Package ‘cpi’

March 3, 2022

Type Package
Title Conditional Predictive Impact
Version 0.1.4
Date 2022-03-02
Maintainer Marvin N. Wright <cran@wrig.de>
Description A general test for conditional independence in supervised learning
Implements a conditional variable importance measure which can be applied to any supervised
learning algorithm and loss function. Provides statistical inference procedures without
parametric assumptions and applies equally well to continuous and categorical predictors
and outcomes.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
BugReports https://github.com/bips-hb/cpi/issues
Imports foreach, mlr3, lgr, knockoff
Suggests BEST, mlr3learners, ranger, glmnet, testthat (>= 3.0.0),
knitr, rmarkdown, doParallel
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Marvin N. Wright [aut, cre] (<https://orcid.org/0000-0002-8542-6291>),
David S. Watson [aut]
Repository CRAN
Date/Publication 2022-03-03 09:10:02 UTC

R topics documented:
cpi

1
Index

cpi Conditional Predictive Impact (CPI).

Description
A general test for conditional independence in supervised learning algorithms. Implements a conditional variable importance measure which can be applied to any supervised learning algorithm and loss function. Provides statistical inference procedures without parametric assumptions and applies equally well to continuous and categorical predictors and outcomes.

Usage
cpi(
task,
learner,
resampling = NULL,
test_data = NULL,
measure = NULL,
test = "t",
log = FALSE,
B = 1999,
alpha = 0.05,
x_tilde = NULL,
knockoff_fun = function(x) knockoff::create.second_order(as.matrix(x)),
groups = NULL,
verbose = FALSE
)

Arguments
task The prediction mlr3 task, see examples.
learner The mlr3 learner used in CPI. If you pass a string, the learner will be created via mlr3::lrn.
resampling Resampling strategy, mlr3 resampling object (e.g. rsmp("holdout")), "oob" (out-of-bag) or "none" (in-sample loss).
test_data External validation data, use instead of resampling.
measure Performance measure (loss). Per default, use MSE ("regr.mse") for regression and logloss ("classif.logloss") for classification.
test Statistical test to perform, one of "t" (t-test, default), "wilcox" (Wilcoxon signed-rank test), "binom" (binomial test), "fisher" (Fisher permutation test) or "bayes" (Bayesian testing, computationally intensive!). See Details.
log Set to TRUE for multiplicative CPI (λ), to FALSE (default) for additive CPI (Δ).
B Number of permutations for Fisher permutation test.
alpha Significance level for confidence intervals.
This function computes the conditional predictive impact (CPI) of one or several features on a given supervised learning task. This represents the mean error inflation when replacing a true variable with its knockoff. Large CPI values are evidence that the feature(s) in question have high conditional variable importance – i.e., the fitted model relies on the feature(s) to predict the outcome, even after accounting for the signal from all remaining covariates.

We build on the mlr3 framework, which provides a unified interface for training models, specifying loss functions, and estimating generalization error. See the package documentation for more info.

Methods are implemented for frequentist and Bayesian inference. The default is test = "t", which is fast and powerful for most sample sizes. The Wilcoxon signed-rank test (test = "wilcox") may be more appropriate if the CPI distribution is skewed, while the binomial test (test = "binom") requires basically no assumptions but may have less power. For small sample sizes, we recommend permutation tests (test = "fisher") or Bayesian methods (test = "bayes"). In the latter case, default priors are assumed. See the BEST package for more info.

For parallel execution, register a backend, e.g. with doParallel::registerDoParallel().

Value

For test = "bayes" a list of BEST objects. In any other case, a data.frame with a row for each feature and columns:

<table>
<thead>
<tr>
<th>Variable/Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable/group name</td>
<td>Variable/group name</td>
</tr>
<tr>
<td>CPI</td>
<td>CPI value</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>test</td>
<td>Testing method</td>
</tr>
<tr>
<td>statistic</td>
<td>Test statistic (only for t-test, Wilcoxon and binomial test)</td>
</tr>
<tr>
<td>estimate</td>
<td>Estimated mean (for t-test), median (for Wilcoxon test), or proportion of Δ-values greater than 0 (for binomial test).</td>
</tr>
<tr>
<td>p.value</td>
<td>p-value</td>
</tr>
<tr>
<td>ci.lo</td>
<td>Lower limit of (1 - alpha) * 100% confidence interval</td>
</tr>
</tbody>
</table>

Note that NA values are no error but a result of a CPI value of 0, i.e. no difference in model performance after replacing a feature with its knockoff.
References

Examples

```r
library(mlr3)
library(mlr3learners)

# Regression with linear model and holdout validation
cpi(task = tsk("mtcars"), learner = lrn("regr.lm"),
    resampling = rsmp("holdout"))

# Classification with logistic regression, log-loss and t-test
cpi(task = tsk("wine"),
    learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.1),
    resampling = rsmp("holdout"),
    measure = "classif.logloss", test = "t")

# Use your own data (and out-of-bag loss with random forest)
mytask <- as_task_classif(iris, target = "Species")
mylearner <- lrn("classif.ranger", predict_type = "prob", keep.inbag = TRUE)
cpi(task = mytask, learner = mylearner,
    resampling = "oob", measure = "classif.logloss")

# Group CPI
cpi(task = tsk("iris"),
    learner = lrn("classif.ranger", predict_type = "prob", num.trees = 10),
    resampling = rsmp("cv", folds = 3),
    groups = list(Sepal = 1:2, Petal = 3:4))

## Not run:
# Bayesian testing
res <- cpi(task = tsk("iris"),
    learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.1),
    resampling = rsmp("holdout"),
    measure = "classif.logloss", test = "bayes")
plot(res$Petal.Length)

# Parallel execution
doParallel::registerDoParallel()
cpi(task = tsk("wine"),
    learner = lrn("classif.glmnet", predict_type = "prob", lambda = 0.1),
    resampling = rsmp("cv", folds = 5))

# Use sequential knockoffs for categorical features
# package available here: https://github.com/kormama1/seqknockoff
```
mytask <- as_task_regr(iris, target = "Petal.Length")
cpi(task = mytask, learner = lrn("regr.ranger"),
 resampling = rsmp("holdout"),
 knockoff_fun = seqknockoff::knockoffs_seq)

End(Not run)
Index

cpi, 2
create.second_order, 3

lrn, 2