Package ‘cvequality’

October 12, 2022

Type Package

Title Tests for the Equality of Coefficients of Variation from Multiple Groups

Version 0.2.0

Maintainer Ben Marwick <benmarwick@gmail.com>

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Suggests knitr, ggplot2, rmarkdown, testthat, dplyr, tidyr, ggbbswarm, covr

VignetteBuilder knitr

URL https://github.com/benmarwick/cvequality

BugReports https://github.com/benmarwick/cvequality/issues

Date 2019-01-05

NeedsCompilation no

Author Ben Marwick [aut, cre], Kalimuthu Krishnamoorthy [aut]

Repository CRAN

Date/Publication 2019-01-07 15:10:02 UTC
asymptotic_test

R topics documented:

asymptotic_test ... 2
asymptotic_test2 .. 3
LRT_STAT .. 4
mslr_test ... 4
mslr_test2 ... 5

Index 7

asymptotic_test Asymptotic test for the equality of coefficients of variation from k populations, using measurement data

Description

Usage

asymptotic_test(x, y, seed)

Arguments

x a numeric vector containing individual measurement values
y a vector of any type containing a grouping variable
seed optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

a list with the test statistic and p-value

Examples

y <- unlist(lapply(letters[1:5], function(i) rep(i, 20)))
x <- rnorm(100)

asymptotic_test(x, y)
asymptotic_test2

Asymptotic test for the equality of coefficients of variation from k populations, using summary statistics when raw measurement data are not available.

Description

Usage

asymptotic_test2(k, n, s, x, seed)

Arguments

k
 a numeric vector the number of groups
n
 a numeric vector the nume of measurements in each group
s
 a numeric vector the standard deviation of each group
x
 a numeric vector the mean of each group
seed
 optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

a list with the test statistic and p-value

Examples

Summary stats from Feltz and Miller 1996

miller <- data.frame(test = c('ELISA', 'WEHI', 'Viral inhibition'),
 Mean = c(6.8, 8.5, 6.0),
 CV = c(0.090, 0.462, 0.340),
 N = c(5, 5, 5))

compute SD from mean and cv
miller$SD <- with(miller, CV * Mean)

asymptotic_test2(k = nrow(miller), n = miller$N, s = miller$SD, x = miller$Mean)
LRT_STAT

LRT_STAT, required by mlrt_test

Description

LRT_STAT, required by mlrt_test

Usage

LRT_STAT(n, x, s, seed)

Arguments

- **n** ... as above
- **x** ...
- **s** ...
- **seed** optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

xx

mslr_test

Modified signed-likelihood ratio test (SLRT) for equality of CVs, using measurement data

Description

Modified signed-likelihood ratio test (SLRT) for equality of CVs, using measurement data

Usage

mslr_test(nr = 1000, x, y, seed)

Arguments

- **nr** numeric vector length one, number of simulation runs, default is 1e3
- **x** a numeric vector containing individual measurement values
- **y** a vector of any type containing a grouping variable
- **seed** optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.
Value

a list with the test statistic and p-value

References

Examples

```r
x <- rnorm(100)
y <- unlist(lapply(letters[1:5], function(i) rep(i, 20)))
mslr_test(nr = 1e3, x, y)
```

Description

Modified signed-likelihood ratio test (SLRT) for equality of CVs, using summary statistics when raw measurement data are not available.

Usage

```r
mslr_test2(nr, n, x, s, seed)
```

Arguments

nr numeric vector length one, number of simulation runs
n a numeric vector, the number of observations in each group
x a numeric vector, the mean of each group
s a numeric vector, the standard deviation of each group
seed optional, an integer that is the starting point used in the generation of a sequence of random numbers. Include a seed if you want reproducible output.

Value

a list with the test statistic and p-value

References

Examples

Summary stats from Feltz and Miller 1996

miller <- data.frame(test = c('ELISA', 'WEHI', 'Viral inhibition'),
 Mean = c(6.8, 8.5, 6.0),
 CV = c(0.090, 0.462, 0.340),
 N = c(5, 5, 5))

compute SD from mean and cv
miller$SD <- with(miller, CV * Mean)

mslr_test2(nr = 1e3, n = miller$N, s = miller$SD, x = miller$Mean)
Index

asymptotic_test, 2
asymptotic_test2, 3

LRT_STAT, 4

mslr_test, 4
mslr_test2, 5