Package ‘ctqr’

October 12, 2022

Type Package
Title Censored and Truncated Quantile Regression
Version 2.0
Date 2021-01-29
Author Paolo Frumento
Maintainer Paolo Frumento <paolo.frumento@unipi.it>
Description Estimation of quantile regression models for survival data.
Depends survival, pch (>= 2.0)
Imports stats
Suggests car, lmtest
License GPL-2
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-02 00:10:20 UTC

R topics documented:

ctqr-package .. 2
ctqr ... 2
cfq.control .. 6
plot.ctqr ... 7
predict.ctqr 8

Index 10

1
Description

Fit quantile regression models to survival data, allowing for right censoring, left truncation, and interval censoring.

Details

Package: ctqr
Type: Package
Version: 2.0
Date: 2021-01-29
License: GPL-2

The main function `ctqr` is used for model fitting. Other documented functions are `predict.ctqr`, to obtain prediction from a `ctqr` object, `plot.ctqr`, to plot quantile regression coefficients, and `ctqr.control`, that can be used to set the operational parameters for the estimation algorithm.

Author(s)

Paolo Frumento
Maintainer: Paolo Frumento <paolo.frumento@unipi.it>

References

See Also

`pchreg`, that is used to compute a preliminary estimate of the conditional outcome distribution.
Usage

ctqr(formula, data, weights, p = 0.5, CDF, control = ctqr.control(), ...)

Arguments

formula
an object of class "formula": a symbolic description of the regression model. The response must be a Surv object as returned by Surv (see 'Details').
data
an optional data frame containing the variables in the model.
weights
an optional vector of weights to be used in the fitting process. The weights will always be normalized to sum to the sample size. This implies that, for example, using double weights will not halve the standard errors.
p
numerical vector indicating the order of the quantile(s) to be fitted.
CDF
an object of class "pch", i.e., the result of a call to pchreg. If missing, it will be computed internally with default settings. See 'Details'.
control
a list of operational parameters for the optimization algorithm, usually passed via ctqr.control.
...
for future arguments.

Details

This function implements the method described in Frumento and Bottai (2017) for censored, truncated quantile regression, and the method described in Frumento (2021) for interval-censored quantile regression.

The left side of formula must be of the form Surv(time, event) if the data are right-censored, Surv(time0, time, event) if the data are right-censored and left-truncated (time0 < time, time0 can be -Inf), and Surv(time1, time2, type = "interval2") if the data are interval-censored (use time1 = time2 for exact observations, time1 = -Inf or NA for left-censored, and time2 = Inf or NA for right-censored). Using Surv(time) is also allowed and indicates that the data are neither censored nor truncated.

The conditional distribution function (CDF) of the response variable represents a nuisance parameter and is estimated preliminarily via pchreg. If missing, CDF = pchreg(formula) is used as default. See the “Note” and the documentation of pchreg.

Estimation is carried out using an algorithm for gradient-based optimization. To estimate the asymptotic covariance matrix, standard two-step procedures are used (e.g., Ackerberg et al., 2012).

Value

An object of class "ctqr", which is a list with the following items:

p
the quantile(s) being estimated.
coefficients
a named vector or matrix of quantile regression coefficients.
call
the matched call.
n.it
the number of iterations.
converged
logical. The convergence status.
fitted
the fitted values.
terms the terms object used.
mf the model frame used.
covar the estimated asymptotic covariance matrix.
CDF the used CDF.

Note that the dimension of all items, except call, terms, mf, and CDF, is the same as the dimension of p. For example, if p = c(0.25, 0.5, 0.75), coefficients and fitted will be 3-columns matrices; n.it and converged will be vectors of 3 elements; and covar will be a list of three covariance matrices.

The generic accessor functions summary, plot, predict, coef, terms, nobs, can be used to extract information from the model. The functions waldtest (from the package \texttt{lmtest}), and linearHypothesis (from the package \texttt{car}) can be used to perform Wald test, and to test linear restrictions. These functions, however, will only work if p is scalar.

Note

NOTE 1. The first-step estimator (the CDF argument) is computed using the \texttt{pchreg} function of the \texttt{pch} package. To be correctly embedded in \texttt{ctqr}, a \texttt{pch} object must be constructed using the same observations, in the same order.

If the first-step estimator is biased, and there is censoring or truncation, the estimates of the quantile regression coefficients and their standard errors will also be biased.

If the data are neither censored nor truncated, the CDF does not enter the estimating equation of the model. However, since the first-step estimator is used to compute the starting points, the final estimates may be sensitive to the supplied CDF.

NOTE 2. Right-censoring is a special case of interval censoring, in which exact events are identified by time2 = time1, while censored observations have time2 = Inf. Note, however, that \texttt{ctqr(Surv(time1, time2, type = "interval2") ~ x)} will not be identical to \texttt{ctqr(Surv(time = time1, event = (time2 < Inf)) ~ x)}. The estimating equation used for interval-censored data is that described in Frumento (2018), while that used for right-censored data is that of Frumento and Bottai (2017). The two estimating equations are only asymptotically equivalent (see Frumento 2018 for details).

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

See Also

\texttt{plot.ctqr}, \texttt{predict.ctqr}, \texttt{pchreg}
Examples

Using simulated data

Example 1 - censored data

n <- 1000
x1 <- runif(n); x2 <- runif(n) # covariates
y <- pmin(t,c) # observed variable = min(t,c)
d <- (t <= c) # 1 = event (e.g., death), 0 = censored

CDF1 <- pchreg(Surv(y,d) ~ x1 + x2)

model1 <- ctqr(Surv(y,d) ~ x1 + x2, p = 0.5, CDF = CDF1)

model2 <- ctqr(Surv(y,d) ~ x1, p = 0.5, CDF = CDF1)

model1 is identical to ctqr(Surv(y,d) ~ x1 + x2, p = 0.5)
model2 is NOT identical to ctqr(Surv(y,d) ~ x1, p = 0.5),
which would have default CDF = pchreg(Surv(y,d) ~ x1)

Example 2 - censored and truncated data

n <- 1000
x1 <- runif(n); x2 <- runif(n) # covariates
y <- pmin(t,c) # observed variable = min(t,c)
d <- (t <= c) # 1 = event (e.g., death), 0 = censored
z <- rnorm(n) # truncation variable (e.g., time at enrollment)
w <- which(y > z) # data are only observed when y > z

z <- z[w]; y <- y[w]; d <- d[w]; x1 <- x1[w]; x2 <- x2[w]

implement various CDFs and choose the model with smallest AIC

CDFs <- list(
 pchreg(Surv(z,y,d) ~ x1 + x2, breaks = 5),
 pchreg(Surv(z,y,d) ~ x1 + x2, breaks = 10),
 pchreg(Surv(z,y,d) ~ x1 + x2 + x1:x2, breaks = 5),
 pchreg(Surv(z,y,d) ~ x1 + x2 + x1^2 + x2^2, breaks = 10)
)

CDF <- CDFs[[which.min(sapply(CDFs, function(obj) AIC(obj)))]]

summary(ctqr(Surv(z,y,d) ~ x1 + x2, p = 0.5, CDF = CDF))

Example 3 - interval-censored data

t is only known to be in the interval (t1,t2)

n <- 1000
x1 <- runif(n); x2 <- runif(n) # covariates
t <- runif(n, 0, 10*(1 + x1 + x2)) # time variable
t1 <- floor(t) # lower extreme of the interval
t2 <- ceiling(t) # upper extreme of the interval
model <- ctqr(Surv(t1,t2, type = "interval2") ~ x1 + x2, p = 0.5)

ctqr.control
Auxiliary Function for Root Search

Description
This functions can be used within a call to ctqr, to control the operational parameters of the root search algorithm.

Usage
ctqr.control(tol = 1e-06, maxit = 1000, a = 0.5, b = 1.25)

Arguments
tol positive convergence tolerance: the algorithm stops when the maximum absolute change between two consecutive estimates is smaller than tol.
maxit maximum number of iterations.
a,b numeric scalar with 0 < a < 1 and b > 1. See ‘Details’.

Details
For a current estimate beta, a new estimate is computed as beta_new = beta + delta*s(beta), where s(beta) is the current value of the estimating equation and delta is a positive multiplier. If sum(s(beta_new)^2) < sum(s(beta)^2), the iteration is accepted and delta is multiplied by b. Otherwise, beta_new is rejected and delta is multiplied by a. By default, a = 0.5 and b = 1.25. Choosing a, b closer to 1 may result in a more accurate estimate, but will require a larger number of iterations.

Value
The function returns its arguments. If some was not correctly specified, it is set to its default and a warning message is returned.

See Also
ctqr
plot.ctqr

Plot Quantile Regression Coefficients

Description

Plots quantile regression coefficients $\beta(p)$ as a function of p, based on a fitted model of class “ctqr.”

Usage

S3 method for class 'ctqr'
plot(x, which = NULL, ask = TRUE, ...)

Arguments

x

an object of class “ctqr”.

which

an optional numerical vector indicating which coefficient(s) to plot. If which = NULL, all coefficients are plotted.

ask

logical. If which = NULL and ask = TRUE (the default), you will be asked interactively which coefficients to plot.

... additional graphical parameters, that can include xlim, ylim, xlab, ylab, col, lwd. See par.

Details

With this command, a plot of $\beta(p)$ versus p is created, provided that at least two quantiles have been estimated. Dashed lines represent 95% confidence intervals, while the horizontal dotted line indicates the zero.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

c.qq

effects

Examples

using simulated data

n <- 1000
x <- runif(n)
t <- 1 + x + rexp(n)
c <- runif(n, 1,10)
y <- pmin(c,t)
d <- (t <= c)
par(mfrow = c(1,2))
plot(ctqr(Surv(y,d) ~ x, p = seq(0.05,0.95,0.05)), ask = FALSE)

predict.ctqr Prediction After Quantile Regression

Description
This function returns predictions for an object of class "ctqr".

Usage
S3 method for class 'ctqr'
predict(object, newdata, se.fit = FALSE, ...)

Arguments
object a ctqr object.
newdata optional data frame in which to look for variables with which to predict. It must include all the covariates that enter the quantile regression model. If omitted, the fitted values are used.
se.fit logical. If TRUE, standard errors of the predictions are also computed.
... for future methods.

Details
This function produces predicted values obtained by evaluating the regression function at newdata (which defaults to model.frame(object)).

Value
If se = FALSE, a matrix of fitted values, with rows corresponding to different observations, and one column for each value of object$p. If se = TRUE, a list with two items:

 fit a matrix of fitted values, as described above.
 se.fit a matrix of estimated standard errors.

Author(s)
Paolo Frumento <paolo.frumento@unipi.it>

See Also
ctqr
Examples

Using simulated data

```r
n <- 1000
x1 <- runif(n)
x2 <- runif(n)
t <- 1 + x1 + x2 + runif(n, -1,1)
c <- rnorm(n,3,1)
y <- pmin(t,c)
d <- (t <= c)

model <- ctqr(Surv(y,d) ~ x1 + x2, p = c(0.25,0.5))
pred <- predict(model) # the same as fitted(model)
predict(model, newdata = data.frame(x1 = c(0.2,0.6), x2 = c(0.1,0.9)), se.fit = TRUE)
```
Index

* **methods**
 - plot.ctqr, 7

* **models**
 - ctqr, 2

* **package**
 - ctqr-package, 2

* **regression**
 - ctqr, 2
 - predict.ctqr, 8

* **survival**
 - ctqr, 2

* **utilities**
 - ctqr.control, 6

ctqr, 2, 2, 6–8
ctqr-package, 2
ctqr.control, 2, 3, 6

formula, 3

par, 7
pchreg, 2–4
plot.ctqr, 2, 4, 7
predict.ctqr, 2, 4, 8

Surv, 3