Package ‘covglasso’

May 29, 2020

Version 1.0.2
Date 2020-05-29
Title Sparse Covariance Matrix Estimation
Maintainer Michael Fop <michael.fop@ucd.ie>
Depends R (>= 3.4)
Imports Rcpp (>= 1.0)
Suggests MASS, mixgmm
LinkingTo Rcpp, RcppArmadillo
License GPL (>= 2)
Repository CRAN
ByteCompile true
NeedsCompilation yes
LazyData yes
Encoding UTF-8
Author Michael Fop [aut, cre] (<https://orcid.org/0000-0003-3936-2757>), Hao Wang [ctb]
Date/Publication 2020-05-29 10:30:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>covglasso-package</td>
<td>2</td>
</tr>
<tr>
<td>control</td>
<td>2</td>
</tr>
<tr>
<td>covglasso</td>
<td>3</td>
</tr>
</tbody>
</table>

Index 8
covglasso-package

Sparse covariance matrix estimation

Description

Fast and direct estimation of a sparse covariance matrix via covariance graphical lasso and coordinate descent algorithm.

Details

A package implementing direct estimation of a sparse covariance matrix corresponding to a Gaussian covariance graphical model. Estimation is performed by solving the covariance graphical lasso using a fast coordinate descent algorithm.

How to cite this package

To cite covglasso in publications use:

Author(s)

Michael Fop.

Maintainer: Michael Fop <michael.fop@ucd.ie>

References

control

Set control parameters

Description

Set control parameters of the coordinate descent algorithm for the graphical lasso for sparse covariance matrix estimation.

Usage

control(iter.out = 1000, iter.in = 100, tol.out = 1e-03, tol.in = 1e-02)
covglasso

Arguments

iter.out Maximum number of iterations in the in the outer loop of the coordinate descent algorithm.
iter.in Maximum number of iterations in the in the inner loop of the coordinate descent algorithm.
tol.out Tolerance value for judging when convergence has been reached. Used in the outer loop of the coordinate descent algorithm.
tol.in Tolerance value for judging when convergence has been reached. Used in the inner loop of the coordinate descent algorithm.

Details

Function control is used to set control parameters of the coordinate descent algorithm employed for solving the covariance graphical lasso.

Value

A list of parameters values.

References

covglasso Sparse covariance matrix estimation

Description

Direct estimation of a sparse covariance matrix using the covariance graphical lasso.

Usage

covglasso(data = NULL,
S = NULL, n = NULL,
lambda = NULL,
rho = NULL,
duplicated = TRUE,
L = 10,
crit = c("bic", "ebic"),
gamma = 0.8,
penalize.diag = FALSE,
start = NULL,
ctrl = control(),
path = FALSE)
Arguments

data A numerical dataframe or matrix, where rows correspond to observations and columns to variables. If data = NULL, the sample covariance S must be provided in input.

S The sample covariance matrix of the data. If S = NULL, the maximum likelihood estimate of the covariance matrix is used in the estimation of the sparse covariance matrix.

n The number of observations. If data = NULL and S is provided in input, n must be provided in input as well.

lambda A vector or array of non-negative lasso regularization parameters. Penalization is applied elementwise to all entries of the covariance matrix. If an array, each entry must be a matrix with same dimensions of the sample covariance matrix. Values should be increasing from the smallest to the largest. If lambda = NULL, an alternative penalization based on thresholding of the empirical correlation matrix is used; see "Details".

rho A vector of correlation values used to define the penalization in terms of the thresholded sample correlation matrix. See "Details". Note that this penalization is used by default.

duplicated Remove duplicated penalty matrices when the default penalty term based on the thresholded correlation matrix is used. Suggest to leave this argument to TRUE all the time as several redundant matrices giving the same penalty term are discarded.

L The number of rho values. Only used when lambda and rho are NULL. Default is L = 10.

crit The model selection criterion employed to select the optimal covariance graph model. Can be "bic" or "ebic"; see "Details".

gamma A penalty parameter used when crit = "ebic" and EBIC is used to select the optimal graph covariance model. The value of gamma must be in the range [0, 1]. Default is gamma = 0.8, which encourages sparser models.

penalize.diag A logical argument indicating if the diagonal of the covariance matrix should be penalized. Default to FALSE.

start A starting matrix for the estimation algorithm. If NULL, the starting value is the diagonal sample covariance matrix.

ctrl A list of control parameters for the coordinate descent algorithm employed for estimation. See also control.

path A logical argument controlling whether all the estimated covariance matrices along the path defined by lambda or rho should be included in the output.

Details

The function estimates a sparse covariance matrix using a fast coordinate descent algorithm to solve the covariance graphical lasso. The estimated sparse covariance matrix is obtained by optimizing the following penalized log-likelihood:

\[- \frac{n}{2} \{ \log \det(\Sigma) + \text{trace}(SS^{-1}) \} - ||\Lambda \ast \Sigma||_1 \]
subject to Σ being positive definite. In the penalty term, the L_1 norm and the matrix multiplication between Λ and Σ is elementwise.

By default (when $\lambda = \text{NULL}$), the penalization matrix Λ is defined in terms of a sequential thresholding of the sample correlation matrix. Given ρ_l a threshold value and R the sample correlation matrix, the penalty term matrix Λ is defined by the values $(1/s_{ij})I(r_{ij} < \rho_l)$, that is:

$$\Lambda = \frac{1}{S} I(R < \rho_l)$$

where the inequality is taken elementwise. Such choice of penalty matrix provides a framework related to the method of Chaudhuri et al. (2007). If the vector ρ is not given in input, the sequence of threshold values is defined as the L quantiles of the absolute values of the sample correlations in R. If Λ is provided in input, the penalization corresponds to the standard covariance graphical lasso of Bien, Tibshirani (2011).

The sparse covariance matrix corresponds to a Gaussian covariance graphical model of marginal independence, where in the sparse covariance matrix a zero entry corresponds to two variables being marginally independent. Different penalizations λ imply different models, and selection of the optimal graphical model is performed using "bic" (default) or "ebic". In the latter case, the argument γ controls the additional penalty term in the model selection criterion; see Foygel, Drton, (2010).

Value

A list containing the following elements.

- `sigma` The estimated covariance matrix.
- `omega` The estimated concentration (inverse covariance) matrix.
- `graph` The adjacency matrix given in input corresponding to the marginal or conditional independence graph.
- `loglik` Value of the maximized log-likelihood.
- `npar` Number of estimated non-zero parameters.
- `penalty` Value of the penalty term.
- `bic` Optimal BIC or EBIC value.
- `BIC` All BIC or EBIC values along the path defined by λ or ρ.
- `path` A list containing all the estimated sparse covariance models. Provided in output only when `path = TRUE`.
- `rho` The values of ρ thresholds used to define the penalization based on the thresholded sample correlation matrix.
- `lambda` The values of λ penalty parameters for the penalization.

References

See Also

control

Examples

a simple example with a 3-block diagonal matrix
library(MASS)

v <- 3
n <- 300
sig <- matrix(0.8, v,v)
diag(sig) <- 1
set.seed(190188)
tmp <- replicate(3, mvrnorm(n, rep(0,v), sig))
x <- matrix(c(tmp), n, v*3)

fit1 <- covglasso(x)
plot(fit1$rho, fit1$BIC)
image(fit1$sigma != 0)

refine search
fit2 <- covglasso(x, rho = seq(0.1, 0.4, length = 50))
image(fit2$sigma != 0)

fit1$bic
fit2$bic

Cars93 data in MASS package
data("Cars93", package = "MASS")
dat <- na.omit(Cars93[,c(4:8,12:15,17,19:25)])

fit1 <- covglasso(dat, L = 50)

more sparse
fit2 <- covglasso(dat, L = 50,
crit = "ebic", gamma = 1)

oldpar <- par(no.readonly = TRUE)
par(mfrow = c(1,2))
plot(fit1$rho, fit1$BIC, main = "BIC")
plot(fit2$rho, fit2$BIC, main = "EBIC")
image(fit1$sigma != 0, col = c("white", "black"), main = "BIC")
image(fit2$sigma != 0, col = c("white", "black"), main = "EBIC")
par(oldpar) # reset par
a more complex situation
library(mixggm)

V <- 20
M <- choose(V, 2)
n <- 200
rand <- rbinom(M, 1, 0.4)
graph <- matrix(0, V, V)
graph[upper.tri(graph)] <- rand
graph <- graph + t(graph)
sigma <- matrix(0.8, V, V)
diag(sigma) <- 1
sigma <- fitGGM(data = NULL, S = sigma, n, graph = graph)$sigma
x <- mvrnorm(n, rep(0, V), sigma)

fit <- covglasso(x, L = 50)
plot(fitrho, fitBIC)

oldpar <- par(no.readonly = TRUE)
par(mfrow = c(1,2))
cols <- c("white", grey.colors(10, start = 0, end = 0.7, rev = TRUE))
image(fit$sigma, main = "Fitted", col = cols)
image(sigma, main = "Actual", col = cols)
par(oldpar) # reset par
Index

*Topic package
 covglasso-package, 2

control, 2, 4, 6
covglasso, 3
covglasso-package, 2