Package ‘corregp’

March 14, 2018

Title Functions and Methods for Correspondence Regression
Version 2.0.2
Description A collection of tools for correspondence regression, i.e. the correspondence analysis of the crosstabulation of a categorical variable Y in function of another one X, where X can in turn be made up of the combination of various categorical variables. Consequently, correspondence regression can be used to analyze the effects for a polytomous or multinomial outcome variable.
Depends R (>= 3.2.0), graphics, diagram, rgl, stats
Imports data.table, ellipse, gplots, utils
Suggests datasets, grDevices, MASS, knitr
License GPL-3
LazyData true
VignetteBuilder knitr
Date 2018-03-11
RoxygenNote 6.0.1
NeedsCompilation no
Author Koen Plevoets [aut, cre]
Maintainer Koen Plevoets <koen.plevoets@ugent.be>
Repository CRAN
Date/Publication 2018-03-14 10:20:10 UTC

R topics documented:

 corregp-package .. 2
gplot.corregp ... 4
anova.corregp ... 7
AVT ... 8
cell.corregp ... 9
cell3d.corregp .. 10
ci ... 11
corregp-package

Description

This package provides functions and methods for performing correspondence regression, i.e. the correspondence analysis of the crosstabulation of a categorical variable Y in function of another one X, where X can in turn be made up of the combination of various categorical variables. Consequently, correspondence regression can be used to analyze the effects for a polytomous or multinomial outcome variable. The central function in the package is corregp, which enables methods for printing, summarizing and plotting the output. Additionally, there are functions for computing confidence intervals, ellipses or 3D ellipsoids (by means of bootstrapping).

Contents

This package consists of the following datasets, functions, generics and methods (some internal functions are no longer exported in version 2):

Datasets:

- HairEye Hair and eye color of statistics students (data frame).
- COMURE The use of linguistic variants in translations vs. non-translations and in six different registers.
- AVT The use of linguistic variants in audio-visual translation (subtitles).
- TSS The use of inflected or uninflcted determiners in vernacular Belgian Dutch.

Functions:
• **ci** A helper function to compute confidence intervals on the basis of a numeric vector.
• **corregp** The basic function to perform correspondence regression. Typically, one starts here, and then one uses `print`, `summary`, `anova`, `screeplot` or `plot` methods.
• **corregplicate** A function for repeated correspondence regressions with bootstrapping in order to handle large data sets.

Generics:
• **cint** Compute confidence intervals.
• **cell** Compute confidence ellipses.
• **cell3d** Compute 3D confidence ellipsoids.
• **ciplot** Plot confidence intervals.
• **pcplot** Plot parallel coordinates.
• **agplot** Plot an association graph.
• **plotag** Plot an association graph.

Methods:
• **print.corregp** Print the output of a correspondence regression.
• **summary.corregp** Give a summary of a correspondence regression.
• **print.summary.corregp** Print the summary of a correspondence regression.
• **screeplot.corregp** Make a scree plot on the basis of the output of a correspondence regression.
• **anova.corregp** Give an anova table on the basis of a correspondence regression.
• **print.anova.corregp** Print an anova table on the basis of a correspondence regression.
• **coef.corregp** Give the coefficients on the basis of a correspondence regression.
• **coefficients.corregp** Give the coefficients on the basis of a correspondence regression.
• **fitted.corregp** Give the fitted values on the basis of a correspondence regression.
• **fitted.values.corregp** Give the fitted values on the basis of a correspondence regression.
• **residuals.corregp** Give the residuals on the basis of a correspondence regression.
• **resid.corregp** Give the residuals on the basis of a correspondence regression.
• **cint.corregp** Compute confidence intervals on the basis of the output of a correspondence regression. Typically, this function is not so much used directly as it is called by a `ciplot.corregp` command.
• **ciplot.corregp** Plot confidence intervals on the basis of the output of a correspondence regression.
• **pcplot.corregp** Make a parallel coordinate plot on the basis of the output of a correspondence regression.
• **cell.corregp** Compute confidence ellipses on the basis of the output of a correspondence regression. Typically, this function is not so much used directly as it is called by a `plot.corregp` command.
• **plot.corregp** Plot the output (and the optional confidence ellipses) of a correspondence regression.
• **cell3d.corregp** Compute 3D confidence ellipsoids on the basis of a correspondence regression. Typically, this function is not so much used directly as it is called by a `plot3d.corregp` command.
• plot3d.corregp Plot the 3D output (and the optional confidence ellipsoids) of a correspondence regression.
• agplot.corregp Make an association graph on the basis of the output of a correspondence regression.
• plotag.corregp Make an association graph on the basis of the output of a correspondence regression.

Future prospects
• Specify a predict method for a.o. supplementary points.
• Specify a plot method for an anova table.
• Enable scale transformations for all plots (and corresponding confidence regions).
• Provide the possibility for so-called "calibration lines".

Author
Koen Plevoets, <koen.plevoets@ugent.be>

Acknowledgements
This package has benefited greatly from the helpful comments of Isabelle Delaere and Gert De Sutter. Thanks to Kurt Hornik and Uwe Ligges for proofing this package.

agplot.corregp
Plotting an Association Graph for Correspondence Regression

Description
Function to make an association graph of the (significant) coordinate scores in correspondence regression.

Usage
```r
# S3 method for class 'corregp'
tag(x, axes = NULL, ysub = NULL, xsub = NULL,
    sort = NULL, na.rm = FALSE, col = "black", cex = par("cex"),
    font = par("font"), family = par("family"), lwd = par("lwd"),
    lty = par("lty"), ycol = col, xcol = col, ncol = c("white",
    "lightgray"), nwid = lwd, lcol = col, lwid = lwd, pcol = lcol,
    ppos = NULL, ptyp = "simple", zoom = 1, hshft = 0, vshft = 0,
    main = NULL, cl = 0.95, nq = TRUE, digits = 2, ...)
```
```r
# S3 method for class 'corregp'
plotag(x, axes = NULL, ysub = NULL, xsub = NULL,
    sort = NULL, na.rm = FALSE, col = "black", cex = par("cex"),
    font = par("font"), family = par("family"), lwd = par("lwd"),
    lty = par("lty"), ycol = col, xcol = col, ncol = c("white",
    "lightgray"), nwid = lwd, lcol = col, lwid = lwd, pcol = lcol,
    ppos = NULL, ptyp = "simple", zoom = 1, hshft = 0, vshft = 0,
    main = NULL, cl = 0.95, nq = TRUE, digits = 2, ...)
```
Arguments

- **x**: The output of a call to `corregp` (i.e. an object of class "corregp").
- **axes**: The axes for which to plot the association graph: a vector of indices. Defaults to all the axes.
- **ysub**: Vector of indices to select a subset of the Y levels.
- **xsub**: Vector of indices to select a subset of the X levels. Can also be "all" or "both" (or abbreviations).
- **sort**: Vector of axes for which to sort the coordinate scores. The default (NULL) plots all levels in the order in which they appear in the correspondence regression x.
- **na.rm**: Logical specifying whether to omit NA coordinates from the plot. Defaults to FALSE.
- **col**: Color of the association graph: either numeric or see `colors`.
- **cex**: Character expansion factor: a number to specify the size of the text labels.
- **font**: Font of the text labels (levels): 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic. Defaults to 1.
- **family**: Font family of the text labels (levels): can be "serif", "sans", "mono" or one of the Hershey fonts.
- **lwd**: Line width of the association graph: a number to specify the line width.
- **lty**: Line type of the association graph (i.e. linking edges): 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
- **ycol**: Color of the levels in Y: either numeric or see `colors`.
- **xcol**: Color of the levels in X: either numeric or see `colors`.
- **ncol**: Fill color of the nodes: either numeric or see `colors`. Defaults to c("white","lightgray"): the first value is for the nodes of the axes and the second value is for the nodes of the X and Y levels.
- **nwid**: Line width of the nodes: a number to specify the line width. If a vector of two values is specified, then the first width is for the nodes of the axes and the second width is for the nodes of the X and Y levels.
- **lcol**: Color of the links (edges): either numeric or see `colors`. If a vector of two values is specified, then the first color is for the scores > 0 and the second color is for the scores < 0.
lagplot.corregp

lwid
Line width of the links (edges): a number to specify the line width. If a vector of
two values is specified, then the first width is for the scores > 0 and the second
width is for the scores < 0.

cpyol
Color of the pointer (arrow head): either numeric or see colors. If a vector of
two values is specified, then the first color is for the scores > 0 and the second
color is for the scores < 0.

ppos
Relative position of the pointer (arrow head): a vector of values between 0 and
1 for each axis.

ptyp
Type of of the pointer (arrow head): can be "simple", "curved", "triangle",
"circle", "ellipse" or "T". Defaults to "simple".

zoom
Zoom factor of the association graph. Defaults to 1.

hshft
Horizontal shift of the association graph. Defaults to 0.

vshft
Vertical shift of the association graph. Defaults to 0.

main
The main title of the association graph.

c1
The confidence level for the confidence intervals. Defaults to 0.95.

nq
Logical specifying whether to use a normal quantile (i.e. apply qnorm) in the
computation of the confidence interval. Defaults to TRUE. If FALSE, then the
confidence interval is computed directly with the quantile function.

digits
Integer specifying the number of decimals for the scores as labels of the links
(edges). Defaults to 2.

... Further arguments passed to or from other methods.

Details
Association graphs (of a corregp output) in the corregp package make use of various functionalities of the package diagram.

Value
A plot window containing the association graph.

See Also
corregp, cint.corregp, pcplot.corregp, plot3d.corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
agplot(haireye.crg, axes = 1:2, xsub = c("Hair", "Sex"))
plotag(haireye.crg, axes = 1:2, xsub = c("Hair", "Sex"))
Description

Method to construct an ANOVA table for correspondence regression, i.e. a table with the Chi-
squared deviation for each term in the formula of the corregp call (or of each individual level in
X in case xep = FALSE).

Usage

S3 method for class 'corregp'
anova(object, nf = NULL, cl = 0.95, nq = TRUE, ...)

Arguments

object The output of a call to corregp (i.e. an object of class "corregp").
nf The number of dimensions to be retained in the reduced space. Defaults to all
dimensions (no reduction).
cl The confidence level for the confidence intervals. Defaults to 0.95.
nq Logical specifying whether to use a normal quantile (i.e. apply qnorm) in the
computation of the confidence interval. Defaults to TRUE. If FALSE, then the
confidence interval is computed directly with the quantile function.
... Further arguments passed to or from other methods.

Details

If object was made with bootstrap replications, then anova.corregp will automatically compute
confidence intervals for the Chi-squared deviations by means of the ci function.

Value

A matrix with the Chi-squared deviations for all the terms in the formula of object, based on the
selected number of dimensions. If object was made with the argument xep = FALSE, then the
output contains the Chi-squared deviation for every individual level in X.

See Also

print.anova.corregp, ci, summary.corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
anova(haireye.crg, nf = 2)
The Use of Linguistic Variants in Audio-Visual Translation (Subtitles)

Description

This data set was a follow-up study to the COMURE project and was conducted at the Department of Translation, Interpreting and Communication of Ghent University between 2014 and 2018.

Format

A data frame with 3302 rows and 7 variables.

- **Variant** The linguistic variant used in a set of alternatives (27 levels).
- **Variable** The linguistic variable specifying a set of alternatives (13 levels).
- **Variety** The dichotomization of **Variant** into standard and non-standard.
- **Speaker** The role of the speaker in the data (2 levels).
- **Language** The language (and source language) of the data (3 levels).
- **LanguageR** The same as **Language** but with the observations of level intra.nl set to NA.
- **Genre** The genre or register of the data (2 levels).

Source

Examples

```r
data(AVT)
# The execution of corregp may be slow, due to bootstrapping:
avt.crg <- corregp(Variant ~ Speaker * Language * Genre, data = AVT, part = "Variable", b = 3000)
summary(avt.crg, parm = "b", add_ci = TRUE)
screepplot(avt.crg, add_ci = TRUE)
anova(avt.crg, nf = 2)
avt.col <- ifelse( xtabs(~ Variant + Variety, data = AVT)[, "Standard"] > 0, "blue", "red")
plot(avt.crg, x_ell = TRUE, xsub = c("Speaker", "Language", "Genre"), col_btm = avt.col,
     col_top = "black")
```
Confidence Ellipses for Correspondence Regression

Description
Method to compute confidence ellipses for coordinates in correspondence regression.

Usage
```r
## S3 method for class 'corregp'
cell(object, parm = "x", axes = 1:2, cl = 0.95,
     np = 100, ...)
```
cell(object, ...)

Arguments
- `object`: The output of a call to `corregp` (i.e. an object of class "corregp").
- `parm`: The parameter for which to compute the confidence ellipses. Can be either "y", "x", or any vector of term names in X, level names in X or level names in Y. Defaults to "x".
- `axes`: The axes for which to compute the confidence ellipses: a vector of two values. Defaults to the first two axes.
- `cl`: The confidence level for the confidence ellipses. Defaults to 0.95.
- `np`: The number of points to represent the confidence ellipses. Defaults to 100.
- `...`: Further arguments passed to or from other methods.

Details
cell (of a corregp output) makes use of ellipse from the package ellipse. Typically, cell is not so much used directly as it is called by a plot.corregp command.

Value
A list containing np points for each confidence ellipse of interest.

See Also
- `plot.corregp`

Examples
```r
data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
cell(haireye.crg, parm = "y")
cell(haireye.crg, parm = c("Hair", "Sex"))
```
Description

Method to compute 3D confidence ellipsoids for coordinates in correspondence regression.

Usage

```r
# S3 method for class 'corregp'
cell3d(object, parm = "x", axes = 1:3, cl = 0.95, ...)
cell3d(object, ...)
```

Arguments

- `object` The output of a call to `corregp` (i.e. an object of class "corregp").
- `parm` The parameter for which to compute the confidence ellipsoids. Can be either "y", "x", or any vector of term names in X, level names in X or level names in Y. Defaults to "x".
- `axes` The axes for which to compute the confidence ellipsoids: a vector of three values. Defaults to the first three axes.
- `cl` The confidence level for the confidence ellipsoids. Defaults to 0.95.
- `...` Further arguments passed to or from other methods.

Details

cell3d (of a corregp output) makes use of `ellipse3d` from the package `rgl`.

Typically, cell3d is not so much used directly as it is called by a `plot3d.corregp` command.

Value

A list containing coordinate points for each confidence ellipsoid of interest.

See Also

`plot3d.corregp`.

Examples

```r
data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
cell3d(haireye.crg, parm = "y")
cell3d(haireye.crg, parm = c("Hair", "Sex"))
```
Description

This is the basic function for computing a confidence interval on the basis of a sample of data values.

Usage

\[
\text{ci}(x, \cl = 0.95, \nq = \text{TRUE})
\]

Arguments

- **x**: A numeric vector.
- **cl**: The confidence level for the confidence interval. Defaults to 0.95.
- **nq**: Logical specifying whether to use a normal quantile (i.e. apply \text{qnorm}) in the computation of the confidence interval. Defaults to \text{TRUE}. If \text{FALSE}, then the confidence interval is computed directly with the \text{quantile} function.

Value

A vector with two components \text{Lower} and \text{Upper} giving the lower and upper confidence limits respectively.

See Also

\text{ciplot.corregp}, \text{anova.corregp}, \text{agplot.corregp}, \text{confint}.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
\text{ci(haireye.crg$conf$eigen[, 1])}
\text{ci(haireye.crg$conf$eigen[, 2])}
Description

Method to compute confidence intervals for coordinates in correspondence regression.

Usage

```r
## S3 method for class 'corregp'
cint(object, parm = "x", axis, cl = 0.95, nq = TRUE, ...

``` cint(object, ...)

Arguments

- `object`: The output of a call to `corregp` (i.e. an object of class "corregp").
- `parm`: The parameter for which to compute the confidence intervals. Can be either "y", "x", or any vector of term names in X, level names in X or level names in Y. Defaults to "x".
- `axis`: The axis for which to compute the confidence intervals.
- `cl`: The confidence level for the confidence interval. Defaults to 0.95.
- `nq`: Logical specifying whether to use a normal quantile (i.e. apply `qnorm`) in the computation of the confidence intervals. Defaults to TRUE. If FALSE, then the confidence intervals are computed directly with the `quantile` function.
- `...`: Further arguments passed to or from other methods.

Details

cint (of a corregp output) makes use of ci.

Typically, cint is not so much used directly as it is called by a ciplot.corregp command.

Value

A matrix with Lower and Upper confidence limits for the coordinates of interest.

See Also

ci, ciplot.corregp, agplot.corregp.
Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
cint(haireye.crg, parm = "y", axis = 1)
cint(haireye.crg, parm = c("Hair", "Sex"), axis = 1)

Description

Method to plot confidence intervals for coordinates in correspondence regression.

Usage

S3 method for class 'corregp'
cplot(x, parm = "x", axis, cl = 0.95, nq = TRUE,
 horiz = FALSE, na.rm = FALSE, type = "p", col = "darkgrey",
 cex = par("cex"), font = par("font"), family = par("family"),
 alim = NULL, adir = 1, ecol = "darkgrey", ewid = par("lwd"),
 etyp = par("lty"), psym = 16, pcol = par("col"), pce = cex,
 pbgc = par("bg"), lw = ewid, lty = etyp, sf = 0.01, gap = 0,
 main = NULL, sub = NULL, ...)

cplot(x, ...)

Arguments

x The output of a call to corregp (i.e. an object of class "corregp").
parm The parameter for which to plot the confidence intervals. Can be either "y", "x", or any vector of term names in X, level names in X or level names in Y. Defaults to "x".
axis The axis for which to plot the confidence intervals.
cl The confidence for which to plot the confidence intervals. Defaults to 0.95.
nq Logical specifying whether to use a normal quantile (i.e. apply qnorm) in the computation of the confidence intervals. Defaults to TRUE. If FALSE, then the confidence intervals are computed directly with the quantile function.
horiz Logical specifying whether the confidence intervals should be plotted horizontally or not. Defaults to FALSE.
na.rm Logical specifying whether to omit NA coordinates from the plot. Defaults to FALSE.
type The type of plot: see plot.default. For correspondence regression, there is an additional option "labs" which plots the text labels at the centers of the confidence intervals. Defaults to "p".
col Color of the text labels: either numeric or see colors.
cex Character expansion factor: a number to specify the size of the text labels.
font Font of the text labels: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic. Defaults to 1.
family Font family of the text labels: can be "serif", "sans", "mono" or one of the Hershey fonts.
alim Vector of two values specifying the lower and upper limit between which to plot the axis.
adir Reading direction of the text labels on the (horizontal) axis: either a numeric value between 0 and 3 (see the las argument in the graphical parameters par) or a character value matching either "horizontal" or "vertical". Defaults to 1 (horizontal).
ecol Color of the error bars: either numeric or see colors.
ewid Width of the error bars: a number to specify the line width.
etyp Line type of the error bars: 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
psym The symbol (or "plotting character") to use for the centers of the confidence intervals.
pcol Color of the center symbol: either numeric or see colors.
pceX Character expansion factor of the center symbol.
pbgc Background color of the center symbol: either numeric or see colors.
lwd Width of all lines except for the error bars, e.g. the connecting lines: a number to specify the line width.
lty Line type of all lines except for the error bars, e.g. the connecting lines: 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
sfrac Width of "crossbar" at the end of error bar as a fraction of the x plotting region. Defaults to 0.01.
gap Space left between the center of the error bar and the lines marking the error bar in units of the height (width) of the letter "O". Defaults to 0.
main The main title of the plot.
sub The subtitle of the plot.
... Further arguments passed to or from other methods.

Details
ciplot (of a corregp output) makes use of plotCI from the package gplots.

Value
A plot window containing the confidence intervals.
coef.corregp

See Also
ci.plotCI.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
ciplot(haireye.crg, parm = "y", axis = 1)

Details
The coefficients in correspondence regression are the same as the coordinate scores.

Value
A matrix or vector with coefficients (i.e. scores) for the parameters and axes of interest.

See Also
fitted.corregp, residuals.corregp.
Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
coef(haireye.crg, parm = c("Hair", "Sex"), axes = 1:2)
coefficients(haireye.crg, parm = c("Hair", "Sex"), axes = 1:2)

Description

This data set was a case study in the COMURE project ("corpus-based, multivariate research of register variation in translated and non-translated Belgian Dutch") which was conducted at the Department of Translation, Interpreting and Communication of Ghent University between 2010 and 2014.

Format

A data frame with 3762 rows and 5 variables.

- **Variant** The linguistic variant used in a set of alternatives (27 levels).
- **Variable** The linguistic variable specifying a set of alternatives (13 levels).
- **Variety** The dichotomization of **Variant** into standard and non-standard.
- **Register** The register or "Text type" of the data (6 levels).
- **Language** The language (and source language) of the data (3 levels).

Source

Examples

data(COMURE)
The execution of corregp may be slow, due to bootstrapping:
comure.crg <- corregp(Variant ~ Register * Language, data = COMURE, part = "Variable", b = 3000)
summary(comure.crg, parm = "b", add_ci = TRUE)
screepplot(comure.crg, add_ci = TRUE)
anova(comure.crg, nf = 2)
comure.col <- ifelse(xtabs(~ Variant + Variety, data = COMURE)[, "Standard"] > 0, "blue", "red")
plot(comure.crg, x_ell = TRUE, xsub = c("Register", "Language"), col_btm = comure.col, col_top = "black")
confGet

Getting conf Components from corregp Objects

Description

Internal function for retrieving the conf component(s) in a corregp object.

Usage

```r
confGet(crg, parm)
```

Arguments

- **crg**: The output of a call to `corregp` (i.e. an object of class "corregp").
- **parm**: The parameter for which to retrieve the conf components. Can be either "y", "x", or any vector of term names in X, level names in X or level names in Y.

Details

`confGet` is an internal function to be called by `cint.corregp, cell.corregp` or `cell3d.corregp`, but not by users.

Value

A list of components selected with parm.

corregp

Correspondence Regression

Description

This is the basic function for correspondence regression, i.e. the correspondence analysis of a contingency table formed by the categorical variables Y and X, where X can be in turn made up of the combinations of various categorical variables.

Usage

```r
corregp(formula, data, part = NULL, b = 0, xep = TRUE, std = FALSE, rel = TRUE, phi = FALSE, chr = ".", b_scheme = "multinomial")
```
Arguments

formula
A formula specification of which factors to cross with each other. The left-hand (y) side must be a single factor. The right-hand side (x) can involve all the usual specifications of interactions and/or nested analyses.

data
The data frame containing the variables specified in the formula.

part
Character vector specifying the names of conditional factors (e.g., a factor partitioning the levels of the left-hand side y into groups). This argument is relevant for analyses in which one wants to remove between-item variation.

b
Number of the bootstrap replications (simulations). If 0 (i.e., the default), then the analysis is exploratory.

xep
Logical specifying whether to output the separate terms in the right-hand side (x) as components in a list. If FALSE, then all x output is collected in a matrix.

std
Logical specifying whether to output the standardized coordinates. Defaults to FALSE.

rel
Logical specifying whether to divide the coordinates by the sqrt of their totals, so that one obtains coordinates for the relative frequencies (as is customary in correspondence analysis). Defaults to TRUE.

phi
Logical specifying whether to compute the output on the scale of the Chi-squared value of the contingency table or of the Phi-squared value (which is Chi-squared divided by N). Reminiscent of corresp in package MASS, defaults to FALSE.

chr
Character specifying the separator string for constructing the interaction terms.

b_scheme
Character specifying the sampling scheme for bootstrapping. Must match either "multinomial" (the default) or "product-multinomial".

Details

Correspondence regression rests on the idea, described by Gilula and Haberman (1988), of using a correspondence analysis to model a polytomous or multinomial (i.e., 'multi-category') response variable (Y) in terms of other (possibly interacting) factors (X) (see also 3.2 in Van der Heijden et al. 1989). These are specified in the argument formula, which can be constructed in all the usual ways of specifying a model formula: e.g.

- \(Y \sim X_1 + X_2 + X_1 \times X_2 \) or \(Y \sim X_1 \times X_2 \)
- \(Y \sim (X_1 + X_2 + X_3)^2 \)
- \(Y \sim X_1 \times X_2 \times X_3 \sim X_1 \times X_2 \times X_3 \)
- ...

Correspondence regression then crosstabulates the Y factor with all the combinations in X, thus producing a typical contingency table, on which a simple correspondence analysis is performed (see Greenacre 2017: 121-128 for the outline of this approach). The more general effects in X are obtained by aggregating the combinations.

Correspondence regression also allows for inferential validation of the effects, which is done by means of the bootstrap (in fact, Monte Carlo simulation). Setting the argument b to a number > 0, b replicates of the contingency table are generated with multinomial sampling. From these, b new values are derived for the coordinates in both Y and X as well as for the eigenvalues (also
called the "principal inertias"). On the basis of the replicate/simulated values, confidence intervals, ellipses or ellipsoids can be computed. CAUTION: bootstrapping/simulation is computationally quite intensive, so it can take a while to reach results, especially with a large \(b \).

The argument `parm` can be used when one wants to perform a correspondence regression of \(Y \) onto \(X \) conditional on other factors. These conditioning factors are therefore equivalent to \textit{random factors}, and \texttt{corregp} always conditions on the joint variable of all the specified factors. One such use of conditioning factors is a so-called \textit{lectometric} analysis in linguistics, where the levels of \(Y \) are grouped/partitioned/nested into clusters and one wants to exclude the heterogeneity between the clusters.

\textbf{Value}

An object of class "corregp", i.e. a list with components:

- `eigen`: A vector of eigenvalues of the correspondence regression.
- `y`: The coordinates (matrix) of the \(Y \) levels.
- `x`: The coordinates of the \(X \) levels. If `xep` is \texttt{TRUE}, then this is a list with a component for each term name.
- `freq`: A list of the frequencies of every \(Y \) and \(X \) level.
- `conf`: If \(b > 0 \). A list of bootstrap replicates for the eigenvalues, the coordinates of \(Y \) levels, the coordinates of \(X \) levels and the frequencies of both the \(Y \) levels and the \(X \) levels.
- `aux`: A list of auxiliary information (such as the \(U \) and \(V \) matrices of the SVD, the specified values for all the arguments) to be passed to other functions and methods.

\textbf{References}

\textbf{See Also}

- \texttt{print.corregp}
- \texttt{summary.corregp}
- \texttt{screeplot.corregp}
- \texttt{anova.corregp}
- \texttt{plot.corregp}

\textbf{Examples}

```r
data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
haireye.crg
```
corregplicate

Repeated Correspondence Regression

Description

A function for repeated correspondence regressions with bootstrapping in order to handle large data sets. This is essentially a wrapper replicate(n = r, expr = corregp(...), simplify = FALSE), so it may dissappear in the future.

Usage

\[
\text{corregplicate(formula, data, part = \text{NULL, } b = 100, r = 10, xep = \text{TRUE,}}\
\text{std = \text{FALSE, rel = \text{TRUE, phi = \text{FALSE, chr = ","},}}\
\text{b_scheme = "multinomial")}
\]

Arguments

- **formula**: A formula specification of which factors to cross with each other. The left-hand (y) side must be a single factor. The right-hand side (x) can involve all the usual specifications of interactions and/or nested analyses.
- **data**: The data frame containing the variables specified in the formula.
- **part**: Character vector specifying the names of conditional factors (e.g. a factor partitioning the levels of the left-hand side y into groups). This argument is relevant for analyses in which one wants to remove between-item variation.
- **b**: Number of the bootstrap replications (simulations).
- **r**: Number of repeated calls to corregp.
- **xep**: Logical specifying whether to output the separate terms in the right-hand side (x) as components in a list. If FALSE, then all x output is collected in a matrix.
- **std**: Logical specifying whether to output the standardized coordinates. Defaults to FALSE.
- **rel**: Logical specifying whether to divide the coordinates by the \(\sqrt{N} \) of their totals, so that one obtains coordinates for the relative frequencies (as is customary in correspondence analysis). Defaults to TRUE.
- **phi**: Logical specifying whether to compute the output on the scale of the Chi-squared value of the contingency table or of the Phi-squared value (which is Chi-squared divided by \(N \)). Reminiscent of corresp in package MASS, defaults to FALSE.
- **chr**: Character specifying the separator string for constructing the interaction terms.
- **b_scheme**: Character specifying the sampling scheme for bootstrapping. Must match either "multinomial" (the default) or "product-multinomial".

Value

An object of class "corregp" in which the bootstrap replications of all the repeated calls to corregp are put together.
See Also

corregp.

Value

A matrix or vector with the fitted values for the parameters of interest, based on the selected number of dimensions.

See Also

corregp, residuals.corregp.
Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
fitted(haireye.crg, parm = c("Hair", "Sex"), nf = 2)
fitted.values(haireye.crg, parm = c("Hair", "Sex"), nf = 2)

HairEye

Hair and Eye Color of Statistics Students (Data Frame)

Description

Format

A data frame with 592 rows and 3 variables.

Source

This is simply a data frame version of the in-built data set HairEyeColor.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
haireye.crg
summary(haireye.crg, parm = "b", add_ci = TRUE)
screepplot(haireye.crg, add_ci = TRUE)
anova(haireye.crg, nf = 2)
plot(haireye.crg, x_ell = TRUE, xsub = c("Hair", "Sex"))

pcplot.corregp

Parallel Coordinate Plotting for Correspondence Regression

Description

Method to produce a parallel coordinate plot of the output of a correspondence regression.
Usage

```r
## S3 method for class 'corregp'
pcplot(x, parm = "x", axes, add_ci = FALSE, cl = 0.95,
    nq = TRUE, col = "darkgrey", cex = par("cex"), font = par("font"),
    family = par("family"), lwd = par("lwd"), lty = par("lty"),
    lcol = col, psym = NULL, pcol = col, pcex = cex, ecol = "red",
    ewid = 1, etyp = 2, acol = "black", awid = 1, atyp = 1,
    acex = cex, afnt = font, adir = 1, add_scale = FALSE, main = NULL,
    sub = NULL, ...)
```

pcplot(x, ...)

Arguments

- `x` The output of a call to `corregp` (i.e. an object of class "corregp").
- `parm` The parameter for which to plot the coordinates. Can be either "y", "x", or any vector of term names in X, level names in X or level names in Y. Defaults to "x".
- `axes` The axes to plot.
- `add_ci` Logical specifying whether to include the confidence intervals. Defaults to FALSE.
- `cl` The confidence level for the confidence intervals. Defaults to 0.95.
- `nq` Logical specifying whether to use a normal quantile (i.e. apply `qnorm`) in the computation of the confidence intervals. Defaults to TRUE. If FALSE, then the confidence intervals are computed directly with the `quantile` function.
- `col` Color of the text labels: either numeric or see `colors`.
- `cex` Character expansion factor: a number to specify the size of the text labels.
- `font` Font of the text labels: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic. Defaults to 1.
- `family` Font family of the text labels: can be "serif", "sans", "mono" or one of the Hershey fonts.
- `lwd` Width of the connecting lines: a number to specify the line width.
- `lty` Line type of the connecting lines: 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
- `lcol` Color of the connecting lines: either numeric or see `colors`.
- `psym` The symbol (or "plotting character") for the values of the coordinates on the axes.
- `pcol` Color of the symbol for the values on the axes: either numeric or see `colors`.
- `pcex` Character expansion factor of the symbol for the values on the axes.
- `ecol` Color of the error lines (connecting the confidence intervals on each axis): either numeric or see `colors`.
ewid Width of the error lines (connecting the confidence intervals on each axis): a number to specify the line width.
etyp Line type of the error lines (connecting the confidence intervals on each axis): 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 2.
acol Color of the parallel axes: either numeric or see colors.
awid Width of the parallel axes: a number to specify the line width.
atyp Line type of the parallel axes: 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
acex Character expansion factor for the labels of the parallel axes.
afnt Font for the labels of the parallel axes: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic.
adir Reading direction of the labels on the parallel axes: either a numeric value between 0 and 3 (see the las argument in the graphical parameters par) or a character value matching either "horizontal" or "vertical". Defaults to 1 (horizontal).
add_scale Logical specifying whether to add a scale for the parallel axes (which are normalised).
main The main title of the plot.
sub The subtitle of the plot.
... Further arguments passed to or from other methods.

Details

Although adding lines for confidence intervals is possible, it is not recommended, as it typically leads to an unreadable plot.

Value

A parallel coordinate plot containing the output of a correspondence regression.

See Also

ciplot.corregp, plot.corregp, plot3d.corregp, agplot.corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
pcplot(haireye.crg, parm = "y", axes = 1:3)
pcplot(haireye.crg, parm = c("Hair", "Sex"), axes = 1:3)
plot.corregp

Plotting Correspondence Regression

Description

Basic method to plot the output of a correspondence regression.

Usage

```r
## S3 method for class 'corregp'
plot(x, axes = 1:2, y_btm = TRUE, y_ell = FALSE,
     x_ell = FALSE, ysub = NULL, xsub = NULL, hlim = NULL, vlim = NULL,
     expa_btm = 1, expa_top = 1, asp = 1, asp_btm = asp, asp_top = asp,
     col_btm = "darkgrey", col_top = "red", cex_btm = par("cex"),
     cex_top = cex_btm, font_btm = par("font"), font_top = font_btm,
     fam_btm = par("family"), fam_top = fam_btm, col_ell = par("col"),
     lwd_ell = par("lwd"), lty_ell = par("lty"), col_ori = par("col"),
     lwd_ori = par("lwd"), lty_ori = 1, main = NULL, sub = NULL,
     hlab = NULL, vlab = NULL, cl = 0.95, np = 100, add_ori = TRUE, ...)
```

Arguments

- `x`: The output of a call to `corregp` (i.e. an object of class "corregp").
- `axes`: The axes to plot: a vector of two values. Defaults to the first two axes.
- `y_btm`: Logical specifying whether the Y levels should be plotted first ("at the bottom") and then be overlaid by the X levels. Defaults to TRUE.
- `y_ell`: Logical specifying whether the confidence ellipses of the Y levels should be plotted. Defaults to FALSE.
- `x_ell`: Logical specifying whether the confidence ellipses of the X levels should be plotted. Defaults to FALSE.
- `ysub`: Vector of indices to select a subset of the Y levels.
- `xsub`: Vector of indices to select a subset of the X levels.
- `hlim`: Vector of two values specifying the lower and upper limit between which to plot the horizontal axis.
- `vlim`: Vector of two values specifying the lower and upper limit between which to plot the vertical axis.
- `expa_btm`: Expansion factor for the bottom coordinates: a number to rescale the axes.
- `expa_top`: Expansion factor for the top coordinates: a number to rescale the axes.
- `asp`: The aspect ratio for the whole plot. See `plot.window`.
- `asp_btm`: The aspect ratio for the bottom coordinates. See `plot.window`.
- `asp_top`: The aspect ratio for the top coordinates. See `plot.window`.
- `col_btm`: Color of the bottom levels: either numeric or see `colors`. Defaults to "darkgrey".
col_top Color of the top levels: either numeric or see colors. Defaults to "red".
cex_btm Character expansion factor of the bottom levels: a number to specify the size of the text labels.
cex_top Character expansion factor of the top levels: a number to specify the size of the text labels.
font_btm Font of the bottom levels: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic. Defaults to 1.
font_top Font of the top levels: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic. Defaults to 1.
fam_btm Font family of the bottom levels: can be "serif", "sans", "mono" or one of the Hershey fonts.
fam_top Font family of the top levels: can be "serif", "sans", "mono" or one of the Hershey fonts.
col_ell Color of the confidence ellipses: either a number or see colors.
lwd_ell Width of the confidence ellipses: a number to specify the line width.
lty_ell Line type of the confidence ellipses: 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
col_ori Color of the lines through the origin: either numeric or see colors.
lwd_ori Width of the lines through the origin: a number to specify the line width.
lty_ori Line type of the lines through the origin: 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Defaults to 1.
main The main title of the plot.
sub The subtitle of the plot.
hlab The title of the horizontal axis.
vlab The title of the vertical axis.
cl The confidence level for the confidence ellipses. Defaults to 0.95.
np The number of points to represent the confidence ellipses. Defaults to 100.
add_ori Logical specifying whether to add lines through the origin. Defaults to TRUE.
...
Further arguments passed to or from other methods.

Details
The plot of a correspondence regression is by definition a biplot.

Value
A plot window containing the output of a correspondence regression.

References
Description

Method to produce a 3D plot for a correspondence regression.

Usage

```r
## S3 method for class 'corregp'
plot3d(x, axes = 1:3, y_btm = TRUE, y_ell = FALSE,
       x_ell = FALSE, ysub = NULL, xsub = NULL, hlim = NULL, vlim = NULL,
       dlim = NULL, asp = par3d("scale"), col_btm = "darkgrey",
       col_top = "red", cex_btm = par3d("cex"), cex_top = cex_btm,
       font_btm = par3d("font"), font_top = font_btm,
       fam_btm = par3d("family"), fam_top = fam_btm, col_ell = "black",
       lwd_ell = 1, lty_ell = "shade", opa_ell = 0.2, col_ori = "grey",
       lwd_ori = 1, main = NULL, sub = NULL, hlab = NULL, vlab = NULL,
       dlab = NULL, cl = 0.95, add_ori = TRUE, ...)```

Arguments

- `x` The output of a call to `corregp` (i.e. an object of class “corregp”).
- `axes` The axes to plot: a vector of three values. Defaults to the first three axes.
- `y_btm` Logical specifying whether the Y levels should be plotted first (“at the bottom”) and then be overlaid by the X levels. Defaults to TRUE.
- `y_ell` Logical specifying whether the confidence ellipsoids of the Y levels should be plotted. Defaults to FALSE.
- `x_ell` Logical specifying whether the confidence ellipsoids of the X levels should be plotted. Defaults to FALSE.
- `ysub` Vector of indices to select a subset of the Y levels.
- `xsub` Vector of indices to select a subset of the X levels.
- `hlim` Vector of two values specifying the lower and upper limit between which to plot the horizontal axis.

Examples

```r
data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
plot(haireye.crg, x_ell = TRUE, xsub = c("Hair", "Sex"))
```
vlim Vector of two values specifying the lower and upper limit between which to plot the vertical axis.
dlim Vector of two values specifying the lower and upper limit between which to plot the "depth" axis.
asp The aspect ratio for the whole plot. See aspect3d.
col_btm Color of the bottom levels: either numeric or see colors. Defaults to "darkgrey".
col_top Color of the top levels: either numeric or see colors. Defaults to "red".
cex_btm Character expansion factor of the bottom levels: a number to specify the size of the text labels.
cex_top Character expansion factor of the top levels: a number to specify the size of the text labels.
font_btm Font of the bottom levels: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic.
font_top Font of the top levels: 1 for plain, 2 for bold, 3 for italic, and 4 for bold italic.
fam_btm Font family of the bottom levels: can be "serif", "sans", "mono" or code "symbol".
fam_top Font family of the top levels: can be "serif", "sans", "mono" or "symbol".
col_ell Color of the confidence ellipsoids: either a number or see colors. Defaults to "black".
lwd_ell Width of the confidence ellipsoids: a number to specify the line width.
lty_ell Line type of the confidence ellipsoids: either "shade", "wire", or "dots". Defaults to "shade".
op_ell Opaqueness of the confidence ellipsoids: a number between 0 for fully transparent and 1 for fully opaque. Defaults to 0.2.
col_ori Color of the lines through the origin: either a number or see colors. Defaults to "grey".
lwd_ori Width of the lines through the origin: a number to specify the line width. Defaults to 1.
main The main title of the plot.
sub The subtitle of the plot.
hlab The title of the horizontal axis.
vlab The title of the vertical axis.
dlاب The title of the "depth" axis.
cl The confidence level for the confidence ellipsoids. Defaults to 0.95.
add_ori Logical specifying whether to add lines through the origin. Defaults to TRUE.
... Further arguments passed to or from other methods.

Details plot3d (of a corregp output) makes use of plot3d (and text3d and abclines3d) from the package rgl.
Value

A 3D plot window containing the output of a correspondence regression.

See Also

corregp, pcplot.corregp, agplot.corregp, plot3d.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
plot3d(haireye.crg, x_ell = TRUE, xsub = c("Hair", "Sex"))
print.corregp  Printing Correspondence Regression

Description

Method to print the output of corregp.

Usage

## S3 method for class 'corregp'
print(x, nf = 2, ...)

Arguments

x  The output of a call to corregp (i.e. an object of class "corregp").
nf  The number of dimensions to print. Defaults to the first two dimensions.
...  Further arguments passed to or from other methods.

Value

The output of a call to corregp.

See Also

corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
haireye.crg
print(haireye.crg, nf = 3)

print.summary.corregp  Printing the Summary of Correspondence Regression

Description

Method to print the output of summary.corregp.

Usage

## S3 method for class 'summary.corregp'
print(x, ...)
residuals.corregp

Arguments

x
The output of a call to summary on a "corregp" object (i.e. an object of class "summary.corregp").

... Further arguments passed to or from other methods.

Value

The output of a call to summary on a "corregp" object. The eigenvalues and contributions are printed with TOTALs.

See Also

summary.corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
summary(haireye.crg, add_ci = TRUE)
summary(haireye.crg, parm = "y", contrib = "pts_axs", nf = 2)

---

residuals.corregp    Extracting Residuals from Correspondence Regression

Description

Method to extract the residuals of a correspondence regression.

Usage

## S3 method for class 'corregp'
residuals(object, parm = "all", nf = NULL, ...)

## S3 method for class 'corregp'
resid(object, parm = "all", nf = NULL, ...)

Arguments

object The output of a call to corregp (i.e. an object of class "corregp").
parm The parameter for which to extract the residuals. Can be "all", "both" (or abbreviations), "y" or "x" for the residuals of every cell in the data, but it can also be any vector of term names in X or level names in X. Defaults to "all".
nf The number of dimensions to be retained in the reduced space. Defaults to all dimensions (no reduction).
... Further arguments passed to or from other methods.
Details

If all dimensions are retained, then the residuals will only be exactly zero to the observed counts if no conditioning factors were specified with the argument "part" in the corregp call. This is because the associations with the conditioning factors (in "part") are not taken into account.

Value

A matrix or vector with the residuals for the parameters of interest, based on the selected number of dimensions.

See Also

coef.corregp, fitted.corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
residuals(haireye.crg, parm = c("Hair", "Sex"), nf = 2)
resid(haireye.crg, parm = c("Hair", "Sex"), nf = 2)

screeplot.corregp Scree Plotting

Description

Method to produce a scree plot, i.e. a bar chart of the eigenvalues.

Usage

## S3 method for class 'corregp'
screeplot(x, type = "value", add_ci = FALSE, c1 = 0.95, nq = TRUE, ...)

Arguments

x The output of a call to corregp (i.e. an object of class "corregp").
type A character specification of which type of values to plot: either "value" for the actual eigenvalues, "%" for percentages or "cum_%" for cumulative percentages. Defaults to "value".
add_ci Logical specifying whether to include the confidence intervals. Defaults to FALSE.
c1 The confidence level for the confidence intervals. Defaults to 0.95.
Logical specifying whether to use a normal quantile (i.e. apply `qnorm`) in the computation of the confidence intervals. Defaults to `TRUE`. If `FALSE`, then the confidence intervals are computed directly with the `quantile` function.

Further arguments passed to or from other methods.

Details

`screeplot` (of a `corregp` output) makes use of `barplot2` from the package `gplots`.

Value

A plot window containing the scree plot.

See Also

`corregp`, `summary.corregp`, `anova.corregp`.

Examples

data(HairEye)
haireye.cr < corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
screeplot(haireye.cr, add_ci = TRUE)

summary.corregp

Summarizing Correspondence Regression

Description

Method to produce a summary of a correspondence regression.

Usage

```r
S3 method for class 'corregp'
summary(object, parm = NULL, contrib = NULL, nf = NULL,
 add_ci = FALSE, cl = 0.95, nq = TRUE, ...)
```

Arguments

- **object**: The output of a call to `corregp` (i.e. an object of class “corregp”).
- **parm**: The parameter for which to compute the contributions contrib. Can be either "y" for the Y contributions, "x" for the X contributions, "both" which can be abbreviated to "b", or a vector of term names in X. Defaults to "b".
- **contrib**: The type of contributions to be computed: either from points to axes (absolute contributions) or from axes to points (squared correlations). The specification can be "pts_to_axes" or "axes_to_pts", "pts2axis" or "axis2pts", "p_a" or "a_p", or any other reasonable abbreviation.
nf
The number of dimensions to be retained in the reduced space. Defaults to all
dimensions (no reduction).

add_ci
Logical specifying whether to compute confidence intervals for the eigenvalues
(and eigenvalues only). Defaults to FALSE.

c1
The confidence level for the confidence intervals. Defaults to 0.95.

q
Logical specifying whether to use a normal quantile (i.e. apply qnorm) in the
computation of the confidence intervals. Defaults to TRUE. If FALSE, then the
confidence intervals are computed directly with the quantile function.

... Further arguments passed to or from other methods.

Value
An object of class "summary.corregp", providing a summary of a correspondence regression, i.e. a
list with components:

formula The formula specified to the formula argument in the call to corregp.
data The name of the data frame specified to the data argument in the call to corregp.
part The name of the factor specified to the part argument in the call to corregp.
chi_squared The chi-squared value of the correspondence regression.
phi_squared The phi-squared value of the correspondence regression, i.e. the chi-squared
value divided by N.
N The total number of observations.
eigen Depending on add_ci: if FALSE, a matrix of the actual eigenvalues, their per-
centages and cumulative percentages; if TRUE, a list of the actual eigenvalues,
their percentages and cumulative percentages together with the lower and upper
confidence limits for each.

y If parm is "y" or "b". A list of components p_a for the absolute contributions
and/or a_p for the squared correlations, depending on contrib.

x If parm is "y", "b" or any of the term names in X. A list of components p_a for
the absolute contributions and/or a_p for the squared correlations, depending in
contrib.

See Also
corregp, print.summary.corregp, anova.corregp.

Examples

data(HairEye)
haireye.crg <- corregp(Eye ~ Hair * Sex, data = HairEye, b = 3000)
summary(haireye.crg, add_ci = TRUE)
summary(haireye.crg, parm = "y", contrib = "pts_axs", nf = 2)
Description

The distribution of the Belgian Dutch -e(n)-suffix with 14 determiners in 14 registers and for several speaker characteristics.

Format

A data frame with 40778 rows and 13 variables.

- **variant**: The linguistic variant used in a set of alternatives (35 levels).
- **variable**: The linguistic variable specifying a set of alternatives (14 levels).
- **inflected**: Numeric variable specifying whether the linguistic variant is inflected (1) or not (0).
- **register**: The register of the data in the Spoken Dutch Corpus (14 levels: see here for their definition).
- **registerR**: The dichotomization of register into private and public.
- **speakerID**: The ID of the speaker in the Spoken Dutch Corpus (1144 levels).
- **region**: The region in which the speaker lived until the age of 18 (4 levels).
- **sex**: The sex of the speaker (2 levels).
- **birthyear**: The year in which the speaker was born (63 levels).
- **decade**: The decade in which the speaker was born (7 levels).
- **generation**: The generation cohort in which the speaker was born (5 levels).
- **education**: The level of education of the speaker (3 levels).
- **occupation**: The level of occupation of the speaker (10 levels: see here for their definition).

Source


Examples

```r
data(TSS)
The execution of corregp may be slow, due to bootstrapping:
tss.crg <- corregp(Variant ~ Register2 * Region, data = TSS, part = "Variable", b = 3000)
tss.crg
summary(tss.crg, parm = "b", add_ci = TRUE)
screepplot(tss.crg, add_ci = TRUE)
anova(tss.crg, nf = 2)
tss.col <- ifelse(xtabs(~ Variant + Inflected, data = TSS)[,1] > 0, "blue", "red")
plot(tss.crg, x_ell = TRUE, xsub = c("Register2", "Region"), col_btm = tss.col, col_top = "black")
```
Index

abclines3d, 28
agplot, 3
agplot (agplot.corregp), 4
agplot.corregp, 4, 11, 12, 24, 29
anova.corregp, 3, 7, 11, 19, 27, 29, 33, 34
aspect3d, 28
AVT, 2, 8
barplot2, 33
biplot, 26, 27
cell, 3
cell (cell.corregp), 9
cell.corregp, 3, 9, 17
cell3d, 3
cell3d (cell3d.corregp), 10
cell3d.corregp, 3, 10, 17
ci, 3, 7, 11, 12, 15
cint, 3
cint (cint.corregp), 12
cint.corregp, 3, 6, 12, 17
ciplot, 3
ciplot (ciplot.corregp), 13
ciplot.corregp, 3, 11, 12, 13, 24
coeff.corregp, 3, 15, 21, 32
coefficients.corregp, 3
coefficients.corregp (coeff.corregp), 15
colors, 5, 6, 14, 23–26, 28
COMURE, 2, 8, 16
confGet, 17
confint, 11
corregp, 2, 3, 5–7, 9, 10, 12, 13, 15, 17, 17,
20, 21, 23, 25, 27, 29–34
corregp-package, 2
corregplicate, 3, 20
corresp, 18, 20
eclipse, 9
eclipse3d, 10
fitted.corregp, 3, 15, 21, 32
fitted.values.corregp, 3
fitted.values.corregp (fitted.corregp),
21
formula, 18, 20, 34
HairEye, 2, 22
HairEyeColor, 22
Hershey, 5, 14, 23, 26
par, 14, 24
pcplot, 3
pcplot (pcplot.corregp), 22
pcplot.corregp, 3, 6, 22, 29
plot.corregp, 3, 9, 19, 24, 25
plot.default, 13
plot.window, 25
plot3d, 28, 29
plot3d.corregp, 4, 6, 10, 24, 27
plotag, 3
plotag (agplot.corregp), 4
plotag.corregp, 4
plotCI, 14, 15
print.anova.corregp, 3, 7, 29
print.corregp, 3, 19, 30
print.summary.corregp, 3, 30, 34
qnorm, 6, 7, 11–13, 23, 33, 34
quantile, 6, 7, 11–13, 23, 33, 34
resid.corregp, 3
resid.corregp (residuals.corregp), 31
residuals.corregp, 3, 15, 21, 31
screeplot.corregp, 3, 19, 27, 32
summary.corregp, 3, 7, 19, 27, 30, 31, 33, 33
text3d, 28
TSS, 2, 35

36