Package ‘csci’

October 12, 2022

Type Package
Title Current Status Confidence Intervals
Version 0.9.3
Date 2020-12-02
Author Sungwook Kim
Maintainer Michael P. Fay <mfay@niaid.nih.gov>
Description Calculates pointwise confidence intervals for the cumulative distribution function of the event time for current status data, data where each individual is assessed at one time to see if they had the event or not by the assessment time.
License GPL-3
Depends R (>= 3.5.0), exactci
NeedsCompilation no
Repository CRAN
Date/Publication 2020-12-07 09:40:05 UTC

R topics documented:
csci-package .. 1
controlCSCI .. 2
CSCI ... 3
hepABulg .. 5

Index 6

csci-package Current Status Confidence Intervals

Description

Calculates pointwise confidence intervals for the cumulative distribution function of the event time for current status data, data where each individual is assessed at one time to see if they had the event or not by the assessment time.
Details

The DESCRIPTION file:

Package: csci
Type: Package
Title: Current Status Confidence Intervals
Version: 0.9.3
Date: 2020-12-02
Author: Sungwook Kim
Maintainer: Michael P. Fay <mfay@niaid.nih.gov>
Description: Calculates pointwise confidence intervals for the cumulative distribution function of the event time for current status data, data where each individual is assessed at one time to see if they had the event or not by the assessment time.
License: GPL-3
Depends: R (>= 3.5.0), exactci

Index of help topics:

CSCI Pointwise Confidence Intervals for Current Status Data
controlCSCI Function for control parameters for algorithms used in CSCI.
csci-package Current Status Confidence Intervals
hepABulg Hepatitis A Data from Bulgaria

The package only has one main function CSCI and one data set hepABulg.

Author(s)

Sungwook Kim
Maintainer: Michael P. Fay <mfay@niaid.nih.gov>

controlCSCI Function for control parameters for algorithms used in CSCI.

Description

Allows changing of default parameters.

Usage

controlCSCI(power = 2/3,
 quan_p = c(0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99),
 xp_hat = c(0.06402, 0.28506, 0.80694, 0.98729, 1.22756, 1.60246, 2.26916, 3.8363),
 intF = 1000)
Arguments

- **power**: for defining m in the algorithm when type='VALID': m=ceiling(n^power), where n=length(C)
- **quan_p**: quantile associated with xp_hat, used when type='LIKELIHOOD'
- **xp_hat**: estimated quantile of the distribution of the log likelihood ratio (see e.g., Table 2 of Banerjee and Wellner, 2001), used when type='LIKELIHOOD'
- **intF**: number of intervals to partition the F space (F=c(1:(intF-1)/intF)), used when type='LIKELIHOOD'

Details

For **power**, see Kim, et al 2020. For details on the other values, see the code for the type='LIKELIHOOD' algorithm and Banerjee and Wellner, 2001.

Value

A list of the argument values.

References

CSCI

Description

Calculates several different methods for getting pointwise confidence intervals for current status data.

Usage

CSCI(C, D, times=NULL, type = c("VALID", "ABA", "LIKELIHOOD"),
conf.level = 0.95, control=controlCSCI())

Arguments

- **C**: a vector of assessment times
- **D**: a vector of indicators of event at or before the assessment time
- **times**: a vector of times, t, to give the confidence interval for the event time distribution, F(t). If NULL then set to sort(unique(C)).
- **type**: type of confidence interval, either "VALID", "ABA", or "LIKELIHOOD" (see details)
conf.level

confidence level for intervals (for type="LIKELIHOOD" only specific values are allowed, see note)

control

list with parameters for algorithms, see controlCSCI

Details

The function does three types of pointwise confidence intervals for the cumulative distribution function for the event time at the times specified by times. When type="VALID" the function gives a method that guarantees that the coverage will be at least nominal, but the confidence intervals are not ensured to be monotonic over the times of interest. When type="ABA" the function gives an approximate method that does not guarantee coverage, but has been shown by simulation to have good coverage for smoothly changing distributions, and it does ensure monotonicity (see Kim, et al, 2020). When type="LIKELIHOOD" the function gives an asymptotic likelihood ratio test-based confidence interval that does not guarantee coverage (Banerjee and Wellner, 2001).

Value

A list with 2 objects:

ciTable_all

data.frame with NPMLE and associated confidence intervals for all possible time values (not output for type='LIKELIHOOD')

ciTable_times

data.frame with NPMLE and associated confidence intervals for the values of 'times' argument

Note

Because the likelihood ratio test goes to a non-standard asymptotic distribution, we do not calculate quantiles from that distribution, but take them from Table 2 of Banerjee and Wellner (2001). Because of this, when type="LIKELIHOOD" then conf.level must be one of 0.25,0.50,0.75,0.80,0.85,0.90,0.95, or 0.99.

Author(s)

Sungwook Kim

References

Examples

data(hepABulg)
CSCI(C=hepABulg$age,D=hepABulg$testPos,type="VALID")
hepABulg

Hepatitis A Data from Bulgaria

Description

Hepatitis A data from Bulgaria, collected from school-children and blood donors by Prof. G. Frosner, Munich (from Keiding, 1991, Table 1).

Usage

data("hepABulg")

Format

A data frame with 850 observations on the following 2 variables.

```
age  a numeric vector
testPos  a numeric vector, Hepatitis A positive=1, or not=0
```

Details

Each row in the data frame represents an individual and the age tested in years and the results of the hepatitis A test (1=positive, 0=negative). Ages of the individuals range from 1 to 86 years old.

Source

Examples

```
data(hepABulg)
head(hepABulg)
```
Index

* current status data
 CSCI, 3
* datasets
 hepABulg, 5
* package
 csci-package, 1
* survival
 CSCI, 3
 controlCSCI, 2, 4
 CSCI, 2, 3
 csci-package, 1

hepABulg, 2, 5