Package ‘cornet’

March 18, 2020

Version 0.0.4
Title Elastic Net with Dichotomised Outcomes
Description Implements lasso and ridge regression for dichotomised outcomes (Rauschenberger et al. 2019). Such outcomes are not naturally but artificially binary. They indicate whether an underlying measurement is greater than a threshold.

Depends R (>= 3.0.0)
Imports glmnet, palasso
Suggests knitr, testthat
Enhances RColorBrewer, MASS, mvtnorm
VignetteBuilder knitr
License GPL-3
LazyData true
Language en-GB
RoxygenNote 6.1.1
URL https://github.com/rauschenberger/cornet
BugReports https://github.com/rauschenberger/cornet/issues
NeedsCompilation no
Author Armin Rauschenberger [aut, cre]
Maintainer Armin Rauschenberger <armin.rauschenberger@uni.lu>
Repository CRAN
Date/Publication 2020-03-18 08:30:02 UTC

R topics documented:

.check ... 2
.equal ... 3
.simulate ... 3
.test ... 4
coeff.cornet ... 5
.check

Description
Verifies whether an argument matches formal requirements.

Usage
```r
.check(x, type, dim = NULL, miss = FALSE, min = NULL, max = NULL,
       values = NULL, inf = FALSE, null = FALSE)
```

Arguments
- **x**: argument
- **type**: character "string", "scalar", "vector", "matrix"
- **dim**: vector/matrix dimensionality: integer scalar/vector
- **miss**: accept missing values: logical
- **min**: lower limit: numeric
- **max**: upper limit: numeric
- **values**: only accept specific values: vector
- **inf**: accept infinite (Inf or -Inf) values: logical
- **null**: accept NULL: logical

Examples
```r
cornet:::.check(0.5, type="scalar", min=0, max=1)
```
.equal

Equality

Description
Verifies whether two or more arguments are identical.

Usage
.equal(..., na.rm = FALSE)

Arguments
... scalars, vectors, or matrices of equal dimensions
na.rm remove missing values: logical

Examples
cornet:::.equal(1,1,1)

.simulate Data simulation

Description
Simulates data for unit tests

Usage
.simulate(n, p, cor = 0, prob = 0.1, sd = 1, exp = 1, frac = 1)

Arguments
n sample size: positive integer
p covariate space: positive integer
cor correlation coefficient: numeric between 0 and 1
prob effect proportion: numeric between 0 and 1
sd standard deviation: positive numeric
exp exponent: positive numeric
frac class proportion: numeric between 0 and 1
Details

For simulating correlated features ($\text{cor} > 0$), this function requires the R package MASS (see `mvrnorm`).

Value

Returns invisible list with elements `y` and `X`.

Examples

```r
data <- cornet:::.simulate(n=10,p=20)
names(data)
```

Description

Compares models for a continuous response with a cut-off value.

Usage

`.test(y, cutoff, X, alpha = 1, type.measure = "deviance")`

Arguments

- `y`:
 - continuous outcome: vector of length `n`
- `cutoff`:
 - cut-off point for dichotomising outcome into classes: `meaningful` value between `min(y)` and `max(y)`
- `X`:
 - features: numeric matrix with `n` rows (samples) and `p` columns (variables)
- `alpha`:
 - elastic net mixing parameter: numeric between 0 (ridge) and 1 (lasso)
- `type.measure`:
 - loss function for binary classification: character "deviance", "mse", "mae", or "class" (see `cv.glmnet`)

Details

Splits samples into 80 percent for training and 20 percent for testing, calculates squared deviance residuals of logistic and combined regression, conducts the paired one-sided Wilcoxon signed rank test, and returns the `p`-value. For the multi-split test, use the median `p`-value from 50 single-split tests (van de Wiel 2009).

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
cornet:::.test(y=y,cutoff=0,X=X)
```
coef.cornet

Extract estimated coefficients

Description

Extracts estimated coefficients from linear and logistic regression, under the penalty parameter that minimises the cross-validated loss.

Usage

```r
## S3 method for class 'cornet'
coef(object, ...)
```

Arguments

- `object`: cornet object
- `...`: further arguments (not applicable)

Value

This function returns a matrix with \(n \) rows and two columns, where \(n \) is the sample size. It includes the estimated coefficients from linear regression (1st column: "beta") and logistic regression (2nd column: "gamma").

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
net <- cornet(y=y, cutoff=0, X=X)
coef(net)
```

cornet

Combined regression

Description

Implements lasso and ridge regression for dichotomised outcomes. Such outcomes are not naturally but artificially binary. They indicate whether an underlying measurement is greater than a threshold.

Usage

```r
cornet(y, cutoff, X, alpha = 1, npi = 101, pi = NULL, nsigma = 99, 
sigma = NULL, nfolds = 10, foldid = NULL, 
type.measure = "deviance", ...)
```
Arguments

- \(y \) continuous outcome: vector of length \(n \)
- \(\text{cutoff} \) cut-off point for dichotomising outcome into classes: meaningful value between \(\min(y) \) and \(\max(y) \)
- \(X \) features: numeric matrix with \(n \) rows (samples) and \(p \) columns (variables)
- \(\alpha \) elastic net mixing parameter: numeric between 0 (ridge) and 1 (lasso)
- \(\pi \) number of \(\pi \) values (weighting)
- \(\text{nsigma} \) pi sequence: vector of increasing values in the unit interval; or NULL (default sequence)
- \(\sigma \) number of \(\sigma \) values (scaling)
- \(\text{npi} \) sigma sequence: vector of increasing positive values; or NULL (default sequence)
- \(\text{nffolds} \) number of folds: integer between 3 and \(n \)
- \(\text{foldid} \) fold identifiers: vector with entries between 1 and \(\text{nffolds} \); or NULL (balance)
- \(\text{type.measure} \) loss function for binary classification: character "deviance", "mse", "mae", or "class" (see \text{cv.glmnet})
- ... further arguments passed to \text{glmnet}

Details

The argument \text{family} is unavailable, because this function fits a \text{gaussian} model for the numeric response, and a \text{binomial} model for the binary response.

Linear regression uses the loss function "deviance" (or "mse"), but the loss is incomparable between linear and logistic regression.

The loss function "auc" is unavailable for internal cross-validation. If at all, use "auc" for external cross-validation only.

Value

Returns an object of class \text{cornet}, a list with multiple slots:

- \text{gaussian}: fitted linear model, class \text{glmnet}
- \text{binomial}: fitted logistic model, class \text{glmnet}
- \text{sigma}: scaling parameters \(\sigma \), vector of length \(\text{nsigma} \)
- \text{pi}: weighting parameters \(\pi \), vector of length \(\text{npi} \)
- \text{cvm}: evaluation loss, matrix with \(\text{nsigma} \) rows and \(\text{npi} \) columns
- \text{sigma.min}: optimal scaling parameter, positive scalar
- \text{pi.min}: optimal weighting parameter, scalar in unit interval
- \text{cutoff}: threshold for dichotomisation

References

Armin Rauschenberger and Enrico Glaab (2020). "Predicting artificial binary outcomes from high-dimensional data". \textit{Manuscript in preparation}.
See Also

Methods for objects of class cornet include coef and predict.

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
net <- cornet(y=y,cutoff=0,X=X)
net
```

cv.cornet

Performance measurement

Description

Compares models for a continuous response with a cut-off value.

Usage

```r
cv.cornet(y, cutoff, X, alpha = 1, nfolds.ext = 5, nfolds.int = 10,
foldid.ext = NULL, foldid.int = NULL, type.measure = "deviance",
...)
```

Arguments

- `y`: continuous outcome: vector of length \(n \)
- `cutoff`: cut-off point for dichotomising outcome into classes: meaningful value between \(\min(y) \) and \(\max(y) \)
- `X`: features: numeric matrix with \(n \) rows (samples) and \(p \) columns (variables)
- `alpha`: elastic net mixing parameter: numeric between 0 (ridge) and 1 (lasso)
- `nfolds.ext`: number of external folds
- `nfolds.int`: internal fold identifiers: vector of length \(n \) with entries between 1 and `nfolds.int`; or `NULL`
- `foldid.ext`: external fold identifiers: vector of length \(n \) with entries between 1 and `nfolds.ext`; or `NULL`
- `foldid.int`: number of internal folds
- `type.measure`: loss function for binary classification: character "deviance", "mse", "mae". or "class" (see `cv.glmnet`)
- `...`: further arguments passed to `cornet` or `glmnet`

Details

Computes the cross-validated loss of logistic and combined regression.
Examples

```r
## Not run: n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
loss <- cv.cornet(y=y,cutoff=0,X=X)
loss
## End(Not run)
```

plot.cornet
Plot loss matrix

Description

Plots the loss for different combinations of scaling (sigma) and weighting (pi) parameters.

Usage

```r
## S3 method for class 'cornet'
plot(x, ...)
```

Arguments

- `x`
 cornet object

- `...`
 further arguments (not applicable)

Value

This function plots the evaluation loss (cvm). Whereas the matrix has sigma in the rows, and pi in the columns, the plot has sigma on the x-axis, and pi on the y-axis. For all combinations of sigma and pi, the colour indicates the loss. If the R package RColorBrewer is installed, blue represents low. Otherwise, red represents low. White always represents high.

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
et <- cornet(y=y,cutoff=0,X=X)
plot(net)
```
predict.cornet

Description

Predicts the binary outcome with linear, logistic, and combined regression.

Usage

```r
## S3 method for class 'cornet'
predict(object, newx, type = "probability", ...)
```

Arguments

- `object` *cornet* object
- `newx` covariates: numeric matrix with \(n \) rows (samples) and \(p \) columns (variables)
- `type` "probability", "odds", "log-odds"
- `...` further arguments (not applicable)

Details

For linear regression, this function tentatively transforms the predicted values to predicted probabilities, using a Gaussian distribution with a fixed mean (threshold) and a fixed variance (estimated variance of the numeric outcome).

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p), nrow=n, ncol=p)
net <- cornet(y=y, cutoff=0, X=X)
predict(net, newx=X)
```

print.cornet

Description

Prints summary of cornet object.

Usage

```r
## S3 method for class 'cornet'
print(x, ...)```
print.cornet

Arguments

- **x**: cornet object
- ... further arguments (not applicable)

Value

Returns sample size \( n \), number of covariates \( p \), information on dichotomisation, tuned scaling parameter (sigma), tuned weighting parameter (pi), and corresponding loss.

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
net <- cornet(y=y,cutoff=0,X=X)
print(net)
```
Index

.check, 2
.equal, 3
.simulate, 3
.test, 4

coeff, 7
coeff.cornet, 5
cornet, 5, 5, 7–10
cornet-package (cornet), 5
cv.cornet, 7
cv.glmnet, 4, 6, 7

glmnet, 6, 7

mvrnorm, 4

plot.cornet, 8
predict, 7
predict.cornet, 9
print.cornet, 9