Package ‘cubicBsplines’

July 13, 2021

Title Computation of a Cubic B-Spline Basis and Its Derivatives
Date 2021-07-11
Version 1.0.0

URL http://www.statsoc.ulg.ac.be/
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation yes

Author Philippe Lambert [aut, cre] (Université de Liège / Université catholique de Louvain (Belgium))
Maintainer Philippe Lambert <p.lambert@uliege.be>
Repository CRAN
Date/Publication 2021-07-13 14:30:04 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubicBsplines</td>
<td>Bsplines</td>
<td>2</td>
</tr>
<tr>
<td>cubicBsplines</td>
<td>D1Bsplines</td>
<td>2</td>
</tr>
<tr>
<td>cubicBsplines</td>
<td>D2Bsplines</td>
<td>3</td>
</tr>
<tr>
<td>cubicBsplines</td>
<td>IBsplines</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>trapeze</td>
<td>4</td>
</tr>
</tbody>
</table>

Index 6
Bsplines

Computation of a cubic B-spline basis associated to a given vector of knots

Description

Computation of a cubic B-spline basis associated to a given vector of knots

Usage

`Bsplines(x, knots)`

Arguments

- `x` vector of values where the B-spline basis must be evaluated.
- `knots` vector of knots spanning the desired B-spline basis.

Value

A matrix of dimension `length(x)` by `(length(knots)+2)`. Each column of the matrix corresponds to one cubic B-spline in the basis.

Examples

`Bsplines(x=runif(20), knots=seq(0, 1, length=11))`

D1Bsplines

Computation of the 1st derivative of a cubic B-spline basis associated to a given vector of knots

Description

Computation of the 1st derivative of a cubic B-spline basis associated to a given vector of knots

Usage

`D1Bsplines(x, knots)`

Arguments

- `x` vector of values where the 1st derivative of the B-spline basis must be evaluated.
- `knots` vector of knots spanning the desired B-spline basis.
Value

A matrix of dimension \(\text{length}(x)\) by \((\text{length}(\text{knots})+2)\).

Each column corresponds to (the 1st derivative of) one cubic B-spline in the basis.

Examples

```r
D1Bsplines(x=runif(20),knots=seq(0,1,length=11))
```

Description

Computation of the 2nd derivative of a cubic B-spline basis associated to a given vector of knots

Usage

```r
D2Bsplines(x, knots)
```

Arguments

- `x` vector of values where the 2nd derivative of the B-spline basis must be evaluated.
- `knots` vector of knots spanning the desired B-spline basis.

Value

A matrix of dimension \(\text{length}(x)\) by \((\text{length}(\text{knots})+2)\).

Each column of the matrix corresponds to (the 2nd derivative of) one cubic B-spline in the basis.

Examples

```r
D2Bsplines(x=runif(20),knots=seq(0,1,length=11))
```
IBsplines

Computation of the integral of a cubic B-spline basis over \((t_0,x)\) for a given vector of knots

Description

Computation of the integral of a cubic B-spline basis over \((t_0,x)\) for a given vector of knots

Usage

\[\text{IBsplines}(t_0, x, \text{knots}) \]

Arguments

- \(t_0\): scalar giving lower value of the integration interval.
- \(x\): vector giving the upper values of the integration interval.
- \(\text{knots}\): vector of knots spanning the desired B-spline basis.

Value

A matrix of dimension \(\text{length}(x)\) by \((\text{length}(\text{knots})+2)\). Each integrated cubic B-spline is within a given column.

Examples

\[\text{IBsplines}(t_0=0, x=\text{runif}(20), \text{knots}=\text{seq}(0,1,\text{length}=11)) \]

trapeze

Trapeze integration from a vector of function values evaluated at quadrature points

Description

Trapeze integration from a vector of function values evaluated at quadrature points

Usage

\[\text{trapeze}(x, \text{fx}) \]

Arguments

- \(x\): grid of values for the quadrature (vector).
- \(\text{fx}\): values of the function on the grid (vector).
Value

vector with a numerical approximation of \(\int_{\min(x)}^{\max(x)} f(t) dt \) on the grid using the trapeze method.

Examples

```r
x = seq(-4,2,length=100) ; fx = dnorm(x) ; res = trapeze(x,fx)
cbind(true=pnorm(x),trapeze=res)
```
Index

Bsplines, 2
D1Bsplines, 2
D2Bsplines, 3
IBsplines, 4
trapeze, 4