Package ‘corpcor’

April 1, 2017

Version 1.6.9
Date 2017-03-31
Title Efficient Estimation of Covariance and (Partial) Correlation
Author Juliane Schafer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesmaki, A. Pedro Duarte Silva, and Korbinian Strimmer.
Maintainer Korbinian Strimmer <strimmerlab@gmail.com>
Depends R (>= 3.0.2)
Imports stats

Suggests

Description Implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Schafer and Strimmer (2005) <DOI:10.2202/1544-6115.1175> and Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252>. The approach is both computationally as well as statistically very efficient, it is applicable to "small n, large p" data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations and partial variances. The inverse of the covariance and correlation matrix can be efficiently computed, as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.

License GPL (>= 3)

URL http://strimmerlab.org/software/corpcor/

NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-01 06:30:37 UTC
R topics documented:

- corpcor-package
- cor2pcor
- cov.shrink
- fast.svd
- invcov.shrink
- mpower
- pcor.shrink
- powcor.shrink
- pseudoinverse
- rank.condition
- rebuild.cov
- shrink.intensity
- smtools
- wt.scale

Index

- corpcor-package

Description

This package implements a James-Stein-type shrinkage estimator for the covariance matrix, with separate shrinkage for variances and correlations. The details of the method are explained in Sch"afer and Strimmer (2005) <DOI:10.2202/1544-6115.1175> and Opgen-Rhein and Strimmer (2007) <DOI:10.2202/1544-6115.1252>. The approach is both computationally as well as statistically very efficient, it is applicable to “small n, large p” data, and always returns a positive definite and well-conditioned covariance matrix. In addition to inferring the covariance matrix the package also provides shrinkage estimators for partial correlations, partial variances, and regression coefficients. The inverse of the covariance and correlation matrix can be efficiently computed, and as well as any arbitrary power of the shrinkage correlation matrix. Furthermore, functions are available for fast singular value decomposition, for computing the pseudoinverse, and for checking the rank and positive definiteness of a matrix.

The name of the package refers to correlations and partial correlations.

Author(s)

Juliane Sch"afer, Rainer Opgen-Rhein, Verena Zuber, Miika Ahdesm"aki, A. Pedro Duarte Silva, and Korbinian Strimmer (http://strimmerlab.org/)

References

See website: http://strimmerlab.org/software/corpcor/

See Also

cov.shrink, invcov.shrink, powcor.shrink, pcor.shrink, fast.svd.
Description

cor2pcor computes the pairwise partial correlation coefficients from either a correlation or a covariance matrix.

pcor2cor takes either a partial correlation matrix or a partial covariance matrix as input, and computes from it the corresponding correlation matrix.

Usage

cor2pcor(m, tol)

Arguments

m covariance matrix or (partial) correlation matrix
tol tolerance - singular values larger than tol are considered non-zero (default value: tol = max(dim(m))*max(D)*.Machine$double.eps). This parameter is needed for the singular value decomposition on which pseudoinverse is based.

Details

The partial correlations are the negative standardized concentrations (which in turn are the off-diagonal elements of the inverse correlation or covariance matrix). In graphical Gaussian models the partial correlations represent the direct interactions between two variables, conditioned on all remaining variables.

In the above functions the pseudoinverse is employed for inversion - hence even singular covariances (with some zero eigenvalues) may be used. However, a better option may be to estimate a positive definite covariance matrix using cov.shrink.

Note that for efficient computation of partial correlation coefficients from data x it is advised to use pcor.shrink(x) and not cor2pcor(cov.shrink(x)).

Value

A matrix with the pairwise partial correlation coefficients (cor2pcor) or with pairwise correlations (pcor2cor).

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

References

See Also
de decompose.inv cov, pcor.shrink, pseudoinverse.

Examples

```r
# load corp cor library
library("corpcor")

# covariance matrix
m.cov = rbind(
  c(3,1,1,0),
  c(1,3,0,1),
  c(1,0,2,0),
  c(0,1,0,2)
)
m.cov

# corresponding correlation matrix
m.cor.1 = cov2cor(m.cov)
m.cor.1

# compute partial correlations (from covariance matrix)
m.pcor.1 = cor2pcor(m.cov)
m.pcor.1

# compute partial correlations (from correlation matrix)
m.pcor.2 = cor2pcor(m.cor.1)
m.pcor.2

zapsmall(m.pcor.1) == zapsmall(m.pcor.2)

# backtransformation
m.cor.2 = pcor2cor(m.pcor.1)
m.cor.2
zapsmall(m.cor.1) == zapsmall(m.cor.2)
```

cov.shrink Shrinkage Estimates of Covariance and Correlation

Description

The functions var.shrink, cor.shrink, and cov.shrink compute shrinkage estimates of variance, correlation, and covariance, respectively.
Usage

```r
var.shrink(x, lambda.var, w, verbose=TRUE)
cor.shrink(x, lambda, w, verbose=TRUE)
cov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
```

Arguments

- `x`: a data matrix
- `lambda`: the correlation shrinkage intensity (range 0-1). If `lambda` is not specified (the default) it is estimated using an analytic formula from Schafer and Strimmer (2005) - see details below. For `lambda`=0 the empirical correlations are recovered.
- `lambda.var`: the variance shrinkage intensity (range 0-1). If `lambda.var` is not specified (the default) it is estimated using an analytic formula from Opgen-Rhein and Strimmer (2007) - see details below. For `lambda.var`=0 the empirical variances are recovered.
- `w`: optional: weights for each data point - if not specified uniform weights are assumed (`w = rep(1/n, n)` with `n = nrow(x)`).
- `verbose`: output some status messages while computing (default: TRUE)

Details

`var.shrink` computes the empirical variance of each considered random variable, and shrinks them towards their median. The shrinkage intensity is estimated using `estimate.lambda.var` (Opgen-Rhein and Strimmer 2007).

Similarly `cor.shrink` computes a shrinkage estimate of the correlation matrix by shrinking the empirical correlations towards the identity matrix. In this case the shrinkage intensity is computed using `estimate.lambda` (Schafer and Strimmer 2005).

In comparison with the standard empirical estimates (var, cov, and cor) the shrinkage estimates exhibit a number of favorable properties. For instance,

1. they are typically much more efficient, i.e. they show (sometimes dramatically) better mean squared error,
2. the estimated covariance and correlation matrices are always positive definite and well conditioned (so that there are no numerical problems when computing their inverse),
3. they are inexpensive to compute, and
4. they are fully automatic and do not require any tuning parameters (as the shrinkage intensity is analytically estimated from the data), and
5. they assume nothing about the underlying distributions, except for the existence of the first two moments.

These properties also carry over to derived quantities, such as partial variances and partial correlations (`pvar.shrink` and `pcor.shrink`).

As an extra benefit, the shrinkage estimators have a form that can be very efficiently inverted, especially if the number of variables is large and the sample size is small. Thus, instead of inverting the matrix output by `cov.shrink` and `cor.shrink` please use the functions `invcov.shrink` and `invcor.shrink`, respectively.
Value

- `var.shrink` returns a vector with estimated variances.
- `cov.shrink` returns a covariance matrix.
- `cor.shrink` returns the corresponding correlation matrix.

Author(s)

References

See Also

- `invcov.shrink`, `pcor.shrink`, `cor2pcor`

Examples

```r
# load corpcor library
library("corpcor")

# small n, large p
p = 100
n = 20

# generate random pxp covariance matrix
sigma = matrix(rnorm(p*p),ncol=p)
sigma = crossprod(sigma)+ diag(rep(0.1, p))

# simulate multinormal data of sample size n
sigsvd = svd(sigma)
Y = t(sigsvd$v) %*% (t(sigsvd$u) * sqrt(sigsvd$d))
X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y

# estimate covariance matrix
s1 = cov(X)
s2 = cov.shrink(X)

# squared error
sum((s1-sigma)^2)
sum((s2-sigma)^2)
```
compare positive definiteness
is.positive.definite(sigma)
is.positive.definite(s1)
is.positive.definite(s2)

compare ranks and condition
rank.condition(sigma)
rank.condition(s1)
rank.condition(s2)

compare eigenvalues
e0 = eigen(sigma, symmetric=TRUE)$values
e1 = eigen(s1, symmetric=TRUE)$values
e2 = eigen(s2, symmetric=TRUE)$values
m = max(e0, e1, e2)
yl = c(0, m)

par(mfrow=c(1,3))
plot(e1, main="empirical")
plot(e2, ylim=yl, main="full shrinkage")
plot(e0, ylim=yl, main="true")
par(mfrow=c(1,1))

fast.svd

Fast Singular Value Decomposition

Description

fast.svd returns the singular value decomposition of a rectangular real matrix

\[M = UDV', \]

where \(U \) and \(V \) are orthogonal matrices with \(U'U = I \) and \(V'V = I \), and \(D \) is a diagonal matrix containing the singular values (see *svd*).

The main difference to the native version *svd* is that *fast.svd* is substantially faster for "fat" (small \(n \), large \(p \)) and "thin" (large \(n \), small \(p \)) matrices. In this case the decomposition of \(M \) can be greatly sped up by first computing the SVD of either \(MM' \) (fat matrices) or \(M'M \) (thin matrices), rather than that of \(M \).

A second difference to *svd* is that *fast.svd* only returns the positive singular values (thus the dimension of \(D \) always equals the rank of \(M \)). Note that the singular vectors computed by *fast.svd* may differ in sign from those computed by *svd*.

Usage

fast.svd(m, tol)
Arguments

\texttt{m} \hspace{1cm} \text{matrix}
\texttt{tol} \hspace{1cm} \text{tolerance - singular values larger than tol are considered non-zero (default value: tol = max(dim(m))*max(D)*.Machine\$double.eps)}

Details

For "fat" \(M \) (small \(n \), large \(p \)) the SVD decomposition of \(MM' \) yields

\[
MM' = UD^2U
\]

As the matrix \(MM' \) has dimension \(n \times n \) only, this is faster to compute than SVD of \(M \). The \(V \) matrix is subsequently obtained by

\[
V = M'UD^{-1}
\]

Similarly, for "thin" \(M \) (large \(n \), small \(p \)), the decomposition of \(M'M \) yields

\[
M'M = VD^2V'
\]

which is also quick to compute as \(M'M \) has only dimension \(p \times p \). The \(U \) matrix is then computed via

\[
U = MVD^{-1}
\]

Value

A list with the following components:

\texttt{d} \hspace{1cm} \text{a vector containing the positive singular values}
\texttt{u} \hspace{1cm} \text{a matrix with the corresponding left singular vectors}
\texttt{v} \hspace{1cm} \text{a matrix with the corresponding right singular vectors}

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

\texttt{svd, solve}.

\texttt{fast.svd}
Examples

```r
# load corpcor library
library("corpcor")

# generate a "fat" data matrix
n = 50
p = 5000
X = matrix(rnorm(n*p), n, p)

# compute SVD
system.time( (s1 = svd(X)) )
system.time( (s2 = fast.svd(X)) )

eps = 1e-10
sum(abs(s1$d-s2$d) > eps)
sum(abs(abs(s1$u)-abs(s2$u)) > eps)
sum(abs(abs(s1$v)-abs(s2$v)) > eps)
```

invcov.shrink
Fast Computation of the Inverse of the Covariance and Correlation Matrix

Description

The functions invcov.shrink and invcor.shrink implement an algorithm to efficiently compute the inverses of shrinkage estimates of covariance (cov.shrink) and correlation (cor.shrink).

Usage

```r
invcov.shrink(x, lambda, lambda.var, w, verbose=TRUE)
invcor.shrink(x, lambda, w, verbose=TRUE)
```

Arguments

- `x`: a data matrix
- `lambda`: the correlation shrinkage intensity (range 0-1). If `lambda` is not specified (the default) it is estimated using an analytic formula from Sch"afer and Strimmer (2005) - see `cor.shrink`. For `lambda=0` the empirical correlations are recovered.
- `lambda.var`: the variance shrinkage intensity (range 0-1). If `lambda.var` is not specified (the default) it is estimated using an analytic formula from Sch"afer and Strimmer (2005) - see `var.shrink`. For `lambda.var=0` the empirical variances are recovered.
- `w`: optional: weights for each data point - if not specified uniform weights are assumed (`w = rep(1/n, n)` with `n = nrow(x)`).
- `verbose`: output status while computing (default: TRUE)
invcov.shrink

Details
Both invcov.shrink and invcor.shrink rely on powcor.shrink. This allows to compute the inverses in a very efficient fashion (much more efficient than directly inverting the matrices - see the example).

Value
invcov.shrink returns the inverse of the output from cov.shrink.
invcor.shrink returns the inverse of the output from cor.shrink.

Author(s)

References

See Also
powcor.shrink, cov.shrink, pcor.shrink, cor2pcor

Examples
load corpus library
library("corpcor")

generate data matrix
p = 500
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)
lambda = 0.23 # some arbitrary lambda

slow
system.time(
 (W1 = solve(cov.shrink(X, lambda)))
)

very fast
system.time(
 (W2 = invcov.shrink(X, lambda))
)

no difference
sum((W1-W2)^2)
mpower

Compute the Power of a Real Symmetric Matrix

Description

`mpower` computes m^{α}, i.e. the α-th power of the real symmetric matrix m.

Usage

`mpower(m, alpha, pseudo=FALSE, tol)`

Arguments

- **m**
 a real-valued symmetric matrix.

- **alpha**
 exponent.

- **pseudo**
 if pseudo=TRUE then all zero eigenvalues are dropped (e.g. for computing the pseudoinverse). The default is to use all eigenvalues.

- **tol**
 tolerance - eigenvalues with absolute value smaller or equal to tol are considered identically zero (default: tol = max(dim(m))*max(abs(eval))*Machine$double.eps).

Details

The matrix power of m is obtained by first computing the spectral decomposition of m, and subsequent modification of the resulting eigenvalues.

Note that m is assumed to by symmetric, and only its lower triangle (diagonal included) is used in `eigen`.

For computing the matrix power of `cor.shrink` use the vastly more efficient function `powcor.shrink`.

Value

`mpower` returns a matrix of the same dimensions as m.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

`powcor.shrink, eigen`
Examples

\begin{verbatim}
load corpcor library
library("corpcor")

generate symmetric matrix
p = 10
n = 20
X = matrix(rnorm(n*p), nrow = n, ncol = p)
m = cor(X)

m %*% m
mpower(m, 2)
solve(m)
mpower(m, -1)

msq = mpower(m, 0.5)
msq %*% msq
m

mpower(m, 1.234)
\end{verbatim}

Description

The functions `pcor.shrink` and `pvar.shrink` compute shrinkage estimates of partial correlation and partial variance, respectively.

Usage

\begin{verbatim}
pcor.shrink(x, lambda, w, verbose=TRUE)
pvar.shrink(x, lambda, lambda.var, w, verbose=TRUE)
\end{verbatim}

Arguments

x	a data matrix
lambda	the correlation shrinkage intensity (range 0-1). If lambda is not specified (the default) it is estimated using an analytic formula from Schäfer and Strimmer (2005) - see `cor.shrink`. For lambda=0 the empirical correlations are recovered.
lambda.var	the variance shrinkage intensity (range 0-1). If lambda.var is not specified (the default) it is estimated using an analytic formula from Opgen-Rhein and Strimmer (2007) - see details below. For lambda.var=0 the empirical variances are recovered.
w	optional: weights for each data point - if not specified uniform weights are assumed (w = rep(1/n, n) with n = nrow(x)).
verbose	report progress while computing (default: TRUE)
Details

The partial variance \(\text{var}(X_k|\text{rest}) \) is the variance of \(X_k \) conditioned on the remaining variables. It equals the inverse of the corresponding diagonal entry of the precision matrix (see Whittaker 1990).

The partial correlations \(\text{corr}(X_k, X_l|\text{rest}) \) is the correlation between \(X_k \) and \(X_l \) conditioned on the remaining variables. It equals the sign-reversed entries of the off-diagonal entries of the precision matrix, standardized by the squared root of the associated inverse partial variances.

Note that using \texttt{pcor.shrink(x)} much faster than \texttt{cor2pcor(corr.shrink(x))}.

For details about the shrinkage procedure consult Sch"afer and Strimmer (2005), Opgen-Rhein and Strimmer (2007), and the help page of \texttt{cov.shrink}.

Value

\texttt{pcor.shrink} returns the partial correlation matrix. Attached to this matrix are the standardized partial variances (i.e. PVAR/VAR) that can be retrieved using \texttt{attr} under the attribute "spv".

\texttt{pvar.shrink} returns the partial variances.

Author(s)

References

See Also

\texttt{invcov.shrink}, \texttt{cov.shrink}, \texttt{cor2pcor}

Examples

```r
# load corpcor library
library("corpcor")

# generate data matrix
p = 50
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)

# partial variance
pv = pvar.shrink(X)
pv
```
partial correlations (fast and recommend way)
pcr1 = pcor.shrink(x)

other possibilities to estimate partial correlations
pcr2 = cor2pcor(cor.shrink(x))

all the same
sum((pcr1 - pcr2)^2)

powcor.shrink Fast Computation of the Power of the Shrinkage Correlation Matrix

Description

The function powcor.shrink efficiently computes the alpha-th power of the shrinkage correlation matrix produced by cor.shrink.

For instance, this function may be used for fast computation of the (inverse) square root of the shrinkage correlation matrix (needed, e.g., for decorrelation).

crossprod.powcor.shrink efficiently computes \(R^\alpha y \) without actually computing the full matrix \(R^\alpha \).

Usage

powcor.shrink(x, alpha, lambda, w, verbose=TRUE)
crossprod.powcor.shrink(x, y, alpha, lambda, w, verbose=TRUE)

Arguments

- **x**: a data matrix
- **y**: a matrix, the number of rows of y must be the same as the number of columns of x
- **alpha**: exponent
- **lambda**: the correlation shrinkage intensity (range 0-1). If lambda is not specified (the default) it is estimated using an analytic formula from Schafer and Strimmer (2005) - see cor.shrink. For lambda=0 the empirical correlations are recovered.
- **w**: optional: weights for each data point - if not specified uniform weights are assumed (w = rep(1/n, n) with n = nrow(x)).
- **verbose**: output status while computing (default: TRUE)
The function employs a special matrix identity to speed up the computation of the matrix power of the shrinkage correlation matrix (see Zuber and Strimmer 2009 for details). Apart from a scaling factor the shrinkage correlation matrix computed by `cor.shrink` takes on the form

\[Z = I_p + VMV^T, \]

where \(V \) is a multiple of the empirical correlation matrix. Crucially, \(Z \) is a matrix of size \(p \) by \(p \), whereas \(M \) is a potentially much smaller matrix of size \(m \) by \(m \), where \(m \) is the rank of the empirical correlation matrix.

In order to calculate the \(\alpha \)-th power of \(Z \) the function uses the identity

\[Z^\alpha = I_p - V(I_m - (I_m + M)^\alpha)V^T, \]

requiring only the computation of the \(\alpha \)-th power of the \(m \) by \(m \) matrix \(I_m + M \). This trick enables substantial computational savings especially when the number of observations is much smaller than the number of variables.

Note that the above identity is related but not identical to the Woodbury matrix identity for inversion of a matrix. For \(\alpha = -1 \) the above identity reduces to

\[Z^{-1} = I_p - V(I_m - (I_m + M)^{-1})V^T, \]

whereas the Woodbury matrix identity equals

\[Z^{-1} = I_p - V(I_m + M^{-1})^{-1}V^T. \]

Value

`powcor.shrink` returns a matrix of the same size as the correlation matrix \(R \)

`crossprod.powcor.shrink` returns a matrix of the same size as \(R y \).

Author(s)

References

See Also

`invcor.shrink, cor.shrink, mpower`.

"powcor.shrink"

Details

This function employs a special matrix identity to speed up the computation of the matrix power of the shrinkage correlation matrix (see Zuber and Strimmer 2009 for details). Apart from a scaling factor the shrinkage correlation matrix computed by `cor.shrink` takes on the form

\[Z = I_p + VMV^T, \]

where \(V \) is a multiple of the empirical correlation matrix. Crucially, \(Z \) is a matrix of size \(p \) by \(p \) whereas \(M \) is a potentially much smaller matrix of size \(m \) by \(m \), where \(m \) is the rank of the empirical correlation matrix.

In order to calculate the \(\alpha \)-th power of \(Z \) the function uses the identity

\[Z^\alpha = I_p - V(I_m - (I_m + M)^\alpha)V^T, \]

requiring only the computation of the \(\alpha \)-th power of the \(m \) by \(m \) matrix \(I_m + M \). This trick enables substantial computational savings especially when the number of observations is much smaller than the number of variables.

Note that the above identity is related but not identical to the Woodbury matrix identity for inversion of a matrix. For \(\alpha = -1 \) the above identity reduces to

\[Z^{-1} = I_p - V(I_m - (I_m + M)^{-1})V^T, \]

whereas the Woodbury matrix identity equals

\[Z^{-1} = I_p - V(I_m + M^{-1})^{-1}V^T. \]
Examples

load corpcor library
library("corpcor")

generate data matrix
p = 500
n = 10
X = matrix(rnorm(n*p), nrow = n, ncol = p)

lambda = 0.23 # some arbitrary lambda

computing the inverse
slow
system.time({
 (W1 = solve(cor.shrink(X, lambda=lambda)))
})

very fast
system.time({
 (W2 = powcor.shrink(X, alpha=-1, lambda=lambda))
})

no difference
sum((W1-W2)^2)

computing the square root

system.time({
 (W1 = mpower(cor.shrink(X, lambda=lambda), alpha=0.5))
})

very fast
system.time({
 (W2 = powcor.shrink(X, alpha=0.5, lambda=lambda))
})

no difference
sum((W1-W2)^2)

computing an arbitrary power (alpha=1.23)

system.time({
 (W1 = mpower(cor.shrink(X, lambda=lambda), alpha=1.23))
})

very fast
system.time({
 (W2 = powcor.shrink(X, alpha=1.23, lambda=lambda))
})

no difference
Pseudoinverse of a Matrix

Description

The standard definition for the inverse of a matrix fails if the matrix is not square or singular. However, one can generalize the inverse using singular value decomposition. Any rectangular real matrix M can be decomposed as

$$ M = UDV', $$

where U and V are orthogonal, V' means V transposed, and D is a diagonal matrix containing only the positive singular values (as determined by tol, see also fast.svd).

The pseudoinverse, also known as Moore-Penrose or generalized inverse is then obtained as

$$ iM = VD^{-1}U' $$

Usage

`pseudoinverse(m, tol)`

Arguments

- **m**: matrix
- **tol**: tolerance - singular values larger than tol are considered non-zero (default value: $\text{tol} = \max(\text{dim}(m))\cdot\max(D)\cdot\text{Machine}$double$\cdot\text{eps}$)
Details
The pseudoinverse has the property that the sum of the squares of all the entries in $\mathbf{M} \times \mathbf{M} - \mathbf{I}$, where \mathbf{I} is an appropriate identity matrix, is minimized. For non-singular matrices the pseudoinverse is equivalent to the standard inverse.

Value
A matrix (the pseudoinverse of \mathbf{m}).

Author(s)
Korbinian Strimmer (http://strimmerlab.org).

See Also
solve, fast.svd

Examples

```r
# load corpcor library
library("corpcor")

# a singular matrix
m = rbind(
c(1,2),
c(1,2)
)

# not possible to invert exactly
try(solve(m))

# pseudoinverse
p = pseudoinverse(m)

# characteristics of the pseudoinverse
zapsmall( m %*% p %*% m ) == zapsmall( m )
zapsmall( p %*% m %*% p ) == zapsmall( p )
zapsmall( p %*% m ) == zapsmall( t(p %*% m ) )
zapsmall( m %*% p ) == zapsmall( t(m %*% p ) )

# example with an invertable matrix
m2 = rbind(
c(1,1),
c(1,0)
)
zapsmall( solve(m2) ) == zapsmall( pseudoinverse(m2) )
```
Description

is.positive.definite tests whether all eigenvalues of a symmetric matrix are positive.

rank.condition estimates the rank and the condition of a matrix by computing its singular values D[i] (using svd). The rank of the matrix is the number of singular values D[i] > tol and the condition is the ratio of the largest and the smallest singular value.

The definition tol= max(dim(m))*max(D)*.Machine$double.eps is exactly compatible with the conventions used in "Octave" or "Matlab".

Also note that it is not checked whether the input matrix m is real and symmetric.

Usage

is.positive.definite(m, tol, method=c("eigen", "chol"))
make.positive.definite(m, tol)
rank.condition(m, tol)

Arguments

m a matrix (assumed to be real and symmetric)
tol tolerance for singular values and for absolute eigenvalues - only those with values larger than tol are considered non-zero (default: tol = max(dim(m))*max(D)*.Machine$double.eps
method Determines the method to check for positive definiteness: eigenvalue computation (eigen, default) or Cholesky decomposition (chol).

Value

is.positive.definite returns a logical value (TRUE or FALSE).
rank.condition returns a list object with the following components:

rank Rank of the matrix.
condition Condition number.
tol Tolerance.

make.positive.definite returns a symmetric positive definite matrix.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).
See Also

svd, *pseudoinverse*.

Examples

```r
# load corpcor library
library("corpcor")

# Hilbert matrix
hilbert = function(n) ( i = 1:n; 1 / outer(i - 1, i, "+") )

# positive definite ?
m = hilbert(8)
is.positive.definite(m)

# numerically ill-conditioned
m = hilbert(15)
r.rank.condition(m)

# make positive definite
m2 = make.positive.definite(m)
is.positive.definite(m2)
r.rank.condition(m2)
m2 - m
```

rebuild.cov

Rebuild and Decompose the (Inverse) Covariance Matrix

Description

`rebuild.cov` takes a correlation matrix and a vector with variances and reconstructs the corresponding covariance matrix.

Conversely, `decompose.cov` decomposes a covariance matrix into correlations and variances.

`decompose.inv covariance` decomposes a concentration matrix (=inverse covariance matrix) into partial correlations and partial variances.

`rebuild.inv cov` takes a partial correlation matrix and a vector with partial variances and reconstructs the corresponding concentration matrix.

Usage

```r
rebuild.cov(r, v)
deconstruct.cov(m)
rebuild.inv covariance(m)
```
Arguments

- `r` correlation matrix
- `v` variance vector
- `pr` partial correlation matrix
- `pv` partial variance vector
- `m` a covariance or a concentration matrix

Details

The diagonal elements of the concentration matrix (=inverse covariance matrix) are the precisions, and the off-diagonal elements are the concentrations. Thus, the partial variances correspond to the inverse precisions, and the partial correlations to the negative standardized concentrations.

Value

`rebuild.cov` and `rebuild.invcov` return a matrix.
`decompose.cov` and `decompose.inv_cov` return a list containing a matrix and a vector.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

cor, cov, pcor.shrink

Examples

```r
# load corpco library
library("corpcor")

# a correlation matrix and some variances
r = matrix(c(1, 1/2, 1/2, 1), nrow = 2, ncol=2)
r
v = c(2, 3)

# construct the associated covariance matrix
c = rebuild.cov(r, v)
c

# decompose into correlations and variances
decompose.cov(c)

# the corresponding concentration matrix
conc = pseudoinverse(c)
conc

# decompose into partial correlation matrix and partial variances
```
shrink.intensity

Estimation of Shrinkage Intensities

Description

The functions `estimate.lambda` and `estimate.lambda.var` shrinkage intensities used for correlations and variances used in `cor.shrink` and `var.shrink`, respectively.

Usage

```
estimate.lambda(x, w, verbose=TRUE)
estimate.lambda.var(x, w, verbose=TRUE)
```

Arguments

- `x` a data matrix
- `w` optional: weights for each data point - if not specified uniform weights are assumed (`w = rep(1/n, n)` with `n = nrow(x)`).
- `verbose` report shrinkage intensities (default: TRUE)

Details

`var.shrink` computes the empirical variance of each considered random variable, and shrinks them towards their median. The corresponding shrinkage intensity `lambda.var` is estimated using

\[\lambda^*_{\text{var}} = \frac{\sum_{k=1}^{p} \text{Var}(s_{kk})}{\sum_{k=1}^{p} (s_{kk} - \text{median}(s))^2} \]

where `median(s)` denotes the median of the empirical variances (see Opgen-Rhein and Strimmer 2007).

Similarly, `cor.shrink` computes a shrinkage estimate of the correlation matrix by shrinking the empirical correlations towards the identity matrix. In this case the shrinkage intensity `lambda` equals

\[\lambda^* = \sum_{k \neq l} \text{Var}(r_{kl})/\sum_{k \neq l} r_{kl}^2 \]

(Sch"afer and Strimmer 2005).

Ahdesm"aki suggested (2012) a computationally highly efficient algorithm to compute the shrinkage intensity estimate for the correlation matrix (see the R code for the implementation).
Value

estimate.lambda and estimate.lambda.var returns a number between 0 and 1.

Author(s)

References

See Also
cor.shrink, var.shrink.

Examples

```r
# load corpcor library
library("corpcor")

# small n, large p
p = 100
n = 20

# generate random pxp covariance matrix
sigma = matrix(rnorm(p*p),ncol=p)
sigma = crossprod(sigma)+ diag(rep(0.1, p))

# simulate multinormal data of sample size n
sigsvd = svd(sigma)
Y = t(sigsvd$v) %*% (t(sigsvd$v) * sqrt(sigsvd$d))
X = matrix(rnorm(n * ncol(sigma)), nrow = n) %*% Y

# correlation shrinkage intensity
estimate.lambda(X)
c = cor.shrink(X)
attr(c, "lambda")

# variance shrinkage intensity
estimate.lambda.var(X)
v = var.shrink(X)
attr(v, "lambda.var")
```
Some Tools for Handling Symmetric Matrices

Description

sm2vec takes a symmetric matrix and puts the lower triagonal entries into a vector (cf. lower.tri).
sm.index lists the corresponding x-y-indices for each entry in the vector produced by sm2vec.
vec2sm reverses the operation by sm2vec and converts the vector back to a symmetric matrix. If diag=FALSE the diagonal of the resulting matrix will consist of NAs. If order is supplied then the input vector vec will first be rearranged accordingly.

Usage

sm2vec(m, diag = FALSE)
sm.index(m, diag = FALSE)
vec2sm(vec, diag = FALSE, order = NULL)

Arguments

m symmetric matrix
diag logical. Should the diagonal be included in the conversion to and from a vector?
vec vector of unique elements from a symmetric matrix
order order of the entries in vec

Value

A vector (sm2vec), a two-column matrix with indices (sm.index), or a symmetric matrix (vec2sm).

Author(s)

Korbinian Strimmer (http://strimmerlab.org/).

See Also

lower.tri.

Examples

load corpcor library
library("corpcor")

a symmetric matrix
m = rbind(
c(3,1,1,0),
c(1,3,0,1),
c(1,0,2,0),
c(0,0,2))
wt.scale

)

m

convert into vector (including the diagonals)
v = sm2vec(m, diag=TRUE)
v.idx = sm.index(m, diag=TRUE)
v
v.idx

put back to symmetric matrix
vec2sm(v, diag=TRUE)

convert from vector with specified order of the elements
sv = sort(v)
sv
ov = order(v)
ov
vec2sm(sv, diag=TRUE, order=ov)

wt.scale

Weighted Expectations and Variances

Description

wt.var estimate the unbiased variance taking into account data weights.
wt.moments produces the weighted mean and weighted variance for each column of a matrix.
wt.scale centers and standardized a matrix using the weighted means and variances.

Usage

wt.var(xvec, w)
wt.moments(x, w)
wt.scale(x, w, center=TRUE, scale=TRUE)

Arguments

xvec a vector
x a matrix
w data weights
center logical value
scale logical value

Value

A rescaled matrix (wt.scale), a list containing the column means and variances (wt.moments), or single number (wt.var)
Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

weighted.mean, cov.wt.

Examples

load corpcor library
library("corpcor")

generate some data
p = 5
n = 5
X = matrix(rnorm(n*p), nrow = n, ncol = p)
w = c(1,1,1,3,3)/9

standardize matrix
scale(X)
wt.scale(X)
wt.scale(X, w) # take into account data weights
Index

* Topic **algebra**
 - fast.svd, 7
 - mpower, 11
 - pseudoinverse, 17
 - rank.condition, 19

* Topic **multivariate**
 - cor2pcor, 3
 - corpcor-package, 2
 - cov.shrink, 4
 - invcov.shrink, 9
 - pcor.shrink, 12
 - powcor.shrink, 14
 - rebuild.cov, 20
 - shrink.intensity, 22
 - wt.scale, 25

* Topic **utilities**
 - smtools, 24

 - attr, 13
 - cor, 5, 21
 - cor.shrink, 9–12, 14, 15, 22, 23
 - cov.shrink (cov.shrink), 4
 - cor2pcor, 3, 6, 10, 13
 - corpcor-package, 2
 - cov, 5, 21
 - cov.shrink, 2, 3, 4, 9, 10, 13
 - cov.wt, 26
 - crossprod.powcor.shrink (powcor.shrink), 14

 - decompose.cov(rebuild.cov), 20
 - decompose.invcov, 4
 - decompose.invcov(rebuild.cov), 20

 - eigen, 11
 - estimate.lambda, 5
 - estimate.lambda(shrink.intensity), 22
 - estimate.lambda.var, 5

 - fast.svd, 2, 7, 17, 18

 - invcor.shrink, 5, 15
 - invcor.shrink(invcov.shrink), 9
 - invcov.shrink, 2, 5, 6, 9, 13
 - is.positive.definite(rank.condition), 19

 - lower.tri, 24

 - make.positive.definite (rank.condition), 19
 - mpower, 11, 15

 - pcor.shrink, 2, 4–6, 10, 12, 21
 - pcor2cor (cor2pcor), 3
 - powcor.shrink, 2, 10, 11, 14
 - pseudoinverse, 3, 4, 17, 20
 - pvar.shrink, 5
 - pvar.shrink(pcor.shrink), 12

 - rank.condition, 19
 - rebuild.cov, 20
 - rebuild.invcov(rebuild.cov), 20

 - shrink.intensity, 22
 - sm.index (smtools), 24
 - sm2vec (smtools), 24
 - smtools, 24
 - solve, 8, 18
 - svd, 7, 8, 19, 20

 - var, 5
 - var.shrink, 9, 22, 23
 - var.shrink(cov.shrink), 4
 - vec2sm (smtools), 24

 - weighted.mean, 26
 - wt.moments (wt.scale), 25
 - wt.scale, 25
 - wt.var (wt.scale), 25

27