Package ‘corncob’

December 5, 2022

Title Count Regression for Correlated Observations with the Beta-Binomial

Version 0.3.1

Description Statistical modeling for correlated count data using the beta-binomial distribution, described in Martin et al. (2020) [doi:10.1214/19-AOAS1283]. It allows for both mean and overdispersion covariates.

URL https://github.com/bryandmartin/corncob

BugReports https://github.com/bryandmartin/corncob/issues

Depends R (>= 3.2)

License GPL (>= 2)

Imports stats, utils, optimr, VGAM, numDeriv, ggplot2, trust, dplyr, magrittr, detectseparation, scales, phyloseq

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

Suggests knitr, rmarkdown, testthat, covr, limma, slam, R.rsp

VignetteBuilder knitr, R.rsp

NeedsCompilation no

Author Bryan D Martin [aut, cre], Daniela Witten [aut], Amy D Willis [aut]

Maintainer Bryan D Martin <bmartin6@uw.edu>

Repository CRAN

Date/Publication 2022-12-05 20:00:02 UTC

R topics documented:

- corncob-package ... 3
- bbdml .. 3
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>checkNested</td>
</tr>
<tr>
<td>clean_taxa_names</td>
</tr>
<tr>
<td>contrastsTest</td>
</tr>
<tr>
<td>convert_phylo</td>
</tr>
<tr>
<td>coth</td>
</tr>
<tr>
<td>dbetabin</td>
</tr>
<tr>
<td>dbetabin_neg</td>
</tr>
<tr>
<td>differentialTest</td>
</tr>
<tr>
<td>doBoot</td>
</tr>
<tr>
<td>fishZ</td>
</tr>
<tr>
<td>genInits</td>
</tr>
<tr>
<td>getRestrictionTerms</td>
</tr>
<tr>
<td>gr_full</td>
</tr>
<tr>
<td>HDIbetabinom</td>
</tr>
<tr>
<td>hessian</td>
</tr>
<tr>
<td>ibd_phylo</td>
</tr>
<tr>
<td>import_phyloseq</td>
</tr>
<tr>
<td>invfishZ</td>
</tr>
<tr>
<td>invlogit</td>
</tr>
<tr>
<td>logit</td>
</tr>
<tr>
<td>lrtest</td>
</tr>
<tr>
<td>objfun</td>
</tr>
<tr>
<td>otu_to_taxonomy</td>
</tr>
<tr>
<td>pbLRT</td>
</tr>
<tr>
<td>pbWald</td>
</tr>
<tr>
<td>plot.bbdml</td>
</tr>
<tr>
<td>plot.differentialTest</td>
</tr>
<tr>
<td>print.bbdml</td>
</tr>
<tr>
<td>print.differentialTest</td>
</tr>
<tr>
<td>print.summary.bbdml</td>
</tr>
<tr>
<td>qbetabinom</td>
</tr>
<tr>
<td>sandSE</td>
</tr>
<tr>
<td>score</td>
</tr>
<tr>
<td>simulate.bbdml</td>
</tr>
<tr>
<td>soil_phylo</td>
</tr>
<tr>
<td>soil_phyllum_small</td>
</tr>
<tr>
<td>summary.bbdml</td>
</tr>
<tr>
<td>waldchisq</td>
</tr>
<tr>
<td>waldchisq_test</td>
</tr>
<tr>
<td>waldt</td>
</tr>
</tbody>
</table>

Index 37
Corncob package documentation.

Description

Corncob provides methods for estimating and plotting count data. Specifically, corncob is designed to account for the challenges of modeling sequencing data from microbial abundance studies.

Details

For details on the model implemented in this package, see Martin et al. (2020) <doi:10.1214/19-AOAS1283>.

The development version of the package will be maintained on https://github.com/bryandmartin/corncob.

Value

No return value. Created for documentation.

Maximum Likelihood for the Beta-binomial Distribution

Description

Maximum Likelihood for the Beta-binomial Distribution

Usage

bbdml(
 formula,
 phi.formula,
 data,
 link = "logit",
 phi.link = "logit",
 method = "trust",
 control = list(maxit = 1000, reltol = 1e-14),
 numerical = FALSE,
 nstart = 1,
 inits = NULL,
 ...
)
Arguments

- `formula`: an object of class `formula`: a symbolic description of the model to be fitted to the abundance
- `phi.formula`: an object of class `formula` without the response: a symbolic description of the model to be fitted to the dispersion
- `data`: a data frame or `phyloseq` object containing the variables in the models
- `link`: link function for abundance covariates, defaults to "logit"
- `phi.link`: link function for dispersion covariates, defaults to "logit"
- `method`: optimization method, defaults to "trust", or see `optimr` for other options
- `control`: optimization control parameters (see `optimr`)
- `numerical`: Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian (not recommended).
- `nstart`: Integer. Defaults to 1. Number of starts for optimization.
- `inits`: Optional initializations as rows of a matrix. Defaults to NULL.
- `...`: Optional additional arguments for `optimr` or `trust`

Value

An object of class `bbdml`.

Examples

```r
# phyloseq example
data(soil_phylum_small)
bbdml(formula = OTU.1 ~ DayAmdmt,
      phi.formula = ~ DayAmdmt,
      data = soil_phylum_small)
```

```r
# data frame example
seq_depth <- rpois(20, lambda = 10000)
my_counts <- rbinom(20, size = seq_depth, prob = 0.001) * 10
my_covariate <- cbind(rep(c(0,1), each = 10))
colnames(my_covariate) <- c("X1")
example_data <- data.frame("W" = my_counts, "M" = seq_depth, my_covariate)
bbdml(formula = cbind(W, M - W) ~ X1,
      phi.formula = ~ X1,
      data = example_data)
```
checkNested

Description

Check for nested models

Usage

checkNested(mod, mod_null)

Arguments

- mod: an object of class bbdml
- mod_null: an object of class bbdml

Value

TRUE if mod_null is nested within mod, otherwise it throws an error.

Examples

data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small)

checkNested(mod1, mod2)

clean_taxa_names

Description

Rename taxa to have short human-readable names

Usage

clean_taxa_names(x, name = "OTU")
contrastsTest

Description

Identify differentially-abundant and differentially-variable taxa using contrasts

Usage

contrastsTest(
 formula,
 phi.formula,
 contrasts_DV = NULL,
 contrasts_DA = NULL,
 data,
 link = "logit",
 phi.link = "logit",
 sample_data = NULL,
 taxa_are_rows = TRUE,
 filter_discriminant = TRUE,
 fdr_cutoff = 0.05,
 fdr = "fdr",
 inits = NULL,
 try_only = NULL,
 ...
)
contrastsTest

Arguments

formula an object of class formula without the response: a symbolic description of the model to be fitted to the abundance

phi.formula an object of class formula without the response: a symbolic description of the model to be fitted to the dispersion

contrasts_DA List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within formula. Note that this is only available with "Wald" value for test. Must include at least one of contrasts_DA or contrasts_DV.

contrasts_DV List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within phi.formula. Note that this is only available with "Wald" value for test. Must include at least one of contrasts_DA or contrasts_DV.

data a data frame containing the OTU table, or phyloseq object containing the variables in the models

link link function for abundance covariates, defaults to "logit"

phi.link link function for dispersion covariates, defaults to "logit"

sample_data Data frame or matrix. Defaults to NULL. If data is a data frame or matrix, this must be included as covariates/sample data.

taxa_are_rows Boolean. Optional. If data is a data frame or matrix, this indicates whether taxa are rows. Defaults to TRUE.

filter_discriminant Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered out.

fdr_cutoff Integer. Defaults to 0.05. Desired type 1 error rate

fdr Character. Defaults to "fdr". False discovery rate control method, see p.adjust for more options.

inits Optional initializations for model fit using formula and phi.formula as rows of a matrix. Defaults to NULL.

try_only Optional numeric. Will try only the try_only taxa, specified either via numeric input or character taxa names. Useful for speed when troubleshooting. Defaults to NULL, testing all taxa.

... Optional additional arguments for bbdml

Details

This function uses contrast matrices to test for differential abundance and differential variability using a Wald-type chi-squared test. To use a formula implementation, see differentialTest.

Value

An object of class contrastsTest. List with elements p containing the p-values for each contrast, p_fdr containing the p-values after false discovery rate control, significant_taxa containing the taxa names of the statistically significant taxa, contrasts_DA containing the contrast matrix for parameters associated with the abundance, contrasts_DV containing the contrast matrix for parameters associated with the dispersion, discriminant_taxa_DA containing the taxa for which at least
one covariate associated with the abundance was perfectly discriminant, `discriminant_taxa_DV` containing the taxa for which at least one covariate associated with the dispersion was perfectly discriminant, and `data` containing the data used to fit the models.

Examples

```r
# phyloseq example
data(soil_phylum_small)
da_analysis <- contrastsTest(formula = ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
contrasts_DA = list("DayAmdmt21 - DayAmdmt11",
"DayAmdmt22 - DayAmdmt21"),
data = soil_phylum_small,
  fdr_cutoff = 0.05)
```

convert_phylo

Function to subset and convert phyloseq data

Description

Function to subset and convert phyloseq data

Usage

```r
convert_phylo(data, select)
```

Arguments

- `data` a phyloseq object
- `select` Name of OTU or taxa to select, must match taxa name in data

Value

A `data.frame` object, with elements `W` as the observed counts, `M` as the sequencing depth, and the sample data with their original names.

Examples

```r
data(soil_phylo)
convert_phylo(soil_phylo, "OTU.43")
```
coth

Hyperbolic cotangent transformation

Description
Hyperbolic cotangent transformation

Usage

```r
coth(x)
```

Arguments

- `x` : data

Value
Hyperbolic cotangent transformation of `x`

Examples

```r
x <- .5
coth(x)
```

dbetabin

Betabinomial density

Description
Betabinomial density

Usage

```r
dbetabin(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)
```

Arguments

- `theta` : Numeric vector. Parameters associated with `X` and `X_star`
- `W` : Numeric vector of counts
- `M` : Numeric vector of sequencing depth
- `X` : Matrix of covariates associated with abundance (including intercept)
- `X_star` : Matrix of covariates associated with dispersion (including intercept)
- `np` : Number of covariates associated with abundance (including intercept)
`dbetabin_neg`

npstar
Number of covariates associated with dispersion (including intercept)

link
ink function for abundance covariates

phi.link
ink function for dispersion covariates

logpar
Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Negative beta-binomial (log-)likelihood

Description

Created as a convenient helper function for optimization. Not intended for users.

Usage

`dbetabin_neg(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)`

Arguments

- **theta**: Numeric vector. Parameters associated with \(X\) and \(X_{\star}\)
- **W**: Numeric vector of counts
- **M**: Numeric vector of sequencing depth
- **X**: Matrix of covariates associated with abundance (including intercept)
- **X_star**: Matrix of covariates associated with dispersion (including intercept)
- **np**: Number of covariates associated with abundance (including intercept)
- **npstar**: Number of covariates associated with dispersion (including intercept)
- **link**: ink function for abundance covariates
- **phi.link**: ink function for dispersion covariates
- **logpar**: Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Negative beta-binomial (log-)likelihood
differentialTest

Identify differentially-abundant and differentially-variable taxa

Description

Identify differentially-abundant and differentially-variable taxa

Usage

differentialTest(
 formula,
 phi.formula,
 formula_null,
 phi.formula_null,
 data,
 link = "logit",
 phi.link = "logit",
 test,
 boot = FALSE,
 B = 1000,
 sample_data = NULL,
 taxa_are_rows = TRUE,
 filter_discriminant = TRUE,
 fdr_cutoff = 0.05,
 fdr = "fdr",
 full_output = FALSE,
 inits = NULL,
 inits_null = NULL,
 try_only = NULL,
 verbose = FALSE,
 ...
)

Arguments

formula an object of class formula without the response: a symbolic description of the model to be fitted to the abundance

phi.formula an object of class formula without the response: a symbolic description of the model to be fitted to the dispersion

formula_null Formula for mean under null, without response

phi.formula_null Formula for overdispersion under null, without response

data a data frame containing the OTU table, or phyloseq object containing the variables in the models

link link function for abundance covariates, defaults to "logit"
phi.link

Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (likelihood ratio test).

test

Boolean. Defaults to FALSE. Indicator of whether or not to use parametric bootstrap algorithm. (See pbWald and pbLRT).

Boot

Optional integer. Number of bootstrap iterations. Ignored if boot is FALSE. Otherwise, defaults to 1000.

sample_data

Data frame or matrix. Defaults to NULL. If data is a data frame or matrix, this must be included as covariates/sample data.

taxa_are_rows

Boolean. Optional. If data is a data frame or matrix, this indicates whether taxa are rows. Defaults to TRUE.

filter_discriminant

Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered out.

fdr_cutoff

Integer. Defaults to 0.05. Desired type I error rate

fdr

Character. Defaults to "fdr". False discovery rate control method, see p.adjust for more options.

full_output

Boolean. Optional. Defaults to FALSE. Indicator of whether to include full bbdml model output for all taxa.

inits

Optional initializations for model fit using formula and phi.formula as rows of a matrix. Defaults to NULL.

inits_null

Optional initializations for model fit using formula_null and phi.formula_null as rows of a matrix. Defaults to NULL.

try_only

Optional numeric. Will try only the try_only taxa, specified either via numeric input or character taxa names. Useful for speed when troubleshooting. Defaults to NULL, testing all taxa.

verbose

Boolean. Defaults to FALSE: print status updates for long-running analyses

... Optional additional arguments for bbdml

Details

See package vignette for details and example usage. Make sure the number of columns in all of the initializations are correct! inits probably shouldn’t match inits_null. To use a contrast matrix, see contrastsTest.

Value

An object of class differentialTest. List with elements p containing the p-values, p_fdr containing the p-values after false discovery rate control, significant_taxa containing the taxa names of the statistically significant taxa, significant_models containing a list of the model fits for the significant taxa, all_models containing a list of the model fits for all taxa, restrictions_DA containing a list of covariates that were tested for differential abundance, restrictions_DV containing a list of covariates that were tested for differential variability, discriminant_taxa_DA containing the taxa for which at least one covariate associated with the abundance was perfectly discriminant, discriminant_taxa_DV containing the taxa for which at least one covariate associated with the dispersion was perfectly discriminant, data containing the data used to fit the models. If full_output = TRUE, it will also include full_output, a list of all model output from bbdml.
Examples

phyloseq example
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,
 phi.formula = ~ DayAmdmt,
 formula_null = ~ 1,
 phi.formula_null = ~ DayAmdmt,
 test = "Wald", boot = FALSE,
 data = soil_phylum_small,
 fdr_cutoff = 0.05)

doBoot

Function to run a bootstrap iteration

Description

Internal function. Not intended for users.

Usage

doBoot(mod, mod_null, test)

Arguments

mod an object of class bbdml
mod_null an object of class bbdml
test Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (likelihood ratio test).

Value

test statistic from one bootstrap iteration

fishZ Fisher’s z transformation

Description

Fisher’s z transformation

Usage

fishZ(x)
Arguments

x data

Value

Fisher’s z transformation of x

Examples

x <- .5
fishZ(x)

genInits

Generate initialization for optimization

Description

Generate initialization for optimization

Usage

genInits(W, M, X, X_star, np, npstar, link, phi.link, nstart = 1, use = TRUE)

Arguments

W Numeric vector of counts
M Numeric vector of sequencing depth
X Matrix of covariates associated with abundance (including intercept)
X_star Matrix of covariates associated with dispersion (including intercept)
np Number of covariates associated with abundance (including intercept)
npstar Number of covariates associated with dispersion (including intercept)
link ink function for abundance covariates
phi.link ink function for dispersion covariates
nstart Integer. Defaults to 1. Number of starts for optimization.
use Boolean. Defaults to TRUE. Indicator of whether to use deterministic initialization.

Value

Matrix of initializations
Examples

```r
set.seed(1)
seq_depth <- rpois(20, lambda = 10000)
my_counts <- rbinom(20, size = seq_depth, prob = 0.001) * 10
my_covariate <- cbind(rep(c(0,1), each = 10))
colnames(my_covariate) <- c("X1")

genInits(W = my_counts, M = seq_depth, 
X = cbind(1, my_covariate), X_star = cbind(1, my_covariate), 
np = 2, npstar = 2, 
link = "logit", 
phi.link = "logit", nstart = 2, use = TRUE)
```

getRestrictionTerms
Get index of restricted terms for Wald test

Description

Created as a convenient helper function. Not intended for users.

Usage

```r
getRestrictionTerms(
  mod,  
  mod_null = NULL,  
  restrictions = NULL,  
  restrictions.phi = NULL
)
```

Arguments

- `mod`: an object of class `bbdml`
- `mod_null`: Optional. An object of class `bbdml`. Defaults to `NULL`.
- `restrictions`: Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.
- `restrictions.phi`: Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

Value

A list with `mu` representing the index of the restricted covariates associated with abundance and `phi` representing the index of the restricted covariates associated with the dispersion.
gr_full

Parameter Gradient Vector

Description

Used for internal optimization. Not intended for users.

Usage

```r
gr_full(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)
```

Arguments

- `theta`: Numeric vector. Parameters associated with `X` and `X_star`
- `W`: Numeric vector of counts
- `M`: Numeric vector of sequencing depth
- `X`: Matrix of covariates associated with abundance (including intercept)
- `X_star`: Matrix of covariates associated with dispersion (including intercept)
- `np`: Number of covariates associated with abundance (including intercept)
- `npstar`: Number of covariates associated with dispersion (including intercept)
- `link`: ink function for abundance covariates
- `phi.link`: ink function for dispersion covariates

Value

Gradient of likelihood with respect to parameters

HDIbetabinom

Get highest density interval of beta-binomial

Description

Get highest density interval of beta-binomial

Usage

```r
HDIbetabinom(percent, M, mu, phi)
```
hessian

Arguments

percent Numeric. Percent interval desired.
M Numeric vector of sequencing depth
mu Numeric vector of abundance parameter
phi Numeric vector of dispersion parameter

Value

List where lower represents the lower bound and upper represents the upper bound

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
HDIbetabinom(.95, M = mod$M[1], mu = mod$mu.resp[1], phi = mod$phi.resp[1])

hessian

Compute Hessian matrix

Description

Compute Hessian matrix

Usage

hessian(mod, numerical = FALSE)

Arguments

mod an object of class bbdml
numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian
 (not recommended).

Value

Hessian matrix

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
hessian(mod)
import_phyloseq

Description

A phyloseq object with an OTU table and sample data from an IBD microbiome study.

Usage

ibd_phylo

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

References

import_phyloseq

Import phyloseq classes for data

Description

Import phyloseq classes for data

Value

No return value. Created for important phyloseq classes.
invfishZ

Inverse Fisher’s z transformation

Description
Inverse Fisher’s z transformation

Usage
invfishZ(x)

Arguments
- **x**
 data

Value
Inverse Fisher’s z transformation of x

Examples
```r
x <- .5
invfishZ(x)
```

invlogit

Inverse logit transformation

Description
Inverse logit transformation

Usage
invlogit(x)

Arguments
- **x**
 data

Value
Inverse logit transformation of x

Examples
```r
x <- .5
invlogit(x)
```
logit

Logit transformation

Description
Logit transformation

Usage
logit(x)

Arguments

| x | data |

Value
logit of x

Examples

```r
x <- .5
logit(x)
```

lrtest

Likelihood ratio test

Description
Likelihood ratio test

Usage

```r
lrtest(mod, mod_null)
```

Arguments

<table>
<thead>
<tr>
<th>mod</th>
<th>an object of class bbdml</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod_null</td>
<td>an object of class bbdml, should be nested within mod</td>
</tr>
</tbody>
</table>

Value
P-value from likelihood ratio test.
Examples

```r
data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
 phi.formula = ~ DayAmdmt,
 data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
 phi.formula = ~ 1,
 data = soil_phylum_small)
lrtest(mod1, mod2)
```

objcun

Objective function

Description

Used for internal optimization. Not intended for users.

Usage

```r
objcun(theta, W, M, X, X_star, np, npstar, link, phi.link)
```

Arguments

- **theta**
 - Numeric vector. Parameters associated with X and X_star
- **W**
 - Numeric vector of counts
- **M**
 - Numeric vector of sequencing depth
- **X**
 - Matrix of covariates associated with abundance (including intercept)
- **X_star**
 - Matrix of covariates associated with dispersion (including intercept)
- **np**
 - Number of covariates associated with abundance (including intercept)
- **npstar**
 - Number of covariates associated with dispersion (including intercept)
- **link**
 - ink function for abundance covariates
- **phi.link**
 - ink function for dispersion covariates

Value

List of negative log-likelihood, gradient, and hessian
otu_to_taxonomy
Transform OTUs to their taxonomic label

Description
Transform OTUs to their taxonomic label

Usage
```
otu_to_taxonomy(OTU, data, level = NULL)
```

Arguments
- **OTU**
 String vector. Names of OTU labels in data
- **data**
 phyloseq object with a taxonomy table
- **level**
 (Optional). Character vector. Desired taxonomic levels for output.

Value
String vector. Names of taxonomic labels matching labels of OTU.

Examples
```
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,  
phi.formula = ~ DayAmdmt,  
formula_null = ~ 1,  
phi.formula_null = ~ DayAmdmt,  
test = "Wald", boot = FALSE,  
data = soil_phylum_small,  
fdr_cutoff = 0.05)

otu_to_taxonomy(OTU = da_analysis$significant_taxa, data = soil_phylum_small,  
level = "Phylum")
```

pbLRT
Parametric bootstrap likelihood ratio test

Description
Parametric bootstrap likelihood ratio test

Usage
```
pbLRT(mod, mod_null, B = 1000)
```
pbWald

Description

Parametric bootstrap Wald test

Usage

```r
pbWald(mod, mod_null, B = 1000)
```

Arguments

- `mod`: an object of class `bbdml`
- `mod_null`: an object of class `bbdml`, should be nested within `mod`
- `B`: Integer. Defaults to 1000. Number of bootstrap iterations.

Value

P-value from parametric bootstrap Wald test.

Examples

```r
data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt, 
phi.formula = ~ DayAmdmt, 
data = soil_phylum_small)
mod2 <- bbdml(formula = OTU.1 ~ 1, 
phi.formula = ~ 1, 
data = soil_phylum_small)
pbLRT(mod1, mod2, B = 50)
```
plot.bbdml

S3 method for class 'bbdml'
plot(
 x,
 total = FALSE,
 color = NULL,
 shape = NULL,
 facet = NULL,
 title = NULL,
 B = 1000,
 sample_names = TRUE,
 data_only = FALSE,
 ...
)

Arguments

- **x**
 Object of class bbdml.

- **total**
 (Optional). Default FALSE. Boolean indicator for whether to plot on total counts scale

- **color**
 (Optional). Default NULL. The sample variable to map to different colors. Can be a single character string of the variable name in sample_data or a custom supplied vector with length equal to the number of samples. Use a character vector to have ggplot2 default.

- **shape**
 (Optional). Default NULL. The sample variable to map to different shapes. Can be a single character string of the variable name in sample_data or a custom supplied vector with length equal to the number of samples.

Examples

```r
data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt, 
    phi.formula = ~ DayAmdmt, 
    data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1, 
    phi.formula = ~ 1, 
    data = soil_phylum_small)
pbWald(mod1, mod2, B = 50)
```
facet
(Optional). Default NULL. The sample variable to map to different panels in a facet grid. Must be a single character string of a variable name in `sample_data`.

title
(Optional). Default NULL. Character string. The main title for the graphic.

B
(Optional). Default 1000. Integer. Number of bootstrap simulations for prediction intervals. Use B = 0 for no prediction intervals.

sample_names
(Optional). Default TRUE. Boolean. If FALSE, remove sample names from the plot.

data_only
(Optional). Default FALSE. Boolean. If TRUE, only returns data frame.

...
There are no optional parameters at this time.

Value

Object of class `ggplot`. Plot of `bbdml` model fit with 95

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
# Here we use B = 50 for quick demonstration purposes.
# In practice, we recommend a higher value for B for more accurate intervals
plot(mod, color = "DayAmdmt", B = 50)
```

plot.differentialTest
differentialTest plot function

Description

differentialTest plot function

Usage

```r
## S3 method for class 'differentialTest'
plot(x, level = NULL, data_only = FALSE, ...)
```

Arguments

- **x**: Object of class `differentialTest`
- **level**: (Optional). Character vector. Desired taxonomic levels for taxa labels.
- **data_only**: (Optional). Default FALSE. Boolean. If TRUE, only returns data frame.
- ...
No optional arguments are accepted at this time.

Value

Object of class `ggplot`. Plot of coefficients from models for significant taxa from `differentialTest`
Examples

```r
# phyloseq example
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,  
phi.formula = ~ DayAmdmt,  
formula_null = ~ 1,  
phi.formula_null = ~ DayAmdmt,  
test = "Wald", boot = FALSE,  
data = soil_phylum_small,  
fdr_cutoff = 0.05)
plot(da_analysis, level = "Phylum")
```

print.bbdml

Print function

Description

Print function

Usage

```r
## S3 method for class 'bbdml'
print(
  x,  
digits = max(3L, getOption("digits") - 3L),  
signif.stars = getOption("show.signif.stars"),  
...  
)
```

Arguments

- `x` Object of class `bbdml`
- `digits` the number of significant digits to use when printing.
- `signif.stars` logical. If TRUE, 'significance stars' are printed for each coefficient.
- `...` No optional arguments are accepted at this time.

Value

NULL. Displays printed model summary.

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,  
phi.formula = ~ DayAmdmt,  
data = soil_phylum_small)
print(mod)
```
print.differentialTest

differentialTest print function

Description

differentialTest print function

Usage

```r
## S3 method for class 'differentialTest'
print(x, ...)
```

Arguments

- `x` Object of class `bbdml`
- `...` No optional arguments are accepted at this time.

Value

`NULL`. Displays printed differentialTest summary.

Examples

```r
# phyloseq example
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,  
phi.formula = ~ DayAmdmt,  
formula_null = ~ 1,  
phi.formula_null = ~ DayAmdmt,  
test = "Wald", boot = FALSE,  
data = soil_phylum_small,  
Fdr_cutoff = 0.05)
print(da_analysis)
```

print.summary.bbdml

Print summary function

Description

Print summary function
Usage

```r
## S3 method for class 'summary.bbdml'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)
```

Arguments

- `x`: Object of class `bbdml`
- `digits`: the number of significant digits to use when printing.
- `signif.stars`: logical. If TRUE, 'significance stars' are printed for each coefficient.
- `...`: No optional arguments are accepted at this time.

Value

`NULL`. Displays printed model summary.

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
             phi.formula = ~ DayAmdmt,
             data = soil_phylum_small)
print(summary(mod))
```

qbetabinom

Get quantiles of beta binom

Description

Get quantiles of beta binom

Usage

```r
qbetabinom(p, M, mu, phi)
```

Arguments

- `p`: Numeric. Probability for quantile
- `M`: Numeric vector of sequencing depth
- `mu`: Numeric vector of abundance parameter
- `phi`: Numeric vector of dispersion parameter
sandSE

Value

quantile

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
qbetabinom(.5, M = mod$M[1], mu = mod$mu.resp[1], phi = mod$phi.resp[1])

sandSE

Compute sandwich standard error

Description

Compute sandwich standard error

Usage

sandSE(mod, numerical = FALSE)

Arguments

mod an object of class bbdml
numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian and score (not recommended).

Value

Sandwich variance-covariance matrix

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
sandSE(mod)
score

Compute score

Description

Compute score

Usage

```r
score(mod, numerical = FALSE, forHess = FALSE)
```

Arguments

- `mod` an object of class `bbdml`
- `numerical` Boolean. Defaults to `FALSE`. Indicator of whether to use the numeric Hessian and score (not recommended).
- `forHess` Boolean. Defaults to `FALSE`. Indicator of whether to put in vector form. Defaults to `FALSE`. This parameter is not intended for users.

Value

Score

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt, 
phi.formula = ~ DayAmdmt, 
data = soil_phylum_small)
score(mod)
```

simulate.bbdml

Simulate from beta-binomial model

Description

Simulate from beta-binomial model

Usage

```r
## S3 method for class 'bbdml'
simulate(object, nsim, seed = NULL, ...)
```
soil_phylo

Arguments

object

an object of class bbdml

nsim

Integer. Number of simulations

seed

Optional integer to set a random seed

... There are no additional parameters at this time.

Value

nsim simulations from object

soil_phylo

Soil data.

Description

A phyloseq object with an OTU table and sample data from a soil microbiome study.

Usage

soil_phylo

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

otu_table

OTU table with 7,770 taxa and 119 samples

tax_table

taxonomy table

sam_data

sample data with the following covariates:

• Plants, values 0 and 1. Index for different plants
• Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
• Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions). Index for different soil additives.
• DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
• ID, values A, B, C, D, and F. Index for different soil plots.

References

soil_phylum_small

Small soil phylum data for examples

Description

A small subset of soil_phylo used for examples. A phyloseq object with an OTU table and sample data from a soil microbiome study.

Usage

soil_phylum_small

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

- **otu_table**: OTU table with 7,770 taxa and 119 samples
- **tax_table**: taxonomy table
- **sam_data**: sample data with the following covariates:
 - Plants, values 0 and 1. Index for different plants
 - Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
 - Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions). Index for different soil additives.
 - DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
 - ID, values A, B, C, D, and F. Index for different soil plots.

References

waldchisq

Usage

S3 method for class 'bbdml'
summary(object, ...)

Arguments

object Object of class bbdml
...
No optional arguments are accepted at this time.

Value

Object of class summary.bbdml. Displays printed model summary.

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
summary(mod)

waldchisq Wald-type chi-squared test

Description

Wald-type chi-squared test

Usage

waldchisq(
 mod,
 mod_null = NULL,
 restrictions = NULL,
 restrictions.phi = NULL,
 contrasts_DA = NULL,
 contrasts_DV = NULL
)

Arguments

mod an object of class bbdml
mod_null Optional. An object of class bbdml, should be nested within mod. If not included, need to include restrictions or restrictions.phi.
restrictions Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.
waldchisq_test

restrictions.phi
Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

contrasts_DA
List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within formula. Note that this is only available with "Wald" value for test.

contrasts_DV
List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within phi.formula. Note that this is only available with "Wald" value for test.

Value
P-value from Wald test.

Examples

```r
data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small)

# Example using mod_null
waldchisq(mod = mod1, mod_null = mod2)

# Example using restrictions and restrictions.phi
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = 2)
waldchisq(mod = mod1, restrictions = "DayAmdmt", restrictions.phi = "DayAmdmt")
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = "DayAmdmt")
```

waldchisq_test Wald-type chi-squared test statistic

Description
This is a helper function and not intended for users

Usage

```r
waldchisq_test(
  mod,
  restrictions = NULL,
  restrictions.phi = NULL,
  contrasts_DA = NULL,
  contrasts_DV = NULL
)
```
Arguments

mod
an object of class `bbdml`

restrictions
Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.

restrictions.phi
Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

contrasts_DA
List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within `formula`. Note that this is only available with "Wald" value for `test`.

contrasts_DV
List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within `phi.formula`. Note that this is only available with "Wald" value for `test`.

Value

Test statistic for Wald test.

Description

Wald-type t test

Usage

`waldt(mod)`

Arguments

mod
an object of class `bbdml`

Value

Matrix withwald test statistics and p-values. Only performs univariate tests.
Examples

```r
data(soil_phylo)
soil <- soil_phylo %>%
phyloseq::subset_samples(DayAmdmt %in% c(11,21)) %>%
phyloseq::tax_glom("Phylum")
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil)
waldt(mod1)
```
Index

* datasets
 ibd_phylo, 18
 soil_phylo, 31
 soil_phylum_small, 32
 bbdml, 3, 7, 12
 checkNested, 5
 clean_taxa_names, 5
 contrastsTest, 6, 12
 convert_phylo, 8
 corncob (corncob-package), 3
 corncob-package, 3
 coth, 9
 dbetabin, 9
 dbetabin_neg, 10
 differentialTest, 7, 11
 doBoot, 13
 fishZ, 13
 genInits, 14
 getRestrictionTerms, 15
 gr_full, 16
 HDIbetabinom, 16
 hessian, 17
 ibd_phylo, 18
 import_phyloseq, 18
 invfishZ, 19
 invlogit, 19
 logit, 20
 lrtest, 20
 objfun, 21
 optimr, 4
 otu_to_taxonomy, 22
 p.adjust, 7, 12
 pbLRT, 12, 22
 pbWald, 12, 23
 plot.bbdml, 24
 plot.differentialTest, 25
 print.bbdml, 26
 print.differentialTest, 27
 print.summary.bbdml, 27
 qbetabinom, 28
 sandSE, 29
 score, 30
 simulate.bbdml, 30
 soil_phylo, 31, 32
 soil_phylum_small, 32
 summary.bbdml, 32
 trust, 4
 waldchisq, 33
 waldchisq_test, 34
 waldt, 35