Package ‘ctqr’

March 15, 2020

Type Package
Title Censored and Truncated Quantile Regression
Version 1.1
Date 2020-03-15
Author Paolo Frumento
Maintainer Paolo Frumento <paolo.frumento@unipi.it>
Depends survival, pch (>= 1.4)
Imports stats
Suggests car, lmtest
License GPL-2
RoxygenNote 7.0.2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-15 22:20:14 UTC

R topics documented:
cqr-package ... 2
cqr ... 2
cqr.control ... 5
plot.cqr ... 6
predict.cqr ... 7

Index 9
Description

This package can be used to fit quantile regression models to survival data. The true conditional outcome distribution represents a nuisance parameter which is estimated preliminarily. Asymptotic theory of two-steps estimators is used to estimate the asymptotic covariance matrix.

Details

Package: ctqr
Type: Package
Version: 1.1
Date: 2020-03-15
License: GPL-2

The main function ctqr is used for model fitting. Other documented functions are predict.ctqr, to obtain prediction from a ctqr object, plot.ctqr, to plot quantile regression coefficients, and ctqr.control, that can be used to set the operational parameters for the estimation algorithm.

Author(s)

Paolo Frumento
Maintainer: Paolo Frumento <paolo.frumento@unipi.it>

References

See Also

pchreg, that is used to compute a preliminary estimate of the conditional outcome distribution.
ctqr

Usage

ctqr(formula, data, weights, p = 0.5, CDF, control = ctqr.control(), ...)

Arguments

formula an object of class “formula”: a symbolic description of the regression model. The response must be a Surv object as returned by Surv (see ‘Details’).
data an optional data frame containing the variables in the model.
weights an optional vector of weights to be used in the fitting process.
p numerical vector indicating the order of the quantile(s) to be fitted.
CDF an object of class “pch”, i.e., the result of a call to pchreg. If missing, it will be computed internally with default settings. See ‘Details’.
control a list of operational parameters for the optimization algorithm, usually passed via ctqr.control.
... for future arguments.

Details

This function implements the method described by Frumento and Bottai (2016) for censored, truncated quantile regression.

The left side of formula must be of the form Surv(time, event) if the data are right-censored, and Surv(time0, time, event) if the data are right-censored and left-truncated (time0 < time, time0 can be -Inf). Using Surv(time) is also allowed and indicates that the data are neither censored nor truncated.

The conditional distribution function (CDF) of the response variable represents a nuisance parameter and is estimated preliminarly via pchreg. If missing, CDF = pchreg(formula, splinex = splinex()) is used as default. See also “Note” and the documentation of pchreg and splinex.

Estimation is carried out using an algorithm for gradient-based optimization. To estimate the asymptotic covariance matrix, standard two-step procedures are used (e.g., Ackerberg, 2012).

Value

An object of class “ctqr”, which is a list with the following items:

p the quantile(s) being estimated.
coefficients a named vector or matrix of quantile regression coefficients.
call the matched call.
n.it the number of iterations.
converged logical. The convergence status.
fitted the fitted values.
terms the terms object used.
mf the model frame used.
covar the estimated asymptotic covariance matrix.
Note that the dimension of all items, except call, terms, and mf, is the same as the dimension of p. For example, if \(p = c(0.25, 0.5, 0.75) \), coefficients and fitted will be 3-columns matrices; n.it and converged will be vectors of 3 elements; and covar will be a list of three covariance matrices.

The generic accessor functions summary, plot, predict, coef, terms, nobs, can be used to extract information from the model. The functions waldtest (from the package lmtest), and linearHypothesis (from the package car) can be used to perform Wald test, and to test for linear restrictions. These functions, however, will only work if \(p \) is scalar.

Note

The first-step estimator (the CDF argument) is computed using the pchreg function in the pch package. To be correctly embedded in ctqr, a pch object should be created using the same observations, in the same order. Note, however, that CDF may include covariates that are not present in formula, as well as interactions, polynomials, or splines (see ‘Examples’).

We recommend to carefully implement CDF. If the first-step estimator is biased, the estimates of the quantile regression coefficients and their standard errors will also be biased. If CDF is left unspecified, a default \(CDF = pchreg(formula, splinex = splinex()) \) is computed; then, if CDF$conv.status differs from zero, indicating lack of convergence or misspecification, the model is automatically fitted again trying different breaks (which is an argument of pchreg), and df and v (arguments of splinex).

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

References

See Also

plot.ctqr, predict.ctqr, pchreg

Examples

Using simulated data

n <- 1000
x1 <- runif(n)
x2 <- runif(n)

Example 1 - censored data

t <- runif(n, 0, 1 + x1 + x2) # time variable (e.g., time to death)
c <- runif(n, 0, 5) # censoring variable (e.g., end of follow-up)
y <- pmin(t, c) # observed variable = min(t, c)
CTQR CONTROL

```r
d <- (t <= c) # 1 = event (e.g., death), 0 = censored

CDF1 <- pchreg(Surv(y,d) ~ x1 + x2, splinex = splinex())
model1 <- ctqr(Surv(y,d) ~ x1 + x2, p = 0.5, CDF = CDF1)
model2 <- ctqr(Surv(y,d) ~ x1, p = 0.5, CDF = CDF1)

# model1 is identical to ctqr(Surv(y,d) ~ x1 + x2, p = 0.5)
# model2 is NOT identical to ctqr(Surv(y,d) ~ x1, p = 0.5),
# which would have default CDF = pchreg(Surv(y,d) ~ x1, splinex = splinex())

# Example 2 - censored and truncated data ################################

z <- rnorm(n) # truncation variable (e.g., time at enrollment)
w <- which(y > z) # data are only observed when y > z
z <- z[w]; y <- y[w]; d <- d[w]; x1 <- x1[w]; x2 <- x2[w]

# implement various CDFs and choose the model with smallest AIC

CDFs <- list(
  pchreg(Surv(z,y,d) ~ x1 + x2, breaks = 5),
  pchreg(Surv(z,y,d) ~ x1 + x2, breaks = 10),
  pchreg(Surv(z,y,d) ~ x1 + x2 + x1*x2, breaks = 5),
  pchreg(Surv(z,y,d) ~ x1 + x2 + x1^2 + x2^2, breaks = 10)
)

CDF <- CDFs[[which.min(sapply(CDFs, function(obj) AIC(obj)))]]
summary(ctqr(Surv(z,y,d) ~ x1 + x2, p = 0.5, CDF = CDF))
```

ctqr.control

Auxiliary Function for Root Search

Description

This function can be used within a call to `ctqr`, to control the operational parameters of the root search algorithm.

Usage

```r
cجار.control(tol = 1e-06, maxit = 1000, a = 0.5, b = 1.25)
```

Arguments

- `tol` positive convergence tolerance: the algorithm stops when the maximum absolute change between two consecutive estimates is smaller than `tol`.
- `maxit` maximum number of iterations.
- `a, b` numeric scalar with 0 < a < 1 and b > 1. See ‘Details’.
Details
For a current estimate beta, a new estimate is computed as beta_new = beta + delta*s(beta), where s(beta) is the current value of the objective function and delta is a positive multiplier. If sum(s(beta_new)^2) < sum(s(beta)^2), the iteration is accepted and delta is multiplied by b. Otherwise, beta_new is rejected and delta is multiplied by a. By default, a = 0.5 and b = 1.25. Choosing a,b closer to 1 may result in a more accurate estimate, but will require a larger number of iterations.

Value
The function returns its arguments. If some was not correctly specified, it is set to its default and a warning message is returned.

See Also
ctqr

plot.ctqr

plot.ctqr

Plot Quantile Regression Coefficients

Description
Plots quantile regression coefficients β(p) as a function of p, based on a fitted model of class "ctqr".

Usage
```
## S3 method for class 'ctqr'
plot(x, which = NULL, ask = TRUE, ...)
```

Arguments
- `x` an object of class “ctqr”.
- `which` an optional numerical vector indicating which coefficient(s) to plot. If which = NULL, all coefficients are plotted.
- `ask` logical. If which = NULL and ask = TRUE (the default), you will be asked interactively which coefficients to plot.
- `...` additional graphical parameters, that can include xlim, ylim, xlab, ylab, col, lwd. See par.

Details
With this command, a plot of β(p) versus p is created, provided that at least two quantiles have been estimated. Dashed lines represent 95% confidence intervals, while the horizontal dotted line indicates the zero.
Author(s)
Paolo Frumento <paolo.frumento@unipi.it>

See Also
cqtr

Examples

using simulated data

```r
n <- 1000
dx <- runif(n)
t <- 1 + x + rexp(n)
c <- runif(n, 1,10)
y <- pmin(c,t)
d <- (t <= c)

par(mfrow = c(1,2))
plot(ctqr(Surv(y,d) ~ x, p = seq(0.05,0.95,0.05)), ask = FALSE)
```

Description
This function returns predictions for an object of class “ctqr”.

Usage

```r
## S3 method for class 'ctqr'
predict(object, newdata, se.fit = FALSE, ...)
```

Arguments

- **object**: a ctqr object.
- **newdata**: optional data frame in which to look for variables with which to predict. It must include all the covariates that enter the quantile regression model. If omitted, the fitted values are used.
- **se.fit**: logical. If TRUE, standard errors of the predictions are also computed.
- **...**: for future methods.

Details
This function produces predicted values obtained by evaluating the regression function at newdata (which defaults to model.frame(object)).
Value

If se = FALSE, a matrix of fitted values, with rows corresponding to different observations, and one column for each value of objectp. If se = TRUE, a list with two items:

- fit: a matrix of fitted values, as described above.
- se.fit: a matrix of estimated standard errors.

Author(s)

Paolo Frumento <paolo.frumento@unipi.it>

See Also

c tq r

Examples

Using simulated data

n <- 1000
x1 <- runif(n)
x2 <- runif(n)
t <- 1 + x1 + x2 + runif(n, -1,1)
c <- rnorm(n,3,1)
y <- pmin(t,c)
d <- (t <= c)

model <- ctqr(Surv(y,d) ~ x1 + x2, p = c(0.25,0.5))
pred <- predict(model) # the same as fitted(model)
predict(model, newdata = data.frame(x1 = c(0.2,0.6), x2 = c(0.1,0.9)), se.fit = TRUE)
Index

*Topic methods
 plot.ctqr, 6
*Topic models
 ctqr, 2
*Topic package
 ctqr-package, 2
*Topic regression
 ctqr, 2
 predict.ctqr, 7
*Topic survival
 ctqr, 2
*Topic utilities
 ctqr.control, 5

ctqr, 2, 2, 5–8
ctqr-package, 2
c接轨.control, 2, 3, 5

formula, 3
par, 6
pchreg, 2–4
plot.ctqr, 2, 4, 6
predict.ctqr, 2, 4, 7
Surv, 3