Package ‘corto’

October 22, 2021

Type Package

Title Inference of Gene Regulatory Networks

Version 1.1.10

Maintainer Federico M. Giorgi <federico.giorgi@gmail.com>

Description We present 'corto' (Correlation Tool), a simple package to infer
gene regulatory networks and visualize master regulators from gene expression
data using DPI (Data Processing Inequality) and bootstrapping to recover edges.
An initial step is performed to calculate all significant
edges between a list of source nodes (centroids) and target genes.
Then all triplets containing two centroids and one target are tested
in a DPI step which removes edges. A bootstrapping process then calculates
the robustness of the network, eventually re-adding edges previously removed by DPI.
The algorithm has been optimized to run outside a computing cluster, using a fast correlation
implementation. The package finally provides functions to calculate network enrichment
analysis from RNA-Seq and ATAC-Seq signatures as described in the article by

License LGPL-3

Encoding UTF-8

RoxygenNote 7.1.2

Depends R (>= 3.6)

NeedsCompilation no

Imports dplyr, gplots, knitr, parallel, pbapply, plotrix, rmarkdown,
stats, utils

VignetteBuilder knitr

Author Federico M. Giorgi [aut, cre],
Daniele Mercatelli [ctb],
Gonzalo Lopez-Garcia [ctb]

Repository CRAN

Date/Publication 2021-10-22 12:40:06 UTC
R topics documented:

corto 2
fcor 3
fishep 4
gsea 5
gsea2 6
kmgformat 7
mra 7
mraplot 9
p2r 9
p2z 10
plot_gsea 11
plot_gsea2 12
r2p 13
scatter 13
slice 14
ssgsea 15
stouffer 16
val2col 17
wstouffer 18
z2p 18

Index 20

corto 2
Calculate a regulon from a data matrix

Description

This function applies Correlation and DPI to generate a robust regulon object based on the input data matrix and the selected centroids.

Usage

corto(
inmat,
centroids,
nbootstraps = 100,
p = 1e-30,
nthreads = 1,
verbose = FALSE,
cnvmat = NULL,
boot_threshold = 0
)

Arguments

inmat
Input matrix, with features (e.g. genes) as rows and samples as columns.

centroids
A character vector indicating which features (e.g. genes) to consider as centroids (a.k.a. Master Regulators) for DPI.

nbootstraps
Number of bootstraps to be performed. Default is 100.

p
The p-value threshold for correlation significance (by default 1E-30).

nthreads
The number of threads to use for bootstrapping. Default is 1.

verbose
Logical. Whether to print progress messages. Default is FALSE.

cnvmat
An optional matrix with copy-number variation data. If specified, the program will calculate linear regression between the gene expression data in the input matrix (exp) and the cnv data, and target profiles will be transformed to the residuals of each linear model exp~cnv. Default is NULL.

boot_threshold
The fraction of bootstraps in which the edge should appear to be included in the final network. It can be any number between 0.0 and 1.0. Default is 0.0.

Value

A list (object of class regulon), where each element is a centroid:

- **tfmode**: a named vector containing correlation coefficients between features and the centroid
- **likelihood**: a numeric vector indicating the likelihood of interaction

Examples

Load data matrix inmat (from TCGA mesothelioma project)
load(system.file("extdata","inmat.rda",package="corto",mustWork=TRUE))

Load centroids
load(system.file("extdata","centroids.rda",package="corto",mustWork=TRUE))

Run corto
regulon <- corto(inmat,centroids=centroids,nthreads=2,nbootstraps=10,verbose=TRUE)

In a second example, a CNV matrix is provided. The analysis will be run only for the features (rows) and samples (columns) present in both matrices
load(system.file("extdata","cnvmat.rda",package="corto",mustWork=TRUE))

regulon <- corto(inmat,centroids=centroids,nthreads=2,nbootstraps=6,verbose=TRUE,cnvmat=cnvmat,p=1e-8)

fcor

A fast correlation function

Description

A fast correlation function

Usage

fcor(inmat, centroids, r)
Arguments

inmat An input matrix with features as rows and samples as columns
centroids A character vector indicating the centroids
r A numeric correlation threshold

Value

A matrix describing which edges were significant in the input matrix matrix according to the r correlation threshold provided

Usage

fisherp(ps)

Arguments

ps a vector of p-values

Value

p.val an integrated p-value

Examples

ps<-c(0.01,0.05,0.03,0.2)
fisherp(ps)
Description

This function performs Gene Set Enrichment Analysis

Usage

gsea(
 reflist,
 set,
 method = c("permutation", "pareto"),
 np = 1000,
 w = 1,
 gsea_null = NULL
)

Arguments

reflist named vector of reference scores
set element set
method one of 'permutation' or 'pareto'
np Number of permutations (Default: 1000)
w exponent used to raise the supplied scores. Default is 1 (original scores un-
 changed)
gsea_null a GSEA null distribution (Optional)

Value

A GSEA object. Basically a list of s components:

 ES The enrichment score
 NES The normalized enrichment score
 ledge The items in the leading edge
 p.value The permutation-based p-value

Examples

 reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
 set<-paste0('gene',sample(1:200,50))
 obj<-gsea(reflist,set,method='pareto',np=1000)
 obj$p.value
gsea2 2-way GSEA Gene set enrichment analysis of two complementary gene sets using gsea

Description

2-way GSEA GSEA Gene set enrichment analysis of two complementary gene sets using gsea

Usage

gsea2(
 reflist,
 set1,
 set2,
 method = c("permutation", "pareto"),
 np = 1000,
 w = 1,
 gsea_null = NULL
)

Arguments

reflist named vector of reference scores
set1 element set 1
set2 element set 1
method one of 'permutation' or 'pareto'
np Number of permutations (Default: 1000)
w exponent used to raise the supplied scores. Default is 1 (original scores unchanged)
gsea_null a GSEA null distribution (Optional)

Value

A list of 2 GSEA objects. Each of which is a list of components:

ES The enrichment score
NES The normalized enrichment score
ledge The items in the leading edge
p.value The permutation-based p-value

Examples

reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set1<-paste0('gene',sample(1:200,50))
set2<-paste0('gene',sample(801:1000,50))
obj<-gsea2(reflist,set1,set2,method='pareto',np=1000)
obj$p.value
kmgformat

kmgformat - Nice Formatting of Numbers

Description

This function will convert thousand numbers to K, millions to M, billions to G, trillions to T, quadrillions to P

Usage

```r
kmgformat(input, roundParam = 1)
```

Arguments

- **input** A vector of values
- **roundParam** How many decimal digits you want

Value

A character vector of formatted number names

Examples

```r
# Thousands
set.seed(1)
a<-runif(1000,0,1e4)
plot(a,yaxt='n')
kmg<-kmgformat(pretty(a))
axis(2,at=pretty(a),labels=kmg)

# Millions to Billions
set.seed(1)
a<-runif(1000,0,1e9)
plot(a,yaxt='n',pch=20,col="black")
kmg<-kmgformat(pretty(a))
axis(2,at=pretty(a),labels=kmg)
```

mra

Perform Master Regulator Analysis (mra).

Description

The analysis is performed between two groups of samples in the form of expression matrices, with genes/features as rows and samples as columns.
Usage

```r
mra(
  expmat1,
  expmat2 = NULL,
  regulon,
  minsize = 10,
  nperm = NULL,
  nthreads = 2,
  verbose = FALSE,
  atacseq = NULL
)
```

Arguments

- `expmat1`: A numeric expression matrix, with genes/features as rows and samples as columns. If only `expmat1` is provided (without `expmat2`), the function will perform a sample-by-sample master regulator analysis, with the mean of the dataset as a reference. If `expmat2` is provided, `expmat1` will be considered the "treatment" sample set. If a named vector is provided, with names as genes/features and values as signature values (e.g. T-test statistics), signature master regulator analysis is performed.

- `expmat2`: A numeric expression matrix, with genes/features as rows and samples as columns. If provided, it will be considered as the "control" or "reference" sample set for `expmat1`.

- `regulon`: A _regulon_ object, output of the _corto_ function.

- `minsize`: A minimum network size for each centroid/TF to be analyzed. Default is 10.

- `nperm`: The number of times the input data will be permuted to generate null signatures. Default is 1000 if `expmat2` is provided, and 10 if `expmat2` is not provided (single sample mra).

- `nthreads`: The number of threads to use for generating null signatures. Default is 1

- `verbose`: Boolean, whether to print full messages on progress analysis. Default is FALSE

- `atacseq`: An optional 3 column matrix derived from an ATAC-Seq analysis, indicating 1) gene symbol, 2) -log10(FDR)*sing(log2FC) of an ATAC-Seq design, 3) distance from TSS. If provided, the output will contain an _atacseq_ field.

Value

A list summarizing the master regulator analysis

- `nes`: the normalized enrichment score: positive if the centroid/TF network is upregulated in `expmat1` vs `expmat2` (or in `expmat1` vs the mean of the dataset), negative if downregulated. A vector in multisample mode, a matrix in sample-by-sample mode.

- `pvalue`: the pvalue of the enrichment.

- `sig`: the calculated signature (useful for plotting).

- `regulon`: the original regulon used in the analysis (but filtered for _minsize_).
mraplot

Plot a master regulator analysis

Description

Plotting function for master regulator analysis performed by the _mra_ function

Usage

mraplot(
 mraobj,
 mrs = 5,
 title = "corto - Master Regulator Analysis",
 pthr = 0.01
)

Arguments

 mraobj The input object, output of the function mra
 mrs Either a numeric value indicating how many MRs to show, sorted by significance, or a character vector specifying which TFs to show. Default is 5
 title Title of the plot (optional, default is "corto - Master Regulator Analysis")
 pthr The p-value at which the MR is considered significant. Default is 0.01

Value

A plot is generated

p2r

p2r Convert a P-value to the corresponding Correlation Coefficient

Description

p2r Convert a P-value to the corresponding Correlation Coefficient

Usage

p2r(p, n)
Arguments

- p: the p-value
- n: the number of samples

Value

- a correlation coefficient

Examples

```
p2r(p=0.08, n=20)
```

Description

This function gives a gaussian Z-score corresponding to the provided p-value. Careful: sign is not provided.

Usage

```
p2z(p)
```

Arguments

- p: a p-value

Value

- z: a Z score

Examples

```
p<-0.05
p2z(p)
```
plot_gsea

Plot GSEA results

Description

This function generates a GSEA plot from a gsea object.

Usage

```r
plot_gsea(
  gsea.obj,
  twoColors = c("red", "blue"),
  plotNames = FALSE,
  colBarcode = "black",
  title = "Running Enrichment Score",
  bottomTitle = "List Values",
  bottomYlabel = "Signature values",
  ext_nes = NULL,
  ext_pvalue = NULL,
  ext_es = NULL,
  omit_middle = FALSE
)
```

Arguments

- `gsea.obj` GSEA object produced by the `gsea` function
- `twoColors` the two colors to use for positive[1] and negative[2] enrichment scores
- `plotNames` Logical. Should the set names be plotted?
- `colBarcode` The color of the barcode
- `title` String to be plotted above the Running Enrichment Score
- `bottomTitle` String for the title of the bottom part of the plot
- `bottomYlabel` String for the Y label of the bottom plot
- `ext_nes` Provide a NES from an external calculation
- `ext_pvalue` Provide a pvalue from an external calculation
- `ext_es` Provide an ES from an external calculation
- `omit_middle` If TRUE, will not plot the running score (FALSE by default)

Value

Nothing, a plot is generated in the default output device
Examples

```r
reflist<-setNames(sort(rnorm(1000)),paste0('gene',1:1000))
set1<-paste0('gene',sample(1:200,50))
obj<-gsea(reflist,set1,method='pareto',np=1000)
plot_gsea(obj)
```

plot_gsea2 *Plot 2-way GSEA results*

Description

This function generates a GSEA plot from a gsea object.

Usage

```r
plot_gsea2(
  gsea.obj,
  twoColors = c("red", "blue"),
  plotNames = FALSE,
  title = "Running Enrichment Score",
  bottomTitle = "List Values",
  bottomYlabel = "Signature values"
)
```

Arguments

- `gsea.obj` GSEA object produced by the gsea function
- `twoColors` the two colors to use for positive[1] and negative[2] enrichment scores, and of the barcodes
- `plotNames` Logical. Should the set names be plotted?
- `title` String to be plotted above the Running Enrichment Score
- `bottomTitle` String for the title of the bottom part of the plot
- `bottomYlabel` String for the Y label of the bottom plot (FALSE by default)

Value

Nothing, a plot is generated in the default output device

Examples

```r
reflist<-setNames(sort(rnorm(1000)),paste0('gene',1:1000))
set1<-paste0('gene',sample(1:200,50))
set2<-paste0('gene',sample(801:1000,50))
obj<-gsea2(reflist,set1,set2,method='pareto',np=1000)
plot_gsea2(obj)
```
r2p

r2p Convert Correlation Coefficient to P-value

Description

r2p Convert Correlation Coefficient to P-value

Usage

\[r2p(r, n) \]

Arguments

- \(r \)
 the correlation coefficient
- \(n \)
 the number of samples

Value

a numeric p-value

Examples

\[r2p(r=0.4, n=20) \# 0.08 \]

scatter

scatter - XY scatter plot with extra information

Description

This function will plot two variables (based on their common names), calculate their Coefficient of Correlation (CC), plot a linear regression line and color the background if the correlation is positive (red), negative (blue) or non-significant (white)

Usage

\[
\text{scatter(} \\
\quad x, \\
\quad y, \\
\quad \text{method = "pearson",} \\
\quad \text{threshold = 0.01,} \\
\quad \text{showLine = TRUE,} \\
\quad \text{grid = TRUE,} \\
\quad \text{bgcol = FALSE,} \\
\quad \text{pch = 20,} \\
\quad \text{subtitle = NULL,} \\
\quad \text{extendXlim = FALSE,} \\
\quad \ldots \\
\text{)}
\]
Arguments

x The first named vector
y The second named vector

method a character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.
threshold a numeric value indicating the significance threshold (p-value) of the correlation, in order to show a colored background. Default is 0.01.
showLine a boolean indicating if a linear regression line should be plotted. Default is TRUE
grid a boolean indicating whether to show a plot grid. Default is TRUE
bgcol Boolean. Should a background coloring associated to significance and sign of correlation be used? Default is TRUE, and it will color the background in red if the correlation coefficient is positive, in blue if negative, in white if not significant (according to the _threshold_ parameter)
pch the _pch_ parameter indicating the points shape. Default is 20
subtitle NULL by default, in which case the function will print as a subtitle the correlation coefficient (CC) and its pvalue. Otherwise, a user-provided string, bypassing the predefined subtitle
extendXlim logical. If TRUE, the x-axis limits are extended by a fraction (useful for labeling points on the margins of the plot area). Default is FALSE

... Arguments to be passed to the core _plot_ function

Value

A plot

Examples

x<-setNames(rnorm(200),paste0("var",1:200))
y<-setNames(rnorm(210),paste0("var",11:220))
scatter(x,y,xlab="Variable x",ylab="Variable y",main="Scatter plot by corto package")

slice Slice

Description

This function prints a slice of a matrix

Usage

slice(matrix)
Arguments

- **matrix**: A matrix

Value

A visualization of the first 5 rows and columns of the input matrix

Examples

```r
set.seed(1)
example <- matrix(rnorm(1000), nrow=100, ncol=10)
slice(example)
```

Description

This function performs single sample GSEA

Usage

```r
ssgsea(inmat, groups, scale = TRUE, minsize = 10)
```

Arguments

- **inmat**: A numeric matrix, with rownames/rows as genes or features, and colnames/columns as sample names
- **groups**: a named list. Names are names of the groups (e.g. pathways) and elements are character vectors indicating gene or feature names (that should match, at least partially, with the rownames of inmat)
- **scale**: Boolean. Wheter the matrix should be row-scaled.
- **minsize**: Numeric. Include only groups with at least this many elements Default is 10

Value

A matrix of Normalized Enrichment Scores (NES), which can be converted to p-values using the function `corto::z2p`
Examples

A random matrix
set.seed(1)
inmat<-matrix(rnorm(200*50),nrow=200,ncol=50)
rownames(inmat)<-paste0("gene",1:nrow(inmat))
A random list of groups
groups<-list()
for(i in 1:10){
 somegenes<-sample(rownames(inmat),30)
groups[[paste0("pathway_",i)]]<-somegenes
}
Run ssGSEA
nesmat<-ssgsea(inmat,groups)

stouffer

Stouffer integration of Z scores

Description

This function gives a gaussian Z-score corresponding to the provided p-value Careful: sign is not provided

Usage

stouffer(x)

Arguments

x a vector of Z scores

Value

Z an integrated Z score

Examples

zs<-c(1,3,5,2,3)
stouffer(zs)
val2col - Convert a numeric vector into colors

Description

val2col - Convert a numeric vector into colors

Usage

```r
val2col(
  z,
  col1 = "navy",
  col2 = "white",
  col3 = "red3",
  nbbreaks = 1000,
  center = TRUE,
  rank = FALSE
)
```

Arguments

- `z`: a vector of numbers
- `col1`: a color name for the min value, default 'navy'
- `col2`: a color name for the middle value, default 'white'
- `col3`: a color name for the max value, default 'red3'
- `nbbreaks`: Number of colors to be generated. Default is 30.
- `center`: boolean, should the data be centered? Default is TRUE
- `rank`: boolean, should the data be ranked? Default is FALSE

Value

a vector of colors

Examples

```r
a <- rnorm(1000)
cols <- val2col(a)
plot(a, col = cols, pch = 16)
```
wstouffer

Weighted Stouffer integration of Z scores

Description

This function gives a gaussian Z-score corresponding to the provided p-value. Careful: sign is not provided.

Usage

`wstouffer(x, w)`

Arguments

- `x` a vector of Z scores
- `w` weight for each Z score

Value

`Z` an integrated Z score

Examples

```r
zs<-c(1,-3,5,2,3)
w<-(1,10,1,2,1)
print(wstouffer(zs,w))
```

z2p

Description

This function gives a gaussian p-value corresponding to the provided Z-score.

Usage

`z2p(z)`

Arguments

- `z` a Z score

Value

a p-value
Examples

z <- 1.96
z2p(z)
Index

corto, 2
fcor, 3
fisherp, 4
gsea, 5
gsea2, 6
kmgformat, 7
mra, 7
mraplot, 9
p2r, 9
p2z, 10
plot_gsea, 11
plot_gsea2, 12
r2p, 13
scatter, 13
slice, 14
ssgsea, 15
stouffer, 16
val2col, 17
wstouffer, 18
z2p, 18