Package ‘cvxclustr’

February 19, 2015

Maintainer Eric C. Chi <ecchi1105@gmail.com>
Author Eric C. Chi, Kenneth Lange
Version 1.1.1
License CC BY-NC-SA 4.0
Title Splitting methods for convex clustering
Description Alternating Minimization Algorithm (AMA) and Alternating Direction Method of Multipliers (ADMM) splitting methods for convex clustering.
Depends R (>= 2.15.2), Matrix, igraph
Suggests ggplot2
LazyData true
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-07-28 08:28:25

R topics documented:

AMA_step_size ... 2
compactify_edges ... 2
create_adjacency .. 3
create_clustering_problem ... 4
cvxclust ... 4
cvxclustr ... 6
cvxclust_admm ... 8
cvxclust_ama ... 10
cvxclust_path_admm .. 11
cvxclust_path_ama ... 13
find_clusters ... 15
kernel_weights .. 16
knn_weights ... 17
mammals ... 18
weights_graph .. 18

Index 20

1
AMA_step_size

Compute step size Anderson-Morely upper bound on the largest eigenvalue of the Laplacian

Description

`AMA_step_size` computes a step size based on the better of two bounds derived by Anderson and Morely.

Usage

`AMA_step_size(w, n)`

Arguments

- `w` vector of weights
- `n` number of points to cluster

Examples

```r
data(mammals)
X <- as.matrix(mammals[, -1])
X <- t(scale(X, center=TRUE, scale=FALSE))
n <- ncol(X)

## Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
w <- kernel_weights(X, phi)
w <- knn_weights(w, k, n)
AMA_step_size(w, n)
```

compactify_edges

Construct indices matrices

Description

`compactify_edges` constructs M1, M2, and ix index matrices. Note that storage conventions are different for ama and admm.

Usage

`compactify_edges(w, n, method = "ama")`
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w)</td>
<td>weights vector</td>
</tr>
<tr>
<td>(n)</td>
<td>number of points to cluster</td>
</tr>
<tr>
<td>method</td>
<td>'ama' or 'admm'</td>
</tr>
</tbody>
</table>

Description

create_adjacency creates an n-by-n sparse adjacency matrix from the matrix of centroid differences.

Usage

```
create_adjacency(V, w, n, method = "ama")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>Matrix of centroid differences</td>
</tr>
<tr>
<td>(w)</td>
<td>Weights vector</td>
</tr>
<tr>
<td>(n)</td>
<td>Number of points to cluster</td>
</tr>
<tr>
<td>method</td>
<td>'ama' or 'admm'</td>
</tr>
</tbody>
</table>

Examples

```r
## Clusterpaths for Mammal Dentition
data(mammals)
X <- as.matrix(mammals[, -1])
X <- t(scale(X, center=TRUE, scale=FALSE))
n <- ncol(X)

## Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
w <- kernel_weights(X, phi)
w <- knn_weights(w, k, n)
gamma <- seq(0.0, 0.43, length.out=100)

## Perform clustering
nu <- AMA_step_size(w, n)
sol <- cvxclust_path_ama(X, w, gamma, nu=nu)

## Construct adjacency matrix
A <- create_adjacency(sol$V[[10]], w, n)
G <- graph.adjacency(A, mode = 'upper')
plot(G, vertex.label=as.character(mammals[,1]), vertex.label.cex=0.65, vertex.label.font=2)
```
create_clustering_problem

Create a random clustering problem

Description
create_clustering_problem makes a random clustering problem for testing purposes.

Usage
create_clustering_problem(p, n, seed = 12345, nnn = 3, method = "ama")

Arguments
- `p`: Dimension of space of points to be clustered
- `n`: Number of points
- `seed`: Random number seed
- `nnn`: Number of nearest neighbors
- `method`: ‘ama’ or ‘admm’

Examples
```r
p <- 10
n <- 20
seed <- 12345
rnd_problem_admm <- create_clustering_problem(p, n, seed)
```

cvxclust

Convex Clustering Path via Variable Splitting Methods

Description
cvxclust estimates the convex clustering path via variable splitting methods: ADMM and AMA. This function is a wrapper function that calls either cvxclust_path_admm or cvxclust_path_ama (the default) to perform the computation. Required inputs include a data matrix `X` (rows are features; columns are samples), a vector of weights `w`, and a sequence of regularization parameters `gamma`. Two penalty norms are currently supported: 1-norm and 2-norm. Both ADMM and AMA admit acceleration schemes at little additional computation. Acceleration is turned on by default.

Usage
cvxclust(X, w, gamma, method = "ama", nu = 1, tol = 0.001,
 max_iter = 10000, type = 2, accelerate = TRUE)
Arguments

- **X**: The data matrix to be clustered. The rows are the features, and the columns are the samples.
- **w**: A vector of nonnegative weights. The ith entry \(w[i] \) denotes the weight used between the ith pair of centroids. The weights are in dictionary order.
- **method**: Algorithm to use: "admm" or "ama"
- **gamma**: A sequence of regularization parameters.
- **nu**: A positive penalty parameter for quadratic deviation term.
- **tol**: The convergence tolerance.
- **max_iter**: The maximum number of iterations.
- **type**: An integer indicating the norm used: 1 = 1-norm, 2 = 2-norm.
- **accelerate**: If TRUE (the default), acceleration is turned on.

Value

- **U**: A list of centroid matrices.
- **V**: A list of centroid difference matrices.
- **lambda**: A list of Lagrange multiplier matrices.

Author(s)

Eric C. Chi, Kenneth Lange

See Also

- `cvxclust_path_ama` and `cvxclust_path_admm` for estimating the clustering path with AMA or ADMM. `kernel_weights` and `knn_weights` compute useful weights. To extract cluster assignments from the clustering path use `create_adjacency` and `find_clusters`.

Examples

```r
## Clusterpaths for Mammal Dentition
data(mammals)
X <- as.matrix(mammals[, -1])
X <- t(scale(X, center = TRUE, scale = FALSE))
n <- ncol(X)

## Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
w <- kernel_weights(X, phi)
w <- knn_weights(w, k, n)
gamma <- seq(0.0, 0.43, length.out = 100)

## Perform clustering
sol <- cvxclust(X, w, gamma)
```
cvxclustr

Convex Clustering via Splitting Methods

Description

Clustering is a fundamental problem in science and engineering. Many classic methods such as \(k\)-means, Gaussian mixture models, and hierarchical clustering, however, employ greedy algorithms which can be entrapped in local minima, sometimes drastic suboptimal ones at that. Recently introduced convex relaxations of \(k\)-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. This package provides two variable splitting methods:

- Alternating Method of Multipliers (ADMM)
- Alternating Minimization Algorithm (AMA)
for solving this convex formulation of the clustering problem. We seek the centroids u_i that minimize

$$\frac{1}{2} \sum_i ||x_i - u_i||_2^2 + \gamma \sum_l w_l ||u_{l1} - u_{l2}||$$

Two penalty norms are currently supported: 1-norm and 2-norm.

Details

The two main functions are `cvxclust_path_admm` and `cvxclust_path_ama` which compute the cluster paths using the ADMM and AMA methods respectively. The function `cvxclust` is a wrapper function that calls either `cvxclust_path_admm` or `cvxclust_path_ama` (the default) to perform the computation.

The functions `kernel_weights` and `knn_weights` can be used in sequence to compute weights that can improve the quality of the clustering paths.

The typical usage consists of three steps:

- Compute weights w.
- Generate a geometrically increasing regularization parameter sequence. Unfortunately a closed form expression for the minimum amount of penalization to get complete coalescence is currently unknown.
- Call `cvxclust` using the data X, weights w, and regularization parameter sequence γ.

Cluster assignments can also be retrieved from the solution to the convex clustering problem. Both `cvxclust_path_admm` and `cvxclust_path_ama` output an object of class `cvxclustobject`. A cluster assignment can be extracted in two steps:

- Call `create_adjacency` to construct an adjacency matrix from the centroid differences variable V.
- Call `find_clusters` to extract the connected components of the adjacency matrix.

Author(s)

Eric C. Chi, Kenneth Lange

References

Description

cvxclust_admm performs convex clustering via ADMM. This is an R wrapper function around C code. Dimensions of various arguments are as follows:

- n is the number of data points
- p is the number of features
- k is the number non-zero weights.

Note that the indices matrices 'M1', 'M2', and 'ix' take on values starting at 0 to match the indexing conventions of C.

Usage

cvxclust_admm(x, Lambda, ix, M1, M2, s1, s2, w, gamma, nu, max_iter = 100, type = 2, tol_abs = 1e-05, tol_rel = 1e-04, accelerate = TRUE)

Arguments

- **x**: The p-by-n data matrix whose columns are to be clustered.
- **Lambda**: The p-by-k matrix of Lagrange multipliers.
- **ix**: The k-by-2 matrix of index pairs.
- **M1**: Index set used to track nonzero weights.
- **M2**: Index set used to track nonzero weights.
- **s1**: Index set used to track nonzero weights.
- **s2**: Index set used to track nonzero weights.
- **w**: A vector of k positive weights.
- **gamma**: The regularization parameter controlling the amount of shrinkage.
- **nu**: Augmented Lagrangian penalty parameter
- **max_iter**: The maximum number of iterations.
- **type**: An integer indicating the norm used: 1 = 1-norm, 2 = 2-norm.
- **tol_abs**: The convergence tolerance (absolute).
- **tol_rel**: The convergence tolerance (relative).
- **accelerate**: If TRUE (the default), acceleration is turned on.
cvxclust_admm

Value

U A list of centroid matrices.
V A list of centroid difference matrices.
Lambda A list of Lagrange multiplier matrices.
nu The final step size used.
primal The primal residuals.
dual The dual residuals.
tol_primal The primal residual tolerances.
tol_dual The dual residual tolerances.
itert The number of iterations taken.

Author(s)

Eric C. Chi, Kenneth Lange

Examples

```r
## Create random problems
p <- 10
n <- 20
seed <- 12345
nProbs <- 10
errors <- double(nProbs)
for (i in 1:nProbs) {
  seed <- seed + sample(1:1e2,1)
  rnd_problem <- create_clustering_problem(p,n,seed=seed,method='admm')
  X <- rnd_problem$X
  ix <- rnd_problem$ix
  M1 <- rnd_problem$M1
  M2 <- rnd_problem$M2
  s1 <- rnd_problem$s1
  s2 <- rnd_problem$s2
  w <- rnd_problem$w
  nK <- length(w)
  Lambda <- matrix(rnorm(p*nK),p,nK)
  gamma <- 0.1
  nu <- 1
  max_iter <- 1e6
  tol_abs <- 1e-15
  tol_rel <- 1e-15
  sol_admm_acc <- cvxclust_admm(X,Lambda,ix,M1,M2,s1,s2,w,theta,nu,max_iter=max_iter,
                                tol_abs=tol_abs,tol_rel=tol_rel,accelerate=TRUE)
  sol_admm <- cvxclust_admm(X,Lambda,ix,M1,M2,s1,s2,w,theta,nu,max_iter=max_iter,
                             tol_abs=tol_abs,tol_rel=tol_rel,accelerate=FALSE)
  errors[i] <- norm(as.matrix(sol_admm_acc$U-sol_admm$U),'i')
}
```
cvxclust_ama performs convex clustering via AMA. This is an R wrapper function around C code. Dimensions of various arguments are as follows:

- **n** is the number of data points
- **p** is the number of features
- **k** is the number non-zero weights.

Note that the indices matrices 'M1', 'M2', and 'ix' take on values starting at 0 to match the indexing conventions of C.

Usage

```r
cvxclust_ama(xL, lambdaL, ixL, m1L, mRL, s1L, s2L, w, gammaL, nuL, typeL, max_iterL = 100, tolL = 1e-04, accelerateL = TRUE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>The p-by-n data matrix whose columns are to be clustered.</td>
</tr>
<tr>
<td>lambda</td>
<td>The p-by-k matrix of Lagrange multipliers.</td>
</tr>
<tr>
<td>ix</td>
<td>The k-by-2 matrix of index pairs.</td>
</tr>
<tr>
<td>m1</td>
<td>Index set used to track nonzero weights.</td>
</tr>
<tr>
<td>mR</td>
<td>Index set used to track nonzero weights.</td>
</tr>
<tr>
<td>s1</td>
<td>Index set used to track nonzero weights.</td>
</tr>
<tr>
<td>sR</td>
<td>Index set used to track nonzero weights.</td>
</tr>
<tr>
<td>w</td>
<td>A vector of k positive weights.</td>
</tr>
<tr>
<td>gamma</td>
<td>The regularization parameter controlling the amount of shrinkage.</td>
</tr>
<tr>
<td>nu</td>
<td>The initial step size parameter when backtracking is applied. Otherwise it is a fixed step size in which case there are no guarantees of convergence if it exceeds (2/\text{ncol}(X)).</td>
</tr>
<tr>
<td>type</td>
<td>An integer indicating the norm used: 1 = 1-norm, 2 = 2-norm.</td>
</tr>
<tr>
<td>max_iter</td>
<td>The maximum number of iterations.</td>
</tr>
<tr>
<td>tol</td>
<td>The convergence tolerance.</td>
</tr>
<tr>
<td>accelerate</td>
<td>If TRUE (the default), acceleration is turned on.</td>
</tr>
</tbody>
</table>
Value

- U: A list of centroid matrices.
- V: A list of centroid difference matrices.
- Lambda: A list of Lagrange multiplier matrices.
- nu: The final step size used.
- primal: The primal objective evaluated at the final iterate.
- dual: The dual objective evaluated at the final iterate.
- iter: The number of iterations taken.

Author(s)

Eric C. Chi, Kenneth Lange

Examples

```r
## Create random problem
seed <- 12345
p <- 10
n <- 20
rnd_problem <- create_clustering_problem(p,n,seed)
X <- rnd_problem$X
ix <- rnd_problem$ix
M1 <- rnd_problem$M1
M2 <- rnd_problem$M2
s1 <- rnd_problem$s1
s2 <- rnd_problem$s2
w <- rnd_problem$w
nK <- nrow(ix)
Lambda <- matrix(rnorm(p*nK),p,nK)
gamma <- 0.1
nu <- 1.999/n
max_iter <- 1e6
tol <- 1e-15
sol_ama <- cvxclust_ama(X,Lambda,ix,M1,M2,s1,s2,w,gamma,nu,max_iter=max_iter,tol=tol)
```

Description

`cvxclust_path_admm` estimates the convex clustering path via ADMM. Required inputs include a data matrix X (rows are features; columns are samples), a vector of weights w, and a sequence of regularization parameters gamma. Two penalty norms are currently supported: 1-norm and 2-norm. ADMM admits acceleration by extrapolated steps akin to those in FISTA. This speed-up is employed by default.
Usage

`cvxclust_path_admm(x, w, gamma, nu = 1, tol_abs = 1e-05, tol_rel = 1e-04,
max_iter = 10000, type = 2, accelerate = TRUE)`

Arguments

- **x**: The data matrix to be clustered. The rows are the features, and the columns are the samples.
- **w**: A vector of nonnegative weights. The ith entry \(w[i]\) denotes the weight used between the ith pair of centroids. The weights are in dictionary order.
- **gamma**: A sequence of regularization parameters.
- **nu**: A positive penalty parameter for quadratic deviation term.
- **tol_abs**: The convergence tolerance (absolute).
- **tol_rel**: The convergence tolerance (relative).
- **max_iter**: The maximum number of iterations.
- **type**: An integer indicating the norm used: 1 = 1-norm, 2 = 2-norm.
- **accelerate**: If TRUE (the default), acceleration is turned on.

Value

- **u**: A list of centroid matrices.
- **v**: A list of centroid difference matrices.
- **lambda**: A list of Lagrange multiplier matrices.

Author(s)

Eric C. Chi, Kenneth Lange

See Also

- `cvxclust_path_ama` for estimating the clustering path with AMA. `kernel_weights` and `knn_weights` compute useful weights. To extract cluster assignments from the clustering path use `create_adjacency` and `find_clusters`.

Examples

```
## Clusterpaths for Mammal Dentition
data(mammals)
X <- as.matrix(mammals[,1])
X <- t(scale(X, center=TRUE, scale=FALSE))
n <- ncol(X)

## Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
w <- kernel_weights(X, phi)
w <- knn_weights(w, k, n)
```
cvxclust_path_ama estimates the convex clustering path via the Alternating Minimization Algorithm. Required inputs include a data matrix X (rows are features; columns are samples), a vector of weights w, and a sequence of regularization parameters γ. Two penalty norms are currently supported: 1-norm and 2-norm. AMA is performing proximal gradient ascent on the dual function, and therefore can be accelerated with FISTA. This speed-up is employed by default.
Usage

`cvxclust_path_ama(x, w, gamma, nu = 1, tol = 0.001, max_iter = 10000, type = 2, accelerate = TRUE)`

Arguments

- **x**: The data matrix to be clustered. The rows are the features, and the columns are the samples.
- **w**: A vector of nonnegative weights. The ith entry `w[i]` denotes the weight used between the ith pair of centroids. The weights are in dictionary order.
- **gamma**: A sequence of regularization parameters.
- **nu**: The initial step size parameter when backtracking is applied. Otherwise it is a fixed step size in which case there are no guarantees of convergence if it exceeds `2/ncol(X)`.
- **tol**: The convergence tolerance.
- **max_iter**: The maximum number of iterations.
- **type**: An integer indicating the norm used: 1 = 1-norm, 2 = 2-norm.
- **accelerate**: If TRUE (the default), acceleration is turned on.

Value

- **u**: A list of centroid matrices.
- **v**: A list of centroid difference matrices.
- **lambda**: A list of Lagrange multiplier matrices.

Author(s)

Eric C. Chi, Kenneth Lange

See Also

- `cvxclust_path_admm` for estimating the clustering path with ADMM.
- `kernel_weights` and `knn_weights` compute useful weights. To extract cluster assignments from the clustering path use `create_adjacency` and `find_clusters`.

Examples

```r
## Clusterpaths for Mammal Dentition
data(mammals)
x <- as.matrix(mammals[, -1])
x <- t(scale(x, center = TRUE, scale = FALSE))
n <- ncol(x)

## Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
w <- kernel_weights(x, phi)
```
find_clusters

w <- knn_weights(w,k,n)
gamma <- seq(0.0,43, length.out=100)

Perform clustering
nu <- AMA_step_size(w,n)
sol <- cvxclust_path_ama(X,w, gamma, nu=nu)

Plot the cluster path
library(ggplot2)
svdX <- svd(X)
pc <- svdX$v[,1:2,drop=FALSE]
pc.df <- as.data.frame(t(pc)%*%X)
nGamma <- sol$Gamma
df.paths <- data.frame(x=c(), y=c(), group=c())
for (j in 1:nGamma) {
 pcs <- t(pc)%*%sol$v[[j]]
 x <- pcs[1,]
 y <- pcs[2,]
 df <- data.frame(x=pcs[1,], y=pcs[2,], group=1:n)
 df.paths <- rbind(df.paths, df)
}
X.data <- as.data.frame(t(X)%*%pc)
colnames(X.data) <- c("x", "y")
X.data$Name <- mammals[,1]
data.plot <- ggplot(data=df.paths, aes(x=x, y=y))
data.plot <- data.plot + geom_path(aes(group=group), colour="grey30", alpha=0.5)
data.plot <- data.plot + geom_text(data=X.data, aes(x=x, y=y, label=Name),
 position=position_jitter(h=0.125, w=0.125))
data.plot <- data.plot + geom_point(data=X.data, aes(x=x, y=y), size=1.5)
data.plot <- data.plot + xlab("Principal Component 1") + ylab("Principal Component 2")
data.plot + theme_bw()

Output Cluster Assignment at 10th gamma
A <- create_adjacency(sol$V[[10]], w,n)
find_clusters(A)

Visualize Cluster Assignment
G <- graph.adjacency(A, mode = "upper")
plot(G, vertex.label=as.character(mammals[,1]),vertex.label.cex=0.65,vertex.label.font=2)

find_clusters

Find clusters

Description

find_clusters uses breadth-first search to identify the connected components of the corresponding adjacency graph of the centroid differences vectors.

Usage

find_clusters(A)
Arguments

A adjacency matrix

Examples

Clusterpaths for Mammal Dentition
data(mammals)
X <- as.matrix(mammals[,1])
X <- t(scale(X,center=TRUE, scale=FALSE))
n <- ncol(X)

Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
w <- kernel_weights(X,phi)
w <- knn_weights(w,k,n)
gamma <- seq(0.0,43, length.out=100)

Perform clustering
nu <- AMA_step_size(w,n)
sol <- cvxclust_path_ama(X,w,gamma,nu=nu)

Construct adjacency matrix
A <- create_adjacency(sol$V[[10]],w,n)
find_clusters(A)

kernel_weights

Compute Gaussian Kernel Weights

Description

kernel_weights computes Gaussian kernel weights given a data matrix X and a scale parameter phi. Namely, the lth weight w[l] is given by

\[w[l] = \exp(-\phi ||X[,i] - X[,j]||^2) \]

, where the lth pair of nodes is (i,j).

Usage

kernel_weights(X, phi = 1)

Arguments

X The data matrix to be clustered. The rows are the features, and the columns are the samples.

phi The nonnegative parameter that controls the scale of kernel weights
knn_weights

Value
A vector w of weights for convex clustering.

Author(s)
Eric C. Chi, Kenneth Lange

knn_weights
"Thin" a weight vector to be positive only for its k-nearest neighbors

Description
knn_weights takes a weight vector w and sets the ith component $w[i]$ to zero if either of the two corresponding nodes is not among the other's k nearest neighbors.

Usage
knn_weights(w, k, n)

Arguments
- w A vector of nonnegative weights. The ith entry $w[i]$ denotes the weight used between the ith pair of centroids. The weights are in dictionary order.
- k The number of nearest neighbors
- n The number of data points.

Value
A vector w of weights for convex clustering.

Author(s)
Eric C. Chi, Kenneth Lange
mammals

Tally of types of teeth in some mammals.

Description

A dataset containing how many of eight kinds of teeth various mammals have. This data set is a subset of the mammals dentition data in the homals package.

Format

A data frame with 27 rows and 8 variables

References

weights_graph

Weights Graph Adjacency Matrix

Description

Constructs the adjacency matrix of the weights graph. This is useful to determine the connectivity of the weights graph.

Usage

weights_graph(w, n)

Arguments

- **w**: Weights vector
- **n**: Number of points being clustered

Examples

```r
## Clusterpaths for Mammal Dentition
data(mammals)
X <- as.matrix(mammals[, -1])
X <- t(scale(X, center = TRUE, scale = FALSE))
n <- ncol(X)

## Pick some weights and a sequence of regularization parameters.
k <- 5
phi <- 0.5
classic <- cbind(weights.graph(X = X, w = c(0, 0, 0, 1, 1, 1, 1, 1)),
                 weights.graph(X = X, w = c(0, 1, 0, 0, 1, 1, 1, 1)),
                 weights.graph(X = X, w = c(0, 1, 1, 0, 0, 1, 1, 1)),
                 weights.graph(X = X, w = c(0, 1, 1, 1, 0, 0, 1, 1)),
                 weights.graph(X = X, w = c(0, 1, 1, 1, 1, 0, 0, 1)),
                 weights.graph(X = X, w = c(0, 1, 1, 1, 1, 1, 0, 0)),
                 weights.graph(X = X, w = c(0, 1, 1, 1, 1, 1, 1, 0)));
```
weights_graph

w <- kernel_weights(X, phi)
w <- knn_weights(w, k, n)

A <- weights_graph(w, n)
find_clusters(A)

Visualize Cluster Assignment
G <- graph.adjacency(A, mode = 'upper')
plot(G, vertex.label = as.character(mammals[, 1]), vertex.label.cex = 0.65, vertex.label.font = 2)
Index

*Topic **datasets**
 mammals, 18

AMA_step_size, 2
compactify_edges, 2
create_adjacency, 3, 5, 7, 12, 14
create_clustering_problem, 4
cvxclust, 4, 7
cvxclust_admm, 8
cvxclust_ama, 10
cvxclust_path_admm, 5, 7, 11, 14
cvxclust_path_ama, 5, 7, 12, 13
cvxclustr, 6
cvxclustr-package (cvxclustr), 6
find_clusters, 5, 7, 12, 14, 15
kernel_weights, 5, 7, 12, 14, 16
knn_weights, 5, 7, 12, 14, 17
mammals, 18
weights_graph, 18