Package ‘countTransformers’

October 12, 2022

Type Package

Title Transform Counts in RNA-Seq Data Analysis

Version 0.0.6

Date 2019-03-20

Maintainer Zeyu Zhang <zhzyvv@gmail.com>

Depends R (>= 3.4.0), Biobase, limma

Imports MASS, graphics, stats

biocViews Bioinformatics, DifferentialExpression

License GPL (>= 2)

NeedsCompilation no

Author Zeyu Zhang [aut, cre], Danyang Yu [aut, ctb], Minseok Seo [aut, ctb], Craig P. Hersh [aut, ctb], Scott T. Weiss [aut, ctb], Weiliang Qiu [aut, ctb]

Repository CRAN

Date/Publication 2019-03-20 12:56:43 UTC

R topics documented:

es ... 2
getJaccard .. 3
l2Transformer .. 4
lTransformer ... 6
lv2Transformer ... 7
lvTransformer ... 9
Description

A simulated data set based on the R code provided by Law et al.’s (2014) paper.

Usage

data("es")

Format

The format is: Formal class 'ExpressionSet' [package "Biobase"]

Details

The simulated data set contains RNA-seq counts of 1000 genes for 6 samples (3 cases and 3 controls). The library sizes of the 6 samples are not equal.

Source

The dataset was generated based on the R code Simulation_Full.R from the website http://bioinf.wehi.edu.au/voom/.

References

Examples

library(Biobase)

data(es)
print(es)

expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
```r
# phenotype data
pDat = pData(es)
print(dim(pDat))
print(pDat[1:2,])

# feature data
fDat = fData(es)
print(dim(fDat))
print(fDat[1:2,])
```

getJaccard
Calculate Jaccard Index for Two Binary Vectors

Description
Calculate Jaccard index for two binary vectors.

Usage
`getJaccard(cl1, cl2)`

Arguments
- `cl1`: n by 1 binary vector of classification 1 for the n subjects
- `cl2`: n by 1 binary vector of classification 2 for the n subjects

Details
Jaccard Index is defined as the ratio
\[
d/(b + c + d)
\]

where `d` is the number of subjects who were classified to group 1 by both classification rules, `b` is the number of subjects who were classified to group 1 by classification rule 1 and were classified to group 0 by classification rule 2, `c` is the number of subjects who were classified to group 0 by classification rule 1 and were classified to group 1 by classification rule 2.

Value
The Jaccard Index

Author(s)
Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References
Examples

```r
n = 10
set.seed(1234567)

# generate two random binary vector of size n
c1l = sample(c(1, 0), size = n, prob = c(0.5, 0.5), replace = TRUE)
c1l2 = sample(c(1, 0), size = n, prob = c(0.5, 0.5), replace = TRUE)
cat("\n2x2 contingency table >>\n")
print(table(c1l, c1l2))
JI = getJaccard(c1l, c1l2)
cat("Jaccard index = ", JI, "\n")
```

12Transformer

Log Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Log based count transformation minimizing sum of sample-specific squared difference.

Usage

```r
12Transformer(mat, low = 1e-04, upp = 1000)
```

Arguments

- **mat**: G x n data matrix, where G is the number of genes and n is the number of subjects
- **low**: lower bound for the model parameter
- **upp**: upper bound for the model parameter

Details

Denote \(x_{gi} \) as the expression level of the \(g \)-th gene for the \(i \)-th subject. We perform the log transformation

\[
y_{gi} = \log_2 \left(x_{gi} + \frac{1}{\delta} \right)
\]

The optimal value for the parameter \(\delta \) is to minimize the sum of the squared difference between the sample mean and the sample median across \(n \) subjects

\[
\sum_{i=1}^{n} (\bar{y}_i - \tilde{y}_i)^2
\]

\(\bar{y}_i = \sum_{g=1}^{G} y_{gi} / G \) and \(\tilde{y}_i \) is the median of \(y_{1i}, \ldots, y_{Gi} \), and where \(G \) is the number of genes and \(n \) is the number of subjects.
Value

A list with 3 elements:

- `res.delta`: An object returned by `optimize` function
- `delta`: Model parameter
- `mat2`: Transformed data matrix having the same dimension as `mat`

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Examples

```r
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")

res = l2Transformer(mat = ex)

# estimated model parameter
print(res$delta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```
lTransformer

Log-based transformation

Description

Log-based transformation.

Usage

lTransformer(mat, low = 1e-04, upp = 100)

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of subjects
low lower bound for the model parameter
upp upper bound for the model parameter

Details

Denote \(x_{gi} \) as the expression level of the \(g \)-th gene for the \(i \)-th subject. We perform the log transformation

\[
y_{gi} = \log_2 \left(x_{gi} + \frac{1}{\delta} \right)
\]

. The optimal value for the parameter \(\delta \) is to minimize the squared difference between the sample mean and the sample median of the pooled data \(y_{gi}, g = 1, \ldots, G, i = 1, \ldots, n \), where \(G \) is the number of genes and \(n \) is the number of subjects.

Value

A list with 3 elements:

res.delta An object returned by optimize function
delta model parameter
mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Examples

library(Biobase)

data(es)
print(es)

expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, ",\n")

res = lTransformer(mat = ex)

estimated model parameter
print(res$delta)

mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, ",\n")

lv2Transformer Log and VOOM Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Log and VOOM based count transformation minimizing sum of sample-specific squared difference.

Usage

lv2Transformer(mat, lib.size = NULL, low = 0.001, upp = 1000)

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of subjects
lib.size By default, lib.size is a vector of column sums of mat
low lower bound for the model parameter
upp upper bound for the model parameter
Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the log transformation

$$y_{gi} = \log_2 \left(t_{gi} + \frac{1}{\delta} \right)$$

where

$$t_{gi} = \frac{(x_{gi} + 0.5)}{X_i + 1} \times 10^6$$

and $X_i = \sum_{g=1}^{G} x_{gi}$ is the column sum for the i-th column of the matrix mat. The optimal value for the parameter δ is to minimize the sum of the squared difference between the sample mean and the sample median across n subjects

$$\sum_{i=1}^{n} (\bar{y}_i - \tilde{y}_i)^2$$

where $\bar{y}_i = \sum_{g=1}^{G} y_{gi}/G$ and \tilde{y}_i is the median of y_{i1}, \ldots, y_{Gi}, and where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

- res.delta An object returned by optimize function
- delta model parameter
- mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Examples

```r
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
```
\[y_{gi} = \log_2 \left(t_{gi} + \frac{1}{\delta} \right) \]

where

\[t_{gi} = \frac{(x_{gi} + 0.5)}{X_i + 1} \times 10^6 \]

and \(X_i = \sum_{g=1}^{G} x_{gi} \) is the column sum for the \(i \)-th column of the matrix \(\text{mat} \). The optimal value for the parameter \(\delta \) is to minimize the squared difference between the sample mean and the sample median of the pooled data \(y_{gi} \), \(g = 1, \ldots, G \), \(i = 1, \ldots, n \), where \(G \) is the number of genes and \(n \) is the number of subjects.
Value

A list with 3 elements:

- `res.delta` An object returned by `optimize` function
- `delta` model parameter
- `mat2` transformed data matrix having the same dimension as `mat`

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Examples

```r
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=" , diff, "\n")

res = lvTransformer(mat = ex)
# estimated model parameter
print(res$delta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=" , diff2, "\n")
```
r2Transformer Root Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Root based count transformation minimizing sum of sample-specific squared difference.

Usage

r2Transformer(mat, low = 1e-04, upp = 1000)

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of subjects
low lower bound for the model parameter
upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root and voom transformation

$$y_{gi} = \frac{x_{gi}^{1/\eta}}{(1/\eta)}$$

. The optimal value for the parameter η is to minimize the sum of the squared difference between the sample mean and the sample median across n subjects

$$\sum_{i=1}^{n} (\bar{y}_i - \tilde{y}_i)^2$$

, $\bar{y}_i = \sum_{g=1}^{G} y_{gi}/G$ and \tilde{y}_i is the median of y_{i1}, \ldots, y_{iG}, and where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

res.delta An object returned by optimize function
eta model parameter
mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu
References

Examples

```r
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=" , m , ", md=" , md , ", diff=" , diff , "\n")

res = r2Transformer(mat = ex)

# estimated model parameter
print(res$eta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=" , m2 , ", md2=" , md2 , ", diff2=" , diff2 , "\n")
```

rTransformer
Root Based Transformation

Description

Root based transformation.

Usage

`rTransformer(mat, low = 1e-04, upp = 100)`
Arguments

mat G x n data matrix, where G is the number of genes and n is the number of subjects
low lower bound for the model parameter
upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root transformation

$$y_{gi} = \frac{x_{gi}^{(1/\eta)}}{(1/\eta)}$$

. The optimal value for the parameter η is to minimize the squared difference between the sample mean and the sample median of the pooled data y_{gi}, $g = 1, \ldots, G$, $i = 1, \ldots, n$, where G is the number of genes and n is the number of subjects.

Value

res.eta An object returned by optimize function
eta model parameter
mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Examples

```r
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=" , m , " , md=" , md , " , diff=" , diff , "\n")
```
res = rTransformer(mat = ex)

estimated model parameter
print(res$eta)

mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2

cat("m2=", m2, ", md2=", md2, ", diff2=", diff2,

rv2Transformer

Root and VOOM Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Root and VOOM based count transformation minimizing sum of sample-specific squared difference.

Usage

rv2Transformer(mat, low = 1e-04, upp = 1000, lib.size = NULL)

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of subjects
lib.size By default, lib.size is a vector of column sums of mat
low lower bound for the model parameter
upp upper bound for the model parameter

Details

Denote \(x_{gi} \) as the expression level of the \(g \)-th gene for the \(i \)-th subject. We perform the root and voom transformation

\[
y_{gi} = \frac{t_{gi}^{(1/\eta)}}{(1/\eta)}
\]

where

\[
t_{gi} = \frac{(x_{gi} + 0.5) \times X_i + 1}{X_i} \times 10^6
\]

and \(X_i = \sum_{g=1}^{G} x_{gi} \) is the column sum for the \(i \)-th column of the matrix \(\text{mat} \). The optimal value for the parameter \(\eta \) is to minimize the sum of the squared difference between the sample mean and the sample median across \(n \) subjects

\[
\sum_{i=1}^{n} (\bar{y}_i - \tilde{y}_i)^2
\]
\[\bar{y}_i = \sum_{g=1}^{G} y_{gi} / G \] and \(\tilde{y}_i \) is the median of \(y_{1i}, \ldots, y_{Gi} \), and where \(G \) is the number of genes and \(n \) is the number of subjects.

Value

A list with 3 elements:

- `res.delta` An object returned by `optimize` function
- `eta` model parameter
- `mat2` transformed data matrix having the same dimension as `mat`

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Examples

```r
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")

res = rv2Transformer(mat = ex)

# estimated model parameter
print(res$eta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

```
rvTransformer

Description

Root and vOOM transformation.

Usage

rvTransformer(mat, lib.size = NULL, low = 0.001, upp = 1000)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mat</td>
<td>G x n data matrix, where G is the number of genes and n is the number of subjects</td>
</tr>
<tr>
<td>lib.size</td>
<td>By default, lib.size is a vector of column sums of mat</td>
</tr>
<tr>
<td>low</td>
<td>lower bound for the model parameter</td>
</tr>
<tr>
<td>upp</td>
<td>upper bound for the model parameter</td>
</tr>
</tbody>
</table>

Details

Denote $x_{gi}$ as the expression level of the $g$-th gene for the $i$-th subject. We perform the root transformation

$$y_{gi} = \left(\frac{1}{\eta}\right)^{t_{gi}} (1/\eta)$$

where

$$t_{gi} = \frac{(x_{gi} + 0.5) \times 10^6}{X_i + 1}$$

and $X_i = \sum_{g=1}^{G} x_{gi}$ is the column sum for the $i$-th column of the matrix mat. The optimal value for the parameter $\delta$ is to minimize the squared difference between the sample mean and the sample median of the pooled data $y_{gi}$, $g = 1, \ldots, G$, $i = 1, \ldots, n$, where $G$ is the number of genes and $n$ is the number of subjects.

Value

A list with 3 elements:

- res.eta: An object returned by optimize function
- eta: model parameter
- mat2: transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu
References


Examples

```
library(Biobase)

data(es)
print(es)

expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, \\n"")

res = rvTransformer(mat = ex)

estimated model parameter
print(res$eta)

mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, \\n"")
```

---

wilcoxWrapper  

Wrapper Function for Wilcoxon Rank Sum Test

Description

Wrapper function for wilcoxon rank sum test.

Usage

```
wilcoxWrapper(mat, grp)
```
Arguments

mat G x n data matrix, where G is the number of genes and n is the number of subjects

grp n x 1 vector of subject group info

Details

For each row of mat, we perform Wilcoxon rank sum test.

Value

A G x 1 vector of p-values.

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Index

* datasets
  es, 2
* method
  getJaccard, 3
  l2Transformer, 4
  lTransformer, 6
  lv2Transformer, 7
  lvTransformer, 9
  r2Transformer, 11
  rTransformer, 12
  rv2Transformer, 14
  rvTransformer, 16
  wilcoxWrapper, 17

es, 2
getJaccard, 3
l2Transformer, 4
lTransformer, 6
lv2Transformer, 7
lvTransformer, 9
r2Transformer, 11
rTransformer, 12
rv2Transformer, 14
rvTransformer, 16
wilcoxWrapper, 17