Package ‘crrp’

June 20, 2015

Type Package
Title Penalized Variable Selection in Competing Risks Regression
Version 1.0
Date 2015-06-19
Author Zhixuan Fu
Maintainer Zhixuan Fu <zhixuan.fu@yale.edu>
Depends survival, Matrix, cmprsk
Description In competing risks regression, the proportional subdistribution hazards (PSH) model is popular for its direct assessment of covariate effects on the cumulative incidence function. This package allows for penalized variable selection for the PSH model. Penalties include LASSO, SCAD, MCP, and their group versions.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-06-20 00:56:59

R topics documented:
crrp ... 1
gcrrp .. 4

Index

Penalized variable selection at the individual level in competing risks regression

description

Extends R package ncvreg to the proportional subdistribution hazards model. Penalties include LASSO, SCAD, and MCP. User-specified weights can be assigned to the penalty for each coefficient.
Usage

crrp(time, fstatus, X, failcode = 1, cencode = 0,
penalty = c("MCP", "SCAD", "LASSO"), gamma = switch(penalty, SCAD = 3.7, 2.7),
alpha = 1, lambda.min = 0.001, nlambda = 50, lambda, eps = 0.001,
max.iter = 1000, penalty.factor = rep(1, ncol(X)), weighted = FALSE)

Arguments

time vector of failure/censoring times
fstatus vector with a unique code for each failure type and a separate code for censored observations
X design matrix; crrp standardizes X by default
failcode code of fstatus that denotes the failure type of interest
cencode code of fstatus that denotes censored observations
penalty penalty to be applied to the model. Either "LASSO", "SCAD", or "MCP"
gamma tuning parameter of the MCP/SCAD penalty. Default is 2.7 for MCP and 3.7 for SCAD
alpha tuning parameter indicating contributions from the MCP/SCAD penalty and the L2 penalty. alpha=1 is equivalent to MCP/SCAD penalty, whereas alpha=0 would be equivalent to ridge regression. Default is 1
lambda.min the smallest value for lambda. Default is .001
nlambda number of lambda values. Default is 50
lambda a user-specified sequence of lambda values. If not specified, a sequence of values of length nlambda is provided
eps iteration stops when the relative change in any coefficient is less than eps. Default is 0.001
max.iter maximum number of iterations. Default is 1000
penalty.factor a vector of weights applied to the penalty for each coefficient. The length of the vector must be equal to the number of columns of X
weighted if TRUE, weights must be provided by users. Default is FALSE

Details

The crrp function penalizes the partial likelihood of the proportional subdistribution hazards model from Fine and Gray(1999) with penalty LASSO, SCAD, and MCP. The coordinate algorithm is used for implementation. The criteria BIC and GCV are used to select the optimal tuning parameter.

Value

Return a list of class crrp with components

$beta fitted coefficients matrix with nvars row and nlambda columns
$iter number of iterations until convergence for each lambda
$lambda sequence of tuning parameter values
penalty same as above
gamma same as above
alpha same as above
loglik log likelihood of the fitted model at each value of λ
GCV generalized cross validation of the fitted model at each value of λ
BIC Bayesian information criteria of the fitted model at each value of λ
SE matrix of standard errors with nvars row and nlambda columns

Author(s)
Zhixuan Fu <zhixuan.fu@yale.edu>

References

See Also
gcrrp, cmprsk, ncvreg

Examples

```r
# simulate competing risks data
set.seed(10)
ftime <- rexp(200)
fstatus <- sample(0:2,200,replace=TRUE)
cov <- matrix(runif(1000), nrow=200)
dimnames(cov)[[2]] <- c('x1','x2','x3','x4','x5')

# fit LASSO
fit <- crrp(ftime, fstatus, cov, penalty="LASSO")
# use BIC to select tuning parameters
beta <- fit$beta[, which.min(fit$BIC)]
beta.se <- fit$SE[, which.min(fit$BIC)]

# fit adaptive LASSO
weight <- 1/abs(crr(ftime, fstatus, cov)$coef)
fit2 <- crrp(ftime, fstatus, cov, penalty="LASSO", penalty.factor=weight, weighted=TRUE)
beta2 <- fit2$beta[, which.min(fit2$BIC)]
beta2.se <- fit2$SE[, which.min(fit2$BIC)]
```
Description

Extends R package **grpreg** to the proportional subdistribution hazards (PSH) model (Fine and Gray, 1999). Performs penalized variable selection at the group level. Penalties include group LASSO, adaptive group LASSO, group SCAD, and group MCP.

Usage

```r
gcrrp(time, fstatus, X, failcode = 1, cencode = 0, group=1:ncol(X),
penalty=c("gLASSO", "gMCP", "gSCAD"),gamma=switch(penalty, SCAD=3.7, 2.7),
alpha=1, lambda.min=0.001, nlambda=50, lambda, eps=.001,
max.iter=1000, weighted=FALSE)
```

Arguments

- `time` vector of failure/censoring times
- `fstatus` vector with a unique code for each failure type and a separate code for censored observations
- `X` design matrix; `crrp` standardizes and orthogonizes `X` by default
- `failcode` code of `fstatus` that denotes the failure type of interest
- `cencode` code of `fstatus` that denotes censored observations
- `group` vector of group indicator (see details)
- `penalty` penalty to be applied to the model. Either "gLASSO", "gSCAD", or "gMCP"
- `gamma` tuning parameter of the gMCP/gSCAD penalty. Default is 2.7 for group MCP and 3.7 for group SCAD.
- `alpha` tuning parameter indicating contributions from the MCP/SCAD penalty and the L2 penalty.
- `lambda.min` the smallest value for `lambda`. Default is .001
- `nlambda` number of `lambda` values. Default is 50
- `lambda` a user-specified sequence of `lambda` values. If not specified, a sequence of values of length `nlambda` is provided
- `eps` iteration stops when the relative change in any coefficient is less than `eps`. Default is 0.001
- `max.iter` maximum number of iterations. Default is 1000
- `weighted` Default is FALSE. If TRUE, it must be used with gLASSO to produce adaptive group LASSO penalty (see details)
Details

The group vector indicates the grouping of variables. For greatest efficiency, group should be a vector of consecutive integers, although unordered groups are also allowed.

Penalties include group LASSO, group SCAD, and group MCP. We also include adaptive group LASSO by putting weighted=TRUE. The gcrrp function calculates data-adaptive weights formulated by the maximum partial likelihood estimator(MPLE) of the PSH model. The weight for each group is the inverse of the norm of the corresponding sub-vector of MPLE. The algorithm employed is the group coordinate descent algorithm.

Value

Return a list of class gcrrp with components

β fitted coefficients matrix with nvars row and nlambda columns
iter number of iterations until convergence for each lambda
group same as above
λ sequence of tuning parameter values
penalty same as above.
γ same as above.
α same as above.
\loglik log likelihood of the fitted model at each value of lambda
GCV generalized cross validation of the fitted model at each value of lambda
BIC Bayesian information criteria of the fitted model at each value of lambda

Author(s)

Zhixuan Fu <zhixuan.fu@yale.edu>

References

• Breheny, P. and Huang, J. (2012) Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. *Statistics and Computing*

See Also
crrp, cmprsk, grpreg
Examples

```r
set.seed(10)
ftime <- rexp(200)
fstatus <- sample(0:2, 200, replace=TRUE)
cov <- matrix(runif(2000), nrow=200)
dimnames(cov)[[2]] <- paste("x", 1:ncol(cov))
group <- c(1,1,2,2,3,4,5,5)
# fit gSCAD penalty
fit1 <- gcrp(ftime, fstatus, cov, group=group, penalty="gSCAD")
beta1 <- fit1$beta[, which.min(fit1$BIC)]
# fit adaptive gLASSO
fit2 <- gcrp(ftime, fstatus, cov, group=group, penalty="gLASSO", weighted=TRUE)
beta2 <- fit2$beta[, which.min(fit2$BIC)]
```
Index

*Topic survival
 crrp, 1
 gcrrp, 4

 crrp, 1
 gcrrp, 4