Package ‘cornet’

April 19, 2021

Version 0.0.5
Title Elastic Net with Dichotomised Outcomes
Description Implements lasso and ridge regression for dichotomised outcomes (Rauschenberger et al. 2021). Such outcomes are not naturally but artificially binary. They indicate whether an underlying measurement is greater than a threshold.

Depends R (>= 3.0.0)
Imports glmnet, palasso
Suggests knitr, testthat, rmarkdown
Enhances RColorBrewer, MASS, mvtnorm
VignetteBuilder knitr
License GPL-3
LazyData false
Language en-GB
RoxygenNote 7.1.1
URL https://github.com/rauschenberger/cornet
BugReports https://github.com/rauschenberger/cornet/issues
NeedsCompilation no
Author Armin Rauschenberger [aut, cre]
Maintainer Armin Rauschenberger <armin.rauschenberger@uni.lu>
Repository CRAN
Date/Publication 2021-04-19 08:40:02 UTC

R topics documented:

.check .. 2
.equal .. 3
.simulate .. 3
.test .. 4
coeff.cornet ... 5
Description

Verifies whether an argument matches formal requirements.

Usage

```r
.check(
  x,
  type,
  dim = NULL,
  miss = FALSE,
  min = NULL,
  max = NULL,
  values = NULL,
  inf = FALSE,
  null = FALSE
)
```

Arguments

- `x`: argument
- `type`: character "string", "scalar", "vector", "matrix"
- `dim`: vector/matrix dimensionality: integer scalar/vector
- `miss`: accept missing values: logical
- `min`: lower limit: numeric
- `max`: upper limit: numeric
- `values`: only accept specific values: vector
- `inf`: accept infinite (Inf or -Inf) values: logical
- `null`: accept NULL: logical

Examples

```r
cornet:::.check(0.5,type="scalar",min=0,max=1)
```
.equal

Description
Verifies whether two or more arguments are identical.

Usage
`.equal(..., na.rm = FALSE)`

Arguments
- `...` scalars, vectors, or matrices of equal dimensions
- `na.rm` remove missing values: logical

Examples
`cornet::equal(1, 1, 1)`

.simulate

Description
Simulates data for unit tests

Usage
`.simulate(n, p, cor = 0, prob = 0.1, sd = 1, exp = 1, frac = 1)`

Arguments
- `n` sample size: positive integer
- `p` covariate space: positive integer
- `cor` correlation coefficient: numeric between 0 and 1
- `prob` effect proportion: numeric between 0 and 1
- `sd` standard deviation: positive numeric
- `exp` exponent: positive numeric
- `frac` class proportion: numeric between 0 and 1
Details

For simulating correlated features (cor > 0), this function requires the R package MASS (see `mvrnorm`).

Value

Returns invisible list with elements \(y \) and \(X \).

Examples

```r
data <- cornet:::.simulate(n=10,p=20)
names(data)
```

Description

Compares models for a continuous response with a cut-off value.

Usage

```r
.test(y, cutoff, X, alpha = 1, type.measure = "deviance")
```

Arguments

- **y**: continuous outcome: vector of length \(n \)
- **cutoff**: cut-off point for dichotomising outcome into classes: *meaningful* value between \(\min(y) \) and \(\max(y) \)
- **X**: features: numeric matrix with \(n \) rows (samples) and \(p \) columns (variables)
- **alpha**: elastic net mixing parameter: numeric between 0 (ridge) and 1 (lasso)
- **type.measure**: loss function for binary classification: character "deviance", "mse", "mae", or "class" (see `cv.glmnet`)

Details

Splits samples into 80 percent for training and 20 percent for testing, calculates squared deviance residuals of logistic and combined regression, conducts the paired one-sided Wilcoxon signed rank test, and returns the \(p \)-value. For the multi-split test, use the median \(p \)-value from 50 single-split tests (van de Wiel 2009).

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
cornet:::.test(y=y,cutoff=0,X=X)
```
Description

Extracts estimated coefficients from linear and logistic regression, under the penalty parameter that minimises the cross-validated loss.

Usage

```r
## S3 method for class 'cornet'
coef(object, ...)
```

Arguments

- `object`: cornet object
- `...`: further arguments (not applicable)

Value

This function returns a matrix with \(n \) rows and two columns, where \(n \) is the sample size. It includes the estimated coefficients from linear regression (1st column: "beta") and logistic regression (2nd column: "gamma").

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
et <- cornet(y=y,cutoff=0,X=X)
coef(net)
```

descriptions

Cornet

Combined regression

Description

Implements lasso and ridge regression for dichotomised outcomes. Such outcomes are not naturally but artificially binary. They indicate whether an underlying measurement is greater than a threshold.
Usage

cornet(
 y,
 cutoff,
 X,
 alpha = 1,
 npi = 101,
 pi = NULL,
 nsigma = 99,
 sigma = NULL,
 nfolds = 10,
 foldid = NULL,
 type.measure = "deviance",
 ...
)

Arguments

y continuous outcome: vector of length n
cutoff cut-off point for dichotomising outcome into classes: meaningful value between min(y) and max(y)
X features: numeric matrix with n rows (samples) and p columns (variables)
alpha elastic net mixing parameter: numeric between 0 (ridge) and 1 (lasso)
npi number of pi values (weighting)
pi pi sequence: vector of increasing values in the unit interval; or NULL (default sequence)
nsigma number of sigma values (scaling)
sigma sigma sequence: vector of increasing positive values; or NULL (default sequence)
nfolds number of folds: integer between 3 and n
foldid fold identifiers: vector with entries between 1 and nfolds; or NULL (balance)
type.measure loss function for binary classification: character "deviance", "mse", "mae", or "class" (see cv.glmnet)
... further arguments passed to glmnet

Details

The argument family is unavailable, because this function fits a gaussian model for the numeric response, and a binomial model for the binary response.

Linear regression uses the loss function "deviance" (or "mse"), but the loss is incomparable between linear and logistic regression.

The loss function "auc" is unavailable for internal cross-validation. If at all, use "auc" for external cross-validation only.
Value

Returns an object of class \texttt{cornet}, a list with multiple slots:

- \texttt{gaussian}: fitted linear model, class \texttt{glmnet}
- \texttt{binomial}: fitted logistic model, class \texttt{glmnet}
- \texttt{sigma}: scaling parameters \texttt{sigma}, vector of length \texttt{nsigma}
- \texttt{pi}: weighting parameters \texttt{pi}, vector of length \texttt{npi}
- \texttt{cvm}: evaluation loss, matrix with \texttt{nsigma} rows and \texttt{npi} columns
- \texttt{sigma.min}: optimal scaling parameter, positive scalar
- \texttt{pi.min}: optimal weighting parameter, scalar in unit interval
- \texttt{cutoff}: threshold for dichotomisation

References

Armin Rauschenberger and Enrico Glaab (2020). "Predicting artificial binary outcomes from high-dimensional data". \textit{Manuscript in preparation}.

See Also

Methods for objects of class \texttt{cornet} include \texttt{coef} and \texttt{predict}.

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
net <- cornet(y=y,cutoff=0,X=X)
net
```

\textbf{cv.cornet} \hspace{1cm} \textit{Performance measurement}

Description

Compares models for a continuous response with a cut-off value.

Usage

```r
cv.cornet(
  y, 
  cutoff, 
  X, 
  alpha = 1, 
  nfolds.ext = 5, 
  nfolds.int = 10, 
)```
Arguments

y   continuous outcome: vector of length n

cutoff    cut-off point for dichotomising outcome into classes: meaningful value between min(y) and max(y)

X   features: numeric matrix with n rows (samples) and p columns (variables)

alpha   elastic net mixing parameter: numeric between 0 (ridge) and 1 (lasso)

nfolds.ext   number of external folds

nfolds.int   internal fold identifiers: vector of length n with entries between 1 and nfolds.int; or NULL

foldid.ext   external fold identifiers: vector of length n with entries between 1 and nfolds.ext; or NULL

foldid.int   number of internal folds

type.measure   loss function for binary classification: character "deviance"."mse"."mae".or "class" (see cv.glmnet)

...   further arguments passed to cornet or glmnet

Details

Computes the cross-validated loss of logistic and combined regression.

Examples

```r
Not run: n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
loss <- cv.cornet(y=y,cutoff=0,X=X)
loss
End(Not run)
```

plot.cornet

Plot loss matrix

Description

Plots the loss for different combinations of scaling (sigma) and weighting (pi) parameters.
predict.cornet

Usage

## S3 method for class 'cornet'
plot(x, ...)

Arguments

x cornet object
... further arguments (not applicable)

Value

This function plots the evaluation loss (cvm). Whereas the matrix has sigma in the rows, and pi in the columns, the plot has sigma on the $x$-axis, and pi on the $y$-axis. For all combinations of sigma and pi, the colour indicates the loss. If the R package RColorBrewer is installed, blue represents low. Otherwise, red represents low. White always represents high.

Examples

n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
net <- cornet(y=y,cutoff=0,X=X)
plot(net)

predict.cornet Predict binary outcome

Description

Predicts the binary outcome with linear, logistic, and combined regression.

Usage

## S3 method for class 'cornet'
predict(object, newx, type = "probability", ...)

Arguments

object cornet object
newx covariates: numeric matrix with $n$ rows (samples) and $p$ columns (variables)
type "probability", "odds", "log-odds"
... further arguments (not applicable)
Details

For linear regression, this function tentatively transforms the predicted values to predicted probabilities, using a Gaussian distribution with a fixed mean (threshold) and a fixed variance (estimated variance of the numeric outcome).

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
net <- cornet(y=y,cutoff=0,X=X)
predict(net,newx=X)
```

---

print.cornet

Combined regression

Description

Prints summary of cornet object.

Usage

```r
S3 method for class 'cornet'
print(x, ...)
```

Arguments

- `x`: cornet object
- `...`: further arguments (not applicable)

Value

Returns sample size `n`, number of covariates `p`, information on dichotomisation, tuned scaling parameter (sigma), tuned weighting parameter (pi), and corresponding loss.

Examples

```r
n <- 100; p <- 200
y <- rnorm(n)
X <- matrix(rnorm(n*p),nrow=n,ncol=p)
net <- cornet(y=y,cutoff=0,X=X)
predict(net,newx=X)
print(net)
```
Index

.check, 2
.equal, 3
.simulate, 3
.test, 4

coef, 7
coefficients, [5]
cornet, [5, 5, 8–10]
cornet-package (cornet), 5
cv.cornet, 7
cv.glmnet, [4, 6, 8]
glmnet, [6, 8]
mvn, [4]
plot.cornet, 8
predict, 7
predict.cornet, 9
print.cornet, 10