Package ‘cytometree’

October 12, 2022

Type Package
Title Automated Cytometry Gating and Annotation
Version 2.0.2
Date 2019-12-04
Author Chariff Alkhassim, Boris P Hejblum, Anthony Devaux, Van Hung Huynh Tran
Maintainer Boris P Hejblum <boris.hejblum@u-bordeaux.fr>
LinkingTo Rcpp, RcppArmadillo
Description Given the hypothesis of a bi-modal distribution of cells for each marker, the algorithm constructs a binary tree, the nodes of which are subpopulations of cells. At each node, observed cells and markers are modeled by both a family of normal distributions and a family of bi-modal normal mixture distributions. Splitting is done according to a normalized difference of AIC between the two families. Method is detailed in: Commenges, Alkhassim, Gottardo, Hejblum & Thiebaut (2018) <doi:10.1002/cyto.a.23601>.
License LGPL-3 | file LICENSE
LazyData true
Depends R (>= 3.1.0), Rcpp (>= 0.12.11)
Imports ggplot2, graphics, igraph, mclust, methods, stats, cowplot, GoFKernel
RoxygenNote 7.0.2
BugReports https://github.com/sistm/Cytometree/issues
Encoding UTF-8
Suggests knitr, formatR, rmarkdown, viridis
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-12-04 22:20:19 UTC
cytometree-package

R topics documented:

- cytometree-package .. 2
- Annotation ... 3
- bootstrapCl .. 4
- CytofTree ... 5
- CytomeTree ... 6
- DLBCL .. 9
- FmeasureC ... 10
- FmeasureC_no0 .. 10
- HIPC .. 11
- IMdata .. 11
- plot_cytopop .. 12
- plot_graph ... 13
- plot_nodes ... 13
- RetrievePops .. 14

Index 16

cytometree-package
Binary tree algorithm for cytometry data analysis.

Description

The algorithm is based on the construction of a binary tree, the nodes of which are subpopulations of cells. At each node, observed cells and markers are modeled by both a family of normal distributions and a family of bi-modal normal mixture distributions. Splitting is done according to a normalized difference of AIC between the two families. Given the unsupervised nature of the binary tree, some of the available markers may not be used to find the different cell populations present in a given sample. To recover a complete annotation, we defined, as a post processing procedure, an annotation method which allows the user to distinguish two or three expression levels per marker.

Details

- **Package:** cytometree
- **Type:** Package
- **Version:** 2.0.2
- **Date:** 2019-12-04
- **License:** LGPL-3

The main function in this package is **CytomeTree**.

Author(s)

Chariff Alkhassim, Boris Hejblum, Anthony Devaux, Van Hung Huynh Tran — Maintainer: Boris Hejblum
Annotation

References

Description
Annotates cell populations found using CytomeTree.

Usage
Annotation(
 CytomeTreeObj,
 K2markers = NULL,
 K3markers = NULL,
 plot = TRUE,
 t = 0.2,
 remove_outliers_inplot = TRUE,
 center_fun = c("median", "mean")
)

Arguments
- **CytomeTreeObj**: An object of class CytomeTree.
- **K2markers**: A vector of class character where the names of the markers for which 2 levels of expression are sought can be specified. Default is NULL i.e. unsupervised.
- **K3markers**: A vector of class character where the names of the markers for which 3 levels of expression are sought can be specified. Default is NULL i.e. unsupervised.
- **plot**: A logical value indicating whether or not to plot the partitioning in 1, 2 or 3 groups for each marker. Default is TRUE.
- **t**: A real positive-or-null number used for comparison with the normalized AIC computed to compare the fits of the marginal distributions obtained by one normal distribution and by a mixture of two or three normal. For markers used in the tree, the algorithm compares the fits obtained by a mixture of two and three normal distributions. Default value is .2. A higher value leads to a smaller number of expression levels per marker.
- **remove_outliers_inplot**: a logical flag indicating whether the y-axis should be scaled by removing outliers or not. Default is TRUE.
- **center_fun**: a character string either ’median’ or ’mean’ indicating based on which summary the populations should be ordered. Default is ’median’, which is more robust to outliers and long tail distributions.
Details

The algorithm is set to find the partitioning in 1, 2 or 3 groups of cell populations found using CytomeTree. In an unsupervised mode, it minimizes the within-leaves sum of squares of the observed values on each marker and computes the normalized AIC to compare the fits of the marginal distributions obtained by one normal distribution and by a mixture of two or three normal. For markers used in the tree, the algorithm compares the fits obtained by a mixture of two and three normal distributions.

Value

A data frame containing the annotation of each cell population.

Author(s)

Chariff Alkhassim, Boris Hejblum

bootstrapCI

Bootstrapped Confidence Interval.

Description

Bootstrapped Confidence Interval.

Usage

```r
bootstrapCI(stat, n, alpha)
```

Arguments

- `stat` A numeric vector of statistics for which to compute a confidence interval.
- `n` An integer giving the number of bootstrap samples.
- `alpha` A real number comprised in]0, 1[- desired confidence level.

Author(s)

Chariff Alkhassim
Binary tree algorithm for mass cytometry data analysis.

Usage

CytofTree(
 M,
 minleaf = 1,
 t = 0.1,
 verbose = TRUE,
 force_first_markers = NULL,
 transformation = c("asinh", "biexp", "log10", "none"),
 num_col = 1:ncol(M)
)

Arguments

M A matrix of size n x p containing mass cytometry measures of n cells on p markers.
minleaf An integer indicating the minimum number of cells per population. Default is 1.
t A real positive-or-null number used for comparison with the normalized AIC computed at each node of the tree. A higher value limits the height of the tree.
verbose A logical controlling if a text progress bar is displayed during the execution of the algorithm. By default is TRUE.
force_first_markers a vector of index to split the data on first. This argument is used in the semi-supervised setting, forcing the algorithm to consider those markers first, in the order they appear in this force_first_markers vector, and forcing the split at every node. Default is NULL, in which case the clustering algorithm is unsupervised.
transformation A string indicating the transformation used among asinh biexp, log10 and none. Default is asinh transformation.
um_col An integer vector of index indicating the columns to be transform. Default is 1:ncol(M) to transform all the data.

Details

First of all, data can be transformed using different transformations. The algorithm is based on the construction of a binary tree, the nodes of which are subpopulations of cells. At each node, observed cells and markers are modeled by both a family of normal distributions and a family of bi-modal normal mixture distributions. Splitting is done according to a normalized difference of AIC between the two families.
Value

An object of class `cytomeTree` providing a partitioning of the set of n cells.

- annotation A data.frame containing the annotation of each cell population underlying the tree pattern.
- labels The partitioning of the set of n cells.
- M The transformed matrix of mass cytometry.
- mark_tree A two level list containing markers used for node splitting.
- transformation Transformation used
- num_col Indexes of columns transformed

Author(s)

Anthony Devaux, Boris Hejblum

Examples

data(IMdata)

dimension of data
dim(IMdata)

given the size of the dataset, the code below can take several minutes to run

if(interactive()){
 # Don't transform Time et Cell_length column
 num_col <- 3:ncol(IMdata)

 # Build CytofTree binary tree
 tree <- CytofTree(M = IMdata, minleaf = 1, t = 0.1, transformation = "asinh", num_col = num_col)

 # Annotation
 annot <- Annotation(tree, plot = FALSE, K2markers = colnames(IMdata))

 # Provide subpopulations
 annot$combinations
}

CytomeTree

Binary tree algorithm for cytometry data analysis.

Description

Binary tree algorithm for cytometry data analysis.
CytomeTree

Usage

CytomeTree(M, minleaf = 1, t = 0.1, verbose = TRUE, force_first_markers = NULL)

Arguments

M
A matrix of size n x p containing cytometry measures of n cells on p markers.

minleaf
An integer indicating the minimum number of cells per population. Default is 1.

t
A real positive-or-null number used for comparison with the normalized AIC computed at each node of the tree. A higher value limits the height of the tree.

verbose
A logical controlling if a text progress bar is displayed during the execution of the algorithm. By default is TRUE.

force_first_markers
a vector of index to split the data on first. This argument is used in the semi-supervised setting, forcing the algorithm to consider those markers first, in the order they appear in this force_first_markers vector, and forcing the split at every node. Default is NULL, in which case the clustering algorithm is unsupervised.

Details

The algorithm is based on the construction of a binary tree, the nodes of which are subpopulations of cells. At each node, observed cells and markers are modeled by both a family of normal distributions and a family of bi-modal normal mixture distributions. Splitting is done according to a normalized difference of AIC between the two families.

Value

An object of class `cytomeTree` providing a partitioning of the set of n cells.

• annotation A data.frame containing the annotation of each cell population underlying the tree pattern.
• labels The partitioning of the set of n cells.
• M The input matrix.
• mark_tree A two level list containing markers used for node splitting.

Author(s)

Chariff Alkhassim, Boris Hejblum

Examples

head(DLBCL)

number of cell event
N <- nrow(DLBCL)

Cell events
cellevents <- DLBCL[, c("FL1", "FL2", "FL4")]

Manual partitioning of the set N (from FlowCAP-I)
manual_labels <- DLBCL[, "label"]

Build the binary tree
Tree <- CytomeTree(cellevents, minleaf = 1, t=.1)

Retrieve the resulting partition of the set N
Tree_Partition <- Tree$labels

Plot node distributions
par(mfrow=c(1, 2))
plot_nodes(Tree)

Choose a node to plot
plot_nodes(Tree,"FL4.1")

Plot a graph of the tree
par(mfrow=c(1,1))
plot_graph(Tree,edge.arrow.size=.3, Vcex =.5, vertex.size = 30)

Run the annotation algorithm
Annot <- Annotation(Tree,plot=FALSE)
Annot$combinations

Compare to the annotation gotten from the tree
Tree$annotation

Example of sought phenotypes
Variable in which sought phenotypes can be entered in the form of matrices.
phenotypes <- list()

Sought phenotypes:
FL2+ FL4-.
phenotypes[[1]] <- rbind(c("FL2", 1), c("FL4", 0))

FL2- FL4+.
phenotypes[[2]] <- rbind(c("FL2", 0), c("FL4", 1))

FL2+ FL4+.
phenotypes[[3]] <- rbind(c("FL2", 1), c("FL4", 1))

Retrieve cell populations found using Annotation.
PhenoInfos <- RetrievePops(Annot, phenotypes)
PhenoInfos$phenotypesinfo

F-measure ignoring cells labeled 0 as in FlowCAP-I.
if(interactive()){
Scatterplots.
library(ggplot2)

Ignoring cells labeled 0 as in FlowCAP-I.
rm_zeros <- which(!manual_labels)

Building the data frame to scatter plot the data.
FL1 <- cellevents[-c(rm_zeros),"FL1"]
FL2 <- cellevents[-c(rm_zeros),"FL2"]
FL4 <- cellevents[-c(rm_zeros),"FL4"]
n <- length(FL1)
Labels <- c(manual_labels[-c(rm_zeros)]%%2+1, Tree_Partition[-c(rm_zeros)])
Labels <- as.factor(Labels)
method <- as.factor(c(rep("FlowCap-I",n),rep("CytomeTree",n)))

scatter_df <- data.frame("FL2" = FL2, "FL4" = FL4, "labels" = Labels, "method" = method)
p <- ggplot2::ggplot(scatter_df, ggplot2::aes_string(x = "FL2", y = "FL4", colour = "labels")) +
ggplot2::geom_point(alpha = 1,cex = 1) +
ggplot2::scale_colour_manual(values = c("green","red","blue")) +
ggplot2::facet_wrap(~ method) +
ggplot2::theme_bw() +
ggplot2::theme(legend.position="bottom")
p
}
FmeasureC

C++ implementation of the F-measure computation

Description

C++ implementation of the F-measure computation

Usage

FmeasureC(pred, ref)

Arguments

pred vector of a predicted partition
ref vector of a reference partition

Author(s)

Boris Hejblum

FmeasureC_no0

C++ implementation of the F-measure computation without the reference class labeled "0"

Description

Aghaeepour in FlowCAP 1 ignore the reference class labeled "0"

Usage

FmeasureC_no0(pred, ref)

Arguments

pred vector of a predicted partition
ref vector of a reference partition

Author(s)

Boris Hejblum
HIPC

HIPC T cell data set from HIPC program, patient 12828. The data was analyzed and gated by Stanford.

Description

HIPC T cell data set from HIPC program, patient 12828. The data was analyzed and gated by Stanford.

Usage

data(HIPC)

Format

A data frame with 33992 cell events and 6 markers.

Source

IMdata

Influenza vaccine response dataset

Description

A dataset containing 10,000 cells and 39 markers of mass cytometry subsampled from the sample SUB116516.478 from the study SDY478 by Mark Davis retrieved from ImmuneSpace

Usage

data(IMdata)

Format

A data frame with 10,000 rows and 39 variables:

Source

https://www.immunespace.org/project/Studies/SDY478/begin.view?
plot_cytopop

Plot the cell count for each population using CytomeTree.

Description
Plot the cell count for each population using CytomeTree.

Usage

```r
plot_cytopop(
  AnnotObj,
  nbpop = 10,
  mincount = 1,
  maxcount = NULL,
  y_axis = c("abs_count", "prop")
)
```

Arguments

- **AnnotObj**: An object of class Annotation.
- **nbpop**: Number indicating the maximum of population plotted. Default is 10.
- **mincount**: Number indicating the minimum of cell count for the populations. Default is 1.
- **maxcount**: Number indicating the maximum of cell count for the populations. Default is NULL i.e no maximum selected.
- **y_axis**: a character string either "abs_count" or "prop" indicating whether the absolute cell count or the relative populations proportions should be plotted. Default is "abs_count".

Author(s)
Anthony Devaux, Boris Hejblum

Examples

```r
# Run CytomeTree
data(DLBCL)
cellevents <- DLBCL[,c("FL1", "FL2", "FL4")]
Tree <- CytomeTree(cellevents, minleaf = 1, t=.1)
Annot <- Annotation(Tree, plot=FALSE)

# Plot the cell count
plot_cytopop(Annot)
```
plot_graph

Plot the binary tree built using CytomeTree.

Description
Plot the binary tree built using CytomeTree.

Usage
plot_graph(CytomeTreeObj, Ecex = 1, Ecolor = 8, Vcex = 0.8, Vcolor = 0, ...)

Arguments
CytomeTreeObj An object of class CytomeTree.
Ecex Number indicating the amount by which text on the edges should be scaled. Default is 1.
Ecolor An integer or a string of character to color edges of the graph. Default is 8.
Vcex Number indicating the amount by which text in the vertices should be scaled. Default is .8.
Vcolor A vector of class numeric or character to color vertices of the graph. Default is 0.
... additional arguments to be passed to plot_graph

Author(s)
Chariff Alkhassim

plot_nodes

Plot the distribution of the observed cells at each node of the binary tree built using CytomeTree.

Description
Plot the distribution of the observed cells at each node of the binary tree built using CytomeTree.

Usage
plot_nodes(
 CytomeTreeObj,
 nodes = NULL,
 nodesPerCol = NULL,
 nodesPerRow = NULL,
 ...
)
RetrievePops

Arguments

CytomeTreeObj An object of class CytomeTree.

nodes A list of character elements containing the name of the nodes for which the distribution is to be plotted. Default is NULL, and plots the distribution for each node.

nodesPerCol an integer specifying the number of plots to be displayed per column when plotting multiple nodes at once. Default is NULL.

nodesPerRow an integer specifying the number of plots to be displayed per row when plotting multiple nodes at once. Default is NULL.

... further arguments to be passed to `plot_grid`.

Details

if both `nodesPerCol` and `nodesPerRow` are NULL then all the nodes are plotted on a single page.

Value

a list of `ggplot2` plot objects, containing each node plot.

Author(s)

Chariff Alkhassim, Boris Hejblum

Examples

data(DLBCL)
myct <- CytomeTree(DLBCL[, c("FL1", "FL2", "FL4")], minleaf = 1, t=.1)
plot_nodes(myct)

RetrievePops Retrieve cell populations found using Annotation.

Description

Retrieve cell populations found using Annotation.

Usage

RetrievePops(AnnotationObj, phenotypes)
Arguments

AnnotationObj An object of class Annotation.

phenotypes A list containing at least one element of class matrix describing a sought phenotype. Each matrix should have two columns where the name of a used marker is associated to a value chosen between 0, 1 and 2. 0 translates to -, 1 to + and 2 to ++.

Value

A list of two elements.

- phenotypesinfo A list containing informations about sought populations.
- Mergedleaves The partitioning of the set of n cells with potentially merged leaves.

Author(s)

Chariff Alkhassim, Boris Hejblum
Index

* data
 DLBCL, 9
 HIPC, 11
 IMdata, 11

Annotation, 3

bootstrapCI, 4

CytofTree, 5
CytomeTree, 2, 6
cytometree (cytometree-package), 2
cytometree-package, 2

DLBCL, 9

FmeasureC, 10
FmeasureC_no0, 10

HIPC, 11

IMdata, 11

plot_cytopop, 12
plot_graph, 13, 13
plot_grid, 14
plot_nodes, 13

RetrievePops, 14