Package ‘csabounds’

September 6, 2017

Title Bounds on Distributional Treatment Effect Parameters
Version 1.0.0
Description The joint distribution of potential outcomes is not typically identified under standard identifying assumptions such as selection on observables or even when individuals are randomly assigned to being treated. This package contains methods for obtaining tight bounds on distributional treatment effect parameters when panel data is available and under a Copula Stability Assumption as in Callaway (2017) <https://ssrn.com/abstract=3028251>.

Imports stats, ggplot2, BMisc, pbapply, progress, qte
Depends R (>= 3.0)
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Author Brantly Callaway [aut, cre]
Maintainer Brantly Callaway <brantly.callaway@temple.edu>
Repository CRAN
Date/Publication 2017-09-06 18:07:28 UTC

R topics documented:

attpco .. 2
csa.bounds ... 3
displacements ... 4
E.Y0 .. 5
E.Y1 .. 6
F.Y0 .. 7
F.Y1 .. 8
ggattpco ... 9
ggCSABounds ... 9

Index 10
Description

compute the Average Treatment Effect on the Treated Conditional on the previous outcome (ATT-CPO)

Usage

`attcpo(formla, t, tmin1, tmin2, tname, data, idname, Y0tqteobj, h = NULL, yseq = NULL, yseqlen = 100, se = TRUE, iters = 100, method = "level")`

Arguments

- `formla` e.g. `y ~ treat`
- `t` the last time period
- `tmin1` the middle time period
- `tmin2` the first time period
- `tname` the name of the column containing time periods in the data
- `data` a data.frame
- `idname` the name of the column containing an individual identifier over time
- `Y0tqteobj` a qte object (from the qte package) containing the the counterfactual distribution of untreated potential outcomes for the treated group
- `h` optional bandwidth
- `yseq` optional sequence of y values, default is to use all unique yvalues in the data, though this can increase computation time
- `yseqlen` optional length of y values to use, aids in automatically generating yseq if desired
- `se` whether or not to compute standard errors
- `iters` how many bootstrap iterations to use if computing standard errors; default is 100.
- `method` should be either "levels" or "rank"; whether to compute the ATT-CPO using based on the levels of Y0tmin1 or the ranks of Y0tmin1; "levels" is the default.

Value

- `att-cpo`
Examples

data(displacements)
cc <- qte::CIC(learn ~ treat,
 t=2011, tmin1=2007, tname="year",
 idname="id", panel=TRUE, data=displacements,
 probs=seq(.05,.95,.01), se=FALSE)
cc$fNtreated <- ecdf(subset(displacements, year==2007 & treat==1)$learn)
cc$fNtreatedNtminR <- ecdf(subset(displacements, year==2003 & treat==1)$learn)
ac <- attcpo(learn ~ treat, 2011, 2007, 2003, "year", displacements,
 "id", cc, method="rank", yseqlen=10)
ac
ggattcpo(ac)

csa.bounds

Description

Compute bounds on the distribution and quantile of the treatment effect as given in Callaway (2017) under the copula stability assumption and when a first step estimator of the counterfactual distribution of untreated potential outcomes for the treated group is available.

Usage

csa.bounds(formula, t, tmin1, tmin2, tname, idname, data, delt.seq, y.seq,
 Y0tqteobj, F.y0 = NULL, F.y1 = NULL, h = NULL, method = c("level",
 "rank"), cl = 1)

Arguments

formula
 outcomevar ~ treatmentvar
t
 the 3rd period
tmin1
 the 2nd period
tmin2
 the 1st period
tname
 the name of the column containing periods
idname
 the name of the column containing ids
data
 a panel data frame
delt.seq
 the possible values to compute bounds on the distribution of the treatment effect for
y.seq
 the possible values for y to take
Y0tqteobj
 a qte object for obtaining the counterfactual distribution of untreated potential outcomes for the treated group in period t
F.y0
 (optional) pre-computed distribution of counterfactual untreated outcomes for the treated group
F.
y1 (optional) pre-computed distribution of treated outcomes for the treated group
h optional bandwidth
method "level" or "rank" determining whether method should be used conditional on
y\text{tmin1} or the rank of y\text{tmin1}
c1 (optional) number of multi-cores to use

Value
csaboundsobj

Examples

Not run:
data(displacements)
delt.seq <- seq(-4,4,length.out=50)
y.seq <- seq(6.5,13,length.out=50)
cc <- qte::CIC(learn ~ treat,
t=t\text{2011}, t\text{tmin1}=2007, t\text{name}=\text{year},
idname="id", panel=TRUE, data=displacements,
probs=seq(.05,.95,.01), se=FALSE)
cc$F.\text{treated.tm}\text{in2} <- ecdf(subset(displacements, year==2003 & treat==1)$learn)
cc$F.\text{treated.tm}\text{in1} <- ecdf(subset(displacements, year==2007 & treat==1)$learn)
 displacements, delt.seq, y.seq, cc,
 method="level", c1=1)

cb
ggCSABounds(cb)

End(Not run)

displacements

Job displacement data from the NLSY

Description

A dataset with 266 observations of displaced and non-displaced workers during the great recession and their earnings in 2003, 2007, and 2011. All displaced workers in the sample are displaced in either 2008 or 2009 so 2003 and 2007 are pre-displacement periods.

Usage

displacements
Format

A data frame with 798 rows 3 columns:

- **id** individual identifier
- **treat** 1 for displaced individuals, 0 otherwise
- **year** the year of earnings
- **learn** the log of earnings in year t for individual i

Source

subset of NLSY 1979 data used in Callaway (2017)

<table>
<thead>
<tr>
<th>E.Y0</th>
<th>E.Y0</th>
</tr>
</thead>
</table>

Description

a function for computing the conditional expectation of Y_0t given particular value of y_{tmin1} under the Copula Stability Assumption

Usage

```r
E.Y0(ytmin1val, Y0tmin1, Y0tmin2, Y0tqteobj, h = NULL, method = "level")
```

Arguments

- **ytmin1val** the value to compute the conditional expectation for
- **Y0tmin1** a vector of untreated potential outcomes for the treated group in period $t-1$
- **Y0tmin2** a vector of untreated potential outcomes for the treated group in period $t-2$
- **Y0tqteobj** a qte object which should have set F.treated.t.cf which is the counterfactual distribution of untreated potential outcomes for the treated group in period t
- **h** optional bandwidth parameter
- **method** can be "level" or "rank", whether the conditional expectation is based on the level of $Y0tmin1$ or its rank

Examples

```r
data(displacements)
ytmin1 <- 10
Y0tmin1 <- subset(displacements, year==2007 & treat==1)$learn
Y0tmin2 <- subset(displacements, year==2003 & treat==1)$learn
cc <- qte::CIC(learn ~ treat,
  t=2011, tmin1=2007, tname="year",
  idname="id", panel=TRUE, data=displacements,
  probs=seq(.05,.95,.01),se=FALSE)
cc$F.treated.tmin2 <- ecdf(subset(displacements, year==2003 & treat==1)$learn)
```
E.Y1 <- ecdf(subset(displacements, year==2007 & treat==1)$learn)
E.Y0(ytmin1L, Y0tmin1, Y0tmin1, cc)

E.Y1

Description

A function for computing the conditional expectation of Y_1t given a value for Y_0tmin1

Usage

E.Y1(ytmin1valL, Y1t, Y0tmin1, h = NULL, method = "level")

Arguments

- **ytmin1val**: scalar value to compute conditional expectation for
- **Y1t**: vector of treated potential outcomes for the treated group in period t
- **Y0tmin1**: vector of untreated potential outcomes for the treated group in period t-1
- **h**: optional bandwidth parameter
- **method**: can be "level" or "rank", whether the conditional expectation is based on the level of $Y0tmin1$ or its rank

Value

The conditional expectation of $y1$ conditional on $y0tmin1$

Examples

data(displacements)
ytmin1 <- 10
Y1t <- subset(displacements, year==2011 & treat==1)$learn
Y0tmin1 <- subset(displacements, year==2007 & treat==1)$learn
E.Y1(ytmin1, Y1t, Y0tmin1)
Description

compute $F(y | y_{t-1})$ where F is the conditional distribution of untreated potential outcomes for the treated group conditional on $y_{t-1};$ This is computed under the copula stability assumption.

Usage

```r
F.Y0(ytmin1, y.seq, Y0tmin1, Y0tmin2, Y0tqteobj, h = NULL, method = "level")
```

Arguments

- **ytmin1**: the value of y_{t-1} to condition on
- **y.seq**: possible values for y to take
- **Y0tmin1**: vector of outcomes for the treated group in period $t-1$
- **Y0tmin2**: vector of outcomes for the treated group in period $t-2$
- **Y0tqteobj**: a qte object for obtaining the counterfactual distribution of untreated potential outcomes for the treated group in period t
- **h**: optional bandwidth
- **method**: "level" or "rank" determining whether method should be used conditional on y_{t-1} or the rank of y_{t-1}

Value

distribution $F(y | y_{t-1})$

Examples

```r
data(displacements)
ytmin1 <- 10
Y1t <- subset(displacements, year==2011 & treat==1)$learn
Y0tmin1 <- subset(displacements, year==2007 & treat==1)$learn
Y0tmin2 <- subset(displacements, year==2003 & treat==1)$learn
y.seq <- seq(min(c(Y0tmin2,Y0tmin1,Y1t)), max(c(Y0tmin2,Y0tmin1,Y1t)), length.out=100)
cc <- qte::CIC(learn ~ treat, 
t=2011, tmin1=2007, tname="year", 
   idname="id", panel=TRUE, data=displacements, 
   probs=seq(.05,.95,.01), se=FALSE)
cc$F.treated.tmin2 <- ecdf(subset(displacements, year==2003 & treat==1)$learn)
cc$F.treated.tmin1 <- ecdf(subset(displacements, year==2007 & treat==1)$learn)
F.Y0(ytmin1, y.seq, Y0tmin1, Y0tmin2, cc)
```
Description

calculate \(F(y|y_{t-1}) \), the conditional distribution of treated potential outcomes conditional on \(y_{t-1} \); The order of the variables is due to the way that the function is called later on.

Usage

\[
\text{F.Y1}(y_{t-1}, y.\text{seq}, Y_{1t}, Y_{0t-1}, h = \text{NULL}, \text{method} = "\text{level}")
\]

Arguments

- \(y_{t-1} \): the value of \(y_{t-1} \) to condition on
- \(y.\text{seq} \): possible values for \(y \) to take
- \(Y_{1t} \): vector of outcomes for the treated group in period \(t \)
- \(Y_{0t-1} \): vector of outcomes for the treated group in period \(t-1 \)
- \(h \): optional bandwidth
- \(\text{method} \): "level" or "rank" determining whether method should be used conditional on \(y_{t-1} \) or the rank of \(y_{t-1} \)

Value

distribution \(F(y|y_{t-1}) \)

Examples

data(displacements)
y_{t-1} <- 10
Y_{1t} <- subset(displacements, year==2011 & treat==1)$learn
Y_{0t-1} <- subset(displacements, year==2007 & treat==1)$learn
y.\text{seq} <- seq(min(c(Y_{0t-1}, Y_{1t})), max(c(Y_{0t-1}, Y_{1t})), length.out=100)
F.Y1(y_{t-1}, y.\text{seq}, Y_{1t}, Y_{0t-1})
ggattcpo

Description
plot the ATT-CPO using ggplot2

Usage
ggattcpo(attcpoobj, ylim = NULL)

Arguments
- `attcpoobj`: an attcpo object
- `ylim`: optional limits of the plot

ggCSABounds

Description
plot bounds on the quantile of the treatment effect using ggplot2

Usage
ggCSABounds(csaboundsobj, tau = seq(0.05, 0.95, 0.05), wdbounds = FALSE, otherdist1 = NULL, otherdist2 = NULL)

Arguments
- `csaboundsobj`: an object returned from the csa.bounds method
- `tau`: vector of values between 0 and 1 to plot quantiles for
- `wdbounds`: boolean whether or not to also plot Williamson-Downs bounds
- `otherdist1`: optional ecdf of the distribution of the treatment effect under cross sectional rank invariance
- `otherdist2`: optional ecdf of the distribution of the treatment effect under panel rank invariance
Index

*Topic **datasets**
 displacements, 4

attpo, 2

csa.bounds, 3

displacements, 4

E.Y0, 5
E.Y1, 6

F.Y0, 7
F.Y1, 8

ggattcpo, 9
ggCSABounds, 9