Package ‘crossval’

June 9, 2023

Version 1.0.5
Date 2023-06-08
Title Generic Functions for Cross Validation
Author Korbinian Strimmer.
Maintainer Korbinian Strimmer <strimmerlab@gmail.com>
Depends R (>= 3.0.2)
Imports stats
Suggests MASS, sda, care, binda
Description Contains generic functions for performing cross validation and for computing diagnostic errors.
License GPL (>= 3)

URL https://cran.r-project.org/package=crossval

NeedsCompilation no
Repository CRAN
Date/Publication 2023-06-08 22:40:02 UTC

R topics documented:
crossval-package .. 2
crossval ... 3
diagnosticErrors .. 6
confusionMatrix .. 2

Index 8
Description

The "crossval" package implements generic functions for performing cross validation and for computing diagnostic errors.

Author(s)

Korbinian Strimmer (https://strimmerlab.github.io/)

References

Website: https://cran.r-project.org/package=crossval

See Also

`crossval, confusionMatrix, diagnosticErrors`.

confusionMatrix

Compute Confusion Matrix

Description

`confusionMatrix` computes the confusion matrix, i.e. it counts the number of false positives (FP), true positives (TP), true negatives (TN), and false negatives (FN).

Despite its name the functions returns a vector rather than an actual matrix for easier use with the `crossval` function.

Usage

`confusionMatrix(actual, predicted, negative="control")`

Arguments

- **actual**: a vector containing the actual correct labels for each sample (e.g. "cancer" or "control").
- **predicted**: a vector containing the predicted labels.
- **negative**: the label of a negative "null" sample (default: "control").

Value

`confusionMatrix` returns a vector of length 4 containing the counts for FP, TP, TN, and FN.
crossval

Author(s)

See Also

diagnosticErrors.

Examples

load crossval library
library("crossval")

true labels
a = c("cancer", "cancer", "control", "control", "cancer", "control", "control")

predicted labels
p = c("cancer", "control", "control", "control", "cancer", "control", "cancer")

confusion matrix (a vector)
cm = confusionMatrix(a, p, negative="control")

FP TP TN FN
1 2 3 1
attr("negative")
[1] "control"

corresponding accuracy, sensitivity etc.
diagnosticErrors(cm)
acc sens spec ppv npv lor
0.7142857 0.6666667 0.7500000 0.6666667 0.7500000 1.7917595
attr("negative")
[1] "control"

crossval

 Generic Function for Cross Validation

Description

crossval performs K-fold cross validation with B repetitions. If Y is a factor then balanced sampling is used (i.e. in each fold each category is represented in appropriate proportions).

Usage

crossval(predfun, X, Y, K=10, B=20, verbose=TRUE, ...)
Arguments

predfun Prediction function (see details).
X Matrix of predictors (columns correspond to variables).
Y Univariate response variable.
K Number of folds.
B Number of repetitions.
verbose If verbose=TRUE then status messages appear during cross validation.
... optional arguments for predfun

Details

The argument predfun must be a function of the form predfun(Xtrain, Ytrain, Xtest, Ytest, ...).

Value

crossval returns a list with three entries:
stat.cv: the statistic returned by predfun for each cross validation run.
stat: the statistic returned by predfun averaged over all cross validation runs.
stat.se: the corresponding standard error.

Author(s)

See Also

calculationMatrix.

Examples

load "crossval" package
library("crossval")

classification examples

set up lda prediction function
predfun.lda = function(train.x, train.y, test.x, test.y, negative) {
 require("MASS") # for lda function

 lda.fit = lda(train.x, grouping=train.y)
 ynew = predict(lda.fit, test.x)$class

 # count TP, FP etc.
 out = confusionMatrix(test.y, ynew, negative=negative)

 return(out)}
Student's Sleep Data

data(sleep)
X = as.matrix(sleep[,1, drop=FALSE]) # increase in hours of sleep
Y = sleep[,2] # drug given
plot(X ~ Y)
levels(Y) # "1" "2"

dim(X) # 20 1

set.seed(12345)
cv.out = crossval(predfun.lda, X, Y, K=5, B=20, negative="1")

cv.out$stat
diagnosticErrors(cv.out$stat)

linear regression example

data("attitude")
y = attitude[,1] # rating variable
x = attitude[,-1] # date frame with the remaining variables
is.factor(y) # FALSE

summary(lm(y ~ . , data=x))

set up lm prediction function
predfun.lm = function(train.x, train.y, test.x, test.y)
{
 lm.fit = lm(train.y ~ . , data=train.x)
ynew = predict(lm.fit, test.x)

 # compute squared error risk (MSE)
 out = mean((ynew - test.y)^2)

 return(out)
}

prediction MSE using all variables
set.seed(12345)
cv.out = crossval(predfun.lm, x, y, K=5, B=20)
c(cv.out$stat, cv.out$stat.se)

and only two variables

cv.out = crossval(predfun.lm, x[,c(1,3)], y, K=5, B=20)
c(cv.out$stat, cv.out$stat.se)

for more examples (e.g. using cross validation in a regression or classification context)
see the R packages "sda", "care", or "binda".
diagnosticErrors

Compute Diagnostic Errors: Accuracy, Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Log Odds Ratio

Description

diagnosticErrors computes various diagnostic errors useful for evaluating the performance of a diagnostic test or a classifier: accuracy (acc), sensitivity (sens), specificity (spec), positive predictive value (ppv), negative predictive value (npv), and log-odds ratio (lor).

Usage

diagnosticErrors(cm)

Arguments

- **cm**: a vector containing the true positives, false positives etc, as computed by `confusionMatrix`.

Details

The diagnostic errors are computed as follows:

- \(\text{acc} = \frac{(TP+TN)}{(FP+TN+TP+FN)} \)
- \(\text{sens} = \frac{TP}{(TP+FN)} \)
- \(\text{spec} = \frac{TN}{(FP+TN)} \)
- \(\text{ppv} = \frac{TP}{(FP+TP)} \)
- \(\text{npv} = \frac{TN}{(TN+FN)} \)
- \(\text{lor} = \log\left(\frac{TP\times TN}{(FN\times FP)}\right) \)

Value

diagnostic errors returns a vector containing various diagnostic errors.

Author(s)

See Also

`confusionMatrix`.
Examples

```r
# load crossval library
library("crossval")

# true labels
a = c("cancer", "cancer", "control", "control", "cancer", "control", "control")

# predicted labels
p = c("cancer", "control", "control", "control", "cancer", "control", "cancer")

# confusion matrix (a vector)
cm = confusionMatrix(a, p, negative="control")

# FP TP TN FN
# 1 2 3 1
# attr("negative")
# [1] "control"

# corresponding accuracy, sensitivity etc.
diagnosticErrors(cm)
```

```r
# acc  sens  spec  ppv  npv  lor
# 0.7142857 0.6666667 0.7500000 0.6666667 0.7500000 1.7917595
# attr("negative")
# [1] "control"
```
Index

* **multivariate**
 crossval, 3
 crossval-package, 2

* **univar**
 confusionMatrix, 2
 diagnosticErrors, 6

confusionMatrix, 2, 2, 4, 6
crossval, 2, 3
crossval-package, 2
diagnosticErrors, 2, 3, 6