Package ‘corto’

April 9, 2020

Type Package
Title Inference of Gene Regulatory Networks
Version 1.0.8
Maintainer Federico M. Giorgi <federico.giorgi@gmail.com>

Description We present ‘corto’ (Correlation Tool), a simple package to infer
gen regulatory networks and visualize master regulators from gene expression
data using DPI (Data Processing Inequality) and bootstrapping to recover edges.
An initial step is performed to calculate all significant
dges between a list of source nodes (centroids) and target genes.
Then all triplets containing two centroids and one target are tested
in a DPI step which removes edges. A bootstrapping process then calculates
the robustness of the network, eventually re-adding edges previously removed by DPI.
The algorithm has been optimized to run outside a computing cluster, using a fast correlation
implementation. The package finally provides functions to calculate network enrichment
analysis from RNA-Seq and ATAC-Seq signatures as described in the article by

License LGPL-3
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.0.2
Depends R (>= 3.6)
NeedsCompilation no
Imports dplyr, knitr, parallel, pbapply, plotrix, rmarkdown, stats, utils
VignetteBuilder knitr

Author Federico M. Giorgi [aut, cre],
 Daniele Mercatelli [ctb],
 Gonzalo Lopez-Garcia [ctb]

Repository CRAN
Date/Publication 2020-04-09 11:40:03 UTC
corto . 2
fcor . 3
fisherpn . 4
gsea . 5
gsea2 . 6
kmgformat . 7
mra . 7
mraplot . 9
p2r . 9
p2z . 10
plot_gsea . 10
plot_gsea2 . 11
r2p . 12
scatter . 13
slice . 14
ssgsea . 14
stouffer . 15
wstouffer . 16
z2p . 16

Index 18

corto Calculate a regulon from a data matrix

Description

This function applies Spearman Correlation and DPI to generate a robust regulon object based on the input data matrix and the selected centroids.

Usage

corto(
inmat,
centroids,
nbootstraps = 100,
p = 1e-30,
nthreads = 1,
verbose = FALSE,
cnvmat = NULL
)
Arguments

- `inmat`: Input matrix, with features (e.g. genes) as rows and samples as columns.
- `centroids`: A character vector indicating which features (e.g. genes) to consider as centroids (a.k.a. Master Regulators) for DPI.
- `nbootstraps`: Number of bootstraps to be performed. Default is 100.
- `p`: The p-value threshold for correlation significance (by default 1E-30).
- `nthreads`: The number of threads to use for bootstrapping. Default is 1.
- `verbose`: Logical. Whether to print progress messages. Default is FALSE.
- `cnvmat`: An optional matrix with copy-number variation data. If specified, the program will calculate linear regression between the gene expression data in the input matrix (exp) and the cnv data, and target profiles will be transformed to the residuals of each linear model exp~cnv. Default is NULL.

Value

A list (object of class regulon), where each element is a centroid:

- `tfmode`: a named vector containing correlation coefficients between features and the centroid.
- `likelihood`: a numeric vector indicating the likelihood of interaction.

Examples

```r
# Load data matrix inmat (from TCGA mesothelioma project)
load(system.file("extdata","inmat.rda",package="corto",mustWork=TRUE))
# Load centroids
load(system.file("extdata","centroids.rda",package="corto",mustWork=TRUE))
# Run corto
regulon <- corto(inmat,centroids=centroids,nthreads=2,nbootstraps=10,verbose=TRUE)

# In a second example, a CNV matrix is provided. The analysis will be run only
# for the features (rows) and samples (columns) present in both matrices
load(system.file("extdata","cnvmat.rda",package="corto",mustWork=TRUE))
regulon <- corto(inmat,centroids=centroids,nthreads=2,nbootstraps=6,verbose=TRUE,cnvmat=cnvmat, p=1e-8)
```

fcor

A fast correlation function

Description

A fast correlation function

Usage

```r
fcor(inmat, centroids, r)
```
Arguments

inmat
An input matrix with features as rows and samples as columns

centroids
A character vector indicating the centroids

r
A numeric correlation threshold

Value

A matrix describing which edges were significant in the input matrix matrix according to the r correlation threshold provided

fisherp
Fisher integration of p-values

Description

This function applies the Fisher integration of p-values

Usage

`fisherp(ps)`

Arguments

ps
a vector of p-values

Value

p.val an integrated p-value

Examples

```r
ps<-c(0.01,0.05,0.03,0.2)
fisherp(ps)
```
Description
This function performs Gene Set Enrichment Analysis

Usage

```
gsea(
  reflist,
  set,  
  method = c("permutation", "pareto"),
  np = 1000,
  w = 1,
  gsea_null = NULL
)
```

Arguments

- **reflist**: named vector of reference scores
- **set**: element set
- **method**: one of ‘permutation’ or ‘pareto’
- **np**: Number of permutations (Default: 1000)
- **w**: exponent used to raise the supplied scores. Default is 1 (original scores unchanged)
- **gsea_null**: a GSEA null distribution (Optional)

Value

A GSEA object. Basically a list of s components:

- **ES**: The enrichment score
- **NES**: The normalized enrichment score
- **ledge**: The items in the leading edge
- **p.value**: The permutation-based p-value

Examples

```
reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set<-paste0('gene',sample(1:200,50))
obj<-gsea(reflist,set,method='pareto',np=1000)
obj$p.value
```
gsea2 2-way GSEA Gene set enrichment analysis of two complementary gene sets using gsea

Description
2-way GSEA GSEA Gene set enrichment analysis of two complementary gene sets using gsea

Usage
gsea2(
 reflist,
 set1,
 set2,
 method = c("permutation", "pareto"),
 np = 1000,
 w = 1,
 gsea_null = NULL
)

Arguments
reflist named vector of reference scores
set1 element set 1
set2 element set 1
method one of 'permutation' or 'pareto'
np Number of permutations (Default: 1000)
w exponent used to raise the supplied scores. Default is 1 (original scores unchanged)
gsea_null a GSEA null distribution (Optional)

Value
A list of 2 GSEA objects. Each of which is a list of components:

ES The enrichment score
NES The normalized enrichment score
ledge The items in the leading edge
p.value The permutation-based p-value

Examples
reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set1<-paste0('gene',sample(1:200,50))
set2<-paste0('gene',sample(801:1000,50))
objs<-gsea2(reflist,set1,set2,method='pareto',np=1000)
objs$p.value
kmgformat

kmgformat - Nice Formatting of Numbers

Description

This function will convert thousand numbers to K, millions to M, billions to G, trillions to T, quadrillions to P

Usage

`kmgformat(input, roundParam = 1)`

Arguments

input

A vector of values

roundParam

How many decimal digits you want

Value

A character vector of formatted numebr names

Examples

Thousands
```r
set.seed(1)
a<-runif(1000,0,1e4)
plot(a,yaxt='n')
kmg<-kmgformat(pretty(a))
axis(2,at=pretty(a),labels=kmg)
```

Millions to Billions
```r
set.seed(1)
a<-runif(1000,0,1e9)
plot(a,yaxt='n',pch=20,col="black")
kmg<-kmgformat(pretty(a))
axis(2,at=pretty(a),labels=kmg)
```

mra

Perform Master Regulator Analysis (mra).

Description

The analysis is performed between two groups of samples in the form of expression matrices, with genes/features as rows and samples as columns.
mra(
 expmat1,
 expmat2 = NULL,
 regulon,
 minsize = 10,
 nperm = NULL,
 nthreads = 2,
 verbose = FALSE,
 atacseq = NULL
)

Arguments

expmat1 A numeric expression matrix, with genes/features as rows and samples as columns. If only expmat1 is provided (without expmat2), the function will perform a sample-by-sample master regulator analysis, with the mean of the dataset as a reference. If expmat2 is provided, expmat1 will be considered the "treatment" sample set.

expmat2 A numeric expression matrix, with genes/features as rows and samples as columns. If provided, it will be considered as the "control" or "reference" sample set for expmat1.

regulon A _regulon_ object, output of the _corto_ function.

minsize A minimum network size for each centroid/TF to be analyzed. Default is 10.

nperm The number of times the input data will be permuted to generate null signatures. Default is 1000 if expmat2 is provided, and 10 if expmat2 is not provided (single sample mra).

nthreads The number of threads to use for generating null signatures. Default is 1

verbose Boolean, whether to print full messages on progress analysis. Default is FALSE

atacseq An optional 3 column matrix derived from an ATAC-Seq analysis, indicating 1) gene symbol, 2) -log10(FDR)*sing(log2FC) of an ATAC-Seq design, 3) distance from TSS. If provided, the output will contain an _atacseq_ field.

Value

A list summarizing the master regulator analysis

- nes: the normalized enrichment score: positive if the centroid/TF network is upregulated in expmat1 vs expmat2 (or in expmat1 vs the mean of the dataset), negative if downregulated. A vector in multisample mode, a matrix in sample-by-sample mode.
- pvalue: the pvalue of the enrichment.
- sig: the calculated signature (useful for plotting).
- regulon: the original regulon used in the analysis (but filtered for _minsize_)
- atac: Optionally present if atacseq data is provided. For each centroid/TF a number ranging from 0 to 1 will indicate the fraction of changes in activity due to promoter effects rather than distal effects.
mraplot
Plot a master regulator analysis

Description
Plotting function for master regulator analysis performed by the _mra_ function

Usage
mraplot(mraobj, mrs = 5)

Arguments
- **mraobj**
The input object, output of the function mra
- **mrs**
Either a numeric value indicating how many MRs to show, sorted by significance, or a character vector specifying which TFs to show. Default is 5

Value
A plot is generated

p2r
p2r Convert a P-value to the corresponding Correlation Coefficient

Description
p2r Convert a P-value to the corresponding Correlation Coefficient

Usage
p2r(p, n)

Arguments
- **p**
the p-value
- **n**
the number of samples

Value
a correlation coefficient

Examples
p2r(p=0.08, n=20)
Description
This function gives a gaussian Z-score corresponding to the provided p-value. Careful: sign is not provided.

Usage
p2z(p)

Arguments

p

a p-value

Value

z

a Z score

Examples

p <- 0.05
p2z(p)

plot_gsea

Plot GSEA results

Description
This function generates a GSEA plot from a gsea object.

Usage

plot_gsea(
 gsea.obj,
 twoColors = c("red", "blue"),
 plotNames = FALSE,
 colBarcode = "black",
 title = "Running Enrichment Score",
 bottomTitle = "List Values",
 bottomYlabel = "Signature values",
 ext_nes = NULL,
 omit_middle = FALSE
)
plot_gsea2

Plot 2-way GSEA results

Description

This function generates a GSEA plot from a gsea object

Usage

```r
plot_gsea2(
  gsea.obj,
  twoColors = c("red", "blue"),
  plotNames = FALSE,
  title = "Running Enrichment Score",
  bottomTitle = "List Values",
  bottomYlabel = "Signature values"
)
```

Arguments

- **gsea.obj**: GSEA object produced by the gsea function
- **twoColors**: the two colors to use for positive[1] and negative[2] enrichment scores
- **plotNames**: Logical. Should the set names be plotted?
- **colBarcode**: The color of the barcode
- **title**: String to be plotted above the Running Enrichment Score
- **bottomTitle**: String for the title of the bottom part of the plot
- **bottomYlabel**: String for the Y label of the bottom plot
- **ext_nes**: Provide a NES from an external calculation
- **omit_middle**: If TRUE, will not plot the running score (FALSE by default)

Value

Nothing, a plot is generated in the default output device

Examples

```r
reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set<-paste0('gene',sample(1:200,50))
obj<-gsea(reflist,set,method='pareto',np=1000)
plot_gsea(obj)
```
Arguments

gsea.obj GSEA object produced by the gsea function
twoColors the two colors to use for positive[1] and negative[2] enrichment scores, and of the barcodes
plotNames Logical. Should the set names be plotted?
title String to be plotted above the Running Enrichment Score
bottomTitle String for the title of the bottom part of the plot
bottomYlabel String for the Y label of the bottom plot (FALSE by default)

Value

Nothing, a plot is generated in the default output device

Examples

reflist<-setNames(-sort(rnorm(1000)),paste0('gene',1:1000))
set1<-paste0('gene',sample(1:200,50))
set2<-paste0('gene',sample(801:1000,50))
obj<-gsea2(reflist,set1,set2,method='pareto',np=1000)
plot_gsea2(obj)

r2p

r2p Convert Correlation Coefficient to P-value

Description

r2p Convert Correlation Coefficient to P-value

Usage

r2p(r, n)

Arguments

r the correlation coefficient
n the number of samples

Value

a numeric p-value

Examples

r2p(r=0.4,n=20) # 0.08
scatter - XY scatter plot with extra information

Description

This function will plot two variables (based on their common names), calculate their Coefficient of Correlation (CC), plot a linear regression line and color the background if the correlation is positive (red), negative (blue) or non-significant (white).

Usage

scatter(
 x,
 y,
 method = "pearson",
 threshold = 0.01,
 showLine = TRUE,
 pch = 20,
 extendXlim = FALSE,
 ...
)

Arguments

x
 The first named vector
y
 The second named vector
method
 a character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.
threshold
 a numeric value indicating the significance threshold (p-value) of the correlation, in order to show a colored background. Default is 0.01.
showLine
 a boolean indicating if a linear regression line should be plotted. Default is TRUE
pch
 the _pch_ parameter indicating the points shape. Default is 20
extendXlim
 logical. If TRUE, the x-axis limits are extended by a fraction (useful for labeling points on the margins of the plot area). Default is FALSE
...
 Arguments to be passed to the core _plot_ function

Value

A plot

Examples

x<-setNames(rnorm(200),paste0("var",1:200))
y<-setNames(rnorm(210),paste0("var",11:220))
scatter(x,y,xlab="Variable x",ylab="Variable y",main="Scatter plot by corto package")
slice
Slice

Description
This function prints a slice of a matrix

Usage
slice(matrix)

Arguments
matrix A matrix

Value
A visualization of the first 5 rows and columns of the input matrix

Examples
set.seed(1)
examplernorm(1000), nrow=100, ncol=10
slice(example)

ssgsea ssGSEA

Description
This function performs single sample GSEA

Usage
ssgsea(inmat, groups, scale = TRUE, minsize = 10)

Arguments
inmat A numeric matrix, with rownames/rows as genes or features, and colnames/columns as sample names
groups a named list. Names are names of the groups (e.g. pathways) and elements are character vectors indicating gene or feature names (that should match, at least partially, with the rownames of inmat)
scale Boolean. Wheter the matrix should be row-scaled.
minsize Numeric. Include only groups with at least this many elements Default is 10
Value

A matrix of Normalized Enrichment Scores (NES), which can be converted to p-values using the function `corto::z2p`.

Examples

```r
# A random matrix
set.seed(1)
inmat<-matrix(rnorm(200*50),nrow=200,ncol=50)
rownames(inmat)<-paste0("gene",1:nrow(inmat))
# A random list of groups
groups<-list()
for(i in 1:10){
    somegenes<-sample(rownames(inmat),30)
groups[[paste0("pathway_",i)]]<-somegenes
}
# Run ssGSEA
nesmat<-ssgsea(inmat,groups)
```

stouffer

Stouffer integration of Z scores

Description

This function gives a gaussian Z-score corresponding to the provided p-value. Careful: sign is not provided.

Usage

```r
stouffer(x)
```

Arguments

- `x` a vector of Z scores

Value

- `Z` an integrated Z score

Examples

```r
zs<-c(1,3,5,2,3)
stouffer(zs)
```
wstouffer
Weighted Stouffer integration of Z scores

Description

This function gives a gaussian Z-score corresponding to the provided p-value Careful: sign is not provided

Usage

```r
wstouffer(x, w)
```

Arguments

- `x`
a vector of Z scores
- `w`
weight for each Z score

Value

- `Z` an integrated Z score

Examples

```r
zs<-c(1,-3,5,2,3)
ws<-c(1,10,1,2,1)
wstouffer(zs,ws)
```

z2p
z2p

Description

This function gives a gaussian p-value corresponding to the provided Z-score

Usage

```r
z2p(z)
```

Arguments

- `z`
a Z score

Value

- a p-value
Examples

\[
z \leftarrow 1.96 \\
z2p(z)
\]
Index

corto, 2
fcor, 3
fisherp, 4
gsea, 5
gsea2, 6
kmgformat, 7
mra, 7
mraplot, 9
p2r, 9
p2z, 10
plot_gsea, 10
plot_gsea2, 11
r2p, 12
scatter, 13
slice, 14
ssgsea, 14
stouffer, 15
wstouffer, 16
z2p, 16