Package ‘cplots’

March 24, 2022

Title Plots for Circular Data
Version 0.5-0
Date 2022-03-18
Imports circular, grDevices, graphics, stats
Description Provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
License GPL (>= 2)
Encoding UTF-8
NeedsCompilation no
RoxygenNote 7.1.1
Author Danli Xu [aut],
Yong Wang [aut, cre]
Maintainer Yong Wang <yongwang@auckland.ac.nz>
Repository CRAN
Date/Publication 2022-03-24 08:50:02 UTC

R topics documented:

cbarplot ... 2
cdensity .. 3
cdotplot .. 5
chist ... 7
circtrans .. 9
cmdensity .. 10
cmhist ... 12
scalefactor ... 14

Index 16
cbarplot

Circular Bar Plot

Description

Function cbarplot can be used to plot 2-dimensional circular bar plots. The circular bar plots can only adopt the height-proportional transformation because of the white space between bars.

Usage

cbarplot(
 x,
 nbins = 36,
 radius = 1/sqrt(base::pi),
 prob = TRUE,
 nlabels = 4,
 col = NULL,
 border = NULL,
 m = NA,
 xlim = NULL,
 ylim = NULL,
 main = NULL
)

Arguments

 x
 a numeric vector storing angular values between 0 and 2 pi, or an object that can be coerced to.

 nbins
 the number of bins of the circular bar plot. Internally, it is rounded to a multiple of 4.

 radius
 the radius of the reference circle.

 prob
 logical; if TRUE, the circular histogram graphic is a representation of probability densities; if FALSE, a representation of frequencies.

 nlabels
 integer, for the number of levels to be plotted; if 0, no label is plotted

 col
 the color to fill the bars.

 border
 the color of the border around the bars.

 m
 the number of points within each bin to plot the top of a bar. The larger the number is, the smoother the plot looks.

 xlim
 numeric vectors of length 2, giving the x coordinates ranges.

 ylim
 numeric vectors of length 2, giving the y coordinates ranges.

 main
 the main title (on top)

Value

No return value
cdensity

Author(s)
Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also
cdensity, ccdotplot, chist

Examples

600 observations from two von Mises distributions
library(circular)
x = c(rvonmises(200, circular(pi/4), 5), rvonmises(400, circular(pi), 20))
cbarplot(x)
cbarplot(x, prob=FALSE)
cbarplot(x, radius=1, nlabels=0, col="lightblue")
cbarplot(x, radius=1, col="lightblue", border="skyblue4")

cdensity
Circular Density Curve

Description
Function cdensity can be used to plot 2-dimensional density curves for circular data.

Usage

```r
cdensity(
  f,
  radius = 1/sqrt(base::pi),
  area.prop = TRUE,
  total.area = 1,
  nlabels = 4,
  add = FALSE,
  n = 500,
  col = "red",
  xlim = NULL,
  ylim = NULL,
  main = NULL
)
```
Arguments

\[f \]

an R function that is to be plotted as a circular density or frequency.

\[\text{radius} \]

the radius of the reference circle. If \(\text{radius} = 0 \), no reference circle is produced, and the centre presents the point with zero density.

\[\text{area.prop} \]

logical; if \(\text{area.prop} = \text{TRUE} \), an area-proportional transformation is applied; if \(\text{area.prop} = \text{FALSE} \), a height-proportional transformation is applied.

\[\text{total.area} \]

a positive number specifying the total area under the density curve. If \(\text{total.area} = \text{NULL} \), no scaling is applied, the plot is in the original scale. If \(\text{area.prop} = \text{TRUE} \), the total area is automatically unity without scaling.

\[\text{nlabels} \]

integer, for the number of levels to be plotted; if \(0 \), no label is plotted.

\[\text{add} \]

logical; if \(\text{add} = \text{TRUE} \), the density curve is superimposed to the current plot, for example, a circular histogram, a rose diagram or a stacked dot plot that has been produced in a similar manner.

\[n \]

the number of points to plot the density curve.

\[\text{col} \]

the color of the density line.

\[\text{xlim} \]

numeric vectors of length 2, giving the x coordinates ranges.

\[\text{ylim} \]

numeric vectors of length 2, giving the y coordinates ranges.

main

the main title (on top)

Value

No return value

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also

cbarplot, cdotplot, chist

Examples

600 observations from two von Mises distributions
library(circular)
x = c(rvonmises(200, circular(pi/4), 5), rvonmises(400, circular(pi), 20))
dvm = function(x, mu=0, kappa=1) # von Mises density
 exp(kappa * cos(x - mu)) * (2 * pi * besselI(kappa, 0))^-1
f = function(x) 1/3 * dvm(x, pi/4, 5) + 2/3 * dvm(x, pi, 20)

cdensity(f) # plot the density in an area-proportional manner
cdotplot

Circular Stacked Dot Plot

Description

Function `cdotplot` can be used to plot 2-dimensional stacked dot plot for circular data.

Usage

```
cdotplot(
  x,
  nbins = 36,
  radius = 1,
  unit = NA,
  area.prop = TRUE,
  total.area = 1,
  m = NA,
  col = "lightblue",
  border = "skyblue4",
  xlim = NULL,
  ylim = NULL,
  main = NULL,
  x.legend = "bottomright",
  y.legend = NULL
)
```

Arguments

- `x`: a circular data object that is fully defined by the user.
- `nbins`: the number of bins of the circular histogram. Internally, it is rounded to a multiple of 4.
- `radius`: the radius of the reference circle. If `radius = 0`, a rose diagram is produced; if `radius > 0`, a circular histogram is produced outside the reference circle.
- `unit`: the number of observations represented by each dot. If `unit > 1`, it means that each dot represents multiple observations.
area.prop logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformation is applied.

total.area a positive number specifying the total area under the density curve. If total.area = NULL, no scaling is applied, the plot is in the original scale. If area.prop = TRUE, the total area is automatically unity without scaling.

m the number of points within each bin to plot the circular dot plot. The larger the number is, the smoother the plot looks.

col the color to fill the bars.

border the color of the border around the bars.

xlim numeric vectors of length 2, giving the x coordinates ranges.

ylim numeric vectors of length 2, giving the y coordinates ranges.

main the main title (on top)

x.legend x coordinate to plot the legend.

y.legend y coordinate to plot the legend.

Details

If the number of observations is relatively small, the usual circular stacked dot plot can be used with unit = 1. If the dataset is large, the dots may become too dense to visualize or count. Setting unit to be any positive integer to allow each dot to represent more than one observation. If the number of observations in one bin is not a multiple of the specified unit, a partial dot can be used to represent the remainder at the top of the bin.

Value

No return value

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also

cbarplot, cdensity, chist

Examples

30 observations from two von Mises distributions
library(circular)
x = c(rvonmises(10, circular(pi/4), 5), rvonmises(20, circular(pi), 20))
cdotplot(x) # area-proportional dot plot
cdotplot(x, area = FALSE) # height-proportional dot plot
900 observations from two von Mises distributions

\[y = c(rvonmises(300, \text{circular}(\pi/4), 5), rvonmises(600, \text{circular}(\pi), 20)) \]

cdotplot(y, nbins=76, unit = 10) # area-proportional (partial) dot plot
cdotplot(y, nbins=76, unit = 10, area = FALSE) # height-proportional

chist

Circular Histogram and Rose Diagram

Description

Function `chist` can be used to plot 2-dimensional histograms and rose diagrams for circular data.

Usage

```r
chist(
  x,
  nbins = 36,
  radius = 1/sqrt(base::pi),
  area.prop = TRUE,
  prob = TRUE,
  total.area = 1,
  nlabels = 4,
  col = "lightblue",
  border = "skyblue4",
  m = NA,
  xlim = NULL,
  ylim = NULL,
  main = NULL
)
```

Arguments

- **x**: a numeric vector storing angular values between 0 and 2 \(\pi \), or an object that can be coerced to.
- **nbins**: the number of bins of the circular histogram. Internally, it is rounded to a multiple of 4.
- **radius**: the radius of the reference circle. If \(\text{radius} = 0 \), a rose diagram is produced; if \(\text{radius} > 0 \), a circular histogram is produced outside the reference circle.
- **area.prop**: logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformation is applied.
- **prob**: logical; if TRUE, the circular histogram graphic is a representation of probability densities; if FALSE, a representation of frequencies.
- **total.area**: a positive number specifying the total area under the density curve. If \(\text{total.area} = \text{NULL} \), no scaling is applied, the plot is in the original scale. If \(\text{area.prop} = \text{TRUE} \), the total area is automatically unity without scaling.
chist

nlabels integer, for the number of levels for the density/frequency values to be plotted; if 0, no label is plotted

col the color to fill the bars.

border the color of the border around the bars.

m the number of points within each bin to plot the circular histogram. The larger the number is, the smoother the plot looks.

xlim numeric vectors of length 2, giving the x coordinates ranges.

ylim numeric vectors of length 2, giving the y coordinates ranges.

main the main title (on top)

Value

No return value

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also
cbarplot, cdensity, cdotplot

Examples

600 observations from two von Mises distributions
library(circular)
x = c(rvonmises(200, circular(pi/4), 5), rvonmises(400, circular(pi), 20))

chist(x) # area-proportional circular histogram
chist(x, area = FALSE) # height-proportional circular histogram
chist(x, radius=0) # area-proportional rose diagram
chist(x, radius=0, area=FALSE) # height-proportional rose diagram

chist(x, prob=FALSE) # labels for frequency
chist(x, nlabels=0) # no label
chist(x, xlim=c(-1.7,1)) # use xlim
chist(x, area=FALSE, total=2) # with scaling
chist(x, area=FALSE, total=NULL) # without scaling
Description

The function performs circular transformation of density or frequency, in an area-proportional or height-proportional manner.

Usage

```r
circtrans(x, radius = 0, area.prop = TRUE, factor = 1)
```

Arguments

- `x`: a numeric vector storing angular values between 0 and 2 pi, or an object that can be coerced to.
- `radius`: the radius of the reference circle.
- `area.prop`: logical; if `TRUE`, an area-proportional transformation is applied; if `FALSE`, a height-proportional transformation is applied.
- `factor`: a positive number representing the scale factor to scale the entire plot.

Value

A numerical vector of the transformed values

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also

- `scalefactor`

Examples

```r
library(circular)
x = as.vector(rvonmises(20, circular(pi), 10))
circtrans(x) # area-proportional transformation
circtrans(x, area.prop = FALSE) # height-proportional transformation
circtrans(x, factor = 2) # with a scaling factor
```
cmdensity

Multi-class Circular Density Curve

Description

Function `cmdensity` can be used to plot 2-dimensional density curves for circular data with multiple classes. The density curves are stacked to avoid any overlap.

Usage

```r
cmdensity(
  funlist,  # a list of functions which can be used to calculate the density values for each class, evaluated at given points defined by the first argument of the functions. The set of points is a sequence from 0 to 2π, with length n.
  funprop = 1,  # proportions for functions. It is 1 by default. A user can choose different proportions for the functions so as to represent different numbers of observations. If they do not add up to the number of functions (k), it will be normalised so that sum(classprop) = k.
  radius = 1/sqrt(base::pi),  # the radius of the reference circle.
  area.prop = TRUE,  # logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformation is applied.
  total.area = 1,  # the radius of the reference circle.
  n = 500,  # a list of functions which can be used to calculate the density values for each class, evaluated at given points defined by the first argument of the functions. The set of points is a sequence from 0 to 2π, with length n.
  nlabels = 4,  # the radius of the reference circle.
  cols = NULL,  # the radius of the reference circle.
  borders = NULL,  # the radius of the reference circle.
  xlim = NULL,  # the radius of the reference circle.
  ylim = NULL,  # the radius of the reference circle.
  main = NULL,  # the radius of the reference circle.
  type = c("null", "compass", "clock"),  # the radius of the reference circle.
  add = FALSE,  # the radius of the reference circle.
  x.legend = "bottomright",  # the radius of the reference circle.
  y.legend = NULL,  # the radius of the reference circle.
  fill = TRUE,  # the radius of the reference circle.
  lty = 1,  # the radius of the reference circle.
  lwd = 1  # the radius of the reference circle.
)
```

Arguments

- `funlist`: a list of functions which can be used to calculate the density values for each class, evaluated at given points defined by the first argument of the functions. The set of points is a sequence from 0 to 2π, with length n.
- `funprop`: proportions for functions. It is 1 by default. A user can choose different proportions for the functions so as to represent different numbers of observations. If they do not add up to the number of functions (k), it will be normalised so that sum(classprop) = k.
- `radius`: the radius of the reference circle.
- `area.prop`: logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformation is applied.
cmdensity

- **total.area**: a positive number specifying the total area under all the density curves. If `total.area = NULL`, no scaling is applied, the plot is in the original scale. If `area.prop = TRUE`, the total area is automatically unity without scaling.
- **n**: the number of points used to plot each density curve. The larger the number is, the more accurate the curve is.
- **nlabels**: integer, for the number of levels to be plotted; if `0`, no label is plotted.
- **cols**: the colors to fill the area under each density curve, with the same order as the class.
- **borders**: the colors of the borders.
- **xlim**: numeric vectors of length 2, giving the x coordinates ranges.
- **ylim**: numeric vectors of length 2, giving the y coordinates ranges.
- **main**: the main title (on top)
- **type**: the type of circular data, one of the values "null", "compass" or "clock". If "null", no special labels plotted for directions. If "compass", the four cardinal directions are printed inside the reference circle. If "clock", labels for 24 hours are printed inside the reference circle.
- **add**: logical; if `TRUE`, density curves are superimposed to the current plot, for example, the circular histograms, rose diagrams and stacked dot plots.
- **x.legend**: x coordinate to plot the legend.
- **y.legend**: y coordinate to plot the legend.
- **fill**: logical. If `TRUE`, fills the regions with colors under/between the density curves. If `FALSE`, only the density curves are plotted.
- **lty**: line width
- **lwd**: line width

Value

No return value

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also

`cdensity`, `cmhist`
Load and pre-process the dataset
library(circular)
data("pigeons", package = "circular")
x = pigeons[,2] / 180 * pi # bearing
y = pigeons[,1] # treatment
vs = split(x, factor(y, unique(y))) # list of classified value
prop = sapply(vs, length) / length(x) # proportion of each class

Define the kde function for each class using von Mises kernels
dvm = function(x, mu=0, kappa=1) # von Mises density
 exp(kappa * cos(x - mu)) * (2 * pi * besselI(kappa, 0))^(1/-1)
kdevm = function(x, x0, bw=0.3)
 rowMeans(outer(x, x0, dvm, 0.5 / (1 - exp(-bw^2 / 2))))
fs = list(function(x) kdevm(x, x0=vs[[1]]),
 function(x) kdevm(x, x0=vs[[2]]),
 function(x) kdevm(x, x0=vs[[3]]))

stacked density curves for 3 classes
cmdensity(fs) # 1:1:1
cmdensity(fs, prop) # using proportions for functions

cmhist

Multi-class Stacked Circular Histogram and Rose Diagram

Description

Function cmhist can be used to plot 2-dimensional histograms and rose diagrams for circular data with multiple classes. The histograms are stacked to avoid any overlap.

Usage

```r
cmhist(
  value,
  class,
  nbins = 36,
  radius = 1/sqrt(base::pi),
  area.prop = TRUE,
  prob = TRUE,
  proportion = FALSE,
  total.area = 1,
  nlabels = 4,
  cols = NULL,
  borders = NULL,
  m = NA,
  xlim = NULL,
  ylim = NULL,
```
main = NULL,
 type = c("null", "compass", "clock"),
 x.legend = "bottomright",
 y.legend = NULL)

Arguments

value a numeric vector storing angular values between 0 and 2 pi, or an object that can be coerced to.

class a character vector specifying the group the value belongs to. It needs to have the same length as value, otherwise it is repeated to the length of value. The order of plotting from the innermost to the outermost depends on the order of their appearance in class.

nbins the number of bins of the circular histogram. Internally, it is rounded to a multiple of 4.

radius the radius of the reference circle. If radius = 0, a rose diagram is produced; if radius > 0, a circular histogram is produced outside the reference circle.

area.prop logical; if TRUE, an area-proportional transformation is applied; if FALSE, a height-proportional transformation is applied.

prob logical; if TRUE, the circular histogram graphic is a representation of probability densities; if FALSE, a representation of frequencies.

proportion logical; if TRUE, the frequencies are scaled by the proportion of each class, so that the total area under bars is unity; if FALSE, each class is considered as a separate distribution and has area of unity.

total.area a positive number specifying the total area under all the histograms. If total.area = NULL, no scaling is applied, the plot is in the original scale. If area.prop = TRUE, the total area is automatically unity without scaling.

nlabels integer, for the number of levels to be plotted; if 0, no label is plotted. The larger the number is, the more accurate the plot will be.

cols the colors to fill the bars, with the same order as the class.

borders the colors of the border around the bars.
m the number of points within each bin to plot the circular histogram. The larger the number is, the smoother the plot looks.

xlim numeric vectors of length 2, giving the x coordinates ranges.

ylim numeric vectors of length 2, giving the y coordinates ranges.

main the main title (on top)

type the type of circular data, one of the values "null", "compass" or "clock". If "null", no special labels plotted for directions. If "compass", the four cardinal directions are printed inside the reference circle. If "clock", labels for 24 hours are printed inside the reference circle.

x.legend x coordinate to plot the legend.

y.legend y coordinate to plot the legend.
scalefactor

Value

No return value

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also

chist, cmdensity

Examples

```r
# Load the dataset
library(circular)
data("pigeons", package = "circular")
x = pigeons[,2] / 180 * pi
y = pigeons[,1]

# stacked circular histograms
cmhist(x, y) # area-proportional
cmhist(x, y, area=FALSE) # height-proportional
```

scalefactor

<table>
<thead>
<tr>
<th>Scaling Factor</th>
</tr>
</thead>
</table>

Description

The function calculates the scaling factor so that after scaling the original density curve (before transformation), the total area after transformation (excluding the reference circle) has the specified value.

Usage

```
scalefactor(x, radius = 0, total.area = 1, area.prop = TRUE)
```

Arguments

- `x`: a numeric vector storing the heights of a density curve or a histogram.
- `radius`: the radius of the reference circle.
- `total.area`: a positive number specifying the total area.
- `area.prop`: logical; if `TRUE`, an area-proportional transformation is applied; if `FALSE`, a height-proportional transformation is applied.
Details

Each value in x is a density value before transformation, for points equally-spaced on \([0, 2\pi]\). For a smooth density curve, use a reasonably large number of points, equally-spaced on \([0, 2\pi]\). The area under the density curve after transformation is then approximated by that of the corresponding sectors. Note if area.prop = TRUE, the scale factor is simply the value of total.area.

Value

A numerical value for the scaling factor

Author(s)

Danli Xu <dxu452@aucklanduni.ac.nz>, Yong Wang <yongwang@auckland.ac.nz>

References

See Also

circtrans

Examples

dvm = function(x, mu=0, kappa=1) # von Mises density
 exp(kappa * cos(x - mu)) * (2 * pi * besselI(kappa, 0))^(1/(-1))
x = dvm(seq(0, 2 * pi, len = 100), pi, 10)

scalefactor(x) # area-proportional transformation
scalefactor(x, area.prop = FALSE) # height-proportional transformation
scalefactor(x, total.area = 2) # total area of 2
scalefactor(x, area.prop = FALSE, total.area = 2)
Index

* circular bar plot
cbarplot, 2
* circular density curve
cdensity, 3
* circular histogram
chist, 7
* circular stacked dot plot
cdotplot, 5
* circular transformation
circtrans, 9
* multi-class stacked circular histogram
cmhist, 12
* rose diagram
chist, 7
* scale
scalefactor, 14
* stacked circular density curve
cmdensity, 10

cbarplot, 2, 4, 6, 8
cdensity, 3, 3, 6, 8, 11
cdotplot, 3, 4, 5, 8
chist, 3, 4, 6, 7, 14
circtrans, 9, 15
cmdensity, 10, 14
cmhist, 11, 12

scalefactor, 9, 14