Package ‘cyphr’

October 12, 2022

Title High Level Encryption Wrappers
Version 1.1.4

Description Encryption wrappers, using low-level support from 'sodium' and 'openssl'. 'cyphr' tries to smooth over some pain points when using encryption within applications and data analysis by wrapping around differences in function names and arguments in different encryption providing packages. It also provides high-level wrappers for input/output functions for seamlessly adding encryption to existing analyses.

License MIT + file LICENSE

URL https://github.com/ropensci/cyphr,
 https://docs.ropensci.org/cyphr/

BugReports https://github.com/ropensci/cyphr/issues

Imports getPass, openssl (>= 0.9.9), sodium (>= 1.2.1)

Suggests knitr, rmarkdown, testthat

RoxygenNote 7.1.1

VignetteBuilder rmarkdown, knitr

Encoding UTF-8

Language en-GB

NeedsCompilation no

Author Rich FitzJohn [aut, cre],
 Jai Ranganathan [ctb]

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

Repository CRAN

Date/Publication 2022-06-20 11:30:02 UTC
R topics documented:

- cyphr ... 2
- data_admin_init ... 2
- data_request_access ... 4
- encrypt ... 6
- encrypt_data ... 7
- keypair_openssl ... 9
- keypair_sodium .. 10
- key_openssl .. 12
- key_sodium .. 12
- rewrite_register .. 13
- session_key_refresh .. 14
- ssh_keygen ... 14

Index 16

cyphr High Level Encryption Wrappers

Description

Encryption wrappers, using low-level support from sodium and openssl.

Details

It is strongly recommended that you read both vignettes before attempting to use cyphr.

- introduction; in R: vignette("cyphr", package = "cyphr")
- data vignette; in R: vignette("data", package = "cyphr")

Author(s)

Rich FitzJohn (rich.fitzjohn@gmail.com)

data_admin_init Encrypted data administration

Description

Encrypted data administration; functions for setting up, adding users, etc.
data_admin_init

Usage

data_admin_init(path_data, path_user = NULL, quiet = FALSE)

data_admin_authorise(
 path_data = NULL,
 hash = NULL,
 path_user = NULL,
 yes = FALSE,
 quiet = FALSE
)

data_admin_list_requests(path_data = NULL)

data_admin_list_keys(path_data = NULL)

Arguments

path_data Path to the data set. We will store a bunch of things in a hidden directory within
 this path. By default in most functions we will search down the tree until we
 find the .cyphr directory
path_user Path to the directory with your ssh key. Usually this can be omitted.
quiet Suppress printing of informative messages.
hash A vector of hashes to add. If provided, each hash can be the binary or string
 representation of the hash to add. Or omit to add each request.
yes Skip the confirmation prompt? If any request is declined then the function will
 throw an error on exit.

Details

data_admin_init initialises the system; it will create a data key if it does not exist and authorise
you. If it already exists and you do not have access it will throw an error.
data_admin_authorise authorises a key by creating a key to the data that the user can use in
conjunction with their personal key.
data_admin_list_requests lists current requests.
data_admin_list_keys lists known keys that can access the data. Note that this is not secure; keys
not listed here may still be able to access the data (if a key was authorised and moved elsewhere for
example). Conversely, if the user has deleted or changed their key they will not be able to access
the data despite the key being listed here.

See Also

data_request_access() for requesting access to the data, and and data_key for using the data
itself. But for a much more thorough overview, see the vignette (vignette("data", package =
"cyphr")).
Examples

The workflow here does not really lend itself to an example,
please see the vignette instead.

First we need a set of user ssh keys. In a non example
environment your personal ssh keys will probably work well, but
hopefully they are password protected so cannot be used in
examples. The password = FALSE argument is only for testing,
and should not be used for data that you care about.
path_ssh_key <- tempfile()
cyphr::ssh_keygen(path_ssh_key, password = FALSE)

Initialise the data directory, using this key path. Ordinarily
the path_user argument would not be needed because we would be
using your user ssh keys:
path_data <- tempfile()
dir.create(path_data, FALSE, TRUE)
cyphr::data_admin_init(path_data, path_user = path_ssh_key)

Now you can get the data key
key <- cyphr::data_key(path_data, path_user = path_ssh_key)

And encrypt things with it
cyphr::encrypt_string("hello", key)

See the vignette for more details. This is not the best medium
to explore this.

Cleanup
unlink(path_ssh_key, recursive = TRUE)
unlink(path_data, recursive = TRUE)

data_request_access User commands

Description

User commands

Usage

data_request_access(path_data = NULL, path_user = NULL, quiet = FALSE)

data_key(
 path_data = NULL,
 path_user = NULL,
 test = TRUE,
 quiet = FALSE,
)
cache = TRUE

Arguments

path_data Path to the data. If not given, then we look recursively down below the working directory for a ".cyphr" directory, and use that as the data directory.

path_user Path to the directory with your user key. Usually this can be omitted. This argument is passed in as both pub and key to `keypair_openssl()`. Briefly, if this argument is not given we look at the environment variables USER_PUBKEY and USER_KEY - if set then these must refer to path of your public and private keys. If these environment variables are not set then we fall back on `~/.ssh/id_rsa.pub` and `~/.ssh/id_rsa`, which should work in most environments. Alternatively, provide a path to a directory where the file `id_rsa.pub` and `id_rsa` can be found.

quiet Suppress printing of informative messages.

test Test that the encryption is working? (Recommended)

cache Cache the key within the session. This will be useful if you are using ssh keys that have passwords, as if the key is found within the cache, then you will not have to re-enter your password. Using cache = FALSE neither looks for the key in the cache, nor saves it.

Examples

The workflow here does not really lend itself to an example,
please see the vignette.

Suppose that Alice has created a data directory:
path_alice <- tempfile()
cyphr::ssh_keygen(path_alice, password = FALSE)
path_data <- tempfile()
dir.create(path_data, FALSE, TRUE)
cyphr::data_admin_init(path_data, path_user = path_alice)

If Bob can also write to the data directory (e.g., it is a
shared git repo, on a shared drive, etc), then he can request
access
path_bob <- tempfile()
cyphr::ssh_keygen(path_bob, password = FALSE)
hash <- cyphr::data_request_access(path_data, path_user = path_bob)

Alice can authorise Bob
cyphr::data_admin_authorise(path_data, path_user = path_alice, yes = TRUE)

After which Bob can get the data key
cyphr::data_key(path_data, path_user = path_bob)

See the vignette for more details. This is not the best medium
to explore this.
Cleanup
unlink(path_alice, recursive = TRUE)
unlink(path_bob, recursive = TRUE)
unlink(path_data, recursive = TRUE)

encrypt

encrypt

Easy encryption and decryption

Description
Wrapper functions for encryption. These functions wrap expressions that produce or consume a file and arrange to encrypt (for producing functions) or decrypt (for consuming functions). The forms with a trailing underscore (encrypt_, decrypt_) do not use any non-standard evaluation and may be more useful for programming.

Usage

```r
encrypt(expr, key, file_arg = NULL, envir = parent.frame())
decrypt(expr, key, file_arg = NULL, envir = parent.frame())
encrypt_(expr, key, file_arg = NULL, envir = parent.frame())
decrypt_(expr, key, file_arg = NULL, envir = parent.frame())
```

Arguments

- `expr`: A single expression representing a function call that would be called for the side effect of creating or reading a file.
- `key`: A cyphr_key object describing the encryption approach to use.
- `file_arg`: Optional hint indicating which argument to `expr` is the filename. This is done automatically for some built-in functions.
- `envir`: Environment in which `expr` is to be evaluated.

Details
These functions will not work for all functions. For example `pdf/dev.off` will create a file but we can’t wrap those up (yet!). Functions that modify a file (e.g., appending) also will not work and may cause data loss.

Examples

```r
# To do anything we first need a key:
key <- cyphr::key_sodium(sodium::keygen())

# Encrypted write.csv - note how any number of arguments to
```
encrypt_data

write.csv will be passed along
path <- tempfile(fileext = ".csv")
cyphr::encrypt(write.csv(iris, path, row.names = FALSE), key)

The new file now exists, but you would not be able to read it
with read.csv because it is now binary data.
file.exists(path)

Wrap the read.csv call with cyphr::decrypt()
dat <- cyphr::decrypt(read.csv(path, stringsAsFactors = FALSE), key)
head(dat)

file.remove(path)

If you have a function that is not supported you can specify the
filename argument directly. For example, with "write.dcf" the
filename argument is called "file"; we can pass that along
path <- tempfile()
cyphr::encrypt(write.dcf(list(a = 1), path), key, file_arg = "file")

Similarly for decryption:
cyphr::decrypt(read.dcf(path), key, file_arg = "file")

Description

Encrypt and decrypt raw data, objects, strings and files. The core functions here are encrypt_data
and decrypt_data which take raw data and decrypt it, writing either to file or returning a raw vector.
The other functions encrypt and decrypt arbitrary R objects (encrypt_object, decrypt_object),
strings (encrypt_string, decrypt_string) and files (encrypt_file, decrypt_file).

Usage

encrypt_data(data, key, dest = NULL)

encrypt_object(object, key, dest = NULL, rds_version = NULL)

encrypt_string(string, key, dest = NULL)

encrypt_file(path, key, dest = NULL)

decrypt_data(data, key, dest = NULL)

decrypt_object(data, key)

decrypt_string(data, key)

decrypt_file(path, key, dest = NULL)
Arguments

- **data**: (for `encrypt_data, decrypt_data, decrypt_object, decrypt_string`) a raw vector with the data to be encrypted or decrypted. For the decryption functions this must be data derived by encrypting something or you will get an error.
- **key**: A cyphr_key object describing the encryption approach to use.
- **dest**: The destination filename for the encrypted or decrypted data, or NULL to return a raw vector. This is not used by `decrypt_object` or `decrypt_string` which always return an object or string.
- **object**: (for `encrypt_object`) an arbitrary R object to encrypt. It will be serialised to raw first (see `serialize`).
- **rds_version**: RDS serialisation version to use (see `serialize`). The default in R version 3.3 and below is version 2 - in the R 3.4 series version 3 was introduced and is becoming the default. Version 3 format serialisation is not understood by older versions so if you need to exchange data with older R versions, you will need to use `rds_version = 2`. The default argument here (NULL) will ensure the same serialisation is used as R would use by default.
- **string**: (for `encrypt_string`) a scalar character vector to encrypt. It will be converted to raw first with `charToRaw`.
- **path**: (for `encrypt_file`) the name of a file to encrypt. It will first be read into R as binary (see `readBin`).

Examples

```r
key <- key_sodium(sodium::keygen())
# Some super secret data we want to encrypt:
x <- runif(10)
# Convert the data into a raw vector:
data <- serialize(x, NULL)
data
# Encrypt the data; without the key above we will never be able to
# decrypt this.
data_enc <- encrypt_data(data, key)
data_enc
# Our random numbers:
unserialize(decrypt_data(data_enc, key))
# Same as the never-encrypted version:
x

# This can be achieved more easily using `encrypt_object`:
data_enc <- encrypt_object(x, key)
identical(decrypt_object(data_enc, key), x)

# Encrypt strings easily:
str_enc <- encrypt_string("secret message", key)
str_enc
decrypt_string(str_enc, key)
```
Asymmetric encryption with openssl

Description

Wrap a pair of openssl keys. You should pass your private key and the public key of the person that you are communicating with.

Usage

keypair_openssl(
 pub,
 key,
 envelope = TRUE,
 password = NULL,
 authenticated = TRUE
)

Arguments

pub
An openssl public key. Usually this will be the path to the key, in which case it may either the path to a public key or be the path to a directory containing a file `id_rsa.pub`. If NULL, then your public key will be used (found via the environment variable USER_PUBKEY, then `~/.ssh/id_rsa.pub`). However, it is not that common to use your own public key - typically you want either the sender of a message you are going to decrypt, or the recipient of a message you want to send.

key
An openssl private key. Usually this will be the path to the key, in which case it may either the path to a private key or be the path to a directory containing a file. You may specify NULL here, in which case the environment variable USER_KEY is checked and if that is not defined then `~/.ssh/id_rsa` will be used.

envelope
A logical indicating if "envelope" encryption functions should be used. If so, then we use openssl::encrypt_envelope() and openssl::decrypt_envelope(). If FALSE then we use openssl::rsa_encrypt() and openssl::rsa_decrypt().

password
A password for the private key. If NULL then you will be prompted interactively for your password, and if a string then that string will be used as the password (but be careful in scripts!)

authenticated
Logical, indicating if the result should be signed with your public key. If TRUE then your key will be verified on decryption. This provides tampering detection.

See Also

keypair_sodium() for a similar function using sodium keypairs
keypair_sodium

Asymmetric encryption with sodium

Description

Wrap a pair of sodium keys for asymmetric encryption. You should pass your private key and the public key of the person that you are communicating with.

Usage

keypair_sodium(pub, key, authenticated = TRUE)
keypair_sodium

Arguments

pub A sodium public key. This is either a raw vector of length 32 or a path to file containing the contents of the key (written by writeBin()).

key A sodium private key. This is either a raw vector of length 32 or a path to file containing the contents of the key (written by writeBin()).

authenticated Logical, indicating if authenticated encryption (via sodium::auth_encrypt() / sodium::auth_decrypt()) should be used. If FALSE then sodium::simple_encrypt() / sodium::simple_decrypt() will be used. The difference is that with authenticated = TRUE the message is signed with your private key so that tampering with the message will be detected.

Details

NOTE: the order here (pub, key) is very important; if the wrong order is used you cannot decrypt things. Unfortunately because sodium keys are just byte sequences there is nothing to distinguish the public and private keys so this is a pretty easy mistake to make.

See Also

keypair_openssl() for a similar function using openssl keypairs

Examples

Generate two keypairs, one for Alice, and one for Bob
key_alice <- sodium::keygen()
pub_alice <- sodium::pubkey(key_alice)
key_bob <- sodium::keygen()
pub_bob <- sodium::pubkey(key_bob)

Alice wants to send Bob a message so she creates a key pair with
her private key and bob's public key (she does not have bob's
private key).
pair_alice <- cyphr::keypair_sodium(pub = pub_bob, key = key_alice)

She can then encrypt a secret message:
secret <- cyphr::encrypt_string("hi bob", pair_alice)
secret

Bob wants to read the message so he creates a key pair using
Alice's public key and his private key:
pair_bob <- cyphr::keypair_sodium(pub = pub_alice, key = key_bob)
cyphr::decrypt_string(secret, pair_bob)
key_openssl Symmetric encryption with openssl

Description
Wrap an openssl symmetric (aes) key. This can be used with the functions encrypt_data() and decrypt_data(), along with the higher level wrappers encrypt() and decrypt(). With a symmetric key, everybody uses the same key for encryption and decryption.

Usage
key_openssl(key, mode = "cbc")

Arguments
key An openssl aes key (i.e., an object of class aes).
mode The encryption mode to use. Options are cbc, ctr and gcm (see the openssl package for more details)

Examples
Create a new key
key <- cyphr::key_openssl(openssl::aes_keygen())
key

With this key encrypt a string
secret <- cyphr::encrypt_string("my secret string", key)
And decrypt it again:
cyphr::decrypt_string(secret, key)

key_sodium Symmetric encryption with sodium

Description
Wrap a sodium symmetric key. This can be used with the functions encrypt_data() and decrypt_data(), along with the higher level wrappers encrypt() and decrypt(). With a symmetric key, everybody uses the same key for encryption and decryption.

Usage
key_sodium(key)

Arguments
key A sodium key (i.e., generated with sodium::keygen())
Examples

Create a new key
key <- cyphr::key_sodium(sodium::keygen())
key

With this key encrypt a string
secret <- cyphr::encrypt_string("my secret string", key)
And decrypt it again:
cyphr::decrypt_string(secret, key)

Description

Add information about argument rewriting so that they can be used with encrypt and decrypt.

Usage

rewrite_register(package, name, arg, fn = NULL)

Arguments

package The name of the package with the function to support (as a scalar character). If your function has no package (e.g., a function you are working on outside of a package, use "" as the name).
name The name of the function to support.
arg The name of the argument in the target function that refers to the file that should be encrypted or decrypted. This is the value you would pass through to file_arg in encrypt.
fn Optional (and should be rare) argument used to work around functions that pass all their arguments through to a second function as dots. This is how read.csv works. If needed this function is a length-2 character vector in the form "package","name" with the actual function that is used. But this should be very rare!

Details

If your package uses cyphr, it might be useful to add this as an .onLoad() hook.

Examples

The saveRDS function is already supported. But if we wanted to
support it we could look at the arguments for the function:
args(saveRDS)
The 'file' argument is the one that refers to the filename, so
we'd write:
cyphr::rewrite_register("base", "saveRDS", "file")
It's non-API but you can see what is supported in the package by
looking at
ls(cyphr:::db)

session_key_refresh

Refresh the session key

Description

Refresh the session key, invalidating all keys created by `key_openssl()`, `keypair_openssl()`, `key_sodium()` and `keypair_sodium()`.

Usage

`session_key_refresh()`

Details

Running this function will invalidate all keys loaded with the above functions. It should not be needed very often.

Examples

```r
# Be careful - if you run this then all keys loaded from file will
# no longer work until reloaded
if (FALSE) {
  cyphr::session_key_refresh()
}
```

ssh_keygen

Create ssh keypairs

Description

Create openssl key pairs in the manner of ssh-keygen(1). In general this should not be used (generate keys yourself with ssh-keygen at the command line. However this is useful for testing and demonstration so I have included it to make that easier. Once a keypair has been generated it can be used with `keypair_openssl()`.

Usage

`ssh_keygen(path = tempfile(), password = TRUE, use_shell = FALSE)`
Arguments

- **path**: A directory in which to create a keypair. If the path does not exist it will be created.

- **password**: The password for the key. The default will prompt interactively (but without echoing the password). Other valid options are `FALSE` (no password) or a string.

- **use_shell**: Try to use `ssh-keygen` (the shell utility) rather than functions in the `openssl` package. This will be necessary on at least very old versions of OS/X (Yosemite and older at least) where the keys generated by the `openssl` package cannot be read by the system ssh commands (e.g., `ssh-add`).

Value

The path, invisibly. This is useful in the case where path is `tempfile()`.

Examples

```r
# Generate a new key in a temporary directory:
path <- cyphr::ssh_keygen(password = FALSE)
dir(path) # will contain id_rsa and id_rsa.pub

# This key can now be used via keypair_openssl:
key <- cyphr::keypair_openssl(path, path)
secret <- cyphr::encrypt_string("hello", key)
cyphr::decrypt_string(secret, key)

# Cleanup
unlink(path, recursive = TRUE)
```
Index

charToRaw, 8
cyphr, 2
data_admin_authorise (data_admin_init), 2
data_admin_init, 2
data_admin_list_keys (data_admin_init), 2
data_admin_list_requests (data_admin_init), 2
data_key (data_request_access), 4
data_request_access, 4
data_request_access(), 3
decrypt, 13
decrypt (encrypt), 6
decrypt(), 12
decrypt_ (encrypt), 6
decrypt_data (encrypt_data), 7
decrypt_data(), 12
decrypt_file (encrypt_data), 7
decrypt_object (encrypt_data), 7
decrypt_string (encrypt_data), 7
encrypt, 6, 13
encrypt(), 12
encrypt_ (encrypt), 6
encrypt_data, 7
encrypt_data(), 12
encrypt_file (encrypt_data), 7
encrypt_object (encrypt_data), 7
encrypt_string (encrypt_data), 7

openssl::decrypt_envelope(), 9
openssl::encrypt_envelope(), 9
openssl::rsa_decrypt(), 9
openssl::rsa_encrypt(), 9
readBin, 8
rewrite_register, 13
serialize, 8
session_key_refresh, 14
sodium::auth_decrypt(), 11
sodium::auth_encrypt(), 11
sodium::keygen(), 12
sodium::simple_decrypt(), 11
sodium::simple_encrypt(), 11
ssh_keygen, 14
tempfile(), 15
writeBin(), 11

key_openssl, 12
key_openssl(), 14
key_sodium, 12
key_sodium(), 14
keypair_openssl, 9
keypair_openssl(), 5, 11, 14
keypair_sodium, 10
keypair_sodium(), 9, 14