Package ‘crossReg’

February 19, 2015

Type Package

Title Confidence intervals for crossover points of two simple regression lines

Version 1.0

Date 2014-07-08

Author Sunbok Lee

Maintainer Sunbok Lee <sunboklee@gmail.com>

Description This package provides functions to calculate confidence intervals for crossover points of two simple linear regression lines using the non-linear regression, the delta method, the Fieller method, and the bootstrap methods.

Suggests boot, MASS

License GPL-2

NeedsCompilation no

Repository CRAN

Date/Publication 2014-07-09 08:18:12

R topics documented:
crossReg-package .. 2
BootC ... 2
DeltaC ... 3
FiellerC ... 4
nonLinearC ... 5

Index 7
crossReg-package

Confidence intervals for crossover points

Description

Given the linear regression model $y = b0 + b1*x1 + b2*x2 + b3*x1*x2$, the crossover point of the two simple regression lines implied by the linear regression model can be expressed as $C = -b2/b3$ (Aiken and West, 1991). This package provides functions to calculate confidence intervals for crossover points of two simple linear regression lines using the non-linear regression, the delta method, the Fieller method, and the bootstrap methods.

Details

- **Package**: crossReg
- **Type**: Package
- **Version**: 1.0
- **Date**: 2014-07-08
- **License**: GPL-2

Author(s)

Sunbok Lee
Maintainer: Sunbok Lee <sunboklee@gmail.com>

BootC

Confidence intervals for crossover points using the bootstrap methods

Description

Calculate confidence intervals for crossover points of two simple linear regression lines using the bootstrap

Usage

BootC(Data)

Arguments

- **Data**: a dataframe containing data values for y, x1, and x2
Details

The function BootC() calculates confidence intervals for the crossover point C using the boot package in R. Bootstrap confidence intervals include Normal, Basic, Percentile, and BCa confidence intervals.

Author(s)

Sunbok Lee

References

Examples

```r
# example data
library(MASS)
out <- mvrnorm(1000, mu = c(0, 0), Sigma = matrix(c(1, 0.2, 0.2, 1), ncol = 2), empirical = TRUE)
x1 <- out[, 1]
x2 <- out[, 2]
epsilon <- rnorm(1000, 0, 1)
y <- 1 + 1*x1 + 0.5*x2 + 1*x1*x2 + epsilon  # true C = -0.5/1 = -0.5
simData <- data.frame(y, x1, x2)

# run BootC()
library(boot)
BootC(simData)
```

DeltaC

Confidence intervals for crossover points using the delta method

Description

Calculate confidence intervals for crossover points of two simple linear regression lines using the delta method.

Usage

`DeltaC(Data, order)`

Arguments

<table>
<thead>
<tr>
<th>Data</th>
<th>a dataframe containing data values for y, x1, and x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>order</td>
<td>a scalar number representing the order of Delta method. 1=1st order delta method and 2=2nd order delta method</td>
</tr>
</tbody>
</table>
Details

Given a linear regression model \(y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2 \), the crossover point of two simple regression lines can be directly calculated based on \(C = -\frac{b_2}{b_3} \). The Delta method can be used to estimate the standard error of \(C = -\frac{b_2}{b_3} \) based on the standard errors of \(b_2 \) and \(b_3 \) which can be obtained from a linear regression. The function DeltaC() calculates the confidence intervals for \(C \) based on the standard error of \(C \) obtained from the delta method.

Value

- **LowCI**: lower bound of confidence intervals for \(C \) based on the delta method
- **UpperCI**: upper bound of confidence intervals for \(C \) based on the delta method

Author(s)

Sunbok Lee

References

Examples

```r
# example data
library(MASS)
out <- mvrnorm(1000, mu = c(0,0), Sigma = matrix(c(1,0.2,0.2,1), ncol = 2), empirical = TRUE)
x1 <- out[,1]
x2 <- out[,2]
epsilon <- rnorm(1000,0,1)
y <- -1 + 1*x1 + 0.5*x2 + 1*x1*x2 + epsilon  # true C = -0.5/1 = -0.5
simData <- data.frame(y=y,x1=x1,x2=x2)

# run DeltaC()
DeltaC(simData)
```

FiellerC

Confidence intervals for crossover points using the Fieller method

Description

Calculate confidence intervals for crossover points of two simple linear regression lines using the Fieller method.

Usage

FiellerC(Data)
Arguments

Data a dataframe containing data values for y, x1, and x2

Details

Fieller (1954) proposed a method for calculating the confidence interval for the ratio of two normally distributed random variables without assuming any particular form for the sampling distribution of the ratio itself. The function `FiellerC()` calculates confidence intervals for the crossover points of two simple regression lines using the Fieller method.

Value

- lowCI: lower bound of confidence intervals for C based on the Fieller method
- upperCI: upper bound of confidence intervals for C based on the Fieller method

Author(s)

Sunbok Lee

References

Examples

```r
# example data
library(MASS)
out <- mvrnorm(1000, mu = c(0,0), Sigma = matrix(c(1,0.2,0.2,1), ncol = 2), empirical = TRUE)
x1 <- out[,1]
x2 <- out[,2]
epsilon <- rnorm(1000,0,1)
y <- 1 + 1*x1 + 0.5*x2 + 1*x1*x2 + epsilon # true C = -0.5/1 = -0.5
simData <- data.frame(y=y,x1=x1,x2=x2)

# run FiellerC()
FiellerC(simData)
```

nonLinearC

Confidence intervals for crossover points using non-linear regression

Description

Calculate confidence intervals for crossover points of two simple linear regression lines using non-linear regression.

Usage

`nonLinearC(Data, startingValue)`
Arguments

Data a dataframe containing data values for y, x1, and x2
startingValue a list containing starting values for estimating parameters in non-linear regression

Details

For a crossover point \(C = -\frac{b_2}{b_3} \) of the two simple regression lines, Widaman et al. (2012) proposed to estimate \(C \) using the non-linear regression of the form \(y = A_0 + A_1*(x1-C) + A_2*(x1-C)*x2 \). The function \(\text{nonLinearC()} \) estimates \(C \) using the non-linear regression and calculates the confidence intervals for \(C \) based on the standard error of \(C \) obtained from a non-linear regression.

Value

- \(\text{C_Hat} \): estimate of \(C \) from a non-linear regression
- \(\text{SE} \): standard error of \(C \) from a non-linear regression
- \(\text{LowCI} \): lower bound of confidence intervals for \(C \) based on a non-linear regression
- \(\text{UpperCI} \): upper bound of confidence intervals for \(C \) based on a non-linear regression

Author(s)

Sunbok Lee

References

Examples

```r
# set initial values for non-linear regression
startingValue <- list(A0 = 1, B1 = 1, B2 = 1, C = 1)

# example data
library(MASS)
out <- mvrnorm(1000, mu = c(0,0), Sigma = matrix(c(1,0.2,0.2,1), ncol = 2), empirical = TRUE)
x1 <- out[,1]
x2 <- out[,2]
epsilon <- rnorm(1000,0,1)
y <- 1 + 1*x1 + 0.5*x2 + 1*x1*x2 + epsilon  # true C = -0.5/1 = -0.5
simData <- data.frame(y=y,x1=x1,x2=x2)

# run nonLinearC()
nonLinearC(simData, startingValue)
```
Index

*Topic \textasciitilde kwd1
 BootC, 2
*Topic \textasciitilde kwd2
 BootC, 2

BootC, 2

crossReg (crossReg-package), 2
crossReg-package, 2

DeltaC, 3
FiellerC, 4
nonLinearC, 5