Package ‘corncob’

March 11, 2021

Title Count Regression for Correlated Observations with the Beta-Binomial

Version 0.2.0

Description Statistical modeling for correlated count data using the beta-binomial distribution, described in Martin et al. (2020) <doi:10.1214/19-AOAS1283>. It allows for both mean and overdispersion covariates.

URL https://github.com/bryandmartin/corncob

BugReports https://github.com/bryandmartin/corncob/issues

Depends R (>= 3.2)

License GPL (>= 2)

Imports stats, utils, optimr, VGAM, numDeriv, Matrix, ggplot2, trust, dplyr, magrittr, rutils, detectseparation, scales, phyloseq

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat, covr, limma, R.rsp

VignetteBuilder knitr, R.rsp

NeedsCompilation no

Author Bryan D Martin [aut, cre], Daniela Witten [aut], Amy D Willis [aut]

Maintainer Bryan D Martin <bmartin6@uw.edu>

Repository CRAN

Date/Publication 2021-03-11 15:00:02 UTC

R topics documented:

corncob-package .. 3
bbdml ... 3
R topics documented:

checkNested ... 5
clean_taxa_names .. 5
contrastsTest ... 6
convert_phylo ... 8
coth 9
dbetabin ... 9
dbetabin_neg ... 10
differentialTest .. 11
doBoot ... 13
fishZ ... 13
genInits ... 14
getRestrictionTerms .. 15
gr_full ... 16
HDIbetabinom .. 16
hessian ... 17
ibd_phylo ... 18
import_phyloseq .. 18
invfishZ ... 19
invlogit ... 19
logit ... 20
lrttest ... 20
objfun ... 21
otu_to_taxonomy .. 22
pbLRT ... 22
pbWald ... 23
plot.bbdml ... 24
plot.differentialTest .. 25
print.bbdml ... 26
print.differentialTest ... 27
print.summary.bbdml .. 27
qbetabinom ... 28
sandSE ... 29
score ... 30
simulate.bbdml .. 30
soil_phylo ... 31
soil_phyllum_small .. 32
summary.bbdml .. 32
waldchisq ... 33
waldchisq_test ... 34
waldt ... 35

Index 37
Corncob provides methods for estimating and plotting count data. Specifically, corncob is designed to account for the challenges of modeling sequencing data from microbial abundance studies.

Details

For details on the model implemented in this package, see Martin et al. (2020) <doi:10.1214/19-AOAS1283>.

The development version of the package will be maintained on https://github.com/bryandmartin/corncob.

Value

No return value. Created for documentation.

bbdml

Maximum Likelihood for the Beta-binomial Distribution

Description

Maximum Likelihood for the Beta-binomial Distribution

Usage

bbdml(
 formula,
 phi.formula,
 data,
 link = "logit",
 phi.link = "logit",
 method = "trust",
 control = list(maxit = 1000, reltol = 1e-14),
 numerical = FALSE,
 nstart = 1,
 inits = NULL,
 ...)
)
Arguments

formula an object of class formula: a symbolic description of the model to be fitted to the abundance

phi.formula an object of class formula without the response: a symbolic description of the model to be fitted to the dispersion
data a data frame or phyloseq object containing the variables in the models
link link function for abundance covariates, defaults to "logit"
phi.link link function for dispersion covariates, defaults to "logit"
method optimization method, defaults to "trust", or see optimr for other options
control optimization control parameters (see optimr)
numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian (not recommended).
nstart Integer. Defaults to 1. Number of starts for optimization.
inits Optional initializations as rows of a matrix. Defaults to NULL.
... Optional additional arguments for optimr or trust

Value

An object of class bbdml.

Examples

phyloseq example
data(soil_phylum_small)
bbdml(formula = OTU.1 ~ DayAmdmt,
 phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

data frame example
seq_depth <- rpois(20, lambda = 10000)
my_counts <- rbinom(20, size = seq_depth, prob = 0.001) * 10
my_covariate <- cbind(rep(c(0,1), each = 10))
colnames(my_covariate) <- c("X1")
example_data <- data.frame("W" = my_counts, "M" = seq_depth, my_covariate)
bbdml(formula = cbind(W, M - W) ~ X1,
 phi.formula = ~ X1,
data = example_data)
checkNested

Description

Check for nested models

Usage

checkNested(mod, mod_null)

Arguments

mod an object of class bbdml
mod_null an object of class bbdml

Value

TRUE if mod_null is nested within mod, otherwise it throws an error.

Examples

data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small)

checkNested(mod1, mod2)

clean_taxa_names

Description

Rename taxa to have short human-readable names

Usage

clean_taxa_names(x, name = "OTU")
contrastsTest

Arguments

x Object of class phyloseq
name Character, defaults to "OTU". Optional. String to use in every taxa name.

Details

The original taxa names are saved as the original_names attribute. See the example for an example of how to access the original names.

Value

Object of class phyloseq, with taxa renamed (defaults to OTU1, OTU2, ...), with the original taxa names saved as an attribute.

Examples

data(soil_phylo)
x <- clean_taxa_names(soil_phylo)
Use this line to see the original taxa names
attr(x, "original_names")

contrastsTest Identify differentially-abundant and differentially-variable taxa using contrasts

Description

Identify differentially-abundant and differentially-variable taxa using contrasts

Usage

contrastsTest(
 formula,
 phi.formula,
 contrasts_DA = NULL,
 contrasts_DV = NULL,
 data,
 link = "logit",
 phi.link = "logit",
 sample_data = NULL,
 taxa_are_rows = TRUE,
 filter_discriminant = TRUE,
 fdr_cutoff = 0.05,
 fdr = "fdr",
 inits = NULL,
 try_only = NULL,
 ...
)
Arguments

- **formula**: an object of class `formula` without the response: a symbolic description of the model to be fitted to the abundance.
- **phi.formula**: an object of class `formula` without the response: a symbolic description of the model to be fitted to the dispersion.
- **contrasts_DA**: List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within `formula`. Note that this is only available with "Wald" value for `test`. Must include at least one of `contrasts_DA` or `contrasts_DV`.
- **contrasts_DV**: List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within `phi.formula`. Note that this is only available with "Wald" value for `test`. Must include at least one of `contrasts_DA` or `contrasts_DV`.
- **data**: a data frame containing the OTU table, or phyloseq object containing the variables in the models.
- **link**: link function for abundance covariates, defaults to "logit".
- **phi.link**: link function for dispersion covariates, defaults to "logit".
- **sample_data**: Data frame or matrix. Defaults to NULL. If data is a data frame or matrix, this must be included as covariates/sample data.
- **taxa_are_rows**: Boolean. Optional. If data is a data frame or matrix, this indicates whether taxa are rows. Defaults to TRUE.
- **filter_discriminant**: Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered out.
- **fdr_cutoff**: Integer. Defaults to 0.05. Desired type 1 error rate.
- **fdr**: Character. Defaults to "fdr". False discovery rate control method, see `p.adjust` for more options.
- **inits**: Optional initializations for model fit using `formula` and `phi.formula` as rows of a matrix. Defaults to NULL.
- **try_only**: Optional numeric. Will try only the `try_only` taxa, specified either via numeric input or character taxa names. Useful for speed when troubleshooting. Defaults to NULL, testing all taxa.
- **...**: Optional additional arguments for `bbdm1`.

Details

This function uses contrast matrices to test for differential abundance and differential variability using a Wald-type chi-squared test. To use a formula implementation, see `differentialTest`.

Value

An object of class `contrastsTest`. List with elements `p` containing the p-values for each contrast, `p_fdr` containing the p-values after false discovery rate control, `significant_taxa` containing the taxa names of the statistically significant taxa, `contrasts_DA` containing the contrast matrix for parameters associated with the abundance, `contrasts_DV` containing the contrast matrix for parameters associated with the dispersion, `discriminant_taxa_DA` containing the taxa for which at least
one covariate associated with the abundance was perfectly discriminant, discriminant_taxa_DV containing the taxa for which at least one covariate associated with the dispersion was perfectly discriminant, and data containing the data used to fit the models.

Examples

```r
# phyloseq example
data(soil_phylum_small)
da_analysis <- contrastsTest(formula = ~ DayAmdmt, phi.formula = ~ DayAmdmt, contrasts_DA = list("DayAmdmt21 - DayAmdmt11", "DayAmdmt22 - DayAmdmt21"), data = soil_phylum_small, fdr_cutoff = 0.05)
```

convert_phylo

Function to subset and convert phyloseq data

Description

Function to subset and convert phyloseq data

Usage

`convert_phylo(data, select)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>a phyloseq object</td>
</tr>
<tr>
<td>select</td>
<td>Name of OTU or taxa to select, must match taxa name in data</td>
</tr>
</tbody>
</table>

Value

A data.frame object, with elements W as the observed counts, M as the sequencing depth, and the sample data with their original names.

Examples

```r
data(soil_phylo)
convert_phylo(soil_phylo, "OTU.43")
```
coth

Hyperbolic cotangent transformation

Description

Hyperbolic cotangent transformation

Usage

coth(x)

Arguments

x
data

Value

Hyperbolic cotangent transformation of x

Examples

x <- .5
coth(x)

dbetabin

Betabinomial density

Description

Betabinomial density

Usage

dbetabin(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)

Arguments

theta Numeric vector. Parameters associated with X and X_star
W Numeric vector of counts
M Numeric vector of sequencing depth
X Matrix of covariates associated with abundance (including intercept)
X_star Matrix of covariates associated with dispersion (including intercept)
np Number of covariates associated with abundance (including intercept)
dbetabin_neg

npstar Number of covariates associated with dispersion (including intercept)
link ink function for abundance covariates
phi.link ink function for dispersion covariates
logpar Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Negative beta-binomial (log-)likelihood

dbetabin_neg Negative betabinomial density

Description

Created as a convenient helper function for optimization. Not intended for users.

Usage

dbetabin_neg(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)

Arguments

theta Numeric vector. Parameters associated with X and X_star
W Numeric vector of counts
M Numeric vector of sequencing depth
X Matrix of covariates associated with abundance (including intercept)
X_star Matrix of covariates associated with dispersion (including intercept)
np Number of covariates associated with abundance (including intercept)
npstar Number of covariates associated with dispersion (including intercept)
link ink function for abundance covariates
phi.link ink function for dispersion covariates
logpar Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Negative beta-binomial (log-)likelihood
differentialTest

Identify differentially-abundant and differentially-variable taxa

Description

Identify differentially-abundant and differentially-variable taxa

Usage

differentialTest(
 formula,
 phi.formula,
 formula_null,
 phi.formula_null,
 data,
 link = "logit",
 phi.link = "logit",
 test,
 boot = FALSE,
 B = 1000,
 sample_data = NULL,
 taxa_are_rows = TRUE,
 filter_discriminant = TRUE,
 fdr_cutoff = 0.05,
 fdr = "fdr",
 full_output = FALSE,
 inits = NULL,
 inits_null = NULL,
 try_only = NULL,
 ...
)

Arguments

formula an object of class formula without the response: a symbolic description of the model to be fitted to the abundance

phi.formula an object of class formula without the response: a symbolic description of the model to be fitted to the dispersion

formula_null Formula for mean under null, without response

phi.formula_null Formula for overdispersion under null, without response

data a data frame containing the OTU table, or phyloseq object containing the variables in the models

link link function for abundance covariates, defaults to "logit"

phi.link link function for dispersion covariates, defaults to "logit"
differentialTest

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (likelihood ratio test).</td>
</tr>
<tr>
<td>boot</td>
<td>Boolean. Defaults to FALSE. Indicator of whether or not to use parametric bootstrap algorithm. (See pbWald and pbLRT).</td>
</tr>
<tr>
<td>B</td>
<td>Optional integer. Number of bootstrap iterations. Ignored if boot is FALSE. Otherwise, defaults to 1000.</td>
</tr>
<tr>
<td>sample_data</td>
<td>Data frame or matrix. Defaults to NULL. If data is a data frame or matrix, this must be included as covariates/sample data.</td>
</tr>
<tr>
<td>taxa_are_rows</td>
<td>Boolean. Optional. If data is a data frame or matrix, this indicates whether taxa are rows. Defaults to TRUE.</td>
</tr>
<tr>
<td>filter_discriminant</td>
<td>Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered out.</td>
</tr>
<tr>
<td>fdr_cutoff</td>
<td>Integer. Defaults to 0.05. Desired type 1 error rate</td>
</tr>
<tr>
<td>fdr</td>
<td>Character. Defaults to "fdr". False discovery rate control method, see p.adjust for more options.</td>
</tr>
<tr>
<td>full_output</td>
<td>Boolean. Optional. Defaults to FALSE. Indicator of whether to include full bbdml model output for all taxa.</td>
</tr>
<tr>
<td>inits</td>
<td>Optional initializations for model fit using formula and phi.formula as rows of a matrix. Defaults to NULL.</td>
</tr>
<tr>
<td>inits_null</td>
<td>Optional initializations for model fit using formula_null and phi.formula_null as rows of a matrix. Defaults to NULL.</td>
</tr>
<tr>
<td>try_only</td>
<td>Optional numeric. Will try only the try_only taxa, specified either via numeric input or character taxa names. Useful for speed when troubleshooting. Defaults to NULL, testing all taxa.</td>
</tr>
<tr>
<td>...</td>
<td>Optional additional arguments for bbdml</td>
</tr>
</tbody>
</table>

Details

See package vignette for details and example usage. Make sure the number of columns in all of the initializations are correct! inits probably shouldn't match inits_null. To use a contrast matrix, see contrastsTest.

Value

An object of class differentialTest. List with elements p containing the p-values, p_fdr containing the p-values after false discovery rate control, significant_taxa containing the taxa names of the statistically significant taxa, significant_models containing a list of the model fits for the significant taxa, all_models containing a list of the model fits for all taxa, restrictions_DA containing a list of covariates that were tested for differential abundance, restrictions_DV containing a list of covariates that were tested for differential variability, discriminant_taxa_DA containing the taxa for which at least one covariate associated with the abundance was perfectly discriminant, discriminant_taxa_DV containing the taxa for which at least one covariate associated with the dispersion was perfectly discriminant, data containing the data used to fit the models. If full_output = TRUE, it will also include full_output, a list of all model output from bbdml.
doBoot

Examples

```r
# phyloseq example
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
formula_null = ~ 1,
phi.formula_null = ~ DayAmdmt,
test = "Wald", boot = FALSE,
data = soil_phylum_small,
fdr_cutoff = 0.05)
```

doBoot

Function to run a bootstrap iteration

Description

Internal function. Not intended for users.

Usage

doBoot(mod, mod_null, test)

Arguments

- `mod`: an object of class `bbdml`
- `mod_null`: an object of class `bbdml`
- `test`: Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (likelihood ratio test).

Value

test statistic from one bootstrap iteration

fishZ

Fisher's z transformation

Description

Fisher's z transformation

Usage

`fishZ(x)`
Arguments

\texttt{x} \hspace{1cm} \texttt{data}

Value

Fisher’s z transformation of \texttt{x}

Examples

\begin{verbatim}
x <- .5
fishZ(x)
\end{verbatim}

description

Generate initialization for optimization

Usage

genInits(W, M, X, X_star, np, npstar, link, phi.link, nstart = 1, use = TRUE)

Arguments

\begin{itemize}
\item \texttt{W} \hspace{1cm} Numeric vector of counts
\item \texttt{M} \hspace{1cm} Numeric vector of sequencing depth
\item \texttt{X} \hspace{1cm} Matrix of covariates associated with abundance (including intercept)
\item \texttt{X_star} \hspace{1cm} Matrix of covariates associated with dispersion (including intercept)
\item \texttt{np} \hspace{1cm} Number of covariates associated with abundance (including intercept)
\item \texttt{npstar} \hspace{1cm} Number of covariates associated with dispersion (including intercept)
\item \texttt{link} \hspace{1cm} Ink function for abundance covariates
\item \texttt{phi.link} \hspace{1cm} Ink function for dispersion covariates
\item \texttt{nstart} \hspace{1cm} Integer. Defaults to 1. Number of starts for optimization.
\item \texttt{use} \hspace{1cm} Boolean. Defaults to TRUE. Indicator of whether to use deterministic initialization.
\end{itemize}

Value

Matrix of initializations
Examples

```r
set.seed(1)
seq_depth <- rpois(20, lambda = 10000)
my_counts <- rbinom(20, size = seq_depth, prob = 0.001) * 10
my_covariate <- cbind(rep(c(0,1), each = 10))
colnames(my_covariate) <- c("X1")

genInits(W = my_counts, M = seq_depth,
        X = cbind(1, my_covariate), X_star = cbind(1, my_covariate),
        np = 2, npstar = 2,
        link = "logit",
        phi.link = "logit", nstart = 2, use = TRUE)
```

getRestrictionTerms

Get index of restricted terms for Wald test

Description

Created as a convenient helper function. Not intended for users.

Usage

```r
getRestrictionTerms(
  mod,
  mod_null = NULL,
  restrictions = NULL,
  restrictions.phi = NULL
)
```

Arguments

- **mod**: an object of class `bbdml`
- **mod_null**: Optional. An object of class `bbdml`. Defaults to `NULL`.
- **restrictions**: Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.
- **restrictions.phi**: Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

Value

A list with `mu` representing the index of the restricted covariates associated with abundance and `phi` representing the index of the restricted covariates associated with the dispersion.
gr_full

Parameter Gradient Vector

Description

Used for internal optimization. Not intended for users.

Usage

gr_full(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)

Arguments

theta Numeric vector. Parameters associated with X and X_star
W Numeric vector of counts
M Numeric vector of sequencing depth
X Matrix of covariates associated with abundance (including intercept)
X_star Matrix of covariates associated with dispersion (including intercept)
np Number of covariates associated with abundance (including intercept)
npstar Number of covariates associated with dispersion (including intercept)
link link function for abundance covariates
phi.link link function for dispersion covariates
logpar Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Gradient of likelihood with respect to parameters

HDIbetabinom

Get highest density interval of beta-binomial

Description

Get highest density interval of beta-binomial

Usage

HDIbetabinom(percent, M, mu, phi)
hessian

Arguments

percent Numeric. Percent interval desired.
M Numeric vector of sequencing depth
mu Numeric vector of abundance parameter
phi Numeric vector of dispersion parameter

Value

List where lower represents the lower bound and upper represents the upper bound

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
HDIbetabinom(.95, M = mod$M[1], mu = mod$mu.resp[1], phi = mod$phi.resp[1])

hessian

Compute Hessian matrix

Description

Compute Hessian matrix

Usage

hessian(mod, numerical = FALSE)

Arguments

mod an object of class bbdml
numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian (not recommended).

Value

Hessian matrix

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
hessian(mod)
import_phyloseq

Description

Import phyloseq classes for data

Value

No return value. Created for important phyloseq classes.

<table>
<thead>
<tr>
<th>ibd_phylo</th>
<th>IBD data.</th>
</tr>
</thead>
</table>

Description

A phyloseq object with an OTU table and sample data from an IBD microbiome study.

Usage

`ibd_phylo`

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

References

ibd_phylo

Description

A phyloseq object with an OTU table and sample data from an IBD microbiome study.

Usage

`ibd_phylo`

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

References

invfishZ

Description
Inverse Fisher’s z transformation

Usage
```r
invfishZ(x)
```

Arguments
- `x`: data

Value
Inverse Fisher’s z transformation of `x`

Examples
```r
x <- .5
invfishZ(x)
```

invlogit

Description
Inverse logit transformation

Usage
```r
invlogit(x)
```

Arguments
- `x`: data

Value
Inverse logit transformation of `x`

Examples
```r
x <- .5
invlogit(x)
```
logit
Logit transformation

Description
Logit transformation

Usage
```r
logit(x)
```

Arguments
- `x`
 data

Value
logit of x

Examples
```r
x <- .5
logit(x)
```

lrtest
Likelihood ratio test

Description
Likelihood ratio test

Usage
```r
lrtest(mod, mod_null)
```

Arguments
- `mod`
 an object of class `bbdml`
- `mod_null`
 an object of class `bbdml`, should be nested within `mod`

Value
P-value from likelihood ratio test.
Examples

data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small)
lrtest(mod1, mod2)

objfun
Objective function

Description

Used for internal optimization. Not intended for users.

Usage

`objfun(theta, W, M, X, X_star, np, npstar, link, phi.link)`

Arguments

- **theta**: Numeric vector. Parameters associated with `X` and `X_star`
- **W**: Numeric vector of counts
- **M**: Numeric vector of sequencing depth
- **X**: Matrix of covariates associated with abundance (including intercept)
- **X_star**: Matrix of covariates associated with dispersion (including intercept)
- **np**: Number of covariates associated with abundance (including intercept)
- **npstar**: Number of covariates associated with dispersion (including intercept)
- **link**: ink function for abundance covariates
- **phi.link**: ink function for dispersion covariates

Value

List of negative log-likelihood, gradient, and hessian
otu_to_taxonomy

Transform OTUs to their taxonomic label

Description

Transform OTUs to their taxonomic label

Usage

```r
otu_to_taxonomy(OTU, data, level = NULL)
```

Arguments

- **OTU**: String vector. Names of OTU labels in `data`
- **data**: phyloseq object with a taxonomy table
- **level**: (Optional). Character vector. Desired taxonomic levels for output.

Value

String vector. Names of taxonomic labels matching labels of OTU.

Examples

```r
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
formula_null = ~ 1,
phi.formula_null = ~ DayAmdmt,
test = "Wald", boot = FALSE,
data = soil_phylum_small,
fdr_cutoff = 0.05)

otu_to_taxonomy(OTU = da_analysis$significant_taxa, data = soil_phylum_small,
level = "Phylum")
```

pbLRT

Parametric bootstrap likelihood ratio test

Description

Parametric bootstrap likelihood ratio test

Usage

```r
pbLRT(mod, mod_null, B = 1000)
```
pbWald

Arguments

- `mod` an object of class `bbdml`
- `mod_null` an object of class `bbdml`, should be nested within `mod`
- `B` Integer. Defaults to 1000. Number of bootstrap iterations.

Value

P-value from parametric bootstrap likelihood ratio test.

Examples

```r
data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
              phi.formula = ~ DayAmdmt,
              data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
              phi.formula = ~ 1,
              data = soil_phylum_small)
pbLRT(mod1, mod2, B = 50)
```

pbWald

Parametric bootstrap Wald test

Description

Parametric bootstrap Wald test

Usage

```r
pbWald(mod, mod_null, B = 1000)
```

Arguments

- `mod` an object of class `bbdml`
- `mod_null` an object of class `bbdml`, should be nested within `mod`
- `B` Integer. Defaults to 1000. Number of bootstrap iterations.

Value

P-value from parametric bootstrap Wald test.
Examples

```r
data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small)
pbWald(mod1, mod2, B = 50)
```

plot.bbdml

Plotting function

Description

Plotting function

Usage

```r
## S3 method for class 'bbdml'
plot(
  x,
total = FALSE,
color = NULL,
shape = NULL,
facet = NULL,
title = NULL,
B = 1000,
sample_names = TRUE,
data_only = FALSE,
...
)
```

Arguments

- `x` Object of class `bbdml`.
- `total` (Optional). Default `FALSE`. Boolean indicator for whether to plot on total counts scale.
- `color` (Optional). Default `NULL`. The sample variable to map to different colors. Can be a single character string of the variable name in `sample_data` or a custom supplied vector with length equal to the number of samples. Use a character vector to have `ggplot2` default.
- `shape` (Optional). Default `NULL`. The sample variable to map to different shapes. Can be a single character string of the variable name in `sample_data` or a custom supplied vector with length equal to the number of samples.
plot.differentialTest

facets (Optional). Default NULL. The sample variable to map to different panels in a facet grid. Must be a single character string of a variable name in sample_data.

Title (Optional). Default NULL. Character string. The main title for the graphic.

B (Optional). Default 1000. Integer. Number of bootstrap simulations for prediction intervals. Use B = 0 for no prediction intervals.

Sample names (Optional). Default TRUE. Boolean. If FALSE, remove sample names from the plot.

data only (Optional). Default FALSE. Boolean. If TRUE, only returns data frame.

There are no optional parameters at this time.

Value

Object of class ggplot. Plot of bbdml model fit with 95%

Examples

data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
Here we use B = 50 for quick demonstration purposes.
In practice, we recommend a higher value for B for more accurate intervals
plot(mod, color = "DayAmdmt", B = 50)

plot.differentialTest differentialTest plot function

Description

differentialTest plot function

Usage

S3 method for class 'differentialTest'
plot(x, level = NULL, data_only = FALSE, ...)

Arguments

x Object of class differentialTest
level (Optional). Character vector. Desired taxonomic levels for taxa labels.
data_only (Optional). Default FALSE. Boolean. If TRUE, only returns data frame.

Value

Object of class ggplot. Plot of coefficients from models for significant taxa from differentialTest
Examples

```r
# phyloseq example
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,
    phi.formula = ~ DayAmdmt,
    formula_null = ~ 1,
    phi.formula_null = ~ DayAmdmt,
    test = "Wald", boot = FALSE,
    data = soil_phylum_small,
    fdr_cutoff = 0.05)
plot(da_analysis, level = "Phylum")
```

Description

Print function

Usage

```r
## S3 method for class 'bbdml'
print(
    x,
    digits = max(3L, getOption("digits") - 3L),
    signif.stars = getOption("show.signif.stars"),
    ...
)
```

Arguments

- `x`: Object of class bbdml
- `digits`: the number of significant digits to use when printing.
- `signif.stars`: logical. If TRUE, 'significance stars' are printed for each coefficient.
- `...`: No optional arguments are accepted at this time.

Value

`NULL`. Displays printed model summary.

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
    phi.formula = ~ DayAmdmt,
    data = soil_phylum_small)
print(mod)
```
print.differentialTest

differentialTest print function

Description

differentialTest print function

Usage

S3 method for class 'differentialTest'
print(x, ...)

Arguments

 x Object of class bbdml
 ... No optional arguments are accepted at this time.

Value

 NULL. Displays printed differentialTest summary.

Examples

phyloseq example
data(soil_phylum_small)
da_analysis <- differentialTest(formula = ~ DayAmdmt,
 phi.formula = ~ DayAmdmt,
 formula_null = ~ 1,
 phi.formula_null = ~ DayAmdmt,
 test = "Wald", boot = FALSE,
 data = soil_phylum_small,
 fdr_cutoff = 0.05)

print(da_analysis)

print.summary.bbdml Print summary function

Description

 Print summary function
Usage

```r
## S3 method for class 'summary.bbdml'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)
```

Arguments

- `x`: Object of class `bbdml`
- `digits`: the number of significant digits to use when printing.
- `signif.stars`: logical. If `TRUE`, 'significance stars' are printed for each coefficient.
- `...`: No optional arguments are accepted at this time.

Value

`NULL`. Displays printed model summary.

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
  phi.formula = ~ DayAmdmt,
  data = soil_phylum_small)
print(summary(mod))
```

qbetabinom

Get quantiles of beta binom

Usage

`qbetabinom(p, M, mu, phi)`

Arguments

- `p`: Numeric. Probability for quantile
- `M`: Numeric vector of sequencing depth
- `mu`: Numeric vector of abundance parameter
- `phi`: Numeric vector of dispersion parameter
sandSE

Value
quantile

Examples
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
qbetabinom(.5, M = mod$M[1], mu = mod$mu.resp[1], phi = mod$phi.resp[1])

sandSE Compute sandwich standard error

Description
Compute sandwich standard error

Usage
sandSE(mod, numerical = FALSE)

Arguments
mod an object of class bbdml
numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian
and score (not recommended).

Value
Sandwich variance-covariance matrix

Examples
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
sandSE(mod)
score

Compute score

Description

Compute score

Usage

```r
score(mod, numerical = FALSE, forHess = FALSE)
```

Arguments

- `mod`: an object of class `bbdml`
- `numerical`: Boolean. Defaults to `FALSE`. Indicator of whether to use the numeric Hessian and score (not recommended).
- `forHess`: Boolean. Defaults to `FALSE`. Indicator of whether to put in vector form. Defaults to `FALSE`. This parameter is not intended for users.

Value

Score

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)
score(mod)
```

simulate.bbdml

Simulate from beta-binomial model

Description

Simulate from beta-binomial model

Usage

```r
# S3 method for class 'bbdml'
simulate(object, nsim, seed = NULL, ...)
```
soil_phylo

Arguments

object an object of class bbdml
nsim Integer. Number of simulations
seed Optional integer to set a random seed
... There are no additional parameters at this time.

Value

nsim simulations from object

soil_phylo Soil data.

Description

A phyloseq object with an OTU table and sample data from a soil microbiome study.

Usage

soil_phylo

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

otu_table OTU table with 7,770 taxa and 119 samples
tax_table taxonomy table
sam_data sample data with the following covariates:

 • Plants, values 0 and 1. Index for different plants
 • Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
 • Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions). Index for different soil additives.
 • DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
 • ID, values A, B, C, D, and F. Index for different soil plots.

References

soil_phylum_small Small soil phylum data for examples

Description

A small subset of soil_phylo used for examples. A phyloseq object with an OTU table and sample data from a soil microbiome study.

Usage

soil_phylum_small

Format

A phyloseq-class experiment-level object with an OTU table and sample data.

otu_table OTU table with 7,770 taxa and 119 samples
tax_table taxonomy table
sam_data sample data with the following covariates:
 • Plants, values 0 and 1. Index for different plants
 • Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
 • Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions). Index for different soil additives.
 • DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
 • ID, values A, B, C, D, and F. Index for different soil plots.

References

Usage

```r
## S3 method for class 'bbdml'
summary(object, ...)
```

Arguments

- `object`: Object of class `bbdml`
- `...`: No optional arguments are accepted at this time.

Value

Object of class `summary.bbdml`. Displays printed model summary.

Examples

```r
data(soil_phylum_small)
mod <- bbdml(formula = OTU.1 ~ DayAmdmt,
             phi.formula = ~ DayAmdmt,
             data = soil_phylum_small)
summary(mod)
```

Description

Wald-type chi-squared test

Usage

```r
waldchisq(
    mod,
    mod_null = NULL,
    restrictions = NULL,
    restrictions.phi = NULL,
    contrasts_DA = NULL,
    contrasts_DV = NULL
)
```

Arguments

- `mod`: an object of class `bbdml`
- `mod_null`: Optional. An object of class `bbdml`, should be nested within `mod`. If not included, need to include `restrictions` or `restrictions.phi`.
- `restrictions`: Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.
waldchisq_test

restrictions.phi

Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

contrasts_DA

List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within formula. Note that this is only available with "Wald" value for test.

contrasts_DV

List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within phi.formula. Note that this is only available with "Wald" value for test.

Value

P-value from Wald test.

Examples

data(soil_phylum_small)
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small)

mod2 <- bbdml(formula = OTU.1 ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small)

Example using mod_null
waldchisq(mod = mod1, mod_null = mod2)

Example using restrictions and restrictions.phi
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = 2)
waldchisq(mod = mod1, restrictions = "DayAmdmt", restrictions.phi = "DayAmdmt")
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = "DayAmdmt")

waldchisq_test Wald-type chi-squared test statistic

Description

This is a helper function and not intended for users

Usage

waldchisq_test(
mod,
restrictions = NULL,
restrictions.phi = NULL,
contrasts_DA = NULL,
contrasts_DV = NULL
)
Arguments

mod an object of class `bbdml`

restrictions Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.

restrictions.phi Optional. Defaults to `NULL`. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

contrasts_DA List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within `formula`. Note that this is only available with "Wald" value for `test`.

contrasts_DV List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within `phi.formula`. Note that this is only available with "Wald" value for `test`.

Value

Test statistic for Wald test.
Examples

```r
data(soil_phylo)
soil <- soil_phylo %>%
phyloseq::subset_samples(DayAmdmt %in% c(11,21)) %>%
phyloseq::tax_glom("Phylum")
mod1 <- bbdml(formula = OTU.1 ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil)
waldt(mod1)
```
Index

* datasets
 ibd_phylo, 18
 soil_phylo, 31
 soil_phylum_small, 32
bbdml, 3, 7, 12
checkNested, 5
clean_taxa_names, 5
contrastsTest, 6, 12
convert_phylo, 8
corncob (corncob-package), 3
corncob-package, 3
coth, 9
dbetabin, 9
dbetabin_neg, 10
differentialTest, 7, 11
doBoot, 13
fishZ, 13
genInits, 14
getRestrictionTerms, 15
gr_full, 16
HDIbetabinom, 16
hessian, 17
ibd_phylo, 18
import_phyloseq, 18
invfishZ, 19
invlogit, 19
logit, 20
lrtest, 20
objfun, 21
optimr, 4
otu_to_taxonomy, 22
p.adjust, 7, 12
pbLRT, 12, 22
pbWald, 12, 23
plot.bbdml, 24
plot.differentialTest, 25
print.bbdml, 26
print.differentialTest, 27
print.summary.bbdml, 27
qbetabinom, 28
sandSE, 29
score, 30
simulate.bbdml, 30
soil_phylo, 31, 32
soil_phylum_small, 32
summary.bbdml, 32
trust, 4
waldchisq, 33
waldchisq_test, 34
waldt, 35