Package ‘cvequality’

January 7, 2019

Type Package

Title Tests for the Equality of Coefficients of Variation from Multiple Groups

Version 0.2.0

Maintainer Ben Marwick <benmarwick@gmail.com>

Description Contains functions for testing for significant differences between multiple coefficients of variation. Includes Feltz and Miller's (1996) <DOI:10.1002/(SICI)1097-0258(19960330)15:6%3C647::AID-SIM184%3E0.CO;2-P> asymptotic test and Krishnamoorthy and Lee's (2014) <DOI:10.1007/s00180-013-0445-2> modified signed-likelihood ratio test. See the vignette for more, including full details of citations.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests knitr, ggplot2, rmarkdown, testthat, dplyr, tidyr, ggbeeswarm, covr

VignetteBuilder knitr

URL https://github.com/benmarwick/cvequality

BugReports https://github.com/benmarwick/cvequality/issues

Date 2019-01-05

NeedsCompilation no

Author Ben Marwick [aut, cre],
Kalimuthu Krishnamoorthy [aut]

Repository CRAN

Date/Publication 2019-01-07 15:10:02 UTC
Asymptotic test for the equality of coefficients of variation from k populations, using measurement data

Description

Usage

asymptotic_test(x, y, seed)

Arguments

x a numeric vector containing individual measurement values
y a vector of any type containing a grouping variable
seed optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

a list with the test statistic and p-value

Examples

```r
y <- unlist(lapply(letters[1:5], function(i) rep(i, 20)))
x <- rnorm(100)

asymptotic_test(x, y)
```
asymptotic_test2

Asymptotic test for the equality of coefficients of variation from k populations, using summary statistics when raw measurement data are not available.

Description

Usage

asymptotic_test2(k, n, s, x, seed)

Arguments

k

a numeric vector the number of groups

n

a numeric vector the number of measurements in each group

s

a numeric vector the standard deviation of each group

x

a numeric vector the mean of each group

seed

optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

a list with the test statistic and p-value

Examples

Summary stats from Feltz and Miller 1996

miller <- data.frame(test = c('ELISA', 'WEHI', \"Viral inhibition\"),
 Mean = c(6.8, 8.5, 6.0),
 CV = c(0.090, 0.462, 0.340),
 N = c(5, 5, 5))

compute SD from mean and cv
miller$SD <- with(miller, CV * Mean)

asymptotic_test2(k = nrow(miller), n = miller$N, s = miller$SD, x = miller$Mean)
LRT_STAT
LRT_STAT, required by mlr_test

Description
LRT_STAT, required by mlr_test

Usage
LRT_STAT(n, x, s, seed)

Arguments
- **n**
 ... as above
- **x**
 ...
- **s**
 ...
- **seed**
 optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value
xx

mslr_test
Modified signed-likelihood ratio test (SLRT) for equality of CVs, using measurement data

Description
Modified signed-likelihood ratio test (SLRT) for equality of CVs, using measurement data

Usage
mslr_test(nr = 1000, x, y, seed)

Arguments
- **nr**
 numeric vector length one, number of simulation runs, default is 1e3
- **x**
 a numeric vector containing individual measurement values
- **y**
 a vector of any type containing a grouping variable
- **seed**
 optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.
mslr_test2

Value

a list with the test statistic and p-value

References

Examples

```r
x <- rnorm(100)
y <- unlist(lapply(letters[1:5], function(i) rep(i, 20)))
mslr_test(nr = 1e3, x, y)
```

Description

Modified signed-likelihood ratio test (SLRT) for equality of CVs, using summary statistics when raw measurement data are not available.

Usage

`mslr_test2(nr, n, x, s, seed)`

Arguments

- `nr` numeric vector length one, number of simulation runs
- `n` a numeric vector, the number of observations in each group
- `x` a numeric vector, the mean of each group
- `s` a numeric vector, the standard deviation of each group
- `seed` optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

a list with the test statistic and p-value

References

Examples

Summary stats from Feltz and Miller 1996

miller <- data.frame(test = c('ELISA', 'WEHI', 'Viral inhibition'),
 Mean = c(6.8, 8.5, 6.0),
 CV = c(0.090, 0.462, 0.340),
 N = c(5, 5, 5))

compute SD from mean and cv
miller$SD <- with(miller, CV * Mean)

mslr_test2(nr = 1e3, n = miller$N, s = miller$SD, x = miller$Mean)
Index

asymptotic_test, 2
asymptotic_test2, 3
LRT_STAT, 4
mslr_test, 4
mslr_test2, 5