Package ‘coxphSGD’

October 12, 2022

Type Package
Title Stochastic Gradient Descent log-Likelihood Estimation in Cox Proportional Hazards Model
Version 0.2.1
Date 2017-07-05
Maintainer Marcin Kosinski <m.p.kosinski@gmail.com>
Description Estimate coefficients of Cox proportional hazards model using stochastic gradient descent algorithm for batch data.
License GPL-2
Depends R (>= 3.3.0), survival
URL https://github.com/MarcinKosinski/coxphSGD/blob/master/README.md
BugReports https://github.com/MarcinKosinski/coxphSGD/issues
RoxygenNote 6.0.1
NeedsCompilation no
Author Marcin Kosinski [aut, cre],
 Przemyslaw Biecek [ctb]
Repository CRAN
Date/Publication 2017-07-05 11:43:29 UTC

R topics documented:

 coxphSGD ... 2
 dataCox ... 3

Index
Description

coxphSGD estimates coefficients using stochastic gradient descent algorithm in Cox proportional hazards model.

Usage

coxphSGD(formula, data, learn.rates = function(x) { 1/x },
 beta.zero = 0, epsilon = 1e-05, max.iter = 500, verbose = FALSE)

Arguments

formula a formula object, with the response on the left of a ~ operator, and the terms on the right. The response must be a survival object as returned by the Surv function.

data a list of batch data.frames in which to interpret the variables named in the formula. See Details.

learn.rates a function specifying how to define learning rates in steps of the algorithm. By default the f(t)=1/t is used, where t is the number of algorithm’s step.

beta.zero a numeric vector (if of length 1 then will be replicated) of length equal to the number of variables after using formula in the model.matrix function

epsilon a numeric value with the stop condition of the estimation algorithm.

max.iter numeric specifying maximal number of iterations.

verbose whether to cat the number of the iteration

Details

A data argument should be a list of data.frames, where in every batch data.frame there is the same structure and naming convention for explanatory and survival (times, censoring) variables. See Examples.

Note

If one of the conditions is fullfilled (j denotes the step number)

• \|\beta_{j+1} - \beta_j\| < \text{epsilon parameter for any } j
• j > \text{max.iter}

the estimation process is stopped.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>
dataCox

Examples

```r
library(survival)
set.seed(456)
x <- matrix(sample(0:1, size = 20000, replace = TRUE), ncol = 2)
head(x)
dCox <- dataCox(10^4, lambda = 3, rho = 2, x,
    beta = c(2,2), cens.rate = 5)
batch_id <- sample(1:90, size = 10^4, replace = TRUE)
dCox_split <- split(dCox, batch_id)
results <- 
    coxphSGD(formula = Surv(time, status) ~ x.1+x.2,
      data = dCox_split,
      epsilon = 1e-5,
      learn.rates = function(x){1/(100*sqrt(x))},
      beta.zero = c(0,0),
      max.iter = 10*90)
coeff_by_iteration <-
  as.data.frame(
    do.call(
      rbind,
      results$coefficients
    )
  )
head(coeff_by_iteration)
```

dataCox

Cox Proportional Hazards Model Data Generation From Weibull Distribution

Description

Function `dataCox` generates random survival data from Weibull distribution (with parameters `lambda` and `rho` for given input `x` data, model coefficients `beta` and censoring rate for censoring that comes from exponential distribution with parameter `cens.rate`).

Usage

`dataCox(n, lambda, rho, x, beta, cens.rate)`

Arguments

- `n` Number of observations to generate.
- `lambda` lambda parameter for Weibull distribution.
- `rho` rho parameter for Weibull distribution.
- `x` A data.frame with an input data to generate the survival times for.
- `beta` True model coefficients.
- `cens.rate` Parameter for exponential distribution, which is responsible for censoring.
Details

For each observation true survival time is generated and a censoring time. If censoring time is less than survival time, then the survival time is returned and a status of observations is set to 0 which means the observation had censored time. If the survival time is less than censoring time, then for this observation the true survival time is returned and the status of this observation is set to 1 which means that the event has been noticed.

Value

A data.frame containing columns:

- `id` an integer.
- `time` survival times.
- `status` observation status (event occurred (1) or not (0)).
- `x` a data.frame with input data to generate the survival times for.

References

Generating survival times to simulate Cox proportional hazards models, 2005 by Ralf Bender, Thomas Augustin, Maria Blettner.

Examples

```r
## Not run:
x <- matrix(sample(0:1, size = 20000, replace = TRUE), ncol = 2)
dataCox(10^4, lambda = 3, rho = 2, x,
       beta = c(1,3), cens.rate = 5) -> dCox

## End(Not run)
```
Index

coxphSGD, 2

dataCox, 3