Package ‘coxphMIC’

April 26, 2017

Type Package
Title Sparse Estimation of Cox Proportional Hazards Models via Approximated Information Criterion
Version 0.1.0
Author Xiaogang Su and Razieh Nabi Abdolyousefi
Maintainer Xiaogang Su <xiaogangsu@gmail.com>
Description Sparse estimation for Cox PH models is done via Minimum approximated Information Criterion (MIC) by Su, Wijayasinghe, Fan, and Zhang (2016) <DOI:10.1111/biom.12484>. MIC mimics the best subset selection using a penalized likelihood approach yet with no need of a tuning parameter. The problem is further reformulated with a re-parameterization step so that it reduces to one unconstrained non-convex yet smooth programming problem, which can be solved efficiently. Furthermore, the re-parameterization tactic yields an additional advantage in terms of circumventing post-selection inference.
License GPL-2
Depends R (>= 3.1.0), stats (>= 3.2.5), graphics (>= 3.2.5), utils (>= 3.2.5)
Imports survival (>= 2.38), numDeriv (>= 2014.2-1)
LazyData TRUE
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-04-26 05:56:07 UTC

R topics documented:

 coxphMIC ... 2
 LoglikPen .. 4
 plot.coxphMIC .. 5
 print.coxphMIC ... 7

Index 8
Sparse Estimation for a Cox PH model via Approximated Information Criterion

Description

Sparse Estimation for a Cox PH model via Approximated Information Criterion

Usage

coxphMIC(formula = Surv(time, status) ~ ., data, method.beta0 = "MLE", beta0 = NULL, theta0 = 1, method = "BIC", lambda0 = 2, a0 = NULL, scale.x = TRUE, maxit.global = 300, maxit.local = 100, rounding.digits = 4, zero = sqrt(.Machine$double.eps), compute.se.gamma = TRUE, compute.se.beta = TRUE, CI.gamma = TRUE, conf.level = 0.95, details = FALSE)

Arguments

formula A formula object, with the response on the left of a ~ operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data A data.frame in which to interpret the variables named in the formula argument.
method.beta0 A method to supply the starting point for beta with choices: "MLE" and "ridge". By default, the maximum partial likelihood estimator (MPLE) is used with "MLE". The option "ridge" asks for a ridge estimator with penalty parameter specified by theta0. You may supply a set of values for beta0 of your choice. If NULL, then beta0 is set as 0.
beta0 User-supplied beta0 value, the starting point for optimization.
theta0 Specified the penalty parameter for the ridge estimator when method.beta0="ridge".
method Specifies the model selection criterion used. If "AIC", the complexity penalty parameter (lambda) equals 2; if "BIC", lambda equals ln(n0), where n0 denotes the number of uncensored events. You may specify the penalty parameter of your choice by setting lambda0.
lambda0 User-supplied penalty parameter for model complexity. If method="AIC" or "BIC", the value of lambda0 will be ignored.
a0 The scale (or sharpness) parameter used in the hyperbolic tangent penalty. By default, a0 is set as n0, where n0 is again the number of uncensored events.
scale.x Logical value: should the predictors X be normalized? Default to TRUE.
maxit.global Maximum number of iterations allowed for the global optimization algorithm – SANN. Default value is 300.
maxit.local Maximum number of iterations allowed for the local optimization algorithm – BFGS. Default value is 100.
Details

The main idea of MIC involves approximation of the l0 norm with a continuous or smooth unit dent function. This method bridges the best subset selection and regularization by borrowing strength from both. It mimics the best subset selection using a penalized likelihood approach yet with no need of a tuning parameter.

The problem is further reformulated with a reparameterization step by relating \(\beta \) to \(\gamma \). There are two benefits of doing so: first, it reduces the optimization to one unconstrained nonconvex yet smooth programming problem, which can be solved efficiently as in computing the maximum partial likelihood estimator (MPLE); furthermore, the reparameterization tactic yields an additional advantage in terms of circumventing post-selection inference. Significance testing on \(\beta \) can be done through \(\gamma \).

The smooth yet nonconvex optimization, a simulated annealing (method="SANN" option in \texttt{optim}) global optimization algorithm is first applied. The resultant estimator is then used as the starting point for another local optimization algorithm. The quasi-Newton BFGS method (method="BFGS" in \texttt{optim}) is used.

In its current version, some appropriate data preparation might be needed. For example, nominal variables (especially character-valued ones) needed to be coded with dummy variables; missing values would cause errors too and hence need prehandling too.

Value

A list containing the following component is returned.

- \texttt{opt.global} Results from the preliminary run of a global optimization procedure (SANN as default).
- \texttt{opt.local} Results from the second run of a local optimization procedure (BFGS as default).
- \texttt{min.Q} Value of the minimized objective function.
- \texttt{gamma} Estimated gamma;
- \texttt{beta} Estimated beta;
- \texttt{VCOV.gamma} The estimated variance-covariance matrix for the gamma estimate;
se.gamma Standard errors for the gamma estimate;
se.beta Standard errors for the beta estimate (post-selection);
BIC The BIC value for the selected model;
result A summary table of the fitting results.
call the matched call.

References

See Also

coxph

Examples

PREPARE THE PBC DATA
library(survival); data(pbc);
dat <- pbc; dim(dat);
dat$status <- ifelse(pbc$status==2, 1, 0)
HANDLE CATEGORICAL VARIABLES
dat$sex <- ifelse(pbc$sex=="f", 1, 0)
LISTWISE DELETION USED TO HANDLE MISSING VALUES
dat <- stats::na.omit(dat);
dim(dat); utils::head(dat)

fit.mic <- coxphMIC(formula=Surv(time, status)-.id, data=dat, method="BIC", scale.x=TRUE)
names(fit.mic)
print(fit.mic)
plot(fit.mic)

LoglikPen

Compute the penalized log partial likelihood for a Cox PH model with MIC penalty

Description

Compute the penalized log partial likelihood for a Cox PH model with MIC penalty
plot.coxphMIC

Usage

LoglikPen(beta, time, status, X, lambda, a)

Arguments

beta A p-dimensional vector containing the regression coefficients in the CoxPH model.
time The observed survival time.
status The status indicator: 1 for event and 0 for censoring.
X An n by p design matrix.
lambda The penalty parameter equals either 2 in AIC or ln(n0) in BIC (by default), where n0 is the number of uncensored survival times observed in the data. You can also specify it to a specific value of your own choice.
a The scale parameter in the hyperbolic tangent function of the MIC penalty. By default, a = n0, i.e., the number of uncensored survival times observed in the data.

Value

The value of the penalized log partial likelihood function evaluated at beta.

References

See Also

coxph

plot.coxphMIC The Generic plot Function for Object of coxphMIC Class

Description

The Generic plot Function for Object of coxphMIC Class
Usage

```r
## S3 method for class 'coxphMIC'
plot(x, conf.level = 0.95, horizontal = TRUE,
     mar = rep(4.5, 4), ...)
```

Arguments

- `x`: an object of `coxphMIC` class.
- `conf.level`: confidence level used for error bar plots. Default is 0.95.
- `horizontal`: Logical indicator of horizontal alignment. Default is `TRUE`.
- `mar`: margin in terms of the number of lines to be specified on the four sides of the plot.
- `...`: further arguments passed to or from other methods.

Details

The (generic) plot method for an `coxphMIC` object. It plots MIC estimates of gamma and beta. For 0 beta estimates, their corresponding SE are reset to 0 to make the plot.

Value

Error bar plots for estimated gamma and beta at a given confidence level.

References

See Also

`coxphMIC`
The Generic print Function for Object of coxphMIC Class

Description
The Generic print Function for Object of coxphMIC Class

Usage

```r
## S3 method for class 'coxphMIC'
print(x, digits = max(3L,getOption("digits") - 3L), ...)
```

Arguments

- `x` an object of coxphMIC class.
- `digits` the minimal number of significant digits. See `print.default`.
- `...` further arguments passed to or from other methods.

Details
The (generic) print method for an coxphMIC object. The results include info on the estimated gamma and beta. Depending on the options, significance testing and confidence intervals are also provided.

Value
The table of estimated regression coefficients beta and the reparameterized gamma.

References

See Also

coxphMIC
Index

coxph, 4, 5
coxph.MIC (coxphMIC), 2
coxphMIC, 2, 6, 7
LoglikPen, 4
optim, 3
plot.coxphMIC, 5
print.coxphMIC, 7
print.default, 7