Package ‘crossval’

July 8, 2015

Version 1.0.3
Date 2015-07-08
Title Generic Functions for Cross Validation
Author Korbinian Strimmer.
Maintainer Korbinian Strimmer <strimmerlab@gmail.com>
Depends R (>= 3.0.2)
Imports stats
Suggests MASS, sda, care, binda
Description Contains generic functions for performing cross validation and for computing diagnostic errors.
License GPL (>= 3)
URL http://cran.r-project.org/package=crossval
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-08 13:21:53

R topics documented:
crossval-package .. 2
classificationMatrix .. 2
classificationTable .. 3
diagnosticErrors ... 6

Index

8
The crossval Package

Description

The "crossval" package implements generic functions for performing cross validation and for computing diagnostic errors.

Author(s)

Korbinian Strimmer (http://strimmerlab.org/)

References

Website: http://cran.r-project.org/package=crossval

See Also

crossval, confusionMatrix, diagnosticErrors.

confusionMatrix

Compute Confusion Matrix

Description

confusionMatrix computes the confusion matrix, i.e. it counts the number of false positives (FP), true positives (TP), true negatives (TN), and false negatives (FN).

Despite its name the functions returns a vector rather than an actual matrix for easier use with the crossval function.

Usage

confusionMatrix(actual, predicted, negative="control")

Arguments

actual a vector containing the actual correct labels for each sample (e.g. "cancer" or "control").
predicted a vector containing the predicted labels.
negative the label of a negative "null" sample (default: "control").

Value

confusionMatrix returns a vector of length 4 containing the counts for FP, TP, TN, and FN.
crossval

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

diagnosticErrors.

Examples

load crossval library
library("crossval")

true labels
a = c("cancer", "cancer", "control", "control", "cancer", "control", "control")

predicted labels
p = c("cancer", "control", "control", "control", "cancer", "control", "cancer")

confusion matrix (a vector)
cm = confusionMatrix(a, p, negative="control")

cm

FP TP TN FN
1 2 3 1
attr(, "negative")
[1] "control"

corresponding accuracy, sensitivity etc.
diagnosticErrors(cm)
acc sens spec ppv npv lor
0.7142857 0.6666667 0.7500000 0.6666667 0.7500000 1.7917595
attr(, "negative")
[1] "control"

crossval

Generic Function for Cross Validation

Description

crossval performs K-fold cross validation with B repetitions. If Y is a factor then balanced sampling is used (i.e. in each fold each category is represented in appropriate proportions).

Usage

crossval(predfun, X, Y, K=10, B=20, verbose=TRUE, ...)

Arguments

predfun Prediction function (see details).
X Matrix of predictors (columns correspond to variables).
Y Univariate response variable.
K Number of folds.
B Number of repetitions.
verbose If verbose=TRUE then status messages appear during cross validation.
... optional arguments for predfun

Details

The argument predfun must be a function of the form \texttt{predfun(xtrain, ytrain, xtest, ytest, ...)}.

Value

crossval returns a list with three entries:
stat.cv: the statistic returned by predfun for each cross validation run.
stat: the statistic returned by predfun averaged over all cross validation runs.
stat.se: the corresponding standard error.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

crossval

Examples

load "crossval" package
library("crossval")

classification examples

set up lda prediction function
predfun.lda = function(train.x, train.y, test.x, test.y, negative)
{
 require("MASS") # for lda function

 lda.fit = lda(train.x, grouping=train.y)
ynew = predict(lda.fit, test.x)$class

 # count TP, FP etc.
 out = confusionMatrix(test.y, ynew, negative=negative)

 return(out)
}
Student's Sleep Data

data(sleep)
X = as.matrix(sleep[, 1, drop=FALSE]) # increase in hours of sleep
Y = sleep[, 2] # drug given
plot(X ~ Y)
levels(Y) # "1" "2"
dim(X) # 20 1

set.seed(12345)
cv.out = crossval(predfun.lda, X, Y, K=5, B=20, negative="1")

cv.out$stat
FP TP TN FN
0.00 1.08 1.40 0.92

diagnosticErrors(cv.out$stat)
acc sens spec ppv npv lor
0.62 0.00 0.54 0.00 0.70 0.64 0.60 0.34 0.83 1.00 0.76

Not run:

Wine Data - see http://archive.ics.uci.edu/ml/datasets/Wine for details
c = wine.data[,1]
X = as.matrix(wine.data[c!=3,-1])
Y = as.factor(c[c!=3])
dim(X) # 130 13
levels(Y) # "1", "2"

set.seed(12345)
cv.out = crossval(predfun.lda, X, Y, K=5, B=50, negative="1")

cv.out$stat
FP TP TN FN
0.028 14.092 11.772 0.108

diagnosticErrors(cv.out$stat)
acc sens spec ppv npv lor
0.99 0.92 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.91 10.91

End (Not run)

linear regression example

data("attitude")
y = attitude[,1] # rating variable
x = attitude[,-1] # date frame with the remaining variables
is.factor(y) # FALSE
summary(lm(y ~ ., data=x))

set up lm prediction function
predfun.lm = function(train.x, train.y, test.x, test.y)
{
 lm.fit = lm(train.y ~ ., data=train.x)
 ynew = predict(lm.fit, test.x)

 # compute squared error risk (MSE)
 out = mean((ynew - test.y)^2)

 return(out)
}

prediction MSE using all variables
set.seed(12345)
cv.out = crossval(predfun.lm, x, y, K=5, B=20)
c(cv.out$stat, cv.out$stat.se) # 68.06480 2.91447

and only two variables
cv.out = crossval(predfun.lm, x[,c(1,3)], y, K=5, B=20)
c(cv.out$stat, cv.out$stat.se) # 52.855325 1.878877

for more examples (e.g. using cross validation in a regression or classification context)
see the R packages "sda", "care", or "binda".

diagnosticErrors

Compute Diagnostic Errors: Accuracy, Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Log Odds Ratio

Description

diagnosticErrors computes various diagnostic errors useful for evaluating the performance of a diagnostic test or a classifier: accuracy (acc), sensitivity (sens), specificity (spec), positive predictive value (ppv), negative predictive value (npv), and log-odds ratio (lor).

Usage

diagnosticErrors(cm)

Arguments

- **cm** a vector containing the true positives, false positives etc, as computed by confusionMatrix.
diagnosticErrors

Details

The diagnostic errors are computed as follows:

\[
\text{acc} = \frac{(TP+TN)}{(FP+TN+TP+FN)} \\
\text{sens} = \frac{TP}{(TP+FN)} \\
\text{spec} = \frac{TN}{(FP+TN)} \\
\text{ppv} = \frac{TP}{(FP+TP)} \\
\text{npv} = \frac{TN}{(TN+FN)} \\
\text{lor} = \log\left(\frac{TP \times TN}{FN \times FP}\right)
\]

Value

diagnostic errors returns a vector containing various diagnostic errors.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

See Also

confusionMatrix.

Examples

load crossval library
library("crossval")

true labels
a = c("cancer", "cancer", "control", "control", "cancer", "control", "control")

predicted labels
p = c("cancer", "control", "control", "control", "cancer", "control", "cancer")

confusion matrix (a vector)
cm = confusionMatrix(a, p, negative="control")
cm
FP TP TN FN
1 2 3 1
attr(,"negative")
[1] "control"

corresponding accuracy, sensitivity etc.
diagnosticErrors(cm)
acc sens spec ppv npv lor
0.7142857 0.6666667 0.7500000 0.6666667 0.7500000 1.7917595
attr(,"negative")
[1] "control"
Index

*Topic **multivariate**
 crossval, 3
 crossval-package, 2

*Topic **univar**
 confusionMatrix, 2
 diagnosticErrors, 6

confusionMatrix, 2, 2, 4, 6, 7
crossval, 2, 3
crossval-package, 2

diagnosticErrors, 2, 3, 6