "dimnames")=List of 2 ..$ : chr [1:141] "2011-09-09" "2011-09-12" "2011-09-13" "2011-09-14" ...
..$ : chr [1:20] "ABBN" "ATLN" "ADEN" "CSGN" ...
...
```

... from 2011-09-09 to 2012-03-28

lSMI is the list of the original data (before NA “imputation”).
Source

The data was drawn from Yahoo! Finance.

Examples

data(SMI.12)
maybe
head(SMI.12)

str(D.12 <- as.Date(rownames(SMI.12)))
summary(D.12)

matplot(D.12, SMI.12, type="l", log = "y",
 main = "The 20 SMI constituents (2011-09 -- 2012-03)",
 xaxt="n", xlab = "2011 / 2012")
Axis(D, side=1)

if(FALSE) { ##--- This worked up to mid 2012, but no longer ---
 begSMI <- "2011-09-09"
 endSMI <- "2012-03-28"
 ##-- read *public* data ------------------------------
 stopifnot(require(zoo), # -> to access all the zoo methods
 require(tseries))
 symSMI <- c("ABBN.VX","ATLN.VX","ADEN.VX","CSGN.VX","GIVN.VX","HOLN.VX",
 "BAER.VX","NESN.VX","NOVN.VX","CFR.VX","ROG.VX","SGSN.VX",
 "UHR.VX","SREN.VX","SCHN.VX","SYNN.VX","SYST.VX","RIGN.VX",
 "UBSN.VX","ZURN.VX")
 lSMI <- sapply(symSMI, function(sym)
 get.hist.quote(instrument = sym, start= begSMI, end= endSMI,
 quote = "Close", provider = "yahoo",
 drop=TRUE))

 ## check if stock data have the same length for each company.
 sapply(lSMI, length)

 ## "concatenate" all:
 SMIo <- do.call(cbind, lSMI)
 ## and fill in the NAs :
 SMI.12 <- na.fill(SMIo, "extend")
 colnames(SMI.12) <- sub("\\.VX", ", colnames(SMI.12))
 SMI.12 <- as.matrix(SMI.12)
}##---- --- original download

if(require(zoo)) {
 stopifnot(identical(SMI.12,
 local({ S <- as.matrix(na.fill(do.call(cbind, lSMI), "extend"))
 colnames(S) <- sub("\\.VX", ", colnames(S); S)}))
 }
}
Methods for Scatter Plot Matrix 'splom2' in Package 'copula'

Description

Methods splom2() to draw scatter-plot matrices of (random samples of) distributions from package copula.

Usage

S4 method for signature 'matrix'
splom2(x, varnames = NULL, varnames.null.lab = "U",
 xlab = "", col.mat = NULL, bg.col.mat = NULL, ...)
ditto an identical 'data.frame' method

S4 method for signature 'Copula'
splom2(x, n, ...)
S4 method for signature 'mvdc'
splom2(x, n, varnames.null.lab = "X", ...)

Arguments

- `x` a "matrix", "data.frame", "Copula" or a "mvdc" object.
- `n` when x is not matrix-like: The sample size of the random sample drawn from x.
- `varnames` the variable names, typically unspecified.
- `varnames.null.lab` the character string determining the “base name” of the variable labels in case varnames is NULL and x does not have all column names given.
- `xlab` the x-axis label.
- `col.mat` a matrix of colors (or one color) for the plot symbols; if NULL (as by default), `trellis.par.get("plot.symbol")$col` is used for all symbols. (Note that in copula version 0.999-15, this was not true; instead "black" was used.)
- `bg.col.mat` a matrix of colors for the background (the default is the setting as obtained from `trellis.par.get("background")$col`).
- `...` additional arguments passed to the underlying splom().

Value

From splom(), an R object of class "trellis".

See Also

pairs2() for a similar function (for matrices and data frames) based on pairs().

The lattice-based cloud2-methods for 3D data, and wireframe2-methods and contourplot2-methods for functions.
Examples

For 'matrix' objects
Create a 100 x 7 matrix of random variates from a t distribution
with four degrees of freedom and plot the generated data
n <- 1000 # sample size
d <- 3 # dimension
nu <- 4 # degrees of freedom
tau <- 0.5 # Kendall's tau
th <- iTau(tCopula(df = nu), tau) # corresponding parameter
cop <- tCopula(th, dim = d, df = nu) # define copula object
set.seed(271)
U <- rCopula(n, copula = cop)
splom2(U)

For 'copula' objects
set.seed(271)
splom2(cop, n = n) # same as above

For 'rotCopula' objects: ---> Examples in rotCopula

For 'mvdc' objects
mvNN <- mvdc(cop, c("norm", "norm", "exp"),
 list(list(mean = 0, sd = 1), list(mean = 1), list(rate = 2)))
splom2(mvNN, n = n)

Stirling

Eulerian and Stirling Numbers of First and Second Kind

Description

Compute Eulerian numbers and Stirling numbers of the first and second kind, possibly vectorized for all k "at once".

Usage

Stirling1(n, k)
Stirling2(n, k, method = c("lookup.or.store", "direct"))
Eulerian(n, k, method = c("lookup.or.store", "direct"))

Stirling1.all(n)
Stirling2.all(n)
Eulerian.all(n)

Arguments

n positive integer (0 is allowed for Eulerian()).
k integer in 0:n.
method for Eulerian() and Stirling2(), string specifying the method to be used. "direct" uses the explicit formula (which may suffer from some cancelation for "large" n).

Details

Eulerian numbers:
\[A(n, k) = \text{the number of permutations of } 1,2,\ldots,n \text{ with exactly } k \text{ ascents (or exactly } k \text{ descents).} \]

Stirling numbers of the first kind:
\[s(n,k) = (-1)^{n-k} n! \text{ times the number of permutations of } 1,2,\ldots,n \text{ with exactly } k \text{ cycles.} \]

Stirling numbers of the second kind:
\[S_n^{(k)} \text{ is the number of ways of partitioning a set of } n \text{ elements into } k \text{ non-empty subsets.} \]

Value

\[A(n, k), s(n, k) \text{ or } S(n, k) = S_n^{(k)} \text{, respectively.} \]

Eulerian.all(n) is the same as sapply(0:(n-1),Eulerian,n=n) (for \(n > 0 \)),
Stirling1.all(n) is the same as sapply(1:n,Stirling1,n=n), and
Stirling2.all(n) is the same as sapply(1:n,Stirling2,n=n), but more efficient.

Note

For typical double precision arithmetic,
Eulerian*(n,*) overflow (to \(\text{Inf} \)) for \(n \geq 172 \),
Stirling1*(n,*) overflow (to \(\pm\text{Inf} \)) for \(n \geq 171 \), and
Stirling2*(n,*) overflow (to \(\text{Inf} \)) for \(n \geq 220 \).

References

Eulerians:

Stirling numbers:
Abramowitz and Stegun 24.1,4 (p. 824-5; Table 24.4, p.835); Closed Form : p.824 "C."

Examples

Stirling1(7,2)
Stirling2(7,3)
Stirling1.all(9)
Stirling2.all(9)
Description

Compute Kendall’s Tau of an Ali-Mikhail-Haq ("AMH") or Joe Archimedean copula with parameter theta. In both cases, analytical expressions are available, but need alternatives in some cases.

\texttt{tauAMH}(): Analytically, given as
\[1 - \frac{2((1 - \theta)^2 \log(1 - \theta) + \theta)}{3\theta^2}, \]
for \(\theta = \theta \); numerically, care has to be taken when \(\theta \to 0 \), avoiding accuracy loss already, for example, for \(\theta \) as large as \(\theta = 0.001 \).

\texttt{tauJoe}(): Analytically,
\[1 - 4 \sum_{k=1}^{\infty} \frac{1}{k(\theta k + 2)(\theta(k - 1) + 2)}, \]
the infinite sum can be expressed by three \(\psi() \) (\texttt{psigamma}) function terms.

Usage

\texttt{tauAMH(theta)}
\texttt{tauJoe(theta, method = c("hybrid", "digamma", "sum"), noTerms=446)}

Arguments

- \texttt{theta}\hspace{1em} numeric vector with values in \([-1, 1]\) for AMH, or \([0.238734, \infty)\) for Joe.
- \texttt{method}\hspace{1em} string specifying the method for \texttt{tauJoe}(). Use the default, unless for research about the method. Up to \texttt{copula} version 0.999-0, the only (implicit) method was "sum".
- \texttt{noTerms}\hspace{1em} the number of summation terms for the "sum" method; its default, 446 gives an absolute error smaller than \(10^{-5}\).

Details

\texttt{tauAMH}(): For small \(\theta \) (\(\approx \theta \)), we use Taylor series approximations of up to order 7,
\[\tau_A(\theta) = \frac{2}{3} \theta \left(1 + \theta \left(1 + \theta \left(\frac{1}{4} + \frac{\theta}{10} \left(1 + \theta \left(\frac{1}{2} + \frac{\theta^2}{7} \right) \right) \right) \right) + O(\theta^6), \]
where we found that dropping the last two terms (e.g., only using 5 terms from the \(k = 7 \) term Taylor polynomial) is actually numerically advantageous.

\texttt{tauJoe}(): The "sum" method simply replaces the infinite sum by a finite sum (with \texttt{noTerms} terms. The more accurate or faster methods, use analytical summation formulas, using the \texttt{digamma} aka \(\psi() \) function, see, e.g., \texttt{http://en.wikipedia.org/wiki/Digamma_function#Series_formula}.

The smallest sensible \(\theta \) value, i.e., \(\text{th} \) for which \texttt{tauJoe(th)} == -1 is easily determined via \texttt{str(uniroot(function(th) tauJoe(th)-(1),c(0.1,0.3),tol = 1e-17),digits=12)} to be \(0.2387339899\).
Value

a vector of the same length as \(\theta (= \theta) \), with \(\tau \) values

for \(\text{tauAMH} \) in \([(5 - 8 \text{log2})(3, 1/3)] = [-0.1817, 0.3333], \) of \(\tau_A(\theta) = 1 - 2(\theta + (1 - \theta)^2 \text{log}(1 - \theta))/(3\theta^2) \), numerically accurately, to at least around 12 decimal digits.

for \(\text{tauJoe} \): in \([-1, 1]\).

See Also

\texttt{acopula-families}, and their class definition, "\texttt{acopula}". \texttt{etau()} for method-of-moments estimators based on Kendall’s tau.

Examples

\begin{verbatim}
tauAMH(c(0, 2^-40, 2^-20))
curve(tauAMH, 0, 1)
curve(tauAMH, -1, 1) # negative taus as well
curve(tauAMH, 1e-12, 1, log="xy") # linear, \(\tau \approx 2/9 \times \theta \) in the limit

curve(tauJoe, 1, 10)
curve(tauJoe, 0.2387, 10) # negative taus (*not* valid for Joe: no 2-monotone psi())!
\end{verbatim}

\begin{itemize}
\item \textbf{uranium} \hspace{1cm} \textit{Uranium Exploration Dataset of Cook & Johnson (1986)}
\end{itemize}

Description

These data consist of log concentrations of 7 chemical elements in 655 water samples collected near Grand Junction, CO (from the Montrose quad-rangle of Western Colorado). Concentrations were measured for the following elements: Uranium (U), Lithium (Li), Cobalt (Co), Potassium (K), Cesium (Cs), Scandium (Sc), And Titanium (Ti).

Usage

\begin{verbatim}
data(uranium, package="copula")
\end{verbatim}

Format

A data frame with 655 observations of the following 7 variables:

\begin{verbatim}
U (numeric) log concentration of Uranium.
Li (numeric) log concentration of Lithium.
Co (numeric) log concentration of Colbalt.
K (numeric) log concentration of Potassium.
Cs (numeric) log concentration of Cesium.
Sc (numeric) log concentration of Scandium.
Ti (numeric) log concentration of Titanium.
\end{verbatim}
References

Examples

data(uranium)

\[
\text{v}
\]

Variance-Reduction Methods

Description

Computing antithetic variates or Latin hypercube samples.

Usage

\[
\begin{align*}
r\text{AntitheticVariates}(u) \\
r\text{LatinHypercube}(u, \ldots)
\end{align*}
\]

Arguments

\[
\begin{align*}
u & \quad \text{a } n \times d \text{-matrix (or } d\text{-vector) of random variates in the unit hypercube.} \\
\ldots & \quad \text{additional arguments passed to the underlying } \text{rank()}.
\end{align*}
\]

Details

\text{rAntitheticVariates()} takes any copula sample } u, \text{ builds } 1 - u, \text{ and returns the two matrices in the form of an array; this can be used for the variance-reduction method of (componentwise) antithetic variates.}

\text{rLatinHypercube()} takes any copula sample, componentwise randomizes its ranks minus 1 and then divides by the sample size in order to obtain a Latin hypercubed sample.

Value

\text{rAntitheticVariates()} \text{ array of dimension } n \times d \times 2, \text{ say } r, \text{ where } r[,,1] \text{ contains the original sample } u \text{ and } r[,,2] \text{ contains the sample } 1-u.

\text{rLatinHypercube()} \text{ matrix of the same dimensions as } u.

References

1 Basic plots

Generate data from a Gumbel copula

```r
cop <- gumbelCopula(ITau(gumbelCopula(), tau = 0.5))
n <- 1e4
set.seed(271)
U <- rCopula(n, copula = cop)
```

Transform the sample to a Latin Hypercube sample

```r
U.LH <- rLatinHypercube(U)
```

Plot

```r
layout(rbind(1:2))
plot(U, xlab = quote(U[1]), ylab = quote(U[2]), pch = ".", main = "U")
plot(U.LH, xlab = quote(U[1]), ylab = quote(U[2]), pch = ".", main = "U.LH")
```

Transform the sample to an Antithetic variate sample

```r
U.AV <- rAntitheticVariates(U)
```

Plot original sample and its corresponding (componentwise) antithetic variates

```r
layout(rbind(1:2))
plot(U.AV[,1], xlab = quote(U[1]), ylab = quote(U[2]), pch=".", main= "U")
plot(U.AV[,2], xlab = quote(U[1]), ylab = quote(U[2]), pch=".", main= "1 - U")
```

2 Small variance-reduction study for exceedance probabilities

Auxiliary function for approximately computing \(P(U_1 > u_1, \ldots, U_d > u_d)\)

by Monte Carlo simulation based on pseudo-random numbers, Latin hypercube sampling and quasi-random numbers.

```r
sProb <- function(n, copula, u) {
  d <- length(u)
  stopifnot(n >= 1, inherits(copula, "Copula"), 0 < u, u < 1,
    d == dim(copula))
  umat <- rep(u, each = n)
  ## Pseudo-random numbers
  U <- rCopula(n, copula = copula)
  PRNG <- mean(rowSums(U > umat) == d)
  ## Latin hypercube sampling (based on the recycled 'U')
  U <- rLatinHypercube(U)
  LHS <- mean(rowSums(U > umat) == d)
  ## Quasi-random numbers
  U.. <- cCopula(sobol(n, d = d, randomize = TRUE), copula = copula,
    inverse = TRUE)
  QRNG <- mean(rowSums(U.. > umat) == d)
}
## Return

```r
c(PRNG = PRNG, LHS = LHS, QRNG = QRNG)
}
```

## Simulate the probabilities of falling in \((u_1,1] \times \ldots \times (u_d,1]\)

```r
library(qrng) # for quasi-random numbers
(Xtras <- copula:::doExtras()) # determine whether examples will be extra (long)
B <- if(Xtras) 500 else 100 # number of replications
n <- if(Xtras) 1000 else 200 # sample size
d <- 2 # dimension; note: for \(d > 2\), the true value depends on the seed
nu <- 3 # degrees of freedom
th <- iTau(tCopula(df = nu), tau = 0.5) # correlation parameter
cop <- tCopula(param = th, dim = d, df = nu) # t copula
u <- rep(0.99, d) # lower-left endpoint of the considered cube
set.seed(42) # for reproducibility
true <- prob(cop, l = u, u = rep(1, d)) # true exceedance probability
```

```r
system.time(res <- replicate(B, sProb(n, copula = cop, u = u)))
```

## "abbreviations":

```r
PRNG <- res["PRNG",]
LHS <- res["LHS",]
QRNG <- res["QRNG",]
```

## Compute the variance-reduction factors and % improvements

```r
vrf <- var(PRNG) / var(LHS) # variance reduction factor w.r.t. LHS
vrf. <- var(PRNG) / var(QRNG) # variance reduction factor w.r.t. QRNG
pim <- (var(PRNG) - var(LHS)) / var(PRNG) *100 # improvement w.r.t. LHS
pim. <- (var(PRNG) - var(QRNG))/ var(PRNG) *100 # improvement w.r.t. QRNG
```

## Boxplot

```r
boxplot(list(PRNG = PRNG, LHS = LHS, QRNG = QRNG), notch = TRUE,
 main = substitute("Simulated exceedance probabilities" ~
 P(bold(U) > bold(u))~~ "for a" ~ t[nu.]~"copula",
 list(nu. = nu)),
 sub = sprintf(
 "Variance-reduction factors and % improvements: %.1f (%.0f%%), %.1f (%.0f%%)",
 vrf, pim, vrf., pim.))
abline(h = true, lty = 3) # true value
mtext(sprintf("B = %d replications with n = %d and d = %d", B, n, d), side = 3)
```

---

### Description

Generic function and methods `wireframe2()` to draw (lattice) `wireframe` (aka “perspective”) plots of two-dimensional distributions from package `copula`. 

---

**wireframe2-methods**  
**Perspective Plots - 'wireframe2' in Package 'copula'**
Usage

```r
S4 method for signature 'matrix'
wireframe2(x,
xlim = range(x[,1], finite = TRUE),
ylim = range(x[,2], finite = TRUE),
zlim = range(x[,3], finite = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL,
alpha.regions = 0.5, scales = list(arrows = FALSE, col = "black"),
par.settings = standard.theme(color = FALSE),
draw.4.pCoplines = FALSE, ...)
```

```r
identical method for 'data.frame' as for 'matrix'
```

```r
S4 method for signature 'Copula'
wireframe2(x, FUN, n.grid = 26, delta = 0,
xlim = 0:1, ylim = 0:1, zlim = NULL,
xlab = quote(u[1]), ylab = quote(u[2]),
zlab = list(deparse(substitute(FUN))[1], rot = 90),
draw.4.pCoplines = identical(FUN, pCopula), ...)
```

```r
S4 method for signature 'mvdc'
wireframe2(x, FUN, n.grid = 26, xlim, ylim, zlim = NULL,
xlab = quote(x[1]), ylab = quote(x[2]),
zlab = list(deparse(substitute(FUN))[1], rot = 90), ...)
```

Arguments

- `x` a "matrix", "data.frame", "Copula" or a "mvdc" object.
- `xlim, ylim, zlim` the x-, y- and z-axis limits.
- `xlab, ylab, zlab` the x-, y- and z-axis labels.
- `alpha.regions` see `wireframe()`.
- `scales` a list determining how the axes are drawn; see `wireframe()`.
- `par.settings` See `wireframe()`.
- `FUN` the function to be plotted; for a "copula", typically `dCopula` or `pCopula`; for an "mvdc", rather `dMvdc`, etc. In general of the form function(x,copula).
- `n.grid` the number of grid points used in each dimension. This can be a vector of length two, giving the number of grid points used in x- and y-direction, respectively; the function FUN will be evaluated on the corresponding (x,y)-grid.
- `delta` a small number in $[0, \frac{1}{2})$ influencing the evaluation boundaries. The x- and y-vectors will have the range $[0+\delta, 1-\delta]$, the default being $[0,1]$.
- `draw.4.pCoplines` logical indicating if the 4 known border segments of a copula distribution function, i.e., `pCopula`, should be drawn. If true, the line segments are drawn with `col.4 = "#668b5580", lwd.4 = 5, and lty.4 = "82" which you can modify (via
the ... below). Applies only when you do not set panel.3d.wireframe (via the ...).

... additional arguments passed to the underlying wireframe(), such as shade, drape, aspect, etc., or (if you do not specify panel.3d.wireframe differently), to the function panel.3dwire from the lattice package.

Value

An object of class “trellis” as returned by wireframe().

Methods

Wireframe plots for objects of class "matrix", "data.frame", "Copula" or "mvdc".

See Also

The persp-methods for drawing perspective plots via base graphics.

The lattice-based contourplot2-methods.

Examples

## For 'matrix' objects
## The Frechet--Hoeffding bounds W and M
n.grid <- 26
u <- seq(0, 1, length.out = n.grid)
grid <- expand.grid("u[1]" = u, "u[2]" = u)
W <- function(u) pmax(0, rowSums(u)-1) # lower bound W
M <- function(u) apply(u, 1, min) # upper bound M
x.W <- cbind(grid, "W(u[1],u[2])" = W(grid)) # evaluate W on 'grid'
x.M <- cbind(grid, "M(u[1],u[2])" = M(grid)) # evaluate M on 'grid'
wireframe2(x.W)
wireframe2(x.W, shade = TRUE) # plot of W
wireframe2(x.M, drape = TRUE) # plot of M

## For 'Copula' objects

cop <- frankCopula(-4)
wireframe2(cop, pCopula) # the copula
wireframe2(cop, pCopula, shade = TRUE) # ditto, "shaded"
wireframe2(cop, pCopula, shade = TRUE, col = "gray60") # ditto, "shaded"+grid
wireframe2(cop, pCopula, drape = TRUE, xlab = quote(x[1])) # adjusting an axis label
wireframe2(cop, dCopula, delta=0.01) # the density
wireframe2(cop, dCopula) # => the density is set to 0 on the margins
wireframe2(cop, function(u, copula) dCopula(u, copula, log=TRUE),
          zlab = list(quote(log(c(u[1],u[2]))), rot=90), main = "dCopula(..., log=TRUE)"

## For 'mvdc' objects

mvNN <- mvdc(gumbelCopula(3), c("norm", "norm"),
          list(list(mean = 0, sd = 1), list(mean = 1))
wireframe2(mvNN, @Mvdc, xlim=c(-2, 2), ylim=c(-1, 3))
Description

Computes the leave-one-out cross-validation criterion (or a k-fold version of it) for the hypothesized parametric copula family using, by default, maximum pseudo-likelihood estimation.

The leave-one-out criterion is a crossvalidated log likelihood. It is denoted by $\hat{\xi}_{n}$ in Grønneberg and Hjort (2014) and defined in equation (42) therein. When computed for several parametric copula families, it is thus meaningful to select the family maximizing the criterion.

For $k < n$, $n$ the sample size, the k-fold version is an approximation of the leave-one-out criterion that uses $k$ randomly chosen (almost) equally sized data blocks instead of $n$. When $n$ is large, $k$-fold cross-validation is considerably faster (if $k$ is “small” compared to $n$).

Usage

```r
xvCopula(copula, x, k = NULL, verbose = interactive(),
 ties.method = eval(formals(rank)$ties.method), ...)
```

Arguments

copula  object of class "copula" representing the hypothesized copula family.

x  a data matrix that will be transformed to pseudo-observations.

k  the number of data blocks; if $k = \text{NULL}$, $\text{nrow}(x)$ blocks are considered (which corresponds to leave-one-out cross-validation).

verbose  a logical indicating if progress of the cross validation should be displayed via `txtProgressBar`.

ties.method  string specifying how ranks should be computed if there are ties in any of the coordinate samples of $x$ and fitting is based on maximum pseudo-likelihood; passed to `pobs`.

...  additional arguments passed to `fitCopula()`.

Value

A real number equal to the cross-validation criterion multiplied by the sample size.

Note

Note that k-fold cross-validation with $k < n$ shuffles the lines of $x$ prior to forming the blocks. The result thus depends on the value of the random seed.

The default estimation method is maximum pseudo-likelihood estimation but this can be changed if necessary along with all the other arguments of `fitCopula()`.
References


See Also

`fitCopula()` for the underlying estimation procedure and `gofCopula()` for goodness-of-fit tests.

Examples

```r
A two-dimensional data example ----------------------------------
x <- rCopula(200, claytonCopula(3))

Model (copula) selection -- takes time: each fits 200 copulas to 199 obs.
xvCopula(gumbelCopula(), x)
xvCopula(frankCopula(), x)
xvCopula(joeCopula(), x)
xvCopula(claytonCopula(), x)
xvCopula(normalCopula(), x)
xvCopula(tCopula(), x)
xvCopula(plackettCopula(), x)

The same with 5-fold cross-validation [to save time ...]
set.seed(1) # k-fold is random (for k < n) !
xvCopula(gumbelCopula(), x, k=5)
xvCopula(frankCopula(), x, k=5)
xvCopula(joeCopula(), x, k=5)
xvCopula(claytonCopula(), x, k=5)
xvCopula(normalCopula(), x, k=5)
xvCopula(tCopula(), x, k=5)
xvCopula(plackettCopula(), x, k=5)
```
# Index

*Topic arith
  Bernoulli, 27  
coeffG, 36  
interval, 120  
polylog, 168  
polynEval, 171  
Stirling, 205
*Topic array
  matrix_tools, 135
*Topic classes
  acopula-class, 15  
arhmCopula-class, 24  
copula-class, 45  
ellipCopula-class, 53  
empCopula-class, 63  
evCopula-class, 70  
fgmCopula-class, 79  
fhCopula-class, 82  
fitCopula-class, 88  
indepCopula-class, 115  
interval-class, 121  
khoudrajiCopula-class, 130  
mixCopula-class, 139  
moCopula-class, 141  
mvdc-class, 148  
nacopula-class, 150  
plackettCopula-class, 164
*Topic datasets
  copFamilies, 40  
gasoil, 94  
loss, 132  
rnj, 177  
SMI.12, 202  
uuranium, 208
*Topic distribution
  absdPsiMC, 13  
acR, 18  
arhmCopula, 22  
beta.Blomqvist, 29  
cCopula, 31  
Copula, 43  
dDiag, 48  
dnacopula, 50  
ellipCopula, 51  
evCopula, 68  
fgmCopula, 78  
fhCopula, 81  
gnacopula, 101  
gofOtherTstat, 109  
gofTstat, 110  
htrafo, 112  
indepCopula, 114  
K, 122  
khoudrajiCopula, 127  
mixCopula, 137  
Mvdc, 146  
opower, 155  
plackettCopula, 163  
npacopula, 166  
prob, 173  
retstable, 178  
rF01FrankJoe, 180  
rFFrankJoe, 181  
rlog, 182  
rnacModel, 184  
rnacopula, 185  
rnchild, 186  
rotCopula, 188  
rstable1, 192  
Sibuya, 200  
tauAMH, 207  
varianceReduction, 209
*Topic goodness-of-fit
  gofCopula, 103  
gofOtherTstat, 109  
gofTstat, 110
*Topic hplot
  .pairsCond, 12
INDEX

cloud2-methods, 34
contour-methods, 37
contourplot2-methods, 38
pairs2, 156
pairsRosenblatt, 157
persp-methods, 161
plot-methods, 165
qqplot2, 174
splom2-methods, 204
wireframe2-methods, 211

*Topic htest
An, 20
evTestA, 71
evTestC, 72
evTestK, 74
exchEVTest, 75
exchTest, 77
ggraph-tools, 99
gnacopula, 101
gofCopula, 103
gofEVCopula, 107
gofOtherTstat, 109
gofTstat, 110
indepTest, 116
multIndepTest, 142
multiSerialIndepTest, 144
radSymTest, 176
serialIndepTest, 195

*Topic manip
allComp, 19
fixParam, 93
getAcop, 97
getTheta, 98
matrix_tools, 135
setTheta, 198

*Topic math
log1mexp, 131
math-fun, 134

*Topic methods
cloud2-methods, 34
contour-methods, 37
contourplot2-methods, 38
describeCop, 49
getTheta, 98
persp-methods, 161
prob, 173
show-methods, 199
varianceReduction, 209
wireframe2-methods, 211

*Topic models
eemde, 54
eemle, 56
enacopula, 63
estim.misc, 65
fitCopula, 82
fitMvdc, 90
gofCopula, 103
gofEVCopula, 107
margCopula, 133
xvCopula, 214

*Topic multivariate
.acopula-class, 15
An, 20
archmCopula, 22
assocMeasures, 26
beta.Blomqvist, 29
Copula, 43
ellipCopula, 51
empCopula, 59
evCopula, 68
evTestA, 71
evTestC, 72
evTestK, 74
exchEVTest, 75
exchTest, 77
fgmCopula, 78
fhCopula, 81
fitCopula, 82
fitLambda, 89
fitMvdc, 90
generator, 95
ggraph-tools, 99
gnacopula, 101
gofCopula, 103
gofEVCopula, 107
gofOtherTstat, 109
gofTstat, 110
htrafo, 112
indepCopula, 114
khoudrajiCopula, 127
margCopula, 133
mixCopula, 137
moCopula, 140
Mvdc, 146
nacopula-class, 150
INDEX

onacopula, 153
pairsRosenblatt, 157
plackettCopula, 163
pnacopula, 166
radSymTest, 176
rnacModel, 184
rotCopula, 188
xvCopula, 214

*Topic nonparametric
fitLambda, 89

*Topic optimize
safeUroot, 194

*Topic package
copula-package, 5

*Topic print
show-methods, 199

*Topic transformation
htrafo, 112

*Topic utilities
allComp, 19
describeCop, 49
fixParam, 93
interval, 120
nacFrail.time, 149
nacPairthetas, 151
nesdepth, 152
printNacopula, 172
RSposb, 190
.ac.classNames (getAcop), 97
.ac.longNames (getAcop), 97
.ac.objNames (getAcop), 97
.ac.shortNames (getAcop), 97
.emle, 64
.emle (emle), 56
.pairsCond, 12, 158, 159

%in%, numeric, interval-method
(interval-class), 121

A, 21
A (generator), 95
A, galambosCopula-method (generator), 95
A, gumbelCopula-method (generator), 95
A, huslerReissCopula-method (generator), 95
A, indepCopula-method (generator), 95
A, khoudrajiCopula-method (generator), 95
A, tawnCopula-method (generator), 95
A, tevCopula-method (generator), 95
A-methods (generator), 95
A..Z (math-fun), 134
absdPsiMC, 13
acopula, 10, 23, 26, 29, 40–42, 44, 46, 48, 50, 51, 97, 123, 149, 150, 153–155, 198, 208
acopula (acopula-class), 15
acopula-class, 15
acopula-families, 97
acopula-families (copFamilies), 40
acR, 18
Afun (generator), 95
AfunDer (generator), 95
allComp, 19
amhCopula (archmCopula), 22
amhCopula-class (archmCopula-class), 24
An, 20, 69, 72–74, 96, 109
Anfun (An), 20
archmCopula, 10, 22, 24, 25, 44, 46, 52, 69, 70, 82, 97, 113, 114, 147, 163
archmCopula-class, 24
array, 99, 100, 158, 209
as.matrix, 157
assocMeasures, 26
asymp2Copula-class
(khoudrajiCopula-class), 130
asympCopula (khoudrajiCopula), 127
asympCopula-class
(khoudrajiCopula-class), 130
asympExplicitCopula (khoudrajiCopula), 127
attributes, 98
axis, 12

Bernoulli, 27
beta. (beta.Blomqvist), 29
beta.Blomqvist, 29
beta.hat (beta.Blomqvist), 29
betan (beta.Blomqvist), 29

C.n (empCopula), 59
cacopula (cCopula), 31
calibKendallsTau (assocMeasures), 26
calibSpearmansRho (assocMeasures), 26
cCopula, 31, 101–104
copula-class, 10, 23, 26, 29, 40–42, 44, 46, 48, 50, 51, 97, 123, 149, 150, 153–155, 198, 208
copula (acopula-class), 15
copula-class, 15
copula-families, 97
copula-families (copFamilies), 40
cR, 18
Afun (generator), 95
AfunDer (generator), 95
allComp, 19
amhCopula (archmCopula), 22
amhCopula-class (archmCopula-class), 24
An, 20, 69, 72–74, 96, 109
Anfun (An), 20
archmCopula, 10, 22, 24, 25, 44, 46, 52, 69, 70, 82, 97, 113, 114, 147, 163
archmCopula-class, 24
array, 99, 100, 158, 209
as.matrix, 157
assocMeasures, 26
asymp2Copula-class
(khoudrajiCopula-class), 130
asympCopula (khoudrajiCopula), 127
asympCopula-class
(khoudrajiCopula-class), 130
asympExplicitCopula (khoudrajiCopula), 127
attributes, 98
axis, 12

Bernoulli, 27
beta. (beta.Blomqvist), 29
beta.Blomqvist, 29
beta.hat (beta.Blomqvist), 29
betan (beta.Blomqvist), 29

C.n (empCopula), 59
cacopula (cCopula), 31
calibKendallsTau (assocMeasures), 26
calibSpearmansRho (assocMeasures), 26
cCopula, 31, 101–104
copula-class, 10, 23, 26, 29, 40–42, 44, 46, 48, 50, 51, 97, 123, 149, 150, 153–155, 198, 208
INDEX

class, 71, 73, 74, 76, 77, 105, 108, 121, 137, 148, 176, 185
claytonCopula (archmCopula), 22
claytonCopula-class
(archmCopula-class), 24
cloud, 34, 35
cloud2 (cloud2-methods), 34
cloud2, Copula-method (cloud2-methods), 34
cloud2, data.frame-method
(cloud2-methods), 34
cloud2, matrix-method (cloud2-methods), 34
cloud2, mvdc-method (cloud2-methods), 34
cloud2-methods, 34
Cn (empCopula), 59
coeff, 85, 88, 91
coeff.fittedMV (fitMvdc), 90
coeffG, 36
complex_dilog, 169
contour, 37
contour, Copula-method
(contour-methods), 37
contour, indepCopula-method
(contour-methods), 37
contour, mvdc-method (contour-methods), 37
contour-methods, 37
contourplot, 38, 39
contourplot2 (contourplot2-methods), 38
contourplot2, Copula-method
(contourplot2-methods), 38
contourplot2, data.frame-method
(contourplot2-methods), 38
contourplot2, indepCopula-method
(contourplot2-methods), 38
contourplot2, matrix-method
(contourplot2-methods), 38
contourplot2, mvdc-method
(contourplot2-methods), 38
contourplot2-methods, 38
copAMH, 17, 23
copAMH (copFamilies), 40
copClayton, 17, 22, 23, 43
copClayton (copFamilies), 40
copFamilies, 40
copFrank, 17, 183
copFrank (copFamilies), 40
copGumbel, 11, 17, 23, 26, 43, 154, 186
copGumbel (copFamilies), 40
copJoe, 17
copJoe (copFamilies), 40
copula, 25, 26, 43, 44, 49, 50, 54, 70, 80, 83, 88, 94, 96, 98, 104, 127, 130, 133, 141, 146–148, 162, 164, 188, 214
Copula-class (copula-class), 45
copula-class, 45
copula-package, 5
cor, 47, 66
cor.fk, 47, 66, 119
corKendall, 47, 66, 67
dAdu (generator), 95
dAdu, galambosCopula-method (generator), 95
dAdu, gumbelCopula-method (generator), 95
dAdu, huslerReissCopula-method (generator), 95
dAdu-methods (generator), 95
data.frame, 35, 39, 136, 142, 165, 204, 212, 213
Date, 95, 177
dCn (empCopula), 59
dCopula, 10, 23, 25, 37, 39, 50, 54, 81, 130, 162, 212
dCopula (Copula), 43
dcopula (Copula), 43
dCopula, matrix, amhCopula-method (Copula), 43
dCopula, matrix, claytonCopula-method (Copula), 43
dCopula, matrix, empCopula-method (Copula), 43
dCopula, matrix, fgmCopula-method (Copula), 43
dCopula, matrix, fhCopula-method (Copula), 43
dCopula, matrix, frankCopula-method (Copula), 43
dCopula, matrix, galambosCopula-method (Copula), 43
dCopula, matrix, gumbelCopula-method (Copula), 43
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dCopula,matrix,huslerReissCopula-method</td>
<td>dCopula,numeric,indepCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,indepCopula-method</td>
<td>dCopula,numeric,joeCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,joeCopula-method</td>
<td>dCopula,numeric,khoudrajiBivCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,khoudrajiBivCopula-method</td>
<td>dCopula,numeric,khoudrajiExplicitCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,mixCopula-method</td>
<td>dCopula,numeric,mocopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,moCopula-method</td>
<td>dCopula,numeric,nacopula-method</td>
<td>50</td>
</tr>
<tr>
<td>dCopula,matrix,nacopula-method</td>
<td>dCopula,numeric,normalCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,normalCopula-method</td>
<td>dCopula,numeric,plackettCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,plackettCopula-method</td>
<td>dCopula,numeric,rotCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,rotCopula-method</td>
<td>dCopula,numeric,tawncopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,tawncopula-method</td>
<td>dCopula,numeric,tevcopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,tevcopula-method</td>
<td>dCopula,numeric,mixCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,mixCopula-method</td>
<td>dCopula,numeric,mixedCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,mixedCopula-method</td>
<td>dCopula,numeric,amhCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,amhCopula-method</td>
<td>dCopula,numeric,claytonCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,claytonCopula-method</td>
<td>dCopula,numeric,empCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,empCopula-method</td>
<td>dCopula,numeric,fgmCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,fgmCopula-method</td>
<td>dCopula,numeric,fhCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,fhCopula-method</td>
<td>dCopula,numeric,frankCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,frankCopula-method</td>
<td>dCopula,numeric,galambosCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,galambosCopula-method</td>
<td>dCopula,numeric,gumbelCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dCopula,matrix,gumbelCopula-method</td>
<td>dCopula,numeric,huslerReissCopula-method</td>
<td>43</td>
</tr>
<tr>
<td>dDiag</td>
<td>debye1 (polylog), 168</td>
<td>48</td>
</tr>
<tr>
<td>demo</td>
<td>debye2 (polylog), 168</td>
<td>58, 65, 100, 149, 159, 160</td>
</tr>
<tr>
<td>dependogram</td>
<td>depedogram (indepTest), 116</td>
<td>143, 145, 197</td>
</tr>
<tr>
<td>dependogram</td>
<td>dependogram (indepTest), 116</td>
<td>143, 145, 197</td>
</tr>
<tr>
<td>describeCop,archmCopula,character-method</td>
<td>describeCop,archmCopula,character-method</td>
<td>49</td>
</tr>
<tr>
<td>describeCop,copula,character-method</td>
<td>describeCop,copula,character-method</td>
<td>49</td>
</tr>
<tr>
<td>describeCop,missing-method</td>
<td>describeCop,missing-method</td>
<td>49</td>
</tr>
<tr>
<td>describeCop,ellipCopula,character-method</td>
<td>describeCop,ellipCopula,character-method</td>
<td>49</td>
</tr>
<tr>
<td>describeCop,empCopula,character-method</td>
<td>describeCop,empCopula,character-method</td>
<td>49</td>
</tr>
<tr>
<td>describeCop,fgmCopula,character-method</td>
<td>describeCop,fgmCopula,character-method</td>
<td>49</td>
</tr>
<tr>
<td>describeCop,fhCopula,character-method</td>
<td>describeCop,fhCopula,character-method</td>
<td>49</td>
</tr>
</tbody>
</table>
describeCop, indepCopula, character-method (describeCop), 49
describeCop, khoudrajiCopula, character-method (describeCop), 49
describeCop, mixCopula, character-method (describeCop), 49
describeCop, moCopula, character-method (describeCop), 49
describeCop, rotCopula, character-method (describeCop), 49
describeCop, xCopula, ANY-method (describeCop), 49
describeCop-methods (describeCop), 49
digamma, 207
dim, 19, 45, 151, 152
dim, copula-method (copula-class), 45
dim, dimCopula-method (copula-class), 45
dim, empCopula-method (empCopula-class), 63
dim, khoudrajiCopula-method (khoudrajiCopula-class), 130
dim, mixCopula-method (mixCopula-class), 139
dim, mvdc-method (mvdc-class), 148
dim, nacopula-method (nacopula-class), 150
dim, rotCopula-method (rotCopula), 188
dim, xcopula-method (copula-class), 45
dimCopula, 82, 115
dimCopula-class (copula-class), 45
diPsi (generator), 95
diPsi, amhCopula-method (generator), 95
diPsi, claytonCopula-method (generator), 95
diPsi, frankCopula-method (generator), 95
diPsi, gumbelCopula-method (generator), 95
diPsi, joeCopula-method (generator), 95
diPsi-methods (generator), 95
dK (K), 122
dMvdc, 212
dMvdc (Mvdc), 146
dmvdc (Mvdc), 146
dmvt, 44
dnacopula, 48, 50
dnorm, 146
double, 201
dSibuya (Sibuya), 200
dsumSibuya, 36
dsumSibuya (Sibuya), 200
ebeta, 65, 120
ebeta (estim.misc), 65
edmle, 64, 65, 120
edmle (estim.misc), 65
ellipCopula, 10, 23, 46, 51, 54, 69, 82, 84, 105, 114, 135, 136, 147, 163
ellipCopula-class, 53
emde, 54, 64, 65, 67, 120, 124
eMLE, 56, 63, 67, 86, 119, 120, 170
empCopula, 59, 60, 63
empCopula-class, 63
enacopula, 56–58, 63, 64, 67, 101, 120
environment, 155
estim.misc, 65
etamu, 47, 65, 208
etamu (estim.misc), 65
Eulerian, 11, 28, 170
Eulerian (Stirling), 205
evCopula, 10, 21, 23, 25, 45, 46, 68, 70, 72–74, 82, 107, 109, 114
evCopula-class, 70
evTestA, 21, 71, 73, 74, 109
evTestC, 21, 70, 72, 74, 109
evTestK, 21, 70, 72, 75, 78, 177
exchEVTest, 21, 75, 78, 177
exchTest, 76, 77, 177
expression, 82, 115, 130, 141, 164
extremePairs (matrix_tools), 135
F.n (empCopula), 59
FALSE, 55
fgmCopula, 44, 46, 78, 79, 80
fgmCopula-class, 79
fhCopula, 81, 82
fhCopula-class, 82
findInterval, 123
fitCopula, copula-method (fitCopula), 82
fitCopula, parCopula-method (fitCopula), 82
fitCopula, rotCopula-method (fitCopula), 82
fitCopula-class, 88
fitCopula-methods (fitCopula), 82
fitdistr, 92
fitLambda, 89
fitMvdc, 86, 88, 90, 91, 92, 146–148, 199
fitMvdc-class (fitCopula-class), 88
fittedMV-class (fitCopula-class), 88
fixedParam<-, (fixParam), 93
fixedParam<-, copula, logical-method (fixParam), 93
fixedParam<-, khoudrajiCopula, logical-method (fixParam), 93
fixedParam<-, mixCopula, logical-method (fixParam), 93
fixParam, 93, 139, 198
formals, 146
format, interval-method (interval-class), 121
frankCopula (archmCopula), 22
frankCopula-class (archmCopula-class), 24
function, 15, 16, 37, 39, 83, 100, 158, 162, 184, 190, 212
galambosCopula, 69, 70
galambosCopula-evCopula, 68
galambosCopula-class (evCopula-class), 70
gasoil, 94
generator, 95
genFun (generator), 95
genFunDer1 (generator), 95
genFunDer2 (generator), 95
genInv (generator), 95
GenzBretz, 52
getAcop, 17, 42, 97
getAname (getAcop), 97
getSigma, 52
getSigma (matrix_tools), 135
getTheta, 98, 139, 199
getTheta, acopula-method (getTheta), 98
getTheta, copula-method (getTheta), 98
getTheta, khoudrajiCopula-method (getTheta), 98
getTheta, mixCopula-method (getTheta), 98
getTheta, parCopula-method (getTheta), 98
getTheta, rotCopula-method (getTheta), 98
getTheta, xcopula-method (getTheta), 98
getTheta-methods (getTheta), 98
ggraph-tools, 99
gncopula, 101
goftBstat (goftOtherTstat), 109
goftCopula, 56, 76, 78, 86, 92, 102, 103, 109, 110, 112, 177, 188, 198, 215
goftCopula, copula-method (goftCopula), 103
goftCopula, parCopula-method (goftCopula), 103
goftCopula, rotCopula-method (goftCopula), 103
goftCopula-methods (goftCopula), 103
goftEVCopula, 21, 69, 70, 72–74, 107
goftMB (goftCopula), 103
goftOtherTstat, 109
goftPB (goftCopula), 103
goftT2stat (goftTstat), 110
goftTstat, 101, 103, 106, 110
gpviTest (ggraph-tools), 99
grad, 84, 105
gumbelCopula, 69, 70
gumbelCopula (archmCopula), 22
gumbelCopula-class (archmCopula-class), 24
htrafo, 32, 55, 56, 101–104, 112, 124
huslerReissCopula, 69
huslerReissCopula-evCopula, 68
huslerReissCopula-class (evCopula-class), 70
image, 12
indepCopula, 22, 114, 114, 115
indepCopula-class, 115
indepTest, 99, 100, 116, 142, 143, 145, 195, 197
indepTestSim, 100
indepTestSim (indepTest), 116
initialize, acopula-method (acopula-class), 15
initOpt, 118
integer, 19, 57, 59, 64, 100, 123, 150, 180, 183, 187, 188, 193, 201, 202
interval, 16, 17, 120, 120, 121, 122
interval-class, 121
invisible, 157, 162, 175
iPsi (generator), 95
iPsi, amhCopula-method (generator), 95
iPsi, claytonCopula-method (generator), 95
iPsi, frankCopula-method (generator), 95
iPsi, gumbelCopula-method (generator), 95
iPsi-methods (generator), 95
iRho (assocMeasures), 26
iRho, ANY-method (assocMeasures), 26
iRho, archmCopula-method (assocMeasures), 26
iRho, copula-method (assocMeasures), 26
iRho, ellipCopula-method (assocMeasures), 26
iRho, fgmCopula-method (assocMeasures), 26
iRho, frankCopula-method (assocMeasures), 26
iRho, galambosCopula-method (assocMeasures), 26
iRho, gumbelCopula-method (assocMeasures), 26
iRho, huslerReissCopula-method (assocMeasures), 26
iRho, nacopula-method (assocMeasures), 26
iRho, normalCopula-method (assocMeasures), 26
iRho, plackettCopula-method (assocMeasures), 26
iRho, rotCopula-method (assocMeasures), 26
iRho, tawnCopula-method (assocMeasures), 26
iRho, tcopula-method (assocMeasures), 26
iRho, tevCopula-method (assocMeasures), 26
iRho-methods (assocMeasures), 26
isFree (fixParam), 93
isFree, copula-method (fixParam), 93
isFree, khoudrajiCopula-method (fixParam), 93
isFree, mixCopula-method (fixParam), 93
isFree, parCopula-method (fixParam), 93
isFree, rotCopula-method (fixParam), 93
isFreeP (fixParam), 93
iTau (assocMeasures), 26
iTau, acopula-method (assocMeasures), 26
iTau, amhCopula-method (assocMeasures), 26
iTau, ANY-method (assocMeasures), 26
iTau, archmCopula-method (assocMeasures), 26
iTau, claytonCopula-method (assocMeasures), 26
iTau, copula-method (assocMeasures), 26
iTau, ellipCopula-method (assocMeasures), 26
iTau, fgmCopula-method (assocMeasures), 26
iTau, frankCopula-method (assocMeasures), 26
iTau, galambosCopula-method (assocMeasures), 26
iTau, huslerReissCopula-method (assocMeasures), 26
iTau, joeCopula-method (assocMeasures), 26
iTau, nacopula-method (assocMeasures), 26
iTau, normalCopula-method (assocMeasures), 26
iTau, plackettCopula-method (assocMeasures), 26
iTau, rotCopula-method (assocMeasures), 26
iTau, tawnCopula-method (assocMeasures), 26
iTau, tcopula-method (assocMeasures), 26
iTau, tevCopula-method (assocMeasures), 26
iTau-methods (assocMeasures), 26
joeCopula (archmCopula), 22
joeCopula-class (archmCopula-class), 24
K, 56, 101, 103, 113, 122, 124
kendallsTau (assocMeasures), 26
khoudrajiBivCopula, 127, 128
khoudrajiBivCopula-class (khoudrajiCopula-class), 130
khoudrajiCopula, 127, 128, 130, 131, 137
khoudrajiCopula-class, 130
khoudrajiExplicitCopula, 127, 128
khoudrajiExplicitCopula-class
  (khoudrajiCopula-class), 130
Kn (K), 122
lambda, 90, 137, 139
lambda (assocMeasures), 26
lambda, acopula-method (assocMeasures), 26
lambda, anhCopula-method
  (assocMeasures), 26
lambda, ANY-method (assocMeasures), 26
lambda, claytonCopula-method
  (assocMeasures), 26
lambda, copula-method
  (assocMeasures), 26
lambda, evCopula-method
  (assocMeasures), 26
lambda, frankCopula-method
  (assocMeasures), 26
lambda, gumbelCopula-method
  (assocMeasures), 26
lambda, indepCopula-method
  (assocMeasures), 26
lambda, joeCopula-method
  (assocMeasures), 26
lambda, lowfhCopula-method
  (assocMeasures), 26
lambda, mixCopula-method
  (mixCopula-class), 139
lambda, moCopula-method
  (assocMeasures), 26
lambda, nacopula-method
  (assocMeasures), 26
lambda, normalCopula-method
  (assocMeasures), 26
lambda, plackettCopula-method
  (assocMeasures), 26
lambda, rotCopula-method
  (assocMeasures), 26
lambda, tCopula-method
  (assocMeasures), 26
lambda-methods (assocMeasures), 26
lines, 175
list, 12, 35, 39, 55, 57, 67, 83, 88, 89, 104, 137, 139, 146, 147, 150, 153, 154, 157–159, 175, 190, 212
log, 36, 48, 50, 96, 146
log1mexp, 131
log1pexp (log1mexp), 131
loglikCopula (fitCopula), 82
logLik (fitMvdc), 90
logLikMvdc (fitMvdc), 90
loss, 132
lowfhCopula, 81
lowfhCopula (fhCopula), 81
lowfhCopula-class (fhCopula-class), 82
SMI (SMI.12), 202
margCopula, 133
margCopula, archmCopula, logical-method
  (margCopula), 133
margCopula, normalCopula, logical-method
  (margCopula), 133
margCopula, tCopula, logical-method
  (margCopula), 133
matrix_tools, 135
maybeInterval-class (interval-class), 121
methods, 54
min, 122
missing, 47
mixCopula, 137, 137, 139, 140
mixCopula-class, 139
mle, 57, 58, 65
mle2, 57, 58
moCopula, 140, 140, 141
moCopula-class, 141
mpfr, 36, 201
mtext, 175
mle, 57, 58, 65
mle2, 57, 58
moCopula, 140, 140, 141
moCopula-class, 141
mpfr, 36, 201
mtext, 175
multIndepTest, 117, 142, 145, 197
multSerialIndepTest, 117, 143, 144, 197
Mvdc, 146
mvdc, 35, 37–39, 88, 91, 92, 146–148, 162, 165, 204, 212, 213
mvdc (Mvdc), 146
na, 44, 47, 66, 169, 198
NA, 44, 47, 66, 169, 198
NA_real_, 46
INDEX 225

nac2list(onacopula), 153
nacFrail.time, 149
nacopula, 17, 19, 26, 43, 46, 50, 151–154,
166, 172, 173, 184, 186, 187
nacopula (onacopula), 153
nacopula-class, 150
nacPairthetas, 151
names, 98
NaN, 44
nearPD, 84
nesdepth, 152
nobs, 85
normalCopula, 52, 54, 135, 136
normalCopula (ellipCopula), 51
normalCopula-class (ellipCopula-class), 53
nParam (fixParam), 93
nParam, copula-method (fixParam), 93
nParam, khoudrajiCopula-method
(fixParam), 93
nParam, mixCopula-method (fixParam), 93
nParam, parCopula-method (fixParam), 93
nParam, rotCopula-method (fixParam), 93
NULL, 16, 194
numeric, 14, 15, 22, 46, 48, 50, 52, 54, 59, 63,
94, 98, 111, 121, 123, 127, 134, 139,
140, 149, 158, 166, 173–175,
185–188, 193, 198, 202
onacopula, 17, 42, 150, 153, 166, 185–187,
198
onacopulaL (onacopula), 153
opower, 155
optim, 57, 83, 84, 88, 91, 92, 108
optimize, 55, 57, 64, 66, 67, 84, 89
optimMeth (fitCopula), 82
outer_nacopula, 19, 48, 50, 55, 57, 64, 66,
101, 113, 123, 153, 154, 184–187,
198
outer_nacopula-class (nacopula-class), 150
p.adjust.methods, 100
P2p (matrix_tools), 135
p2P, 52
p2P (matrix_tools), 135
p4R (acR), 18
pairs, 12, 156–158, 204
pairs2, 156, 204
pairsCollist, 12
pairsCollist (pairsRosenblatt), 157
pairsRosenblatt, 12, 13, 100, 157
pairwiseCcop, 12, 158, 160
pairwiseCcopp (gggraph-tools), 99
pairwiseIndepTest (gggraph-tools), 99
panel.3dwire, 213
par, 12
parCopula, 49, 98, 115, 137, 139
parCopula-class (copula-class), 45
pCopula, 10, 25, 37, 39, 52, 54, 162, 166, 174,
212
pCopula (Copula), 43
pcopula (Copula), 43
pCopula, matrix, amhCopula-method
(Copula), 43
pCopula, matrix, claytonCopula-method
(Copula), 43
pCopula, matrix, empCopula-method
(Copula), 43
pCopula, matrix, fgmCopula-method
(Copula), 43
pCopula, matrix, frankCopula-method
(Copula), 43
pCopula, matrix, galambosCopula-method
(Copula), 43
pCopula, matrix, gumbelCopula-method
(Copula), 43
pCopula, matrix, huslerReissCopula-method
(Copula), 43
pCopula, matrix, indepCopula-method
(Copula), 43
pCopula, matrix, joeCopula-method
(Copula), 43
pCopula, matrix, khoudrajiCopula-method
(Copula), 43
pCopula, matrix, lowfhCopula-method
(Copula), 43
pCopula, matrix, mixCopula-method
(Copula), 43
pCopula, matrix, moCopula-method
(Copula), 43
pCopula, matrix, nacopula-method
(pnacopula), 166
pCopula, matrix, normalCopula-method
(Copula), 43
pCopula, matrix, plackettCopula-method
(Copula), 43
psi-methods (generator), 95
pSibuya (Sibuya), 200
psiDabsMC (absdPsiMC), 13
psigamma, 207
pviTest (ggraph-tools), 99
qacR (acr), 18
qK, 113
qK (K), 122
qline, 158, 175
qqplot2, 174
radSymTest, 76, 78, 176
range, 37, 122, 162
rank, 63, 167, 209
rAntitheticVariates
(varianceReduction), 209
rCopula, 10, 54
rCopula (Copula), 43
rcopula (Copula), 43
rCopula, numeric, amhCopula-method (Copula), 43
rCopula, numeric, claytonCopula-method (Copula), 43
rCopula, numeric, empCopula-method (Copula), 43
rCopula, numeric, evCopula-method (Copula), 43
rCopula, numeric, fgmCopula-method (Copula), 43
rCopula, numeric, frankCopula-method (Copula), 43
rCopula, numeric, galambosCopula-method (Copula), 43
rCopula, numeric, gumbelCopula-method (Copula), 43
rCopula, numeric, huslerReissCopula-method (Copula), 43
rCopula, numeric, indepCopula-method (Copula), 43
rCopula, numeric, joeCopula-method (Copula), 43
rCopula, numeric, khoudrajiCopula-method (Copula), 43
rCopula, numeric, lowfhCopula-method (Copula), 43
rCopula, numeric, mixCopula-method (Copula), 43
rCopula, numeric, moCopula-method (Copula), 43
rCopula, numeric, nacopula-method (Copula), 43
rCopula, numeric, normalCopula-method (Copula), 43
rCopula, numeric, plackettCopula-method (Copula), 43
rCopula, numeric, rotCopula-method (Copula), 43
rCopula, numeric, tCopula-method (Copula), 43
rCopula, numeric, upfhCopula-method (Copula), 43
rdj, 177
retstable, 135, 178
retstableR (retstable), 178
rf01Frank, 182
rf01Frank (rf01FrankJoe), 180
rf01FrankJoe, 180
rf01Joe, 182, 202
rf01Joe (rf01FrankJoe), 180
rFFrank, 181
rFFrank (rFFrankJoe), 181
rFFrankJoe, 181
rFJJoe, 181, 202
rFJJoe (rFFrankJoe), 181
rho, 10, 137, 170
rho (assocMeasures), 26
rho, acopula-method (assocMeasures), 26
rho, amhCopula-method (assocMeasures), 26
rho, ANY-method (assocMeasures), 26
rho, claytonCopula-method (assocMeasures), 26
rho, copula-method (assocMeasures), 26
rho, evCopula-method (assocMeasures), 26
rho, fgmCopula-method (assocMeasures), 26
rho, frankCopula-method (assocMeasures), 26
rho, galambosCopula-method (assocMeasures), 26
rho, gumbelCopula-method (assocMeasures), 26
rho, huslerReissCopula-method (assocMeasures), 26
rho, indepCopula-method (assocMeasures), 26
rho, lowfhCopula-method (assocMeasures), 26
26
rho, mixCopula-method (mixCopula-class), 139
rho, moCopula-method (assocMeasures), 26
rho, nacopula-method (assocMeasures), 26
rho, normalCopula-method (assocMeasures), 26
rho, plackettCopula-method (assocMeasures), 26
rho, rotCopula-method (assocMeasures), 26
rho, tawnCopula-method (assocMeasures), 26
rho, tCopula-method (assocMeasures), 26
rho, tevCopula-method (assocMeasures), 26
rho-methods (assocMeasures), 26
rK (K), 122
rLatinHypercube (varianceReduction), 209
rlog, 182
rlogR (rlog), 182
rMvdc (Mvdc), 146
rmvdc (Mvdc), 146
rnacModel, 184, 186
rnacopula, 11, 181, 182, 184, 185, 187
rnchild, 185, 186, 186
rotCopula, 45, 127, 137, 188
rotCopula-class (rotCopula), 188
rownames, 202
rSibuya, 181, 182
rSibuya (Sibuya), 200
rSibuyaR (Sibuya), 200
RSpobs, 190
rstable, 193
rstable (rstable1), 192
rstable1, 179, 192
rtrafo (cCopula), 31
rug, 175
safeUroot, 66, 67, 194
serialIndepTest, 117, 143–145, 195
serialIndepTestSim (serialIndepTest), 195
setClassUnion, 121
setTheta, 17, 42, 94, 98, 99, 139, 198
setTheta, acopula, ANY-method (setTheta), 198
setTheta, copula, ANY-method (setTheta), 198
setTheta, ellipCopula, ANY-method (setTheta), 198
setTheta, khoudrajicopula, ANY-method (setTheta), 198
setTheta, mixCopula, ANY-method (setTheta), 198
setTheta, outer_nacopula, numeric-method (setTheta), 198
setTheta, xcopula, ANY-method (setTheta), 198
show, 172, 199
show, acopula-method (acopula-class), 15
show, fitCopula-method (show-methods), 199
show, fitMvdc-method (show-methods), 199
show, interval-method (interval-class), 121
show, mvdc-method (mvdc-class), 148
show, nacopula-method (printNacopula), 172
show, normalCopula-method (show-methods), 199
show, parCopula-method (show-methods), 199
show, tCopula-method (show-methods), 199
show-methods, 199
Sibuya, 11, 200
sinc (math-fun), 134
SMI.12, 202
spearmansRho (assocMeasures), 26
splinefun, 124
splom, 157, 165, 204
splom2, 157, 165
splom2 (splom2-methods), 204
splom2, Copula-method (splom2-methods), 204
splom2, data.frame-method (splom2-methods), 204
splom2, matrix-method (splom2-methods), 204
splom2, mvdc-method (splom2-methods), 204
splom2-methods, 204
Stirling, 205
Stirling1, 28
Stirling1 (Stirling), 205
Stirling2 (Stirling), 205
stop, 198
summary, 85, 92
INDEX

summary, fitCopula-method (fitCopula-class), 88
summary, fitMvdc-method (fitCopula-class), 88
Summary, interval-method (interval-class), 121
summaryFitCopula-class (fitCopula-class), 88
summaryFitMvdc-class (fitCopula-class), 88
suppressWarnings, 91, 92
system.time, 149
tailIndex (assocMeasures), 26
tau, 10, 23, 170
tau (assocMeasures), 26
tau, acopula-method (assocMeasures), 26
tau, amhCopula-method (assocMeasures), 26
tau, ANY-method (assocMeasures), 26
tau, archmCopula-method (assocMeasures), 26
tau, claytonCopula-method (assocMeasures), 26
tau, copula-method (assocMeasures), 26
tau, evCopula-method (assocMeasures), 26
tau, fgmCopula-method (assocMeasures), 26
tau, frankCopula-method (assocMeasures), 26
tau, galambosCopula-method (assocMeasures), 26
tau, gumbelCopula-method (assocMeasures), 26
tau, huslerReissCopula-method (assocMeasures), 26
tau, indepCopula-method (assocMeasures), 26
tau, joeCopula-method (assocMeasures), 26
tau, lowfhCopula-method (assocMeasures), 26
tau, moCopula-method (assocMeasures), 26
tau, nacopula-method (assocMeasures), 26
tau, normalCopula-method (assocMeasures), 26
tau, plackettCopula-method (assocMeasures), 26
tau, rotCopula-method (assocMeasures), 26
tau, tawnCopula-method (assocMeasures), 26
tau, tCopula-method (assocMeasures), 26
tau, tevCopula-method (assocMeasures), 26
tau, upfhCopula-method (assocMeasures), 26
tau-methods (assocMeasures), 26
tauAMH, 207
tauJoe (tauAMH), 207
tawnCopula, 69
tawnCopula (evCopula), 68
tawnCopula-class (evCopula-class), 70
tCopula, 45, 52, 54, 94, 135, 136
tCopula (ellipCopula), 51
tCopula-class (ellipCopula-class), 53
tevCopula, 69
tevCopula (evCopula), 68
tevCopula-class (evCopula-class), 70
toEmpMargins (empCopula), 59
toeplitz, 52
trellis.par.get, 204
TRUE, 84
txtProgressBar, 101, 104, 108, 116, 142, 144, 196, 214
unifroot, 18, 31, 67, 123, 194, 195
upfhCopula, 81
upfhCopula (fhCopula), 81
upfhCopula-class (fhCopula-class), 82
uranium, 208
validObject, 139
varianceReduction, 209
vcov, 85, 88
vcov.fittedMvdc (fitMvdc), 90
vector, 83, 135, 136, 159, 168, 190, 209
vignettes, 11
wireframe, 211–213
wireframe2 (wireframe2-methods), 211
wireframe2, Copula-method (wireframe2-methods), 211
wireframe2, data.frame-method (wireframe2-methods), 211
wireframe2, matrix-method (wireframe2-methods), 211
wireframe2, mvdc-method (wireframe2-methods), 211
wireframe2-methods, 211
xcopula-class (copula-class), 45
xvCopula, 214