Package ‘covBM’

October 14, 2015

Title Brownian Motion Processes for 'nlme'-Models
Version 0.1.0
Description Allows Brownian motion, fractional Brownian motion,
and integrated Ornstein-Uhlenbeck process components to
be added to linear and non-linear mixed effects models
using the structures and methods of the 'nlme' package.

Depends nlme (>= 3.0)
Imports stats
License GPL-3
NeedsCompilation yes
LazyData true
Author Oliver Stirrup [aut, cre]
Maintainer Oliver Stirrup <oliverstirrup@googlemail.com>
Repository CRAN
Date/Publication 2015-10-14 18:13:24

R topics documented:

\begin{verbatim}
 cd4 .. 2
coeff.covBM .. 3
coeff.covFracBM .. 3
coeff.covIOU .. 4
corMatrix.covBM ... 4
corMatrix.covFracBM .. 5
corMatrix.covIOU .. 5
covBM .. 6
covFracBM .. 6
covIOU .. 7
lmeBM .. 8
nlmeBM .. 9
print.summary.corStructBM 10
summary.covBM ... 10
\end{verbatim}
Description

Dataset used in *Data Analysis Using Regression and Multilevel/Hierarchical Models* by Andrew Gelman and Jennifer Hill (Cambridge University Press, 2006). Rows with missing values of 'CD4CNT', 'visage' or 'baseage' have been removed.

Usage

```
baseage
```

Format

A data frame with 976 rows and 11 variables:

- **newpid**: Patient ID code.
- **t**: Time, in years from first visit.
- **sqrtd4**: Square root of CD4 count.
- **treatmnt**: Indicator variable for treatment, 1 represents control group and 2 indicates zinc treatment group.
- **CD4CNT**: CD4 count on original (untransformed) scale.
- **baseage**: Age of child in years at initial visit.
- **visage**: Age of child in years at given visit.

Source

Description

This is a method function that extracts the scale coefficient associated with a Brownian motion correlation structure object.

Usage

```r
## S3 method for class 'covBM'
coef(object, unconstrained = TRUE, ...)
```

Arguments

- `object`: An object of class `covBM`, inheriting from `corStruct`.
- `unconstrained`: A logical value. If TRUE the coefficients are returned in unconstrained form (as used in the optimization algorithm). If FALSE the coefficients are returned in "natural" form.
- `...`: Additional arguments (not used by this method).

Examples

```r
cov1 <- covBM(form=~time|group)
coef(cov1)
```

Description

This is a method function that extracts the scale coefficient and Hurst parameter associated with a fractional Brownian motion correlation structure object.

Usage

```r
## S3 method for class 'covFracBM'
coef(object, unconstrained = TRUE, ...)
```

Arguments

- `object`: An object of class `covFracBM`, inheriting from `corStruct`.
- `unconstrained`: A logical value. If TRUE the coefficients are returned in unconstrained form (as used in the optimization algorithm). If FALSE the coefficients are returned in "natural" form.
- `...`: Additional arguments (not used by this method).
Examples

cov2 <- covFracBM(form = ~time | group)
coef(cov2)

cov3 <- covIOU(form = ~time | group)
coef(cov3)

corMatrix.covBM

decription

This method generates a scaled covariance matrix (or list of matrices), for a "covBM" "corStruct" object.

Usage

S3 method for class 'covBM'
corMatrix(object, covariate = getCovariate(object), ...)

Examples

cov2 <- covFracBM(form = ~time | group)
coef(cov2)

cov3 <- covIOU(form = ~time | group)
coef(cov3)

corMatrix.covBM

decription

This is a method function that extracts the perturbation and Alpha parameters associated with an integrated Ornstein-Uhlenbeck (IOU) process correlation structure object.

Usage

S3 method for class 'covIOU'
coef(object, unconstrained = TRUE, ...)

Arguments

object An object of class covIOU, inheriting from corStruct.
unconstrained A logical value. If TRUE the coefficients are returned in unconstrained form (as used in the optimization algorithm). If FALSE the coefficients are returned in "natural" form.
... Additional arguments (not used by this method).
corMatrix.covFracBM

Arguments

object An object of class covBM, inheriting from corStruct.
covariate List of covariate vectors, at which values the correlation matrix, or list of correlation matrices, are to be evaluated, as for corMatrix.corStruct.
... Additional arguments (not used by this method).

corMatrix.covFracBM corMatrix.covFracBM

Description

This method generates a scaled covariance matrix (or list of matrices), for a "covFracBM" "corStruct" object.

Usage

```r
## S3 method for class 'covFracBM'
corMatrix(object, covariate = getCovariate(object), ...)
```

Arguments

object An object of class covFracBM, inheriting from corStruct.
covariate List of covariate vectors, at which values the correlation matrix, or list of correlation matrices, are to be evaluated, as for corMatrix.corStruct.
... Additional arguments (not used by this method).

corMatrix.covIOU corMatrix.covIOU

Description

This method generates a scaled covariance matrix (or list of matrices), for a "covIOU" "corStruct" object.

Usage

```r
## S3 method for class 'covIOU'
corMatrix(object, covariate = getCovariate(object), ...)
```

Arguments

object An object of class covIOU, inheriting from corStruct.
covariate List of covariate vectors, at which values the correlation matrix, or list of correlation matrices, are to be evaluated, as for corMatrix.corStruct.
... Additional arguments (not used by this method).
covBM

Description

This is a constructor function for the "covBM" class, representing a Brownian motion component in terms of a continuous variable. The object created is a special type of corStruct.

covBM

Usage

covBM(value = 1, form = ~1)

Arguments

value Numeric argument providing starting value for the scale parameter of Brownian motion process relative to residual error variance for optimisation.
form A one-sided formula of the form -tg, where t represents a continuous variable (usually time) and g represents a grouping factor, i.e. with a separate Brownian motion process modelled at each level.

Value

An object of class "covBM" and inheriting from "corStruct".

Examples

cov1<-covBM(form=~time|group)

covFracBM

Description

This is a constructor function for the "covFracBM" class, representing a fractional Brownian motion component in terms of a continuous variable. The object created is a special type of corStruct.

Usage

covFracBM(value = c(1, 0.5), form = ~1)
covIOU

Arguments

value Vector of length 2 providing starting values for optimisation of the scale parameter of fractional Brownian motion process relative to residual error variance and the Hurst parameter, respectively.

form A one-sided formula of the form ~t|g, where t represents a continuous variable (usually time) and g represents a grouping factor, i.e. with a separate fractional Brownian motion process modelled at each level.

Value

An object of class "covFracBM" and inheriting from "corStruct".

Examples

cov2<-covFracBM(form=~time|group)

covIOU

Description

This is a constructor function for the "covIOU" class, representing an integrated Ornstein-Uhlenbeck (IOU) process component in terms of a continuous variable. The object created is a special type of corStruct.

Usage

covIOU(value = c(1, 1), form = ~1)

Arguments

value Vector of length 2 providing starting values for optimisation of the perturbation parameter of integrated Ornstein-Uhlenbeck process relative to residual error variance and the Alpha parameter, respectively.

form A one-sided formula of the form ~t|g, where t represents a continuous variable (usually time) and g represents a grouping factor, i.e. with a separate integrated Ornstein-Uhlenbeck process modelled at each level.

Value

An object of class "covIOU" and inheriting from "corStruct".

Examples

cov3<-covIOU(form=~time|group)
Description

This function is a wrapper for \texttt{lme.formula} that allows Brownian motion, fractional Brownian motion or integrated Ornstein-Uhlenbeck components to be included in linear mixed models, with related parameter estimates and confidence intervals returned in their natural parameterisation.

Usage

\begin{verbatim}
lmeBM(fixed, data, random, covariance = NULL, method = c("REML", "ML"),
control = list(), keep.data = TRUE)
\end{verbatim}

Arguments

- \textbf{fixed} \hspace{1cm} This is as specified for \texttt{lme.formula}.
- \textbf{data} \hspace{1cm} This is as specified for \texttt{lme.formula}.
- \textbf{random} \hspace{1cm} This is as specified for \texttt{lme.formula}.
- \textbf{covariance} \hspace{1cm} An optional \texttt{corStruct} object describing the within-group covariance structure. In addition to those available in \texttt{nlme}, \texttt{covBM} can be used to incorporate a Brownian motion component, \texttt{covFracBM} can be used to incorporate a fractional Brownian motion component and \texttt{covIOU} can be used to incorporate an integrated Ornstein-Uhlenbeck process in relation to a continuous variable.
- \textbf{method} \hspace{1cm} This is as specified for \texttt{lme.formula}.
- \textbf{control} \hspace{1cm} This is as specified for \texttt{lme.formula}.
- \textbf{keep.data} \hspace{1cm} This is as specified for \texttt{lme.formula}.

Value

An object of class "lme" representing the linear mixed effects model fit.

Examples

\begin{verbatim}
BMmodel<-lmeBM(sqrtcd4~t, data=cd4, random=-t|newpid, covariance=covBM(form=-t|newpid),
method=", method="ML", control=list(opt="link[nlm]")
\end{verbatim}
Description

This function is a wrapper for \texttt{nlme.formula} that allows Brownian motion, fractional Brownian motion or integrated Ornstein-Uhlenbeck components to be included in non-linear mixed models, with related parameter estimates and confidence intervals returned in their natural parameterisation.

Usage

\texttt{nlmeBM(model, data, fixed, random, start, covariance = NULL, method = c("ML", "REML"), control = list(), verbose = FALSE)}

Arguments

- \texttt{model}: This is as specified for \texttt{nlme.formula}.
- \texttt{data}: This is as specified for \texttt{nlme.formula}.
- \texttt{fixed}: This is as specified for \texttt{nlme.formula}.
- \texttt{random}: This is as specified for \texttt{nlme.formula}.
- \texttt{start}: This is as specified for \texttt{nlme.formula}.
- \texttt{covariance}: An optional \texttt{corStruct} object describing the within-group covariance structure. In addition to those available in \texttt{nlme}, \texttt{covBM} can be used to incorporate a Brownian motion component, \texttt{covFracBM} can be used to incorporate a fractional Brownian motion component and \texttt{covIOU} can be used to incorporate an integrated Ornstein-Uhlenbeck process in relation to a continuous variable.
- \texttt{method}: This is as specified for \texttt{lme.formula}.
- \texttt{control}: This is as specified for \texttt{nlme.formula}.
- \texttt{verbose}: This is as specified for \texttt{nlme.formula}.

Value

An object of class "nlme" and inheriting from class "lme" representing the non-linear mixed effects model fit.

Examples

\begin{verbatim}
data(Milk, package="nlme") Model_fit<- nlmeBM(protein ~ SSasymp(Time, Asym, R0, lrc), data=Milk, fixed = Asym + R0 + lrc ~ 1, random = Asym ~ 1|Cow, covariance=covFracBM(form=-time|Cow), start = c(Asym = 3.5, R0 = 4, lrc = -1))
\end{verbatim}
print.summary.corStructBM

print.summary.corStructBM

Description

print.summary.corStructBM

Usage

S3 method for class 'summary.corStructBM'
print(x, ...)

Arguments

x An object of class "summary.corStructBM", containing information on fitted
stochastic process component.

... Additional arguments (not used for this method).

summary.covBM

summary.covBM

Description

summary.covBM

Usage

S3 method for class 'covBM'
summary(object, structName = class(object)[1], ...)

Arguments

object An object of class "covBM", containing information on fitted stochastic process
component.

structName An optional character string defining the type of correlation structure associated
with object, as for summary.corStruct. Defaults to class(object)[1].

... Additional arguments (not used for this method).
Description

Summary: covFracBM

Usage

S3 method for class 'covFracBM'
summary(object, structName = class(object)[1], ...)

Arguments

- object: An object of class "covFracBM", containing information on fitted stochastic process component.
- structName: An optional character string defining the type of correlation structure associated with object, as for summary.corStruct. Defaults to class(object)[1].
- ...: Additional arguments (not used for this method).

Description

Summary: covIOU

Usage

S3 method for class 'covIOU'
summary(object, structName = class(object)[1], ...)

Arguments

- object: An object of class "covIOU", containing information on fitted stochastic process component.
- structName: An optional character string defining the type of correlation structure associated with object, as for summary.corStruct. Defaults to class(object)[1].
- ...: Additional arguments (not used for this method).
Index

*Topic datasets
 cd4, 2

 cd4, 2
 coef.covBM, 3
 coef.covFracBM, 3
 coef.covIOU, 4
 corMatrix.corStruct, 5
 corMatrix.covBM, 4
 corMatrix.covFracBM, 5
 corMatrix.covIOU, 5
 corStruct, 3–9
 covBM, 3, 5, 6, 8, 9
 covBM-package (covBM), 6
 covFracBM, 3, 5, 6, 8, 9
 covIOU, 4, 5, 7, 8, 9

 lme.formula, 8, 9
 lmeBM, 8

 nlme.formula, 9
 nlmeBM, 9

 print.summary.corStructBM, 10

 summary.corStruct, 10, 11
 summary.covBM, 10
 summary.covFracBM, 11
 summary.covIOU, 11