Package ‘corto’

December 7, 2023

Type Package

Title Inference of Gene Regulatory Networks

Version 1.2.4

Maintainer Federico M. Giorgi <federico.giorgi@gmail.com>

Description We present 'corto' (Correlation Tool), a simple package to infer
gene regulatory networks and visualize master regulators from gene expression
data using DPI (Data Processing Inequality) and bootstrapping to recover edges.
An initial step is performed to calculate all significant
edges between a list of source nodes (centroids) and target genes.
Then all triplets containing two centroids and one target are tested
in a DPI step which removes edges. A bootstrapping process then calculates
the robustness of the network, eventually re-adding edges previously removed by DPI.
The algorithm has been optimized to run outside a computing cluster, using a fast correlation
implementation. The package finally provides functions to calculate network enrichment
analysis from RNA-Seq and ATAC-Seq signatures as described in the article by

License LGPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 3.6)

NeedsCompilation no

Imports dplyr, gplots, knitr, methods, rmarkdown, parallel, pbapply,
 plotrix, stats, utils

VignetteBuilder knitr

Author Federico M. Giorgi [aut, cre],
 Daniele Mercatelli [ctb],
 Gonzalo Lopez-Garcia [ctb]

Repository CRAN

Date/Publication 2023-12-06 23:20:03 UTC
barplot2 - Bar plot with upper error bars

Description

barplot2 - Bar plot with upper error bars

Usage

barplot2(values, errors, lower = FALSE, flat = TRUE, ...)

Arguments

values A matrix of values
errors A matrix of values for upper error bar
lower Boolean, whether the lower error bar should be plotted, default FALSE
flat Boolean, whether the head of bars should be flat, default TRUE
... Arguments to be passed to the core _barplot_ function
Value

A plot

Examples

```r
values <- matrix(rnorm(10*4, mean=10), nrow=4, ncol=10)
errors <- matrix(runif(10*4), nrow=4, ncol=10)
colnames(values) <- colnames(errors) <- LETTERS[1:10]
barplot2(values, errors, main="Bar plot with error bars")
```

corto Calculate a regulon from a data matrix

Description

This function applies Correlation and DPI to generate a robust regulon object based on the input data matrix and the selected centroids.

Usage

```r
corto(
inmat, 
centroids, 
nbootstraps = 100, 
p = 1e-30, 
nthreads = 1, 
verbose = FALSE, 
ecnmat = NULL, 
boot_threshold = 0
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inmat</td>
<td>Input matrix, with features (e.g. genes) as rows and samples as columns</td>
</tr>
<tr>
<td>centroids</td>
<td>A character vector indicating which features (e.g. genes) to consider as centroids (a.k.a. Master Regulators) for DPI</td>
</tr>
<tr>
<td>nbootstraps</td>
<td>Number of bootstraps to be performed. Default is 100</td>
</tr>
<tr>
<td>p</td>
<td>The p-value threshold for correlation significance (by default 1E-30)</td>
</tr>
<tr>
<td>nthreads</td>
<td>The number of threads to use for bootstrapping. Default is 1</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical. Whether to print progress messages. Default is FALSE</td>
</tr>
<tr>
<td>cnvmat</td>
<td>An optional matrix with copy-number variation data. If specified, the program will calculate linear regression between the gene expression data in the input matrix (exp) and the cnv data, and target profiles will be transformed to the residuals of each linear model exp~cnv. Default is NULL</td>
</tr>
<tr>
<td>boot_threshold</td>
<td>The fraction of bootstraps in which the edge should appear to be included in the final network. It can be any number between 0.0 and 1.0. Default is 0.0</td>
</tr>
</tbody>
</table>
fcor

A fast correlation function

Description
A fast correlation function

Usage
fcor(inmat, centroids, r)

Arguments

inmat An input matrix with features as rows and samples as columns
centroids A character vector indicating the centroids
r A numeric correlation threshold

Value
A matrix describing which edges were significant in the input matrix matrix according to the r correlation threshold provided
fisherp

Description

This function applies the Fisher integration of p-values

Usage

fisherp(ps)

Arguments

ps a vector of p-values

Value

p.val an integrated p-value

Examples

ps<-c(0.01,0.05,0.03,0.2)
fisherp(ps)

gsea

Description

This function performs Gene Set Enrichment Analysis

Usage

gsea(
 reflist,
 set,
 method = c("permutation", "pareto"),
 np = 1000,
 w = 1,
 gsea_null = NULL
)

Arguments

- `reflist`: named vector of reference scores
- `set`: element set
- `method`: one of 'permutation' or 'pareto'
- `np`: Number of permutations (Default: 1000)
- `w`: exponent used to raise the supplied scores. Default is 1 (original scores unchanged)
- `gsea_null`: a GSEA null distribution (Optional)

Value

A GSEA object. Basically a list of s components:

- **ES**: The enrichment score
- **NES**: The normalized enrichment score
- **ledge**: The items in the leading edge
- **p.value**: The permutation-based p-value

Examples

```r
reflist<-setNames(-sort(rnorm(1000)),paste0(quote(Var),gene,1:1000))
set<-paste0(quote(Var)gene,quote(Var)sample(1:200,50))
obj<-gsea(reflist,set,method=quote(pareto),np=1000)
obj$p.value
```

gsea2

2-way GSEA GSEA Gene set enrichment analysis of two complementary gene sets using gsea

Description

2-way GSEA GSEA Gene set enrichment analysis of two complementary gene sets using gsea

Usage

```r
gsea2(
  reflist,
  set1,
  set2,
  method = c("permutation", "pareto"),
  np = 1000,
  w = 1,
  gsea_null = NULL
)
```
Arguments

reflist named vector of reference scores
set1 element set 1
set2 element set 1
method one of 'permutation' or 'pareto'
np Number of permutations (Default: 1000)
w exponent used to raise the supplied scores. Default is 1 (original scores unchanged)
gsea_null a GSEA null distribution (Optional)

Value

A list of 2 GSEA objects. Each of which is a list of components:

ES The enrichment score
NES The normalized enrichment score
ledge The items in the leading edge
p.value The permutation-based p-value

Examples

reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set1<-paste0('gene',sample(1:200,50))
set2<-paste0('gene',sample(801:1000,50))
obj<-gsea2(reflist,set1,set2,method='pareto',np=1000)
obj$p.value

kmgformat

kmgformat - Nice Formatting of Numbers

Description

This function will convert thousand numbers to K, millions to M, billions to G, trillions to T, quadrillions to P

Usage

kmgformat(input, roundParam = 1)

Arguments

input A vector of values
roundParam How many decimal digits you want
Perform Master Regulator Analysis (mra).

Description

The analysis is performed between two groups of samples in the form of expression matrices, with genes/features as rows and samples as columns.

Usage

```r
mra(
  expmat1,
  expmat2 = NULL,
  regulon,
  minsize = 10,
  nperm = NULL,
  nthreads = 2,
  verbose = FALSE,
  atacseq = NULL
)
```

Arguments

- `expmat1` A numeric expression matrix, with genes/features as rows and samples as columns. If only `expmat1` is provided (without `expmat2`), the function will perform a sample-by-sample master regulator analysis, with the mean of the dataset as a reference. If `expmat2` is provided, `expmat1` will be considered the "treatment" sample set. If a named vector is provided, with names as genes/features and values as signature values (e.g. T-test statistics), signature master regulator analysis is performed.
expmat2 A numeric expression matrix, with genes/features as rows and samples as columns. If provided, it will be considered as the "control" or "reference" sample set for expmat1.
regulon A _regulon_ object, output of the _corto_ function.
minsize A minimum network size for each centroid/TF to be analyzed. Default is 10.
nperm The number of times the input data will be permuted to generate null signatures. Default is 1000 if expmat2 is provided, and 10 if expmat2 is not provided (single sample mra).
n threads The number of threads to use for generating null signatures. Default is 1
verbose Boolean, whether to print full messages on progress analysis. Default is FALSE
atacseq An optional 3 column matrix derived from an ATAC-Seq analysis, indicating 1) gene symbol, 2) -log10(FDR)*sing(log2FC) of an ATAC-Seq design, 3) distance from TSS. If provided, the output will contain an _atacseq_ field.

Value
A list summarizing the master regulator analysis

• nes: the normalized enrichment score: positive if the centroid/TF network is upregulated in expmat1 vs expmat2 (or in expmat1 vs the mean of the dataset), negative if downregulated. A vector in multisample mode, a matrix in sample-by-sample mode.
• pvalue: the pvalue of the enrichment.
• sig: the calculated signature (useful for plotting).
• regulon: the original regulon used in the analysis (but filtered for _minsize_)
• atac: Optionally present if atacseq data is provided. For each centroid/TF a number ranging from 0 to 1 will indicate the fraction of changes in activity due to promoter effects rather than distal effects.

mraplot
Plot a master regulator analysis

Description
Plotting function for master regulator analysis performed by the _mra_ function

Usage
mraplot(
mraobj,
mrs = 5,
title = "corto - Master Regulator Analysis",
pthr = 0.01
)
Arguments

mraobj The input object, output of the function mra

mrs Either a numeric value indicating how many MRs to show, sorted by significance, or a character vector specifying which TFs to show. Default is 5

title Title of the plot (optional, default is "corto - Master Regulator Analysis")

pthr The p-value at which the MR is considered significant. Default is 0.01

Value

A plot is generated

Description

p2r Convert a P-value to the corresponding Correlation Coefficient

Usage

p2r(p, n)

Arguments

p the p-value

n the number of samples

Value

a correlation coefficient

Examples

p2r(p=0.08, n=20)
Description

This function gives a gaussian Z-score corresponding to the provided p-value Careful: sign is not provided

Usage

p2z(p)

Arguments

p a p-value

Value

z a Z score

Examples

p<-0.05
p2z(p)

plot_gsea

Plot GSEA results

Description

This function generates a GSEA plot from a gsea object

Usage

plot_gsea(
 gsea.obj,
 twoColors = c("red", "blue"),
 plotNames = FALSE,
 colBarcode = "black",
 title = "Running Enrichment Score",
 bottomTitle = "List Values",
 bottomYlabel = "Signature values",
 ext_nes = NULL,
 ext_pvalue = NULL,
 ext_es = NULL,
 omit_middle = FALSE
)

Arguments

- **gsea.obj**: GSEA object produced by the `gsea` function
- **twoColors**: the two colors to use for positive[1] and negative[2] enrichment scores
- **plotNames**: Logical. Should the set names be plotted?
- **colBarcode**: The color of the barcode
- **title**: String to be plotted above the Running Enrichment Score
- **bottomTitle**: String for the title of the bottom part of the plot
- **bottomYlabel**: String for the Y label of the bottom plot
- **ext_nes**: Provide a NES from an external calculation
- **ext_pvalue**: Provide a pvalue from an external calculation
- **ext_es**: Provide an ES from an external calculation
- **omit_middle**: If TRUE, will not plot the running score (FALSE by default)

Value

Nothing, a plot is generated in the default output device

Examples

```r
reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set<-paste0('gene',sample(1:200,50))
obj<-gsea(reflist,set,method='pareto',np=1000)
plot_gsea(obj)
```

Description

This function generates a GSEA plot from a gsea object

Usage

```r
plot_gsea2(
  gsea.obj,
  twoColors = c("red", "blue"),
  plotNames = FALSE,
  title = "Running Enrichment Score",
  bottomTitle = "List Values",
  bottomYlabel = "Signature values",
  legside1 = NULL,
  legside2 = NULL
)
```
Arguments

- **gsea.obj**: GSEA object produced by the gsea function
- **twoColors**: the two colors to use for positive[1] and negative[2] enrichment scores, and of the barcodes
- **plotNames**: Logical. Should the set names be plotted?
- **title**: String to be plotted above the Running Enrichment Score
- **bottomTitle**: String for the title of the bottom part of the plot
- **bottomYlabel**: String for the Y label of the bottom plot (FALSE by default)
- **legside1**: String specifying the position of the first NES legend, for example "topright", "bottomleft". Default is NULL, letting the function automatically place it
- **legside2**: String specifying the position of the second NES legend, for example "topright", "bottomleft". Default is NULL, letting the function automatically place it

Value

Nothing, a plot is generated in the default output device

Examples

```r
coref<-setNames(-sort(rnorm(1000),paste0('gene',1:1000)))
set1<-paste0('gene',sample(1:200,50))
set2<-paste0('gene',sample(801:1000,50))
obj<-gsea2(reflist,set1,set2,method='pareto',np=1000)
plot_gsea2(obj)
```

r2p

r2p Convert Correlation Coefficient to P-value

Description

r2p Convert Correlation Coefficient to P-value

Usage

```r
r2p(r, n)
```

Arguments

- **r**: the correlation coefficient
- **n**: the number of samples

Value

a numeric p-value

Examples

```r
r2p(r=0.4, n=20) # 0.08
```
Description

This function will plot two variables (based on their common names), calculate their Coefficient of Correlation (CC), plot a linear regression line and color the background if the correlation is positive (red), negative (blue) or non-significant (white).

Usage

```
scatter(
  x,
  y,
  method = "pearson",
  threshold = 0.01,
  showLine = TRUE,
  grid = TRUE,
  bgcol = FALSE,
  pch = 20,
  subtitle = NULL,
  extendXlim = FALSE,
  ci = FALSE,
  ...
)
```

Arguments

- **x**: The first named vector
- **y**: The second named vector
- **method**: a character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.
- **threshold**: a numeric value indicating the significance threshold (p-value) of the correlation, in order to show a colored background. Default is 0.01.
- **showLine**: a boolean indicating if a linear regression line should be plotted. Default is TRUE.
- **grid**: a boolean indicating whether to show a plot grid. Default is TRUE.
- **bgcol**: Boolean. Should a background coloring associated to significance and sign of correlation be used? Default is TRUE, and it will color the background in red if the correlation coefficient is positive, in blue if negative, in white if not significant (according to the _threshold_ parameter).
- **pch**: the _pch_ parameter indicating the points shape. Default is 20.
- **subtitle**: NULL by default, in which case the function will print as a subtitle the correlation coefficient (CC) and its pvalue. Otherwise, a user-provided string, bypassing the predefined subtitle.
extendXlim logical. If TRUE, the x-axis limits are extended by a fraction (useful for labeling points on the margins of the plot area). Default is FALSE

ci logical. If TRUE, confidence intervals of linear regression are shown at 95 percent confidence.

Arguments to be passed to the core _plot_ function (if a new plot is created)

Value
A plot

Examples

```r
x<-setNames(rnorm(200),paste0("var",1:200))
y<-setNames(rnorm(210),paste0("var",11:220))
scatter(x,y,xlab="Variable x",ylab="Variable y",main="Scatter plot by corto package",ci=TRUE)
```

scinot `scinot - Convert a number to a scientific notation expression`

Description
This function will convert any numeric vector

Usage

```r
scinot(v, digits = 3)
```

Arguments

v The input numeric object. It can be a single value or a vector
digits An integer indicating how many significant digits to show. Default is 3.

Value
An object of class _expression_.

Examples

```r
# Usage on single value
scinot(0.00000543)
# Demonstration on a vector
clears<-c(3.456e-12,0.00901,5670000,-3.16e18,0.000004522,rnorm(5,sd=0.0000001))
plot(0,xlim=c(0,10),ylim=c(0,10),type="n")
text(c(2,6),c(10,10),labels=c("Before","After"),font=2)
for(i in 10:1){
  text(c(2,6),c(i-1,i-1),labels=c(numbers[i],scinot(numbers)[i]))
}
slice  

Description
This function prints a slice of a matrix

Usage
slice(matrix)

Arguments
matrix  A matrix

Value
A visualization of the first 5 rows and columns of the input matrix

Examples
set.seed(1)
example<-matrix(rnorm(1000),nrow=100,ncol=10)
slice(example)

ssgsea  

Description
This function performs single sample GSEA

Usage
ssgsea(inmat, groups, scale = TRUE, minsize = 10)

Arguments
inmat  A numeric matrix, with rownames/rows as genes or features, and colnames/columns as sample names

groups  a named list. Names are names of the groups (e.g. pathways) and elements are character vectors indicating gene or feature names (that should match, at least partially, with the rownames of inmat)

scale  Boolean. Wheter the matrix should be row-scaled.

minsize  Numeric. Include only groups with at least this many elements Default is 10
Value

A matrix of Normalized Enrichment Scores (NES), which can be converted to p-values using the function `corto::z2p`.

Examples

```r
A random matrix
set.seed(1)
inmat<-matrix(rnorm(200*50),nrow=200,ncol=50)
rownames(inmat)<-paste0("gene",1:nrow(inmat))
A random list of groups
groups<-list()
for(i in 1:10){
 somegenes<-sample(rownames(inmat),30)
groups[[paste0("pathway_",i)]]<-somegenes
}
Run ssGSEA
nesmat<-ssgsea(inmat,groups)
```

---

### stouffer

**Stouffer integration of Z scores**

**Description**

This function gives a gaussian Z-score corresponding to the provided p-value. Careful: sign is not provided.

**Usage**

`stouffer(x)`

**Arguments**

- `x` : a vector of Z scores

**Value**

- `Z` : an integrated Z score

**Examples**

```r
zs<-c(1,3,5,2,3)
stouffer(zs)
```
textrepel

- Plot text with non-overlapping labels

Description

This function plots text with x and y coordinates, forcing overlapping labels to not overlap.

Usage

textrepel(
  x,
  y,
  labels = NULL,
  padding = " ",
  rstep = 0.1,
  tstep = 0.1,
  vertical = FALSE,
  textSize = 1,
  showLines = TRUE,
  lineColor = "#00000066",
  lineWidth = 2,
  showPoints = TRUE,
  pointColor = "#00000033",
  pointSize = 2,
  pointPch = 16,
  add = FALSE,
  ...
)

Arguments

- **x**: A numeric vector of x coordinates
- **y**: A numeric vector of y coordinates (must have the same length of x)
- **labels**: A vector of labels associated with x and y (must have the same length of x)
- **padding**: A character object specifying left and right padding for words. Default is a single whitespace " ".
- **rstep**: Decimal numeric specifying the lateral step length for label distancing. Default is 0.1
- **tstep**: Decimal numeric specifying the theta step length for label distancing. Default is 0.1
- **vertical**: Boolean. If FALSE (default), the labels are plotted horizontally. If TRUE, vertically
- **textSize**: Numeric. Size of text. Default is 1
- **showLines**: Boolean. Whether to show lines connecting displaced labels to their original plot. Default is TRUE
val2col

val2col - Convert a numeric vector into colors

Description

val2col - Convert a numeric vector into colors

Examples

# Simple example, generating a new plot, taking care of some overlapping labels
set.seed(1)
x <- rnorm(100)
y <- abs(x) + rnorm(100)
names(x) <- names(y) <- paste0("OBJ", 1:length(x))
labels <- names(x)
textrepel(x, y, labels)

# More advanced example, adding textrepel over an existing plot
set.seed(1)
x <- rnorm(1000)
y <- abs(x) + rnorm(1000)
names(x) <- names(y) <- paste0("GENE", 1:length(x))
labels <- names(x)
plot(x, y, pch=16, col="#00000066", xlim=1.3*c(min(x), max(x)))
subset1 <- which(x < (-2.2))
textrepel(x[subset1], y[subset1], labels[subset1], add=TRUE, pointCol="cornflowerblue")
subset2 <- which(x > (+2.2))
textrepel(x[subset2], y[subset2], labels[subset2], add=TRUE, pointCol="salmon")
Usage

\[
\text{val2col(}
\begin{align*}
z, \\
col1 & = \text{"navy"}, \\
col2 & = \text{"white"}, \\
col3 & = \text{"red3"}, \\
nbreaks & = 1000, \\
center & = \text{TRUE}, \\
rank & = \text{FALSE}
\end{align*}
\)
\]

Arguments

- \(z\): a vector of numbers
- \(\text{col1}\): a color name for the min value, default 'navy'
- \(\text{col2}\): a color name for the middle value, default 'white'
- \(\text{col3}\): a color name for the max value, default 'red3'
- \(\text{nbreaks}\): Number of colors to be generated. Default is 30.
- \(\text{center}\): boolean, should the data be centered? Default is TRUE
- \(\text{rank}\): boolean, should the data be ranked? Default is FALSE

Value

- a vector of colors

Examples

\[
a<-\text{rnorm(1000)} \\
cols<-\text{val2col(a)} \\
\text{plot(a,col=cols,pch=16)}
\]

---

**wstouffer**  
*Weighted Stouffer integration of Z scores*

**Description**

This function gives a gaussian Z-score corresponding to the provided p-value. Careful: sign is not provided.

**Usage**

\[
\text{wstouffer(x, w)}
\]

**Arguments**

- \(x\): a vector of Z scores
- \(w\): weight for each Z score
Value

Z an integrated Z score

Examples

zs<-c(1,-3,5,2,3)
ws<-c(1,10,1,2,1)
wstouffer(zs,ws)

Description

This function gives a gaussian p-value corresponding to the provided Z-score

Usage

z2p(z)

Arguments

z a Z score

Value

a p-value

Examples

z<-1.96
z2p(z)
Index

barplot2, 2

corto, 3

fcor, 4
fisherp, 5

gsea, 5
gsea2, 6

kmgformat, 7

mra, 8
mraplot, 9

p2r, 10
p2z, 11
plot_gsea, 11
plot_gsea2, 12

r2p, 13

scatter, 14
scinot, 15
slice, 16
ssgsea, 16
stouffer, 17

textrepel, 18

val2col, 19
wstouffer, 20

z2p, 21