Package ‘crawl’

July 30, 2016

Type Package
Title Fit Continuous-Time Correlated Random Walk Models to Animal Movement Data
Version 2.0.1
Date 2016-07-22
Author Devin S. Johnson
Maintainer Devin S. Johnson <devin.johnson@noaa.gov>
Depends R (>= 2.10)
Imports mvtnorm, Rcpp (>= 0.11.1), methods, shiny
LinkingTo Rcpp, RcppArmadillo
Suggests ggplot2, knitr, rmarkdown, sp, rgdal, argosfilter, tidyR, dplyR, lubridate, xts, doParallel
Description The Correlated Random Walk Library of R functions was designed for fitting continuous-time correlated random walk models with time indexed covariates. The model is fit using the Kalman-filter on a state space version of the continuous-time stochastic movement process.
License CC0
LazyLoad yes
ByteCompile TRUE
NeedsCompilation yes
VignetteBuilder knitr
RoxygenNote 5.0.1
Repository CRAN
Date/Publication 2016-07-30 00:06:29
R topics documented:

crawl-package .. 2
aic.crw ... 3
argosDiag2Cov .. 4
as.flat ... 5
beardedSeals .. 5
check_csv ... 6
crwMLE .. 6
crwN2ll ... 9
crwPostIS .. 11
crwPredict .. 12
crwPredictPlot .. 13
crwSamplePar ... 14
crwSimulator ... 15
displayPar ... 17
expandPred ... 18
fillCols .. 19
flatten ... 20
harborSeal ... 21
intToPOSIX .. 21
mergeTrackStop .. 22
northernFurSeal ... 23

Index 25

crawl-package Fit Continuous-Time Correlated Random Walk Models to Animal Movement Data

Description

The Correlated RAndom Walk Library (I know it is not an R library, but, "crawp" did not sound as good) of R functions was designed for fitting continuous-time correlated random walk (CTCRW) models with time indexed covariates. The model is fit using the Kalman-Filter on a state space version of the continuous-time stochastic movement process.

Package: crawl
Type: Package
Version: 2.0.1
Date: July 22, 2016
License: CC0
LazyLoad: yes
Note

This software package is developed and maintained by scientists at the NOAA Fisheries Alaska Fisheries Science Center and should be considered a fundamental research communication. The recommendations and conclusions presented here are those of the authors and this software should not be construed as official communication by NMFS, NOAA, or the U.S. Dept. of Commerce. In addition, reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. While the best efforts have been made to insure the highest quality, tools such as this are under constant development and are subject to change.

Author(s)

Devin S. Johnson
Maintainer: Devin S. Johnson <devin.johnson@noaa.gov>

References

aic.crw

Calculates AIC for all objects of class crwFit listed as arguments

Description

AIC, delta AIC, and Akaike weights for all models listed as arguments.

Usage

```r
aic.crw(...)  
```

Arguments

```
...  a series of crwFit objects
```

Details

The function can either be executed with a series of 'crwFit' objects (see crwMLE) without the '.crwFit' suffix or the function can be called without any arguments and it will search out all 'crwFit' objects in the current workspace and produce the model selection table for all 'crwFit' objects in the workspace. Caution should be used when executing the function in this way. ALL 'crwFit' objects will be included whether or not the same locations are used! For all of the models listed as arguments (or in the workspace), AIC, delta AIC, and Akaike weights will be calculated.

Value

A table, sorted from lowest AIC value to highest.
argosDiag2Cov

Description

Using this function the user can transform the Argos diagnostic data for location error into a form usable as a covariance matrix to approximate the location error with a bivariate Gaussian distribution. The resulting data.frame should be attached back to the data with cbind to use with the crwMLE function.

Usage

argosDiag2Cov(Major, Minor, Orientation)

Arguments

Major A vector containing the major axis information for each observation (na values are ok)
Minor A vector containing the minor axis information for each observation (na values are ok)
Orientation A vector containing the angle orientation of the Major axis from North (na values are ok)

Value

A data.frame with the following columns

ln.sd.x The log standard deviation of the location error in the x coordinate
ln.sd.y The log standard deviation of the location error in the x coordinate
rho The correlation of the bivariate location error ellipse

Author(s)

Devin S. Johnson
as.flat

'Flattening' a list-form crwPredict object into a data.frame

Description

“Flattens” a list form crwPredict object into a flat data.frame.

Usage

as.flat(predObj)

Arguments

predObj A crwPredict object

Value

a data.frame version of a crwPredict list with columns for the state standard errors

Author(s)

Devin S. Johnson

See Also

northernFurSeal for use example

beardedSeals Bearded Seal Location Data

Description

Bearded Seal Location Data

Format

A data frame with 27,548 observations on 3 bearded seals in Alaska:

deployid Unique animal ID
ptt Hardware ID
instr Hardware type
date_time Time of location
type Location type
quality Argos location quality
latitude Observed latitude
longitude Observed longitude
error_radius Argos error radius
error_semimajor_axis Argos error ellipse major axis length
error_semiminor_axis Argos error ellipse minor axis length
error_ellipse_orientation Argos error ellipse degree orientation

Source
Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 7600 Sand Point Way NE Seattle, WA 98115

check_csv Start a shiny app to check data stored in a .csv file for model fitting with crwMLE function.

Description
Users can start a beta version of Shiny app that allows for data checking and basic location projection.

Usage
check_csv()

crwMLE Fit Continuous-Time Correlated Random Walk Models to Animal Telemetry Data

Description
The function uses the Kalman filter to estimate movement parameters in a state-space version of the continuous-time movement model. Separate models are specified for movement portion and the location error portion. Each model can depend on time indexed covariates. A “haul out” model where movement is allowed to completely stop, as well as, a random drift model can be fit with this function.

Usage
crwMLE(mov.model = ~1, err.model = NULL, activity = NULL, drift = FALSE, data, coord = c("x", "y"), Time.name, initial.state, theta, fixPar, method = "L-BFGS-B", control = NULL, constr = list(lower = -Inf, upper = Inf), prior = NULL, need.hess = TRUE, initialsANN = list(maxit = 200), attempts = 1)
Arguments

- **mov.model**: formula object specifying the time indexed covariates for movement parameters.
- **err.model**: A 2-element list of formula objects specifying the time indexed covariates for location error parameters.
- **activity**: formula object giving the covariate for the activity (i.e., stopped or fully moving) portion of the model.
- **drift**: logical indicating whether or not to include a random drift component. For most data this is usually not necessary. See `northernFurSeal` for an example using a drift model.
- **data**: data.frame object containing telemetry and covariate data. A 'SpatialPointsDataFrame' object from the package 'sp' or an 'STIDF' from the package 'spacetime' will also be accepted. In which case the `coord` (and `time.name` for 'STIDF') values will be taken from the spatial data set and ignored in the arguments.
- **coord**: A 2-vector of character values giving the names of the "X" and "Y" coordinates in `data`.
- **Time.name**: character indicating name of the location time column.
- **initial.state**: list object containing the initial state of the Kalman filter.
- **theta**: starting values for parameter optimization.
- **fixPar**: Values of parameters which are held fixed to the given value.
- **method**: Optimization method that is passed to `optim`.
- **control**: Control list which is passed to `optim`.
- **constr**: Named list with elements `lower` and `upper` that are vectors the same length as `theta` giving the box constraints for the parameters.
- **prior**: A function returning the log-density function of the parameter prior distribution. THIS MUST BE A FUNCTION OF ONLY THE FREE PARAMETERS. Any fixed parameters should not be included.
- **need.hess**: A logical value which decides whether or not to evaluate the Hessian for parameter standard errors.
- **initialSANN**: Control list for `optim` when simulated annealing is used for obtaining start values. See details.
- **attempts**: The number of times likelihood optimization will be attempted.

Details

A full model specification involves 4 components: a movement model, a stopping model, 2 location error models, and a drift indication. The movement model (mov.model) specifies how the movement parameters should vary over time. This is a function of specified, time-indexed, covariates. The movement parameters (sigma for velocity variation and beta for velocity autocorrelation) are both modeled with a log link as \(\text{par} = \exp(\eta) \), where \(\eta \) is the linear predictor based on the covariates. The err.model specification is a list of 2 such models, one for “longitude” and one for “latitude” (in that order) location error. If only one location error model is given, it is used for both coordinates (parameter values as well). If drift.model is set to `TRUE`, then, 2 additional parameters are estimated for the drift process, a drift variance and a beta multiplier. If `polar.coord=TRUE` then...
the ad-hoc logitude correction factor described by Johnson et al. (2008) (Ecology 89:1208-1215) is used to adjust the variance scale for the longitude model.

The initial.state is a list with the following elements (with the exact names):

- A A vector with initial state values. It has 4 elements (x location at time 1, x velocity at time 1, y location at time 1, y velocity at time 1) for non-drift models and 6 elements for drift models (x location at time 1, x velocity at time 1, x drift velocity at time 1, etc...).

theta and fixPar are vectors with the appropriate number or parameters. theta contains only those parameters which are to be estimated, while fixPar contains all parameter values with NA for parameters which are to be estimated.

The data set specified by data must contain a numeric or POSIXct column which is used as the time index for analysis. The column name is specified by the Time.name argument. If a POSIXct column is used it is internally converted to a numeric vector with units of hours. The spatetime package supports an STIDF object that contains slots for both spatial and time series data types. If data is of class STIDF then the spatial and temporal information are automatically extracted and polar.coord, Time.name and coord are not required. If your data are not compatible with these data structures, it is better to convert it yourself prior to analysis with crawl. Also, for stopping models, the stopping covariate must be between 0 and 1 inclusive, with 1 representing complete stop of the animal (no true movement, however, location error can still occur) and 0 represent unhindered movement. The coordinate location should have NA where no location is recorded, but there is a change in the movment covariates.

The CTCRW models can be difficult to provide good initial values for optimization. If initialsANN is specified then simulated annealing is used first to obtain starting values for the specified optimization method. If simulated annealing is used first, then the returned init list of the crwFit object will be a list with the results of the simulated annealing optimization.

Value

A list with the following elements:

- par Parameter maximum likelihood estimates (including fixed parameters)
- estPar MLE without fixed parameters
- se Standard error of MLE
- ci 95% confidence intervals for parameters
- Cmat Parameter covariance matrix
- loglik Maximized log-likelihood value
- aic Model AIC value
- initial.state Initial state provided to crwMLE for model fitting
- coord Coordinate names provided for fitting
- fixPar Fixed parameter values provided
- convergence Indicator of convergence (0 = converged)
- message Messages given by optim during parameter optimization
- activity Model provided for stopping variable
- drift Logical value indicating random drift model
mov.model Model description for movement component
err.model Model description for location error component
n.par number of parameters
nms parameter names
n.mov number of movement parameters
n.errX number or location error parameters for "longitude" error model
n.errY number or location error parameters for "latitude" error model
stop.mf covariate for stop indication in stopping models
polar.coord Logical indicating coordinates are polar latitude and longitude
init Initial values for parameter optimization
data Original data.frame used to fit the model
lower The lower parameter bounds
upper The upper parameter bounds
need.hess Logical value
runTime Time used to fit model

Author(s)
Devin S. Johnson, Josh M. London

Description
This function is designed for primary use within the `crwMLE` model fitting function. But, it can be accessed for advanced R and `crawl` users. Uses the state-space parameterization and Kalman filter method presented in Johnson et al. (2008).

Usage
```r
crwN2ll(theta, fixPar, y, noObs, delta, a, P, mov.mf, err.mfX, err.mfY, rho = NULL, activity = NULL, n.errX, n.errY, n.mov, driftMod, prior, need.hess, constr = list(lower = -Inf, upper = Inf))
```

Arguments
theta parameter values.
fixPar values of parameters held fixed (contains NA for theta values).
y N by 2 matrix of coordinates with the longitude coordinate in the first column.
noObs vector with 1 for unobserved locations, and 0 for observed locations.
delta time difference to next location.
a

initial state mean.

\(P \)

initial state covariance matrix

\(\text{mov.mf} \)

Movement covariate data.

\(\text{err.mfX} \)

longitude error covariate data.

\(\text{err.mfY} \)

latitude error covariate data.

\(\rho \)

A vector of known correlation coefficients for the error model, typically used for modern ARGOS data.

\(\text{activity} \)

Stopping covariate (= 0 if animal is not moving).

\(n.\text{errX} \)

number or longitude error parameters.

\(n.\text{errY} \)

number of latitude error parameters.

\(n.\text{mov} \)

number or movement parameters.

\(\text{driftMod} \)

Logical. indicates whether a drift model is specified.

\(\text{prior} \)

Function of theta that returns the log-density of the prior

\(\text{need.hess} \)

Whether or not the Hessian will need to be calculated from this call

\(\text{constr} \)

Named list giving the parameter constraints

Details

This function calls compiled C++ code which can be viewed in the src directory of the crawl source package.

Value

\(-2 * \) log-likelihood value for specified CTCRW model.

Author(s)

Devin S. Johnson

References

See Also

crwMLE
Simulate a value from the posterior distribution of a CTCRW model

Description

The `crwPostIS` draws a set of states from the posterior distribution of a fitted CTCRW model. The draw is either conditioned on the fitted parameter values or "full" posterior draw with approximated parameter posterior.

Usage

```r
crwPostIS(object.sim, fullPost = TRUE, df = Inf, scale = 1, thetaSamp = NULL)
```

Arguments

- `object.sim`: A `crwSimulator` object from `crwSimulator`.
- `fullPost`: logical. Draw parameter values as well to simulate full posterior.
- `df`: degrees of freedom for multivariate t distribution approximation to parameter posterior.
- `scale`: Extra scaling factor for t distribution approximation.
- `thetaSamp`: If multiple parameter samples are available in `object.sim`, setting `thetaSamp=n` will use the nth sample. Defaults to the last.

Details

The `crwPostIS` draws a posterior sample of the track state matrices. If `fullPost` was set to `TRUE` when the `object.sim` was build in `crwSimulator` then a pseudo-posterior draw will be made by first sampling a parameter value from a multivariate t distribution which approximates the marginal posterior distribution of the parameters. The covariance matrix from the fitted model object is used to scale the MVt approximation. In addition, the factor "scale" can be used to further adjust the approximation. Further, the parameter simulations are centered on the fitted values.

To correct for the MVt approximation, the importance sampling weight is also supplied. When calculating averages of track functions for Bayes estimates one should use the importance sampling weights to calculate a weighted average (normalizing first, so the weights sum to 1).

Value

List with the following elements:

- `alpha.sim.y`: A matrix a simulated latitude state values.
- `alpha.sim.x`: Matrix of simulated longitude state values.
- `locType`: Indicates prediction types with a "p" or observation times with an "o".
- `Time`: Initial state covariance for latitude.
- `loglik`: log likelihood of simulated parameter.
crwPredict

par Simulated parameter value
log.isw non normalized log importance sampling weight

Author(s)
Devin S. Johnson

See Also
See demo(northernFurSealDemo) for example.

crwPredict \textit{Predict animal locations and velocities using a fitted CTCRW model and calculate measurement error fit statistics}

Description
The \texttt{crwMeFilter} function uses a fitted model object from \texttt{crwMLE} to predict animal locations (with estimated uncertainty) at times in the original data set and supplemented by times in \texttt{predTime}. If \texttt{speedEst} is set to \texttt{TRUE}, then animal log-speed is also estimated. In addition, the measurement error shock detection filter of de Jong and Penzer (1998) is also calculated to provide a measure for outlier detection.

Usage
\begin{verbatim}
crwPredict(object, crwFit, predTime = NULL, flat = TRUE, ...)
\end{verbatim}

Arguments

- \texttt{object} \texttt{crwFit} A model object from \texttt{crwMLE}.
- \texttt{predTime} vector of additional prediction times (numeric or POSIXct).
- \texttt{flat} logical. Should the result be returned as a flat data.frame.
- \texttt{...} Additional arguments for testing new features

Details
The requirements for data are the same as those for fitting the model in \texttt{crwMLE}.

Value
List with the following elements:

- \texttt{originalData} A data.frame with is data merged with \texttt{predTime}.
- \texttt{alpha.hat} Predicted state
- \texttt{Var.hat} array where \texttt{Var.hat[,]i} is the prediction covariance matrix for \texttt{alpha.hat[,]i}.
- \texttt{fit.test} A data.frame of chi-square fit (df=2) statistics and naive (pointwise) p-values.

If \texttt{flat} is set to \texttt{TRUE} then a data set is returned with the columns of the original data plus the state estimates, standard errors (se), speed estimates, and the fit statistics and naive p-values.
Author(s)

Devin S. Johnson

References

crwPredictPlot

Plot CRW predicted object

Description

Creates 2 types of plots of a crwPredict object: a plot of both coordinate axes with prediction intervals and a plot of just observed locations and predicted locations.

Usage

```r
crwPredictPlot(object, plotType = "ll", ...)
```

Arguments

- `object`: crwPredict object.
- `plotType`: type of plot has to be one of the following: “map” or “ll” (default).
- `...`: Further arguments passed to plotting commands.

Value

A plot.

Author(s)

Devin S. Johnson and Sebastian Luque

See Also

See `demo(northernFurSealDemo)` for additional examples.
Create a weighted importance sample for posterior predictive track simulation.

Description

The `crwSamplePar` function uses a fitted model object from `crwMLE` and a set of prediction times to construct a list from which `crwPostIS` will draw a sample from either the posterior distribution of the state vectors conditional on fitted parameters or a full posterior draw from an importance sample of the parameters.

Usage

```r
crwSamplePar(object.sim, method = "IS", size = 1000, df = Inf,
grid.eps = 1, crit = 2.5, scale = 1)
```

Arguments

- `object.sim`: A simulation object from `crwSimulator`.
- `method`: Method for obtaining weights for movement parameter samples.
- `size`: Size of the parameter importance sample.
- `df`: Degrees of freedom for the t approximation to the parameter posterior.
- `grid.eps`: Grid size for method="quadrature".
- `crit`: Criterion for deciding "significance" of quadrature points (difference in log-likelihood).
- `scale`: Scale multiplier for the covariance matrix of the t approximation.

Details

The `crwSamplePar` function uses the information in a `crwSimulator` object to create a set of weights for importance sample-resampling of parameters in a full posterior sample of parameters and locations using `crwPostIS`. This function is usually called from `crwPostIS`. The average user should have no need to call this function directly.

Value

List with the following elements:

- `x`: Longitude coordinate with NA at prediction times.
- `y`: Similar to above for latitude.
- `locType`: Indicates prediction types with a "p" or observation times with an "o".
- `P1.y`: Initial state covariance for latitude.
- `P1.x`: Initial state covariance for longitude.
- `a1.y`: Initial latitude state.
crwSimulator

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1.x</td>
<td>Initial longitude state</td>
</tr>
<tr>
<td>n.errX</td>
<td>number of longitude error model parameters</td>
</tr>
<tr>
<td>n.errY</td>
<td>number of latitude error model parameters</td>
</tr>
<tr>
<td>delta</td>
<td>vector of time differences</td>
</tr>
<tr>
<td>driftMod</td>
<td>Logical. indicates random drift model</td>
</tr>
<tr>
<td>stopMod</td>
<td>Logical. Indicated stop model fitted</td>
</tr>
<tr>
<td>stop.mf</td>
<td>stop model design matrix</td>
</tr>
<tr>
<td>err.mfX</td>
<td>Longitude error model design matrix</td>
</tr>
<tr>
<td>err.mfY</td>
<td>Latitude error model design matrix</td>
</tr>
<tr>
<td>mov.mf</td>
<td>Movement model design matrix</td>
</tr>
<tr>
<td>fixPar</td>
<td>Fixed values for parameters in model fitting</td>
</tr>
<tr>
<td>Cmat</td>
<td>Covariance matrix for parameter sampling distribution</td>
</tr>
<tr>
<td>Lmat</td>
<td>Cholesky decomposition of Cmat</td>
</tr>
<tr>
<td>par</td>
<td>fitted parameter values</td>
</tr>
<tr>
<td>N</td>
<td>Total number of locations</td>
</tr>
<tr>
<td>loglik</td>
<td>log likelihood of the fitted model</td>
</tr>
<tr>
<td>Time</td>
<td>vector of observation times</td>
</tr>
<tr>
<td>coord</td>
<td>names of coordinate vectors in original data</td>
</tr>
<tr>
<td>Time.name</td>
<td>Name of the observation times vector in the original data</td>
</tr>
<tr>
<td>thetaSampList</td>
<td>A list containing a data frame of parameter vectors and their associated probabilities for a resample</td>
</tr>
</tbody>
</table>

Author(s)

Devin S. Johnson

See Also

See demo(northernFurSealDemo) for example.

crwSimulator *Construct a posterior simulation object for the CTCRW state vectors*

Description

The `crwSimulator` function uses a fitted model object from `crwMLE` and a set of prediction times to construct a list from which `crwPostIS` will draw a sample from either the posterior distribution of the state vectors conditional on fitted parameters or a full posterior draw from an importance sample of the parameters.
Usage

```r
crwSimulator(object.crwFit, predTime = NULL, method = "IS", parIS = 1000,  
              df = Inf, grid.eps = 1, crit = 2.5, scale = 1)
```

Arguments

- `object.crwFit`: A model object from `crwMLE`.
- `predTime`: vector of additional prediction times.
- `method`: Method for obtaining weights for movement parameter samples
- `parIS`: Size of the parameter importance sample
- `df`: Degrees of freedom for the t approximation to the parameter posterior
- `grid.eps`: Grid size for method="quadrature"
- `crit`: Criterion for deciding "significance" of quadrature points (difference in log-likelihood)
- `scale`: Scale multiplier for the covariance matrix of the t approximation

Details

The `crwSimulator` function produces a list and preprocesses the necessary components for repeated track simulation from a fitted CTCRW model from `crwMLE`. The `method` argument can be one of "IS" or "quadrature". If `method="IS"` is chosen standard importance sampling will be used to calculate the appropriate weights via t proposal with `df` degrees of freedom. If `df=Inf` (default) then a multivariate normal distribution is used to approximate the parameter posterior. If `method="quadrature"`, then a regular grid over the posterior is used to calculate the weights. The argument `grid.eps` controls the quadrature grid. The arguments are approximately the upper and lower limit in terms of standard deviations of the posterior. The default is `grid.eps`, in units of 1sd. If `object.crwFit` was fitted with `crwArgoFilter`, then the returned list will also include `p.out`, which is the approximate probability that the observation is an outlier.

Value

List with the following elements:

- `x`: Longitude coordinate with NA at prediction times
- `y`: Similar to above for latitude
- `loctype`: Indicates prediction types with a "p" or observation times with an "o"
- `P1.y`: Initial state covariance for latitude
- `P1.x`: Initial state covariance for longitude
- `a1.y`: Initial latitude state
- `a1.x`: Initial longitude state
- `n.errX`: number of longitude error model parameters
- `n.errY`: number of latitude error model parameters
- `delta`: vector of time differences
- `driftMod`: Logical. indicates random drift model

displayPar

Description

This function takes the model specification arguments to the `crwMLE` function and displays a table with the parameter names in the order that `crwMLE` will use during model fitting. This is useful for specifying values for the `fixPar` or `theta` (starting values for free parameters) arguments.

Usage

```r
displayPar(mov.model = ~1, err.model = NULL, activity = NULL, 
          drift = FALSE, data, theta, fixPar, ...)```

---

**Author(s)**

Devin S. Johnson

**See Also**

See `demo(northernFurSealDemo)` for example.
Arguments

mov.model  formula object specifying the time indexed covariates for movement parameters.
err.model  A 2-element list of formula objects specifying the time indexed covariates for location error parameters.
activity   formula object giving the covariate for the stopping portion of the model.
drift      logical indicating whether or not to include a random drift component.
data       data.frame object containing telemetry and covariate data. A SpatialPointsDataFrame object from the package 'sp' will also be accepted.
theta      starting values for parameter optimization.
fixPar     Values of parameters which are held fixed to the given value.
...        Additional arguments (probably for testing new features.)

Value

A data frame with the following columns

ParNames    The names of the parameters specified by the arguments.
fixPar      The values specified by the fixPar argument for fixed values of the parameters. In model fitting, these values will remain fixed and will not be estimated.
thetaIndex  This column provides the index of each element of the theta argument and to which parameter it corresponds.
thetaStart  If a value is given for the theta argument it will be placed in this column and its elements will correspond to the thetaIdx column.

Author(s)

Devin S. Johnson

See Also

demo(northernFurSealDemo) for example.

expandPred  Expand a time indexed data set with additional prediction times

Description

Expands a covariate data frame (or vector) that has a separate time index by inserting prediction times and duplicating the covariate values for all prediction time between subsequent data times.

Usage

expandPred(x, Time = "Time", predTime, time.col = FALSE)
Arguments

- **x**: Data to be expanded.
- **time**: Either a character naming the column which contains original time values, or a numeric vector of original times
- **predTime**: Prediction times to expand data
- **time.col**: Logical value indicating whether to attach the new times to the expanded data

Value

data.frame expanded by `predTime`

Author(s)

Devin S. Johnson

Examples

```r
#library(crawl)
origTime <- c(1:10)
x <- cbind(rnorm(10), c(21:30))
predTime <- seq(1,10, by=0.25)
expandPred(x, Time=origTime, predTime, time.col=TRUE)
```

Description

Looks for columns in a data set that have a single unique non-missing value and fills in all `NA` with that value

Usage

`fillCols(data)`

Arguments

- **data**: data.frame

Value

data.frame
Author(s)
    Devin S. Johnson

Examples

    #library(crawI)
    data1 <- data.frame(constVals=rep(c(1,NA),5), vals=1:10)
    data1[5,2] <- NA
    data1
    data2 <- fillCols(data1)
    data2

    mat1 <- matrix(c(rep(c(1,NA),5), 1:10), ncol=2)
    mat1[5,2] <- NA
    mat1
    mat2 <- fillCols(mat1)
    mat2

flatten

'Flattening' a list-form crwPredict object into a data.frame

Description
    "Flattens" a list form crwPredict object into a flat data.frame.

Usage
    flatten(predObj)

Arguments
    predObj A crwPredict object

Value
    a data.frame version of a crwPredict list with columns for the state standard errors

Author(s)
    Devin S. Johnson

See Also
    northernFurSeal for use example
Harbor seal relocation data set used in Johnson et al. (2008)

Description

Harbor seal relocation data set used in Johnson et al. (2008)

Format

A data frame with 7059 observations on the following 5 variables.

- **Time**  a numeric vector.
- **latitude**  a numeric vector.
- **longitude**  a numeric vector.
- **DryTime**  a numeric vector.
- **Argos_loc_class**  a factor with levels 0 1 2 3 A B.

Author(s)

Devin S. Johnson

Source

Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 7600 Sand Point Way NE Seattle, WA 98115

References


intTo POSIX

Reverse as.numeric command that is performed on a vector of type POSIXct

Description

Takes integer value produced by as.numeric(x), where x is a POSIXct vector and returns it to a POSIXct vector

Usage

intTo POSIX(timeVector, tz = "GMT")
mergeTrackStop

Arguments

- timeVector: A vector of integers produced by `as.numeric` applied to a `PSIXct` vector.
- tz: Time zone of the vector (see `as.POSIXct`).

Value

- `POSIXct` vector

Note

There is no check that `as.numeric` applied to a `POSIX` vector produced `timeVector`. So, caution is required in using this function. It was included simply because I have found it useful.

Author(s)

- Devin S. Johnson

Examples

```r
#library(crawl)
timeVector <- as.numeric(Sys.time())
timeVector
intToPOSIX(timeVector, tz="")
```

mergeTrackStop

- Merge a location data set with a dry time (or other stopping) covariate

Description

The function merges a location data set with a stopping variable data set.

Usage

```r
mergeTrackStop(data, stopData, Time.name = "Time", interp = c("zeros", "ma0"), win = 2, constCol)
```

Arguments

- data: Location data.
- stopData: Stopping variable data set.
- Time.name: Character naming time index variable in both data sets.
- interp: Method of interpolation.
- win: Window for "ma0" interpolation method.
- constCol: Columns in data for which the user would like to be constant, such as id or sex.
Details

Simply merges the data frames and interpolates based on the chosen method. Both data frames have to use the same name for the time variable. Also contains stopType which = "o" if observed or "p" for interpolated.

The merged data is truncated to the first and last time in the location data set. Missing values in the stopping variable data set can be interpolated by replacing them with zeros (full movement) or first replacing with zeros then using a moving average to smooth the data. Only the missing values are then replace with this smoothed data. This allows a smooth transition to full movement.

Value

Merged data.frame with new column from stopData. Missing values in the stopping variable will be interpolated

Author(s)

Devin S. Johnson

Examples

```r
track <- data.frame(TimeVar=sort(runif(20,0,20)), x=1:20, y=20:1)
track
stopData <- data.frame(TimeVar=0:29, stopVar=round(runif(30)))
stopData
mergeTrackStop(track, stopData, Time.name="TimeVar")
```

northernFurSeal

Northern fur seal pup relocation data set used in Johnson et al. (2008)

Description

Northern fur seal pup relocation data set used in Johnson et al. (2008)

Format

A data frame with 795 observations on the following 4 variables:

- **Time** a numeric vector.
- **Argos_loc_class** a factor with levels 1 2 3 A.
- **latitude** a numeric vector.
- **longitude** a numeric vector.
Source

Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 7600 Sand Point Way NE Seattle, WA 98115

References

Index

*Topic **datasets**
  - beardedSeals, 5
  - harborSeal, 21
  - northernFurSeal, 23

aic.crw, 3
argosDiag2Cov, 4
as.flat, 5
as.POSIXct, 22

beardedSeals, 5
check_csv, 6
crawl (crawl-package), 2
crawl-package, 2
crWMLE, 3, 6, 9, 10, 12, 16, 17
crwN2ll, 9
crwPostIS, 11, 14, 15
crwPredict, 5, 12, 20
crwPredictPlot, 13
crwSamplePar, 14
crwSimulator, 11, 14, 15
data.frame, 5, 20
displayPar, 17

expandPred, 18

fillCols, 19
flatten, 20

harborSeal, 21
intTo POSIX, 21
mergeTrackStop, 22
northernFurSeal, 5, 7, 20, 23
optim, 7