Package ‘corpcor’

July 8, 2015

Version 1.6.8

Date 2015-07-08

Title Efficient Estimation of Covariance and (Partial) Correlation

Author Juliane Sch"afer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesm"aki, A. Pedro Duarte Silva, and Korbinian Strimmer.

Maintainer Korbinian Strimmer <strimmerlab@gmail.com>

Depends R (>= 3.0.2)

Imports stats

Suggests

Description Implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Sch"afer and Strimmer (2005) and Opgen-Rhein and Strimmer (2007). The approach is both computationally as well as statistically very efficient, it is applicable to "small n, large p" data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations and partial variances. The inverse of the covariance and correlation matrix can be efficiently computed, as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.

License GPL (>= 3)

URL http://strimmerlab.org/software/corpcor/

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-08 13:21:51
\textbf{R topics documented:}

corpcor-package .. 2
cor2pcor ... 3
cov.shrink .. 4
fast.svd ... 7
invcov.shrink ... 9
mpower ... 11
pcor.shrink .. 12
powcor.shrink ... 14
pseudoinverse ... 17
rank.condition .. 19
rebuild.cov .. 20
shrink.intensity ... 22
smtools ... 24
wt.scale ... 25

\textbf{Index} 27

corpcor-package The \textit{corpcor} Package

\textbf{Description}

This package implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Sch\"afer and Strimmer (2005) and Opgen-Rhein and Strimmer (2007). The approach is both computationally as well as statistically very efficient, it is applicable to “small n, large p” data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations, partial variances, and regression coefficients. The inverse of the covariance and correlation matrix can be efficiently computed, and as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.

The name of the package refers to \texttt{cor}relations and \texttt{p}artial \texttt{cor}relations.

\textbf{Author(s)}

Juliane Sch\"afer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesm\"aki, A. Pedro Duarte Silva, and Korbinian Strimmer (\url{http://strimmerlab.org/})

\textbf{References}

See website: \url{http://strimmerlab.org/software/corpcor/}

\textbf{See Also}

cov.shrink, invcov.shrink, powcor.shrink, pcor.shrink, fast.svd.
cor2pcor

Compute Partial Correlation from Correlation Matrix — and Vice Versa

Description

cor2pcor computes the pairwise partial correlation coefficients from either a correlation or a covariance matrix.

pcor2cor takes either a partial correlation matrix or a partial covariance matrix as input, and computes from it the corresponding correlation matrix.

Usage

cor2pcor(m, tol)

pcor2cor(m, tol)

Arguments

- **m**: covariance matrix or (partial) correlation matrix
- **tol**: tolerance - singular values larger than tol are considered non-zero (default value: \(tol = \max(\text{dim}(m)) \times \text{max}(D) \times \text{Machine}_\text{double}_\text{eps}\)). This parameter is needed for the singular value decomposition on which **pseudoinverse** is based.

Details

The partial correlations are the negative standardized concentrations (which in turn are the off-diagonal elements of the inverse correlation or covariance matrix). In graphical Gaussian models the partial correlations represent the direct interactions between two variables, conditioned on all remaining variables.

In the above functions the **pseudoinverse** is employed for inversion - hence even singular covariances (with some zero eigenvalues) may be used. However, a better option may be to estimate a positive definite covariance matrix using **cov.shrink**.

Note that for efficient computation of partial correlation coefficients from data \(x\) it is advised to use **pcor.shrink(x)** and *not* **cor2pcor(cov.shrink(x))**.

Value

A matrix with the pairwise partial correlation coefficients (**cor2pcor**) or with pairwise correlations (**pcor2cor**).

Author(s)

References

cov.shrink

Shrinkage Estimates of Covariance and Correlation

Description

The functions var.shrink, cor.shrink, and cov.shrink compute shrinkage estimates of variance, correlation, and covariance, respectively.

See Also
decompose.inv, pcor.shrink, pseudoinverse.
cov.shrink

Usage

var.shrink(x, lambda.var, w, verbose=TRUE)
cor.shrink(x, lambda, w, verbose=TRUE)
cov.shrink(x, lambda, lambda.var, w, verbose=TRUE)

Arguments

x a data matrix
lambda the correlation shrinkage intensity (range 0-1). If lambda is not specified (the default) it is estimated using an analytic formula from Sch"afer and Strimmer (2005) - see details below. For lambda=0 the empirical correlations are recovered.
lambda.var the variance shrinkage intensity (range 0-1). If lambda.var is not specified (the default) it is estimated using an analytic formula from Opgen-Rhein and Strimmer (2007) - see details below. For lambda.var=0 the empirical variances are recovered.
w optional: weights for each data point - if not specified uniform weights are assumed (w = rep(1/n, n) with n = nrow(x)).
verbose output some status messages while computing (default: TRUE)

Details

var.shrink computes the empirical variance of each considered random variable, and shrinks them towards their median. The shrinkage intensity is estimated using estimate.lambda.var (Opgen-Rhein and Strimmer 2007).

Similarly cor.shrink computes a shrinkage estimate of the correlation matrix by shrinking the empirical correlations towards the identity matrix. In this case the shrinkage intensity is computed using estimate.lambda (Sch"afer and Strimmer 2005).

In comparison with the standard empirical estimates (var, cov, and cor) the shrinkage estimates exhibit a number of favorable properties. For instance,

1. they are typically much more efficient, i.e. they show (sometimes dramatically) better mean squared error,
2. the estimated covariance and correlation matrices are always positive definite and well conditioned (so that there are no numerical problems when computing their inverse),
3. they are inexpensive to compute, and
4. they are fully automatic and do not require any tuning parameters (as the shrinkage intensity is analytically estimated from the data), and
5. they assume nothing about the underlying distributions, except for the existence of the first two moments.

These properties also carry over to derived quantities, such as partial variances and partial correlations (pvar.shrink and pcor.shrink).

As an extra benefit, the shrinkage estimators have a form that can be very efficiently inverted, especially if the number of variables is large and the sample size is small. Thus, instead of inverting the matrix output by cov.shrink and cor.shrink please use the functions invcov.shrink and invcor.shrink, respectively.
Value

var.shrink returns a vector with estimated variances.
cov.shrink returns a covariance matrix.
cor.shrink returns the corresponding correlation matrix.

Author(s)

References

See Also

invcov.shrink, pcor.shrink, cor2pcor

Examples

```r
# load corpcor library
library("corpcor")

# small n, large p
p = 100
n = 20

# generate random pxp covariance matrix
sigma = matrix(rnorm(p*p),ncol=p)
sigma = crossprod(sigma)+ diag(rep(0.1, p))

# simulate multinormal data of sample size n
svd = svd(sigma)
Y = t(svd$v) %*% (t(svd$u) * sqrt(svd$d))
X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y

# estimate covariance matrix
s1 = cov(X)
s2 = cov.shrink(X)

# squared error
sum((s1-sigma)^2)
sum((s2-sigma)^2)
```
fast.svd

Description

fast.svd returns the singular value decomposition of a rectangular real matrix

\[M = UDV', \]

where \(U \) and \(V \) are orthogonal matrices with \(U'U = I \) and \(V'V = I \), and \(D \) is a diagonal matrix containing the singular values (see svd).

The main difference to the native version svd is that fast.svd is substantially faster for "fat" (small \(n \), large \(p \)) and "thin" (large \(n \), small \(p \)) matrices. In this case the decomposition of \(M \) can be greatly sped up by first computing the SVD of either \(MM' \) (fat matrices) or \(M'M \) (thin matrices), rather than that of \(M \).

A second difference to svd is that fast.svd only returns the positive singular values (thus the dimension of \(D \) always equals the rank of \(M \)). Note that the singular vectors computed by fast.svd may differ in sign from those computed by svd.

Usage

fast.svd(m, tol)
Arguments

m matrix

tol tolerance - singular values larger than tol are considered non-zero (default value: tol = max(dim(m)) * max(D) * .Machine$double.eps)

Details

For "fat" \(M \) (small n, large p) the SVD decomposition of \(MM' \) yields

\[MM' = UD^2U \]

As the matrix \(MM' \) has dimension n x n only, this is faster to compute than SVD of \(M \). The \(V \) matrix is subsequently obtained by

\[V = M'UD^{-1} \]

Similarly, for "thin" \(M \) (large n, small p), the decomposition of \(M'M \) yields

\[M'M = VD^2V' \]

which is also quick to compute as \(M'M \) has only dimension p x p. The \(U \) matrix is then computed via

\[U = MVD^{-1} \]

Value

A list with the following components:

d a vector containing the positive singular values
u a matrix with the corresponding left singular vectors
v a matrix with the corresponding right singular vectors

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

svd, solve.
Examples

```r
# load corpcor library
library("corpcor")

# generate a "fat" data matrix
n = 50
p = 5000
X = matrix(rnorm(n*p), n, p)

# compute SVD
system.time( (s1 = svd(X)) )
system.time( (s2 = fast.svd(X)) )

eps = 1e-10
sum(abs(s1$d-s2$d) > eps)
sum(abs(abs(s1$u)-abs(s2$u)) > eps)
sum(abs(abs(s1$v)-abs(s2$v)) > eps)
```

invcov.shrink

Fast Computation of the Inverse of the Covariance and Correlation Matrix

Description

The functions `invcov.shrink` and `invcor.shrink` implement an algorithm to efficiently compute the inverses of shrinkage estimates of covariance (`cov.shrink`) and correlation (`cor.shrink`).

Usage

```r
invcov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
invcor.shrink(x, lambda, w, verbose=TRUE)
```

Arguments

- `x`: a data matrix
- `lambda`: the correlation shrinkage intensity (range 0-1). If `lambda` is not specified (the default) it is estimated using an analytic formula from Schäfer and Strimmer (2005) - see `cor.shrink`. For `lambda=0` the empirical correlations are recovered.
- `lambda.var`: the variance shrinkage intensity (range 0-1). If `lambda.var` is not specified (the default) it is estimated using an analytic formula from Schäfer and Strimmer (2005) - see `var.shrink`. For `lambda.var=0` the empirical variances are recovered.
- `w`: optional: weights for each data point - if not specified uniform weights are assumed (w = rep(1/n, n) with n = nrow(x)).
- `verbose`: output status while computing (default: TRUE)
Details

Both `invcov.shrink` and `invcor.shrink` rely on `powcor.shrink`. This allows to compute the inverses in a very efficient fashion (much more efficient than directly inverting the matrices - see the example).

Value

`invcov.shrink` returns the inverse of the output from `cov.shrink`.

`invcor.shrink` returns the inverse of the output from `cor.shrink`.

Author(s)

Juliane Sch"afer and Korbinian Strimmer (http://strimmerlab.org).

References

See Also

`powcor.shrink`, `cov.shrink`, `pcor.shrink`, `cor2pcor`

Examples

```r
# load corpcor library
library("corpcor")

# generate data matrix
p = 500
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)

lambda = 0.23  # some arbitrary lambda

# slow
system.time(
  (W1 = solve(cov.shrink(X, lambda)))
)

# very fast
system.time(
  (W2 = invcov.shrink(X, lambda))
)

# no difference
sum((W1-W2)^2)
```
Compute the Power of a Real Symmetric Matrix

Description

`mpower` computes m^{α}, i.e. the alpha-th power of the real symmetric matrix m.

Usage

```r
mpower(m, alpha, pseudo=FALSE, tol)
```

Arguments

- `m`: a real-valued symmetric matrix.
- `alpha`: exponent.
- `pseudo`: if `pseudo=TRUE` then all zero eigenvalues are dropped (e.g. for computing the pseudoinverse). The default is to use all eigenvalues.
- `tol`: tolerance - eigenvalues with absolute value smaller or equal to `tol` are considered identically zero (default: `tol = max(dim(m))*max(abs(eval))*Machine$double.eps`).

Details

The matrix power of m is obtained by first computing the spectral decomposition of m, and subsequent modification of the resulting eigenvalues.

Note that m is assumed to by symmetric, and only its lower triangle (diagonal included) is used in `eigen`.

For computing the matrix power of `cor.shrink` use the vastly more efficient function `powcor.shrink`.

Value

`mpower` returns a matrix of the same dimensions as m.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

`powcor.shrink`, `eigen`.
Examples

```r
# load corpcor library
library("corpcor")

# generate symmetric matrix
p = 10
n = 20
X = matrix(rnorm(n*p), nrow = n, ncol = p)
m = cor(X)

m %*% m
mpower(m, 2)
solve(m)
mpower(m, -1)

msq = mpower(m, 0.5)
msq %*% msq
m

mpower(m, 1.234)
```

pcor.shrink

Shrinkage Estimates of Partial Correlation and Partial Variance

Description

The functions `pcor.shrink` and `pvar.shrink` compute shrinkage estimates of partial correlation and partial variance, respectively.

Usage

```r
pcor.shrink(x, lambda, w, verbose=TRUE)
pvar.shrink(x, lambda, lambda.var, w, verbose=TRUE)
```

Arguments

- **x**: a data matrix
- **lambda**: the correlation shrinkage intensity (range 0-1). If `lambda` is not specified (the default) it is estimated using an analytic formula from Sch"afer and Strimmer (2005) - see `cor.shrink`. For `lambda=0` the empirical correlations are recovered.
- **lambda.var**: the variance shrinkage intensity (range 0-1). If `lambda.var` is not specified (the default) it is estimated using an analytic formula from Opgen-Rhein and Strimmer (2007) - see details below. For `lambda.var=0` the empirical variances are recovered.
- **w**: optional: weights for each data point - if not specified uniform weights are assumed (`w = rep(1/n, n)` with `n = nrow(x)`).
- **verbose**: report progress while computing (default: TRUE)
Details

The partial variance $\text{var}(X_k|\text{rest})$ is the variance of X_k conditioned on the remaining variables. It equals the inverse of the corresponding diagonal entry of the precision matrix (see Whittaker 1990).

The partial correlations $\text{corr}(X_k, X_l|\text{rest})$ is the correlation between X_k and X_l conditioned on the remaining variables. It equals the sign-reversed entries of the off-diagonal entries of the precision matrix, standardized by the the squared root of the associated inverse partial variances.

Note that using `pcor.shrink(x)` much faster than `cor2pcor(corr.shrink(x))`.

For details about the shrinkage procedure consult Sch"afer and Strimmer (2005), Opgen-Rhein and Strimmer (2007), and the help page of `cov.shrink`.

Value

`pcor.shrink` returns the partial correlation matrix. Attached to this matrix are the standardized partial variances (i.e. PVAR/VAR) that can be retrieved using `attr` under the attribute "spv".

`pvar.shrink` returns the partial variances.

Author(s)

References

See Also

`invcov.shrink`, `cov.shrink`, `cor2pcor`

Examples

```r
# load corpcor library
library("corpcor")

# generate data matrix
p = 50
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)

# partial variance
pv = pvar.shrink(X)
pv
```
partial correlations (fast and recommend way)
pcr1 = pcor.shrink(x)

other possibilities to estimate partial correlations
pcr2 = cor2pcor(cor.shrink(x))

all the same
sum((pcr1 - pcr2)^2)

powcor.shrink

Fast Computation of the Power of the Shrinkage Correlation Matrix

Description

The function `powcor.shrink` efficiently computes the alpha-th power of the shrinkage correlation matrix produced by `cor.shrink`.

For instance, this function may be used for fast computation of the (inverse) square root of the shrinkage correlation matrix (needed, e.g., for decorrelation).

`crossprod.powcor.shrink` efficiently computes $R^{\alpha} y$ without actually computing the full matrix R^{α}.

Usage

```r
powcor.shrink(x, alpha, lambda, w, verbose=TRUE)
crossprod.powcor.shrink(x, y, alpha, lambda, w, verbose=TRUE)
```

Arguments

- **x**: a data matrix
- **y**: a matrix, the number of rows of y must be the same as the number of columns of x
- **alpha**: exponent
- **lambda**: the correlation shrinkage intensity (range 0-1). If lambda is not specified (the default) it is estimated using an analytic formula from Schäfer and Strimmer (2005) - see `cor.shrink`. For lambda=0 the empirical correlations are recovered.
- **w**: optional: weights for each data point - if not specified uniform weights are assumed ($w = \text{rep}(1/n, n)$ with $n = \text{nrow}(x)$).
- **verbose**: output status while computing (default: TRUE)
Details

This function employs a special matrix identity to speed up the computation of the matrix power of the shrinkage correlation matrix (see Zuber and Strimmer 2009 for details).

Apart from a scaling factor the shrinkage correlation matrix computed by `cor.shrink` takes on the form

\[Z = I_p + VMV^T, \]

where \(V M V^T \) is a multiple of the empirical correlation matrix. Crucially, \(Z \) is a matrix of size \(p \) times \(p \) whereas \(M \) is a potentially much smaller matrix of size \(m \) times \(m \), where \(m \) is the rank of the empirical correlation matrix.

In order to calculate the \(\alpha \)-th power of \(Z \) the function uses the identity

\[Z^\alpha = I_p - V (I_m - (I_m + M)^\alpha)V^T, \]

requiring only the computation of the \(\alpha \)-th power of the \(m \) by \(m \) matrix \(I_m + M \). This trick enables substantial computational savings especially when the number of observations is much smaller than the number of variables.

Note that the above identity is related but not identical to the Woodbury matrix identity for inversion of a matrix. For \(\alpha = -1 \) the above identity reduces to

\[Z^{-1} = I_p - V (I_m - (I_m + M)^{-1})V^T, \]

whereas the Woodbury matrix identity equals

\[Z^{-1} = I_p - V (I_m + M^{-1})^{-1}V^T. \]

Value

`powcor.shrink` returns a matrix of the same size as the correlation matrix \(R \)

`crossprod.powcor.shrink` returns a matrix of the same size as \(R y \).

Author(s)

References

See Also

`invcor.shrink`, `cor.shrink`, `mpower`.
Examples

load corpcor library
library("corpcor")

generate data matrix
p = 500
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)

lambda = 0.23 # some arbitrary lambda

computing the inverse
slow
system.time((W1 = solve(cor.shrink(X, lambda=lambda))))

very fast
system.time((W2 = powcor.shrink(X, alpha=-1, lambda=lambda)))

no difference
sum((W1-W2)^2)

computing the square root

system.time((W1 = mpower(cor.shrink(X, lambda=lambda), alpha=0.5)))

very fast
system.time((W2 = powcor.shrink(X, alpha=0.5, lambda=lambda)))

no difference
sum((W1-W2)^2)

computing an arbitrary power (alpha=1.23)

system.time((W1 = mpower(cor.shrink(X, lambda=lambda), alpha=1.23)))

very fast
system.time((W2 = powcor.shrink(X, alpha=1.23, lambda=lambda)))

no difference
pseudoinverse

Pseudoinverse of a Matrix

Description

The standard definition for the inverse of a matrix fails if the matrix is not square or singular. However, one can generalize the inverse using singular value decomposition. Any rectangular real matrix M can be decomposed as

$$M = UDV',$$

where U and V are orthogonal, V' means V transposed, and D is a diagonal matrix containing only the positive singular values (as determined by tol, see also `fast.svd`).

The pseudoinverse, also known as Moore-Penrose or generalized inverse is then obtained as

$$iM = VD^{-1}U'.$$

Usage

```r
pseudoinverse(m, tol)
```

Arguments

- `m` matrix
- `tol` tolerance - singular values larger than `tol` are considered non-zero (default value: $\text{tol} = \text{max(dim(m))*max(D)*Machine\$double.eps}$)
Details

The pseudoinverse has the property that the sum of the squares of all the entries in \(M \perp M - I \), where \(I \) is an appropriate identity matrix, is minimized. For non-singular matrices the pseudoinverse is equivalent to the standard inverse.

Value

A matrix (the pseudoinverse of \(m \)).

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

solve, fast.svd

Examples

```r
# load corpcor library
library("corpcor")

# a singular matrix
m = rbind(
  c(1,2),
  c(1,2)
)

# not possible to invert exactly
try(solve(m))

# pseudoinverse
p = pseudoinverse(m)
p

# characteristics of the pseudoinverse
zapsmall( m %*% p %*% m ) == zapsmall( m )
zapsmall( p %*% m %*% p ) == zapsmall( p )
zapsmall( p %*% m ) == zapsmall( t(p %*% m ) )
zapsmall( m %*% p ) == zapsmall( t(m %*% p ) )

# example with an invertable matrix
m2 = rbind(
  c(1,1),
  c(1,0)
)
zapsmall( solve(m2) ) == zapsmall( pseudoinverse(m2) )
```
\textbf{Description}

\texttt{is.positive.definite} tests whether all eigenvalues of a symmetric matrix are positive.

\texttt{make.positive.definite} computes the nearest positive definite of a real symmetric matrix, using the algorithm of NJ Higham (1988, Linear Algebra Appl. 103:103-118).

\texttt{rank.condition} estimates the rank and the condition of a matrix by computing its singular values \(D[i] \) (using \texttt{svd}). The rank of the matrix is the number of singular values \(D[i] > \text{tol} \) and the condition is the ratio of the largest and the smallest singular value.

The definition \(\text{tol} = \max(\text{dim}(m)) \times \max(D) \times \text{MachineDoubleEps} \) is exactly compatible with the conventions used in "Octave" or "Matlab".

Also note that it is not checked whether the input matrix \(m \) is real and symmetric.

\textbf{Usage}

\begin{verbatim}
is.positive.definite(m, tol, method=c("eigen", "chol"))
make.positive.definite(m, tol)
rank.condition(m, tol)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{m} \hspace{2cm} a matrix (assumed to be real and symmetric)
 \item \texttt{tol} \hspace{2cm} tolerance for singular values and for absolute eigenvalues - only those with values larger than \texttt{tol} are considered non-zero (default: \texttt{tol} = \(\max(\text{dim}(m)) \times \max(D) \times \text{MachineDoubleEps} \))
 \item \texttt{method} \hspace{2cm} Determines the method to check for positive definiteness: eigenvalue computation (eigen, default) or Cholesky decomposition (chol).
\end{itemize}

\textbf{Value}

\begin{itemize}
 \item \texttt{is.positive.definite} returns a logical value (TRUE or FALSE).
 \item \texttt{rank.condition} returns a list object with the following components:
 \begin{itemize}
 \item \texttt{rank} \hspace{2cm} Rank of the matrix.
 \item \texttt{condition} \hspace{2cm} Condition number.
 \item \texttt{tol} \hspace{2cm} Tolerance.
 \end{itemize}
 \item \texttt{make.positive.definite} returns a symmetric positive definite matrix.
\end{itemize}

\textbf{Author(s)}

Korbinian Strimmer (\url{http://strimmerlab.org}).
rebuild.cov

Rebuild and Decompose the (Inverse) Covariance Matrix

Description

rebuild.cov takes a correlation matrix and a vector with variances and reconstructs the correspond- ing covariance matrix.

Conversely, decompose.cov decomposes a covariance matrix into correlations and variances.

decompose.inv cov decomposes a concentration matrix (=inverse covariance matrix) into partial correlations and partial variances.

rebuild.inv cov takes a partial correlation matrix and a vector with partial variances and recon- structs the corresponding concentration matrix.

Usage

rebuild.cov(r, v)
rebuild.inv cov(pr, pv)
decompose.cov(m)
decompose.inv cov(m)
Arguments

- **r**: correlation matrix
- **v**: variance vector
- **pr**: partial correlation matrix
- **pv**: partial variance vector
- **m**: a covariance or a concentration matrix

Details

The diagonal elements of the concentration matrix (=inverse covariance matrix) are the precisions, and the off-diagonal elements are the concentrations. Thus, the partial variances correspond to the inverse precisions, and the partial correlations to the negative standardized concentrations.

Value

`rebuild.cov` and `rebuild.inv cov` return a matrix.
`decompose.cov` and `decompose.inv cov` return a list containing a matrix and a vector.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

- `cor`, `cov`, `pcor.shrink`

Examples

```r
# load corpcor library
library("corpcor")

# a correlation matrix and some variances
r = matrix(c(1, 1/2, 1/2, 1), nrow = 2, ncol=2)
r
v = c(2, 3)

# construct the associated covariance matrix
c = rebuild.cov(r, v)
c

# decompose into correlations and variances
decompose.cov(c)

# the corresponding concentration matrix
conc = pseudoinverse(c)
conc

# decompose into partial correlation matrix and partial variances
```

Shrinkage Intensities

Description

The functions `estimate.lambda` and `estimate.lambda.var` shrinkage intensities used for correlations and variances used in `cor.shrink` and `var.shrink`, respectively.

Usage

```r
estimate.lambda(x, w, verbose=TRUE)
estimate.lambda.var(x, w, verbose=TRUE)
```

Arguments

- `x` a data matrix
- `w` optional: weights for each data point - if not specified uniform weights are assumed (`w = rep(1/n, n)` with `n = nrow(x)`).
- `verbose` report shrinkage intensities (default: TRUE)

Details

`var.shrink` computes the empirical variance of each considered random variable, and shrinks them towards their median. The corresponding shrinkage intensity `lambda.var` is estimated using

$$
\lambda_{var}^* = \left(\sum_{k=1}^{p} Var(s_{kk}) / \sum_{k=1}^{p} (s_{kk} - \text{median}(s))^2 \right)
$$

where `median(s)` denotes the median of the empirical variances (see Opgen-Rhein and Strimmer 2007).

Similarly, `cor.shrink` computes a shrinkage estimate of the correlation matrix by shrinking the empirical correlations towards the identity matrix. In this case the shrinkage intensity `lambda` equals

$$
\lambda^* = \sum_{k \neq l} Var(r_{kl}) / \sum_{k \neq l} s_{kl}^2
$$

(Schäfer and Strimmer 2005).

Ahdesmaki suggested (2012) a computationally highly efficient algorithm to compute the shrinkage intensity estimate for the correlation matrix (see the R code for the implementation).
Value

estimate.lambda and estimate.lambda.var returns a number between 0 and 1.

Author(s)

References

See Also
cor.shrink, var.shrink.

Examples

load corpcor library
library("corpcor")

small n, large p
n = 100
p = 20

generate random pxp covariance matrix
sigma = matrix(rnorm(p*p),ncol=p)
sigma = crossprod(sigma)+ diag(rep(0.1, p))

simulate multinormal data of sample size n
svd = svd(sigma)
Y = t(svd$v %*% t(svd$u) * sqrt(svd$d)))
X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y

correlation shrinkage intensity
estimate.lambda(X)
c = cor.shrink(X)
attr(c, "lambda")

variance shrinkage intensity
estimate.lambda.var(X)
v = var.shrink(X)
attr(v, "lambda.var")
Description

smRvec takes a symmetric matrix and puts the lower triagonal entries into a vector (cf. lower.tri).

smNindex lists the corresponding x-y-indices for each entry in the vector produced by smRvec.

vec2sm reverses the operation by sm2vec and converts the vector back to a symmetric matrix. If diag=FALSE the diagonal of the resulting matrix will consist of NAs. If order is supplied then the input vector vec will first be rearranged accordingly.

Usage

sm2vec(m, diag = FALSE)
smNindex(m, diag = FALSE)
vec2sm(vec, diag = FALSE, order = NULL)

Arguments

m
symmetric matrix

diag
logical. Should the diagonal be included in the conversion to and from a vector?

vec
vector of unique elements from a symmetric matrix

order
order of the entries in vec

Value

A vector (sm2vec), a two-column matrix with indices (smNindex), or a symmetric matrix (vec2sm).

Author(s)

Korbinian Strimmer (http://strimmerlab.org/).

See Also

lower.tri.

Examples

load corpcor library
library("corpcor")

a symmetric matrix
m = rbind(
c(3,1,1,0),
c(1,3,0,1),
c(1,0,2,0),
c(0,1,0,2))
wt.scale

)
m

convert into vector (including the diagonals)
v = sm2vec(m, diag=TRUE)
v.idx = sm.index(m, diag=TRUE)
v v
v.idx

put back to symmetric matrix
vec2sm(v, diag=TRUE)

convert from vector with specified order of the elements
sv = sort(v)
sv
ov = order(v)
ov
vec2sm(sv, diag=TRUE, order=ov)

wt.scale Weighted Expectations and Variances

Description
wt.var estimate the unbiased variance taking into account data weights.
wt.moments produces the weighted mean and weighted variance for each column of a matrix.
wt.scale centers and standardized a matrix using the weighted means and variances.

Usage
wt.var(xvec, w)
wt.moments(x, w)
wt.scale(x, w, center=TRUE, scale=TRUE)

Arguments
xvec a vector
x a matrix
w data weights
center logical value
scale logical value

Value
A rescaled matrix (wt.scale), a list containing the column means and variances (wt.moments), or
single number (wt.var)
Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

weighted.mean, cov.wt.

Examples

```r
# load corpcor library
library("corpcor")

# generate some data
p = 5
n = 5
X = matrix(rnorm(n*p), nrow = n, ncol = p)
w = c(1,1,1,3,3)/9

# standardize matrix
scale(X)
wt.scale(X)
w.t.scale(X, w) # take into account data weights
```
Index

*Topic algebra
 fast.svd, 7
 mpower, 11
 pseudoinverse, 17
 rank.condition, 19
*Topic multivariate
 cor2pcor, 3
 corpcor-package, 2
 cov.shrink, 4
 invcov.shrink, 9
 pcor.shrink, 12
 powcor.shrink, 14
 rebuild.cov, 20
 shrink.intensity, 22
 wt.scale, 25
*Topic utilities
 smtools, 24

attr, 13

cor, 5, 21
 cor.shrink, 9–12, 14, 15, 22, 23
 cor.shrink (cov.shrink), 4
 cor2pcor, 3, 6, 10, 13
 corpcor-package, 2
 cov, 5, 21
 cov.shrink, 2, 3, 4, 9, 10, 13
 cov.wt, 26
 crossprod.powcor.shrink
 (powcor.shrink), 14
 decompose.cov(rebuild.cov), 20
 decompose.invcov, 4
 decompose.invcov (rebuild.cov), 20

eigen, 11
 estimate.lambda, 5
 estimate.lambda (shrink.intensity), 22
 estimate.lambda.var, 5
 fast.svd, 2, 7, 17, 18

invcor.shrink, 5, 15
 invcor.shrink (invcov.shrink), 9
 invcov.shrink, 2, 5, 6, 9, 13
 is.positive.definite(rank.condition), 19
 lower.tri, 24
 make.positive.definite
 (rank.condition), 19
 mpower, 11, 15
 pcor.shrink, 2, 4–6, 10, 12, 21
 pcor2cor (cor2pcor), 3
 powcor.shrink, 2, 10, 11, 14
 pseudoinverse, 3, 4, 17, 20
 pvar.shrink, 5
 pvar.shrink (pcor.shrink), 12
 rank.condition, 19
 rebuild.cov, 20
 rebuild.invcov (rebuild.cov), 20
 shrink.intensity, 22
 sm.index (smtools), 24
 sm2vec (smtools), 24
 smtools, 24
 solve, 8, 18
 svd, 7, 8, 19, 20
 var, 5
 var.shrink, 9, 22, 23
 var.shrink (cov.shrink), 4
 vec2sm (smtools), 24
 weighted.mean, 26
 wt.moments (wt.scale), 25
 wt.scale, 25
 wt.var (wt.scale), 25