Package ‘crandep’

May 30, 2024

Title Network Analysis of Dependencies of CRAN Packages

Version 0.3.9

Description The dependencies of CRAN packages can be analysed in a network fashion. For each package we can obtain the packages that it depends, imports, suggests, etc. By iterating this procedure over a number of packages, we can build, visualise, and analyse the dependency network, enabling us to have a bird’s-eye view of the CRAN ecosystem. One aspect of interest is the number of reverse dependencies of the packages, or equivalently the in-degree distribution of the dependency network. This can be fitted by the power law and/or an extreme value mixture distribution \(<\text{doi:10.48550/arXiv.2008.03073}>\), of which functions are provided.

Depends R (\(\geq 3.4\))

License GPL (\(\geq 2\))

URL https://github.com/clement-lee/crandep

BugReports https://github.com/clement-lee/crandep/issues

Encoding UTF-8

LazyData true

Imports xml2, rvest, stringr, dplyr, igraph, Rcpp, pracma, gsl, stats

Suggests ggplot2, tibble, visNetwork, knitr, rmarkdown

RoxygenNote 7.2.3

NeedsCompilation yes

SystemRequirements pandoc (\(\geq 1.12.3\)) - http://pandoc.org

Author Clement Lee [aut, cre] (<https://orcid.org/0000-0003-1785-8671>)

Maintainer Clement Lee <clement.lee.tm@outlook.com>

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

Repository CRAN

Date/Publication 2024-05-30 17:40:02 UTC
R topics documented:

- `chi_citations` .. 2
- `cran_dependencies` .. 3
- `df_to_graph` .. 4
- `dmix2` ... 4
- `dmix3` ... 5
- `dpol` ... 6
- `get_dep_all_packages` .. 7
- `get_dep_df` .. 8
- `get_graph_all_packages` 9
- `marg_pow` ... 10
- `mcmc_mix1` .. 10
- `mcmc_mix1_wrapper` ... 12
- `mcmc_mix2` .. 13
- `mcmc_mix2_wrapper` ... 16
- `mcmc_mix3` .. 17
- `mcmc_mix3_wrapper` ... 20
- `mcmc_pol` ... 21
- `mcmc_pol_wrapper` ... 23
- `obtain_u_set_mix1` .. 24
- `obtain_u_set_mix2` .. 26
- `obtain_u_set_mix2_constrained` 27
- `Smix2` .. 28
- `Smix3` .. 30
- `Spol` .. 31
- `topo_sort_kahn` ... 32

Description

A dataset containing the citations of conference papers of the ACM Conference on Human Factors in Computing Systems (CHI) from 1981 to 2019, obtained from the ACM digital library. The resulting citation network can be compared to the dependencies network of CRAN packages, in terms of network-related characteristics, such as degree distribution and sparsity.

Usage

`chi_citations`
cran_dependencies

Format
A data from with 21951 rows and 4 variables:

- **from** the unique identifier (in the digital library) of the paper that cites other papers
- **to** the unique identifier of the paper that is being cited
- **year_from** the publication year of the citing paper
- **year_to** the publication year of the cited paper

Source
https://dl.acm.org/conference/chi

See Also
cran_dependencies

cran_dependencies Dependencies of CRAN packages

Description
A dataset containing the dependencies of various types (Imports, Depends, Suggests, LinkingTo, and their reverse counterparts) of more than 14600 packages available on CRAN as of 2020-05-09.

Usage
cran_dependencies

Format
A data frame with 211408 rows and 4 variables:

- **from** the name of the package that introduced the dependencies
- **to** the name of the package that the dependency is directed towards
- **type** the type of dependency, which can take the follow values (all in lowercase): "depends", "imports", "linking to", "suggests"
- **reverse** a boolean representing whether the dependency is a reverse one (TRUE) or a forward one (FALSE)

Source
The CRAN pages of all the packages available on https://cran.r-project.org

See Also
chi_citations
df_to_graph

Construct the giant component of the network from two data frames

Description

Construct the giant component of the network from two data frames

Usage

df_to_graph(edgelist, nodelist = NULL, gc = TRUE)

Arguments

edgelist A data frame with (at least) two columns: from and to
nodelist NULL, or a data frame with (at least) one column: name, that contains the nodes
to include
gc Boolean, if 'TRUE' (default) then the giant component is extracted, if 'FALSE'
then the whole graph is returned

Value

An igraph object & a connected graph if gc is 'TRUE'

Examples

from <- c("1", "2", "4")
to <- c("2", "3", "5")
edges <- data.frame(from = from, to = to, stringsAsFactors = FALSE)
nodes <- data.frame(name = c("1", "2", "3", "4", "5"), stringsAsFactors = FALSE)
df_to_graph(edges, nodes)

dmix2

Probability mass function (PMF) of 2-component discrete extreme
value mixture distribution

Description

dmix2 returns the PMF at x for the 2-component discrete extreme value mixture distribution. The
components below and above the threshold u are the (truncated) Zipf-polylog(alpha,theta) and the
generalised Pareto(shape, sigma) distributions, respectively.

Usage

dmix2(x, u, alpha, theta, shape, sigma, phiu)
Arguments

- **x**: Vector of positive integers
- **u**: Positive integer representing the threshold
- **alpha**: Real number, first parameter of the Zipf-polylog component
- **theta**: Real number in (0, 1], second parameter of the Zipf-polylog component
- **shape**: Real number, shape parameter of the generalised Pareto component
- **sigma**: Real number, scale parameter of the generalised Pareto component
- **phiu**: Real number in (0, 1), exceedance rate of the threshold u

Value

A numeric vector of the same length as x

See Also

- `Smix2` for the corresponding survival function, `dpol` and `dmix3` for the PMFs of the Zipf-polylog and 3-component discrete extreme value mixture distributions, respectively.

dmix3

Probability mass function (PMF) of 3-component discrete extreme value mixture distribution

Description

`dmix3` returns the PMF at x for the 3-component discrete extreme value mixture distribution. The component below v is the (truncated) Zipf-polylog(alpha1,theta1) distribution, between v & u the (truncated) Zipf-polylog(alpha2,theta2) distribution, and above u the generalised Pareto(shape, sigma) distribution.

Usage

`dmix3(x, v, u, alpha1, theta1, alpha2, theta2, shape, sigma, phi1, phi2, phiu)`

Arguments

- **x**: Vector of positive integers
- **v**: Positive integer representing the lower threshold
- **u**: Positive integer representing the upper threshold
- **alpha1**: Real number, first parameter of the Zipf-polylog component below v
- **theta1**: Real number in (0, 1], second parameter of the Zipf-polylog component below v
- **alpha2**: Real number, first parameter of the Zipf-polylog component between v & u
- **theta2**: Real number in (0, 1], second parameter of the Zipf-polylog component between v & u
shape Real number, shape parameter of the generalised Pareto component
sigma Real number, scale parameter of the generalised Pareto component
phi1 Real number in (0, 1), proportion of values below v
phi2 Real number in (0, 1), proportion of values between v & u
phiu Real number in (0, 1), exceedance rate of the threshold u

Value
A numeric vector of the same length as x

See Also
Smix3 for the corresponding survival function, dpol and dmix2 for the PMFs of the Zipf-polylog and 2-component discrete extreme value mixture distributions, respectively.

dpol Probability mass function (PMF) of Zipf-polylog distribution

Description
dpol returns the PMF at x for the Zipf-polylog distribution with parameters (alpha, theta). The distribution is reduced to the discrete power law when theta = 1.

Usage
dpol(x, alpha, theta, x_max = 100000L)

Arguments

x Vector of positive integers
alpha Real number greater than 1
theta Real number in (0, 1]
x_max Scalar (default 100000), positive integer limit for computing the normalising constant

Details
The PMF is proportional to x^{(-alpha)} * theta^x. It is normalised in order to be a proper PMF.

Value
A numeric vector of the same length as x

See Also
Spol for the corresponding survival function, dmix2 and dmix3 for the PMFs of the 2-component and 3-component discrete extreme value mixture distributions, respectively.
get_dep_all_packages

Examples

dpol(c(1,2,3,4,5), 1.2, 0.5)

get_dep_all_packages Dependencies of all CRAN packages

Description

get_dep_all_packages returns the data frame of dependencies of all packages currently available on CRAN.

Usage

get_dep_all_packages()

Details

Unlike get_dep, there is no boolean argument 'scrape', as it is much faster to obtain the dependencies of all packages via 'tools::CRAN_package_db()'.

Value

A data frame of dependencies of all CRAN packages

See Also

get_dep for multiple types of dependencies, and get_graph_all_packages for obtaining directly a network of dependencies as an igraph object

Examples

Not run:
df.cran <- get_dep_all_packages()

End(Not run)
get_dep_df

Multiple types of dependencies

Description

get_dep returns a data frame of multiple types of dependencies of a package

Usage

get_dep_df(name, type, scrape = TRUE)

get_dep_all(name, type, scrape = TRUE)

get_dep(name, type, scrape = TRUE)

Arguments

name String, name of the package

type A character vector that contains one or more of the following dependency words: "Depends", "Imports", "LinkingTo", "Suggests", "Enhances", "Reverse depends", "Reverse imports", "Reverse linking to", "Reverse suggests", "Reverse enhances", up to letter case and space replaced by underscore. Alternatively, if 'type = "all"', all ten dependencies will be obtained.

scrape Boolean. If 'TRUE' (default), the page of the package will be scraped. If 'FALSE', tools::CRAN_package_db() will be used. Whether the argument equals 'TRUE' or 'FALSE' should not affect the output, but only the time taken. Usually, the former is faster than the latter for a single package.

Value

A data frame of dependencies

See Also

get_dep_all_packages for the dependencies of all CRAN packages, and get_graph_all_packages for obtaining directly a network of dependencies as an igraph object

Examples

get_dep("dplyr", c("Imports", "Depends"))
get_dep("MASS", c("Suggests", "Depends", "Imports"), TRUE) # FALSE will give same result
get_graph_all_packages

Graph of dependencies of all CRAN packages

Description

get_graph_all_packages returns an igraph object representing the network of one or more types of dependencies of all CRAN packages.

Usage

get_graph_all_packages(type, gc = TRUE)

Arguments

type A character vector that contains one or more of the following dependency words: "Depends", "Imports", "LinkingTo", "Suggests", "Enhances", "Reverse depends", "Reverse imports", "Reverse linking to", "Reverse suggests", "Reverse enhances", up to letter case and space replaced by underscore. Alternatively, if 'types = "all"', all ten dependencies will be obtained.

gc Boolean, if 'TRUE' (default) then the giant component is extracted, if 'FALSE' then the whole graph is returned

Value

An igraph object & a connected graph if gc is 'TRUE'

See Also

get_dep_all_packages for the dependencies of all CRAN packages in a data frame, and df_to_graph for constructing the giant component of the network from two data frames

Examples

Not run:
g0.cran.deps <- get_graph_all_packages("depends")
g1.cran.imports <- get_graph_all_packages("reverse imports")

End(Not run)
marg_pow

Marginal log-likelihood and posterior density of discrete power law via numerical integration

Description

Marginal log-likelihood and posterior density of discrete power law via numerical integration.

Usage

```r
marg_pow(df, lower, upper, m_alpha = 0, s_alpha = 10, by = 0.001)
```

Arguments

- `df`: A data frame with at least two columns, x & count.
- `lower`: Real number greater than 1, lower limit for numerical integration.
- `upper`: Real number greater than lower, upper limit for numerical integration.
- `m_alpha`: Real number (default 0.0), mean of the prior normal distribution for alpha.
- `s_alpha`: Positive real number (default 10.0), standard deviation of the prior normal distribution for alpha.
- `by`: Positive real number, the width of subintervals between lower and upper, for numerical integration and posterior density evaluation.

Value

A list: `log_marginal` is the marginal log-likelihood, `posterior` is a data frame of non-zero posterior densities.

mcmc_mix1

Markov chain Monte Carlo for TZP-power-law mixture

Description

`mcmc_mix1` returns the posterior samples of the parameters, for fitting the TZP-power-law mixture distribution. The samples are obtained using Markov chain Monte Carlo (MCMC).
Usage

```r
mcmc_mix1(
  x,
  count,
  u_set,
  u,
  alpha1,
  theta1,
  alpha2,
  a_psiu,
  b_psiu,
  a_alpha1,
  b_alpha1,
  a_theta1,
  b_theta1,
  a_alpha2,
  b_alpha2,
  positive,
  iter,
  thin,
  burn,
  freq,
  invt,
  mc3_or_marg,
  x_max
)
```

Arguments

- `x` Vector of the unique values (positive integers) of the data
- `count` Vector of the same length as `x` that contains the counts of each unique value in the full data, which is essentially `rep(x, count)`
- `u_set` Positive integer vector of the values `u` will be sampled from
- `u` Positive integer, initial value of the threshold
- `alpha1` Real number, initial value of the parameter
- `theta1` Real number in (0, 1], initial value of the parameter
- `alpha2` Real number greater than 1, initial value of the parameter
- `a_psiu`, `b_psiu`, `a_alpha1`, `b_alpha1`, `a_theta1`, `b_theta1`, `a_alpha2`, `b_alpha2` Scalars, real numbers representing the hyperparameters of the prior distributions for the respective parameters. See details for the specification of the priors.
- `positive` Boolean, is `alpha` positive (TRUE) or unbounded (FALSE)?
- `iter` Positive integer representing the length of the MCMC output
- `thin` Positive integer representing the thinning in the MCMC
- `burn` Non-negative integer representing the burn-in of the MCMC
- `freq` Positive integer representing the frequency of the sampled values being printed
mcmc_mix1_wrapper

invnt Vector of the inverse temperatures for Metropolis-coupled MCMC

mc3_or_marg Boolean, is invt for parallel tempering / Metropolis-coupled MCMC (TRUE, default) or marginal likelihood via power posterior (FALSE)?

x_max Scalar, positive integer limit for computing the normalising constant

Details

In the MCMC, a componentwise Metropolis-Hastings algorithm is used. The threshold u is treated as a parameter and therefore sampled. The hyperparameters are used in the following priors: u such that the implied unique exceedance probability psiu ~ Uniform(a_psi, b_psi); alpha1 ~ Normal(mean = a_alpha1, sd = b_alpha1); theta1 ~ Beta(a_theta1, b_theta1); alpha2 ~ Normal(mean = a_alpha2, sd = b_alpha2)

Value

A list: $pars is a data frame of iter rows of the MCMC samples, $fitted is a data frame of length(x) rows with the fitted values, amongst other quantities related to the MCMC

See Also

mcmc_pol, mcmc_mix2 and mcmc_mix3 for MCMC for the Zipf-polylog, and 2-component and 3-component discrete extreme value mixture distributions, respectively.

Description

Wrapper of mcmc_mix1

Usage

```r
mcmc_mix1_wrapper(
  df,
  seed,
  u_max = 2000L,
  log_diff_max = 11,
  a_psiu = 0.1,
  b_psiu = 0.9,
  m_alpha1 = 0,
  s_alpha1 = 10,
  a_theta1 = 1,
  b_theta1 = 1,
  m_alpha2 = 0,
  s_alpha2 = 10,
  positive = FALSE,
  iter = 20000L,
)```

thin = 1L,
burn = 10000L,
freq = 100L,
invts = 1,
mc3_or_marg = TRUE,
x_max = 1e+05)

Arguments

df  A data frame with at least two columns, x & count
seed  Integer for set.seed
u_max  Scalar (default 2000), positive integer for the maximum threshold to be passed to obtain_u_set_mix1
log_diff_max  Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept
a_psiu, b_psiu, m_alpha1, s_alpha1, a_theta1, b_theta1, m_alpha2, s_alpha2  Scalars, real numbers representing the hyperparameters of the prior distributions for the respective parameters. See details for the specification of the priors.
positive  Boolean, is alpha1 positive (TRUE) or unbounded (FALSE)?
iter  Positive integer representing the length of the MCMC output
thin  Positive integer representing the thinning in the MCMC
burn  Non-negative integer representing the burn-in of the MCMC
freq  Positive integer representing the frequency of the sampled values being printed
invts  Vector of the inverse temperatures for Metropolis-coupled MCMC (if mc3_or_marg = TRUE) or power posterior (if mc3_or_marg = FALSE)
mc3_or_marg  Boolean, is Metropolis-coupled MCMC to be used? Ignored if invts = c(1.0)
x_max  Scalar (default 100000), positive integer limit for computing the normalising constant

Value

A list returned by mcmc_mix1

Description

mcmc_mix2 returns the posterior samples of the parameters, for fitting the 2-component discrete extreme value mixture distribution. The samples are obtained using Markov chain Monte Carlo (MCMC).
Usage

mcmc_mix2(
  x,
  count,
  u_set,
  u,
  alpha,
  theta,
  shape,
  sigma,
  a_psiu,
  b_psiu,
  a_alpha,
  b_alpha,
  a_theta,
  b_theta,
  m_shape,
  s_shape,
  a_sigma,
  b_sigma,
  positive,
  a_pseudo,
  b_pseudo,
  pr_power,
  iter,
  thin,
  burn,
  freq,
  invt,
  mc3_or_marg = TRUE,
  constrained = FALSE
)

Arguments

x           Vector of the unique values (positive integers) of the data
count       Vector of the same length as x that contains the counts of each unique value in
            the full data, which is essentially rep(x, count)
u_set       Positive integer vector of the values u will be sampled from
u           Positive integer, initial value of the threshold
alpha       Real number greater than 1, initial value of the parameter
theta       Real number in (0, 1], initial value of the parameter
shape       Real number, initial value of the parameter
sigma       Positive real number, initial value of the parameter
a_psiu, b_psiu, a_alpha, b_alpha, a_theta, b_theta, m_shape, s_shape, a_sigma, b_sigma,
            Scalars, real numbers representing the hyperparameters of the prior distributions
            for the respective parameters. See details for the specification of the priors.
positive  Boolean, is alpha positive (TRUE) or unbounded (FALSE)? Ignored if constrained is TRUE

a_pseudo  Positive real number, first parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0

b_pseudo  Positive real number, second parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0

pr_power  Real number in [0, 1], prior probability of the discrete power law (below u). Overridden if constrained is TRUE

iter  Positive integer representing the length of the MCMC output

thin  Positive integer representing the thinning in the MCMC

burn  Non-negative integer representing the burn-in of the MCMC

dfreq  Positive integer representing the frequency of the sampled values being printed

invt  Vector of the inverse temperatures for Metropolis-coupled MCMC

mc3_or_marg  Boolean, is invt for parallel tempering / Metropolis-coupled MCMC (TRUE, default) or marginal likelihood via power posterior (FALSE)?

constrained  Boolean, are alpha & shape constrained such that 1/shape+1 > alpha > 1 with the powerlaw assumed in the body & “continuity” at the threshold u (TRUE), or is there no constraint between alpha & shape, with the former governed by positive, and no powerlaw and continuity enforced (FALSE, default)?

Details

In the MCMC, a componentwise Metropolis-Hastings algorithm is used. The threshold u is treated as a parameter and therefore sampled. The hyperparameters are used in the following priors: u is such that the implied unique exceedance probability psiu ~ Uniform(a_psi, b_psi); alpha ~ Normal(mean = a_alpha, sd = b_alpha); theta ~ Beta(a_theta, b_theta); shape ~ Normal(mean = m_shape, sd = s_shape); sigma ~ Gamma(a_sigma, scale = b_sigma). If pr_power = 1.0, the discrete power law (below u) is assumed, and the samples of theta will be all 1.0. If pr_power is in (0.0, 1.0), model selection between the polylog distribution and the discrete power law will be performed within the MCMC.

Value

A list: $pars is a data frame of iter rows of the MCMC samples, $fitted is a data frame of length(x) rows with the fitted values, amongst other quantities related to the MCMC

See Also

mcmc_pol and mcmc_mix3 for MCMC for the Zipf-polylog and 3-component discrete extreme value mixture distributions, respectively.
mcmc_mix2_wrapper  Wrapper of mcmc_mix2

Description

Wrapper of mcmc_mix2

Usage

mcmc_mix2_wrapper(
  df,  # A data frame with at least two columns, x & count
  seed,  # Integer for set.seed
  u_max = 2000L,  # Scalar (default 2000), positive integer for the maximum threshold to be passed to obtain_u_set_mix2
  log_diff_max = 11,  # Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept
  a_psiu = 0.001,  # a_psiu = 0.001
  b_psiu = 0.9,  # b_psiu = 0.9
  m_alpha = 0,  # m_alpha = 0
  s_alpha = 10,  # s_alpha = 10
  a_theta = 1,  # a_theta = 1
  b_theta = 1,  # b_theta = 1
  m_shape = 0,  # m_shape = 0
  s_shape = 10,  # s_shape = 10
  a_sigma = 1,  # a_sigma = 1
  b_sigma = 0.01,  # b_sigma = 0.01
  a_pseudo = 10,  # a_pseudo = 10
  b_pseudo = 1,  # b_pseudo = 1
  pr_power = 0.5,  # pr_power = 0.5
  positive = FALSE,  # positive = FALSE
  iter = 20000L,  # iter = 20000L
  thin = 20L,  # thin = 20L
  burn = 100000L,  # burn = 100000L
  freq = 1000L,  # freq = 1000L
  invts = 1,  # invts = 1
  mc3_or_marg = TRUE,  # mc3_or_marg = TRUE
  constrained = FALSE  # constrained = FALSE
)

Arguments

df  # A data frame with at least two columns, x & count
seed  # Integer for set.seed
u_max  # Scalar (default 2000), positive integer for the maximum threshold to be passed to obtain_u_set_mix2
log_diff_max  # Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept
mcmc_mix3

**a_psiu, b_psiu, m_alpha, s_alpha, a_theta, b_theta, m_shape, s_shape, a_sigma, b_sigma**

Scalars, real numbers representing the hyperparameters of the prior distributions for the respective parameters. See details for the specification of the priors.

**a_pseudo**
Positive real number, first parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0

**b_pseudo**
Positive real number, second parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0

**pr_power**
Real number in [0, 1], prior probability of the discrete power law (below u)

**positive**
Boolean, is alpha positive (TRUE) or unbounded (FALSE)?

**iter**
Positive integer representing the length of the MCMC output

**thin**
Positive integer representing the thinning in the MCMC

**burn**
Non-negative integer representing the burn-in of the MCMC

**freq**
Positive integer representing the frequency of the sampled values being printed

**invts**
Vector of the inverse temperatures for Metropolis-coupled MCMC (if mc3_or_marg = TRUE) or power posterior (if mc3_or_marg = FALSE)

**mc3_or_marg**
Boolean, is Metropolis-coupled MCMC to be used? Ignored if invts = c(1.0)

**constrained**
Boolean, are alpha & shape constrained such that 1/shape+1 > alpha > 1 with the powerlaw assumed in the body & "continuity" at the threshold u (TRUE), or is there no constraint between alpha & shape, with the former governed by positive, and no powerlaw and continuity enforced (FALSE, default)?

**Value**
A list returned by mcmc_mix2

---

**mcmc_mix3**

*Markov chain Monte Carlo for 3-component discrete extreme value mixture distribution*

---

**Description**

`mcmc_mix3` returns the posterior samples of the parameters, for fitting the 3-component discrete extreme value mixture distribution. The samples are obtained using Markov chain Monte Carlo (MCMC).

**Usage**

```r
mcmc_mix3(
 x,
 count, v_set, u_set,
 v, u,
)```

alpha1, theta1, alpha2, theta2, shape, sigma, a_psi1, a_psi2, a_psiu, b_psiu, a_alpha1, b_alpha1, a_theta1, b_theta1, a_alpha2, b_alpha2, a_theta2, b_theta2, m_shape, s_shape, a_sigma, b_sigma, powerlaw1, positive1, positive2, a_pseudo, b_pseudo, pr_power2, iter, thin, burn, freq, invt, mc3_or_marg = TRUE
)

Arguments

x Vector of the unique values (positive integers) of the data
count Vector of the same length as x that contains the counts of each unique value in the full data, which is essentially rep(x, count)
v_set Positive integer vector of the values v will be sampled from
u_set Positive integer vector of the values u will be sampled from
v Positive integer, initial value of the lower threshold
u Positive integer, initial value of the upper threshold
alpha1 Real number greater than 1, initial value of the parameter
theta1 Real number in (0, 1], initial value of the parameter
alpha2 Real number greater than 1, initial value of the parameter
theta2 Real number in (0, 1], initial value of the parameter
shape Real number, initial value of the parameter
sigma Positive real number, initial value of the parameter
a_psi1, a_psi2, a_psiu, b_psiu, a_alpha1, b_alpha1, a_theta1, b_theta1, a_alpha2, b_alpha2, a_theta2, b_theta2, m_shape, s_shape, a_sigma, b_sigma
Scalars, real numbers representing the hyperparameters of the prior distributions for the respective parameters. See details for the specification of the priors.
powerlaw1 Boolean, is the discrete power law assumed for below v?
positive1 Boolean, is alpha1 positive (TRUE) or unbounded (FALSE)?
positive2 Boolean, is alpha2 positive (TRUE) or unbounded (FALSE)?
a_pseudo Positive real number, first parameter of the pseudoprior beta distribution for theta2 in model selection; ignored if pr_power2 = 1.0
b_pseudo Positive real number, second parameter of the pseudoprior beta distribution for theta2 in model selection; ignored if pr_power2 = 1.0
pr_power2 Real number in [0, 1], prior probability of the discrete power law (between v and u)
iter Positive integer representing the length of the MCMC output
thin Positive integer representing the thinning in the MCMC
burn Non-negative integer representing the burn-in of the MCMC
freq Positive integer representing the frequency of the sampled values being printed
invt Vector of the inverse temperatures for Metropolis-coupled MCMC
mc3_or_marg Boolean, is invt for parallel tempering / Metropolis-coupled MCMC (TRUE, default) or marginal likelihood via power posterior (FALSE)?

Details

In the MCMC, a componentwise Metropolis-Hastings algorithm is used. The thresholds v and u are treated as parameters and therefore sampled. The hyperparameters are used in the following priors: psi1 / (1.0 - psiu) ~ Beta(a_psi1, a_psi2); u is such that the implied unique exceedance probability psiu ~ Uniform(a_psi, b_psi); alpha1 ~ Normal(mean = a_alpha1, sd = b_alpha1); theta1 ~ Beta(a_theta1, b_theta1); alpha2 ~ Normal(mean = a_alpha2, sd = b_alpha2); theta2 ~ Beta(a_theta2, b_theta2); shape ~ Normal(mean = m_shape, sd = s_shape); sigma ~ Gamma(a_sigma, scale = b_sigma). If pr_power2 = 1.0, the discrete power law (between v and u) is assumed, and the samples of theta2 will be all 1.0. If pr_power2 is in (0.0, 1.0), model selection between the polylog distribution and the discrete power law will be performed within the MCMC.

Value

A list: $pars is a data frame of iter rows of the MCMC samples, $fitted is a data frame of length(x) rows with the fitted values, amongst other quantities related to the MCMC

See Also

mcmc_pol and mcmc_mix2 for MCMC for the Zipf-polylog and 2-component discrete extreme value mixture distributions, respectively.
Description

Wrapper of mcmc_mix3

Usage

mcmc_mix3_wrapper(
 df,
 seed,
 v_max = 100L,
 u_max = 2000L,
 log_diff_max = 11,
 a_psi1 = 1,
 a_psi2 = 1,
 a_psiu = 0.001,
 b_psiu = 0.9,
 m_alpha = 0,
 s_alpha = 10,
 a_theta = 1,
 b_theta = 1,
 m_shape = 0,
 s_shape = 10,
 a_sigma = 1,
 b_sigma = 0.01,
 a_pseudo = 10,
 b_pseudo = 1,
 pr_power2 = 0.5,
 powerlaw1 = FALSE,
 positive1 = FALSE,
 positive2 = TRUE,
 iter = 20000L,
 thin = 20L,
 burn = 100000L,
 freq = 1000L,
 invts = 1,
 mc3_or_marg = TRUE
)

Arguments

df A data frame with at least two columns, x & count
seed Integer for set.seed
v_max Scalar (default 100), positive integer for the maximum lower threshold to be passed to obtain_u_set_mix3
Value

A list returned by `mcmc_mix3`

Description

`mcmc_pol` returns the samples from the posterior of alpha and theta, for fitting the Zipf-polylog distribution to the data x. The samples are obtained using Markov chain Monte Carlo (MCMC). In the MCMC, a Metropolis-Hastings algorithm is used.
Usage

mcmc_pol(
 x,
 count,
 alpha,
 theta,
 a_alpha,
 b_alpha,
 a_theta,
 b_theta,
 a_pseudo,
 b_pseudo,
 pr_power,
 iter,
 thin,
 burn,
 freq,
 invt,
 mc3_or_marg,
 x_max
)

Arguments

x Vector of the unique values (positive integers) of the data
count Vector of the same length as x that contains the counts of each unique value in
 the full data, which is essentially rep(x, count)
alpha Real number greater than 1, initial value of the parameter
theta Real number in (0, 1], initial value of the parameter
a_alpha Real number, mean of the prior normal distribution for alpha
b_alpha Positive real number, standard deviation of the prior normal distribution for alpha
a_theta Positive real number, first parameter of the prior beta distribution for theta; ignored if pr_power = 1.0
b_theta Positive real number, second parameter of the prior beta distribution for theta; ignored if pr_power = 1.0
a_pseudo Positive real number, first parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0
b_pseudo Positive real number, second parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0
pr_power Real number in [0, 1], prior probability of the discrete power law
iter Positive integer representing the length of the MCMC output
thin Positive integer representing the thinning in the MCMC
burn Non-negative integer representing the burn-in of the MCMC
mcmc_pol_wrapper

Description

Wrapper of mcmc_pol

Usage

mcmc_pol_wrapper(
 df,
 seed,
 alpha_init = 1.5,
 theta_init = 0.5,
 m_alpha = 0,
 s_alpha = 10,
 a_theta = 1,
 b_theta = 1,
 a_pseudo = 10,
 b_pseudo = 1,
 pr_power = 0.5,
 iter = 20000L,
 thin = 20L,
 burn = 100000L,
 freq = 1000L,
 invts = 1,
 mc3_or_marg = TRUE,
 x_max = 1e+05
)

Value

A list: $pars is a data frame of iter rows of the MCMC samples, $fitted is a data frame of length(x) rows with the fitted values, amongst other quantities related to the MCMC

See Also

mcmc_mix2 and mcmc_mix3 for MCMC for the 2-component and 3-component discrete extreme value mixture distributions, respectively.

freq Positive integer representing the frequency of the sampled values being printed

invt Vector of the inverse temperatures for Metropolis-coupled MCMC

mc3_or_marg Boolean, is invt for parallel tempering / Metropolis-coupled MCMC (TRUE, default) or marginal likelihood via power posterior (FALSE)?

x_max Scalar, positive integer limit for computing the normalising constant
Arguments

df A data frame with at least two columns, x & count
seed Integer for set.seed
alpha_init Real number greater than 1, initial value of the parameter
theta_init Real number in (0, 1], initial value of the parameter
m_alpha Real number, mean of the prior normal distribution for alpha
s_alpha Positive real number, standard deviation of the prior normal distribution for alpha
a_theta Positive real number, first parameter of the prior beta distribution for theta; ignored if pr_power = 1.0
b_theta Positive real number, second parameter of the prior beta distribution for theta; ignored if pr_power = 1.0
a_pseudo Positive real number, first parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0
b_pseudo Positive real number, second parameter of the pseudoprior beta distribution for theta in model selection; ignored if pr_power = 1.0
pr_power Real number in [0, 1], prior probability of the discrete power law
iter Positive integer representing the length of the MCMC output
thin Positive integer representing the thinning in the MCMC
burn Non-negative integer representing the burn-in of the MCMC
freq Positive integer representing the frequency of the sampled values being printed
invt Vector of the inverse temperatures for Metropolis-coupled MCMC (if mc3_or_marg = TRUE) or power posterior (if mc3_or_marg = FALSE)
mc3_or_marg Boolean, is Metropolis-coupled MCMC to be used? Ignored if invts = c(1.0)
x_max Scalar (default 100000), positive integer limit for computing the normalising constant

Value

A list returned by mcmc_pol

obtain_u_set_mix1 Obtain set of thresholds with high posterior density for the TZP-power-law mixture model

Description

obtain_u_set_mix1 computes the profile posterior density of the threshold u, and subsets the thresholds (and other parameter values) with high profile values i.e. within a certain value from the maximum posterior density. The set of u can then be used for mcmc_mix1.
obtain_u_set_mix1

Usage

```
obtain_u_set_mix1(
  df,
  positive = FALSE,
  u_max = 2000L,
  log_diff_max = 11,
  alpha1_init = 0.01,
  theta1_init = exp(-1),
  alpha2_init = 2,
  a_psiu = 0.1,
  b_psiu = 0.9,
  m_alpha1 = 0,
  s_alpha1 = 10,
  a_theta1 = 1,
  b_theta1 = 1,
  m_alpha2 = 0,
  s_alpha2 = 10,
  x_max = 1e+05
)
```

Arguments

- **df**: A data frame with at least two columns, x & count
- **positive**: Boolean, is alpha1 positive (TRUE) or unbounded (FALSE, default)?
- **u_max**: Positive integer for the maximum threshold
- **log_diff_max**: Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept
- **alpha1_init**: Scalar, initial value of alpha1
- **theta1_init**: Scalar, initial value of theta1
- **alpha2_init**: Scalar, initial value of alpha2
- **a_psiu**, **b_psiu**, **m_alpha1**, **s_alpha1**, **a_theta1**, **b_theta1**, **m_alpha2**, **s_alpha2**: Scalars, hyperparameters of the priors for the parameters
- **x_max**: Scalar (default 100000), positive integer limit for computing the normalising constant

Value

A list: `u_set` is the vector of thresholds with high posterior density, `init` is the data frame with the maximum profile posterior density and associated parameter values, `profile` is the data frame with all thresholds with high posterior density and associated parameter values, `scalars` is the data frame with all arguments (except df)

See Also

- `mcmc_mix1_wrapper` that wraps `obtain_u_set_mix1` and `mcmc_mix1`, `obtain_u_set_mix2` for the equivalent function for the 2-component mixture model
obtain_u_set_mix2

Obtain set of thresholds with high posterior density for the 2-component mixture model

Description

obtain_u_set_mix2 computes the profile posterior density of the threshold u, and subsets the thresholds (and other parameter values) with high profile values i.e. within a certain value from the maximum posterior density. The set of u can then be used for mcmc_mix2.

Usage

obtain_u_set_mix2(
 df,
 powerlaw = FALSE,
 positive = FALSE,
 u_max = 2000L,
 log_diff_max = 11,
 alpha_init = 0.01,
 theta_init = exp(-1),
 shape_init = 0.1,
 sigma_init = 1,
 a_psiu = 0.001,
 b_psiu = 0.9,
 m_alpha = 0,
 s_alpha = 10,
 a_theta = 1,
 b_theta = 1,
 m_shape = 0,
 s_shape = 10,
 a_sigma = 1,
 b_sigma = 0.01
)

Arguments

df A data frame with at least two columns, x & count
powerlaw Boolean, is the power law (TRUE) or polylogarithm (FALSE, default) assumed?
positive Boolean, is alpha positive (TRUE) or unbounded (FALSE, default)?
u_max Positive integer for the maximum threshold
log_diff_max Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept
alpha_init Scalar, initial value of alpha
theta_init Scalar, initial value of theta
shape_init Scalar, initial value of shape parameter
obtain_u_set_mix2_constrained

sigma_init Scalar, initial value of sigma
a_psiu, b_psiu, m_alpha, s_alpha, a_theta, b_theta, m_shape, s_shape, a_sigma, b_sigma
Scalars, hyperparameters of the priors for the parameters

Value
A list: u_set is the vector of thresholds with high posterior density, init is the data frame with the maximum profile posterior density and associated parameter values, profile is the data frame with all thresholds with high posterior density and associated parameter values, scalars is the data frame with all arguments (except df)

See Also
mcmc_mix2_wrapper that wraps obtain_u_set_mix2 and mcmc_mix2, obtain_u_set_mix1 for the equivalent function for the TZP-power-law mixture model

obtain_u_set_mix2_constrained
Obtain set of thresholds with high posterior density for the constrained 2-component mixture model

Description
obtain_u_set_mix2_constrained computes the profile posterior density of the threshold u, and subsets the thresholds (and other parameter values) with high profile values i.e. within a certain value from the maximum posterior density. The set of u can then be used for mcmc_mix2. Power law is assumed for the body, and alpha is assumed to be greater than 1.0 and smaller than 1.0/shape+1.0

Usage
obtain_u_set_mix2_constrained(
 df,
 u_max = 2000L,
 log_diff_max = 11,
 alpha_init = 2,
 shape_init = 0.1,
 sigma_init = 1,
 a_psiu = 0.001,
 b_psiu = 0.9,
 m_alpha = 0,
 s_alpha = 10,
 a_theta = 1,
 b_theta = 1,
 m_shape = 0,
 s_shape = 10,
 a_sigma = 1,
 b_sigma = 0.01
)
obtain_u_set_mix3

Arguments

- **df**: A data frame with at least two columns, x & count
- **u_max**: Positive integer for the maximum threshold
- **log_diff_max**: Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept
- **alpha_init**: Scalar, initial value of alpha
- **shape_init**: Scalar, initial value of shape parameter
- **sigma_init**: Scalar, initial value of sigma
- **a_psiu, b_psiu, m_alpha, s_alpha, a_theta, b_theta, m_shape, s_shape, a_sigma, b_sigma**: Scalars, hyperparameters of the priors for the parameters

Value

A list: *u_set* is the vector of thresholds with high posterior density, *init* is the data frame with the maximum profile posterior density and associated parameter values, *profile* is the data frame with all thresholds with high posterior density and associated parameter values, *scalars* is the data frame with all arguments (except df)

See Also

- *obtain_u_set_mix2* for the unconstrained version

obtain_u_set_mix3 Obtain set of thresholds with high posterior density for the 3-component mixture model

Description

`obtain_u_set_mix3` computes the profile posterior density of the thresholds v & u, and subsets the thresholds (and other parameter values) with high profile values i.e. within a certain value from the maximum posterior density. The sets of v & u can then be used for `mcmc_mix3`.

Usage

```r
obtain_u_set_mix3(
  df,
  powerlaw1 = FALSE,
  powerlaw2 = FALSE,
  positive1 = FALSE,
  positive2 = TRUE,
  log_diff_max = 11,
  v_max = 100L,
  u_max = 2000L,
  alpha_init = 0.01,
  theta_init = exp(-1),
```
shape_init = 1,
sigma_init = 1,
a_psi1 = 1,
a_psi2 = 1,
a_psiu = 0.001,
b_psiu = 0.9,
m_alpha = 0,
s_alpha = 10,
a_theta = 1,
b_theta = 1,
m_shape = 0,
s_shape = 10,
a_sigma = 1,
b_sigma = 0.01
)

Arguments

A data frame with at least two columns, degree & count

powerlaw1 Boolean, is the power law (TRUE) or polylogarithm (FALSE, default) assumed for the left tail?

powerlaw2 Boolean, is the power law (TRUE) or polylogarithm (FALSE, default) assumed for the middle bulk?

positive1 Boolean, is alpha positive (TRUE) or unbounded (FALSE, default) for the left tail?

positive2 Boolean, is alpha positive (TRUE) or unbounded (FALSE, default) for the middle bulk?

log_diff_max Positive real number, the value such that thresholds with profile posterior density not less than the maximum posterior density - log_diff_max will be kept

v_max Positive integer for the maximum lower threshold

u_max Positive integer for the maximum upper threshold

alpha_init Scalar, initial value of alpha

theta_init Scalar, initial value of theta

shape_init Scalar, initial value of shape parameter

sigma_init Scalar, initial value of sigma

a_psi1, a_psi2, a_psiu, b_psiu, m_alpha, s_alpha, a_theta, b_theta, m_shape, s_shape, a_sigma, b_sigma Scalars, hyperparameters of the priors for the parameters

Value

A list: v_set is the vector of lower thresholds with high posterior density, u_set is the vector of upper thresholds with high posterior density, init is the data frame with the maximum profile posterior density and associated parameter values, profile is the data frame with all thresholds with high posterior density and associated parameter values, scalars is the data frame with all arguments (except df)
Smix2

Survival function of 2-component discrete extreme value mixture distribution

Description

Smix2 returns the survival function at x for the 2-component discrete extreme value mixture distribution. The components below and above the threshold u are the (truncated) Zipf-polylog(alpha,theta) and the generalised Pareto(shape, sigma) distributions, respectively.

Usage

```
Smix2(x, u, alpha, theta, shape, sigma, phiu)
```

Arguments

- `x` Vector of positive integers
- `u` Positive integer representing the threshold
- `alpha` Real number, first parameter of the Zipf-polylog component
- `theta` Real number in (0, 1], second parameter of the Zipf-polylog component
- `shape` Real number, shape parameter of the generalised Pareto component
- `sigma` Real number, scale parameter of the generalised Pareto component
- `phiu` Real number in (0, 1), exceedance rate of the threshold u

Value

A numeric vector of the same length as x

See Also

- `dmix2` for the corresponding probability mass function, `Spol` and `Smix3` for the survival functions of the Zipf-polylog and 3-component discrete extreme value mixture distributions, respectively.
Description

`Smix3` returns the survival function at `x` for the 3-component discrete extreme value mixture distribution. The component below `v` is the (truncated) Zipf-polylog(`alpha_1`, `theta_1`) distribution, between `v` & `u` the (truncated) Zipf-polylog(`alpha_2`, `theta_2`) distribution, and above `u` the generalised Pareto(`shape`, `sigma`) distribution.

Usage

```
Smix3(x, v, u, alpha1, theta1, alpha2, theta2, shape, sigma, phi1, phi2, phiu)
```

Arguments

- `x`: Vector of positive integers
- `v`: Positive integer representing the lower threshold
- `u`: Positive integer representing the upper threshold
- `alpha1`: Real number, first parameter of the Zipf-polylog component below `v`
- `theta1`: Real number in `(0, 1]`, second parameter of the Zipf-polylog component below `v`
- `alpha2`: Real number, first parameter of the Zipf-polylog component between `v` & `u`
- `theta2`: Real number in `(0, 1]`, second parameter of the Zipf-polylog component between `v` & `u`
- `shape`: Real number, shape parameter of the generalised Pareto component
- `sigma`: Real number, scale parameter of the generalised Pareto component
- `phi1`: Real number in `(0, 1]`, proportion of values below `v`
- `phi2`: Real number in `(0, 1]`, proportion of values between `v` & `u`
- `phiu`: Real number in `(0, 1]`, exceedance rate of the threshold `u`

Value

A numeric vector of the same length as `x`

See Also

`dmix3` for the corresponding probability mass function, `Spol` and `Smix2` for the survival functions of the Zipf-polylog and 2-component discrete extreme value mixture distributions, respectively.
Spol

Survival function of Zipf-polylog distribution

Description

Spol returns the survival function at x for the Zipf-polylog distribution with parameters (alpha, theta). The distribution is reduced to the discrete power law when theta = 1.

Usage

```r
Spol(x, alpha, theta, x_max = 100000L)
```

Arguments

- `x`: Vector of positive integers
- `alpha`: Real number greater than 1
- `theta`: Real number in (0, 1]
- `x_max`: Scalar (default 100000), positive integer limit for computing the normalising constant

Value

A numeric vector of the same length as x

See Also

dpol for the corresponding probability mass function, Smix2 and Smix3 for the survival functions of the 2-component and 3-component discrete extreme value mixture distributions, respectively.

Examples

```r
Spol(c(1,2,3,4,5), 1.2, 0.5)
```

topo_sort_kahn

Return a sorted vector of nodes id

Description

Return a sorted vector of nodes id

Usage

topo_sort_kahn(g, random = FALSE)
Arguments

- `g`: An igraph object of a DAG
- `random`: Boolean, whether the order of selected nodes is randomised in the process

Value

A data frame with two columns: "id" is the names of nodes in g, and "id_num" is the topological ordering

Examples

```r
df0 <- data.frame(from = c("a", "b"), to = c("b", "c"), stringsAsFactors = FALSE)
g0 <- igraph::graph_from_data_frame(df0, directed = TRUE)
topo_sort_kahn(g0)
```
Index

* datasets
 chi_citations, 2
 cran_dependencies, 3
 chi_citations, 2, 3
 cran_dependencies, 3, 3
 df_to_graph, 4, 9
 dmix2, 4, 6, 30
 dmix3, 5, 5, 6, 31
 dpol, 5, 6, 6, 32
 get_dep, 7
 get_dep (get_dep_df), 8
 get_dep_all (get_dep_df), 8
 get_dep_all_packages, 7, 8, 9
 get_dep_df, 8
 get_graph_all_packages, 7, 8, 9
 marg_pow, 10
 mcmc_mix1, 10, 24, 25
 mcmc_mix1_wrapper, 12, 25
 mcmc_mix2, 12, 13, 19, 23, 26, 27
 mcmc_mix2_wrapper, 16, 27
 mcmc_mix3, 12, 15, 17, 23, 28, 30
 mcmc_mix3_wrapper, 20, 30
 mcmc_pol, 12, 15, 19, 21
 mcmc_pol_wrapper, 23
 obtain_u_set_mix1, 24, 27
 obtain_u_set_mix2, 25, 26, 28
 obtain_u_set_mix2_constrained, 27
 obtain_u_set_mix3, 28
 Smix2, 5, 30, 31, 32
 Smix3, 6, 30, 31, 32
 Spol, 6, 30, 31, 32
 topo_sort_kahn, 32