Package ‘countfitteR’

October 12, 2022

Type Package

Title Comprehensive Automatized Evaluation of Distribution Models for Count Data

Version 1.4

Maintainer Jaroslaw Chilimoniuk <jaroslaw.chilimoniuk@gmail.com>

Description A large number of measurements generate count data. This is a statistical data type that only assumes non-negative integer values and is generated by counting. Typically, counting data can be found in biomedical applications, such as the analysis of DNA double-strand breaks. The number of DNA double-strand breaks can be counted in individual cells using various bioanalytical methods. For diagnostic applications, it is relevant to record the distribution of the number data in order to determine their biomedical significance (Roediger, S. et al., 2018. Journal of Laboratory and Precision Medicine. <doi:10.21037/jlpm.2018.04.10>). The software offers functions for a comprehensive automated evaluation of distribution models of count data. In addition to programmatic interaction, a graphical user interface (web server) is included, which enables fast and interactive data-scientific analyses. The user is supported in selecting the most suitable counting distribution for his own data set.

License GPL-3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

Suggests dplyr, DT, gridExtra, knitr, pander, reshape2, rmarkdown, shinythemes, shinyssloaders, shinyWidgets, spelling, testthat

Date 2020-09-30

BugReports https://github.com/BioGenies/countfitteR/issues

RoxygenNote 7.1.1

Imports ggplot2, MASS, shiny, stats, pscl, tools, utils

Language en-US

NeedsCompilation no
countfitteR-package

Description

The `countfitteR` package is a toolbox for the analysis of count data.

Acknowledgements

`countfitteR` is a wrapper around existing count models in R. To standardize error messages and ease up the integration, we slightly modified the `zeroinfl` function by Achim Zeileis.

Author(s)

Jaroslaw Chilimoniuk, Stefan Roediger, Michal Burdukiewcz
Examples

```r
set.seed(15390)
library(countfitteR)
df <- data.frame(pois = rpois(25, 0.3),
                 binom = rbinom(25, 1, 0.8))

cmp <- compare_fit(df, fitlist = fit_counts(df, model = "all"))
```

case_study
Short version of the case_study_FITC

Description

shorter version of the case_study_FITC. Used as an example in shiny app, when the user will not
load his own count data.

Usage

case_study

case_study_all
Case study with two fluorescent dyes

Description

example data extracted from Aklides system and merged into one file. Counts in this file will not fit
properly, due to the fact that we integrated into the file counts with two different fluorescent dyes
used.

Usage

case_study_all

case_study_APC
Case study for APC dye

Description

example data extracted from Aklides system. Counts with only APC fluorescent dye were merged.

Usage

case_study_APC
case_study_FITC Case study for FITC dye

Description

example data extracted from Aklides system. Counts with only FITC fluorescent dye were merged.

Usage

case_study_FITC

case_study_FITC Compare fits

Description

Compare empirical distribution of counts with the distribution defined by the model fitted to counts.

Usage

compare_fit(count_list, fitlist = fit_counts(count_list, model = "all"))

Arguments

count_list A list of counts. Each count should be in separate column, rows should represent values of these counts.

fitlist a list of fits, as created by fit_counts.

Value

A data.frame with distribution values for each unique count. Count is the name of the original count, model is the name of distribution model, x is unique count value, n is the frequency of unique counts, value is result of calculations made by chosen distribution model.

Examples

df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
compare_fit(df, fitlist = fit_counts(df, model = "all"))
countfitteR_gui

`countfitteR_gui`

countfitteR Graphical User Interface

Description
Launches graphical user interface that analyses given count data and chooses the best performing distribution model.

Usage
```
countfitteR_gui()
```

Warning
Any ad-blocking software may cause malfunctions.

Author(s)
Jaroslaw Chilimoniuk, Stefan Roediger, Michal Burdukiewcz

Examples
```
if(interactive()) {
  countfitteR_gui()
}
```

decide

`decide`

Make a decision based on the BIC value

Description
Select the most appropriate distribution for the count data in the html-friendly format.

Usage
```
decide(summary_fit, separate)
```

Arguments
- `summary_fit`
a result of the `summary_fitlist` function.
- `separate`
logical. If TRUE, each count is separately fitted to the model. If FALSE, all counts are fitted to the same models having the count name as the independent variable.

See Also
`fit_counts`
Examples

```r
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
f <- fit_counts(df, model = "all")
summ <- summary_fitlist(f)
decide(summ, separate = FALSE)
```

fit_counts

Fit counts to distributions

Description

Fit counts to distributions

Usage

```r
fit_counts(counts_list, separate = TRUE, model, level = 0.95, ...)
```

Arguments

- **counts_list**: A list of count data. Each count should be in separate column, rows should represent values of that counts.
- **separate**: logical. If TRUE, each count is separately fitted to the model. If FALSE, all counts are fitted to the same models having the count name as the independent variable.
- **model**: single character: "pois", "nb", "znb", "zip", "all". If "all", all possible model are fitted.
- **level**: Confidence level, default is 0.95.
- **...**: Dots parameters are ignored.

Value

The list of fitted models. Names are names of original counts, an underline and a name of model used. confint is a matrix with the number of rows equal to the number of parameters. Rownames are names of parameters. The columns contain respectively lower and upper confidence intervals.

Examples

```r
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fit_counts(df, model = "pois")
```
Description

Compare empirical distribution of counts with the distribution defined by the model fitted to counts. The bar charts represent theoretical counts depending on the chosen distribution. Red dots describe the real number of counts.

Usage

```r
plot_fitcmp(fitcmp)
```

Arguments

`fitcmp` You need to input data frame that is created by `compare_fit` function.

Examples

```r
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fitcmp <- compare_fit(df, fitlist = fit_counts(df, model = "all"))
plot_fitcmp(fitcmp)
```

process_counts

Description

Converts data in a table-like formats into lists of counts.

Usage

```r
process_counts(x)
```

Arguments

`x` data.frame or matrix.

Details

case_study does not consider NAs and NaNs effectively omitting them (as per the `is.na` function).

Value

A list of counts.
select_model

Select the most appropriate model

Description

Select the most appropriate model

Usage

select_model(fitlist)

Arguments

fitlist a list of fits, as created by fit_counts.

Value

a data.frame with two columns: count representing the name of the count and chosen model with the model with the lowest BIC.

Examples

set.seed(1)
df <- data.frame(poisson1 = rpois(50, 2),
 poisson2 = rpois(50, 5),
 zip1 = rZIP(50, 2, 0.7),
 zip2 = rZIP(50, 5, 0.7))
fitlist_separate <- fit_counts(df, model = c("pois", "zip"))
select_model(fitlist_separate)

sim_dat

Data created from simulation of NB Poiss

Description

Data created from simulation of NB Poiss

Usage

sim_dat
summary_fitlist

Examples

code used to generate the data
be warned: the simulations will take some time
Not run:
library(dplyr)
set.seed(15390)
sim_dat <- do.call(rbind, lapply(10^(-3L:2), function(single_theta)
 do.call(rbind, lapply(1L:10/2, function(single_lambda)
 do.call(rbind, lapply(1L:100, function(single_rep) {
 foci <- lapply(1L:10, function(dummy) rnbinom(600, size = single_theta, mu = single_lambda))
 names(foci) <- paste0("C", 1L:10)
 fit_counts(foci, separate = TRUE, model = "all") %>%
 summary_fitlist %>%
 mutate(between = single_lambda < upper & single_lambda > lower) %>%
 group_by(model) %>%
 summarize(prop = mean(between)) %>%
 mutate(replicate = single_rep, lambda = single_lambda, theta = single_theta)
 }))
)))
End(Not run)

summary_fitlist

Summary of estimates

Description

Counts are fitted to model(s) using the count name as the explanatory variable. Estimates are presented in the table below along with the BIC values of their models. Estimated coefficients of models (lambda for all distributions, theta for NB and ZINB, r for ZIP and ZINB).

Usage

summary_fitlist(fitlist)

Arguments

fitlist a list of fits, as created by fit_counts.

Value

Data frame with summarised results of all distribution models.

- Count: the name of the original count.
- lambda: \(\lambda \) - Poisson mean, lower and upper confidence intervals.
- BIC: Bayesian information criterion
• theta: θ - dispersion parameter
• r: probability of excess zeros.

See Also

fit_counts

Examples

```r
df <- data.frame(poisson = rpois(25, 0.3), binomial = rbinom(25, 1, 0.8))
fc <- fit_counts(df, model = "all")
summary_fitlist(fc)
```

validate_counts Validate data

Description

Validates count data.

Usage

```r
validate_counts(x)
```

Arguments

x data.frame or matrix.

Details

Errors if x has negative values or non-numeric values, otherwise TRUE.

Value

An input object.

Examples

```r
data(case_study)
process_counts(case_study)
```
zinb

Zero-inflated negative binomial distribution

Description
Density and random generation for the zero-inflated negative binomial distribution.

Usage
\[r_{\text{ZINB}}(n, \text{size}, \mu, r) \]
\[d_{\text{ZINB}}(x, \text{size}, \mu, r) \]

Arguments
- \(n \) number of random values to return.
- \(\text{size} \) target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution). Must be strictly positive, need not be integer.
- \(\mu \) mean.
- \(r \) probability of excess zeros.
- \(x \) vector of (non-negative integer) quantiles.

See Also
Negative binomial distribution: NegBinomial.

Examples
\[r_{\text{ZINB}}(15, 1.9, 0.9, 0.8) \]

zip

Zero-inflated Poisson distribution

Description
Density and random generation for the zero inflated Poisson distribution.

Usage
\[d_{\text{ZIP}}(x, \lambda, r) \]
\[r_{\text{ZIP}}(n, \lambda, r) \]
Arguments

- **x**: vector of (non-negative integer) quantiles.
- **lambda**: vector of (non-negative) means.
- **r**: probability of excess zeros.
- **n**: number of random values to return.

See Also

Poisson distribution: [Poisson](#).

Examples

```
rZIP(15, 1.9, 0.9)
```
Index

* Poisson
 countfitteR_gui, 5
* count
 countfitteR_gui, 5
* datasets
 case_study, 3
 case_study_all, 3
 case_study_APC, 3
 case_study_FITC, 4
 sim_dat, 8
* zero-inflated
 countfitteR_gui, 5
 case_study, 3
 case_study_all, 3
 case_study_APC, 3
 case_study_FITC, 4
 compare_fit, 4
 countfitteR (countfitteR-package), 2
 countfitteR-package, 2
 countfitteR_gui, 5
 decide, 5
 dZINB (zinb), 11
 dZIP (zip), 11
 fit_counts, 4, 5, 6, 8–10
 is.na, 7
 NegBinomial, 11
 plot_fitcmp, 7
 Poisson, 12
 process_counts, 7
 rZINB (zinb), 11
 rZIP (zip), 11
 select_model, 8
 sim_dat, 8

summary_fitlist, 5, 9
validate_counts, 10
zeroInf, 2
ZINB (zinb), 11
zinb, 11
ZIP (zip), 11
zip, 11