Package ‘dad’

July 3, 2019

Type Package
Title Three-Way / Multigroup Data Analysis Through Densities
Version 3.3.0
Date 2019-07-02
Author Rachid Boumaza [aut, cre], Pierre Santagostini [aut], Smail Yousfi [aut], Gilles Hulinault [ctb], Julie Bourbeillon [ctb], Besnik Pumo [ctb], Sabine Demotes-Mainard [aut]
Maintainer Rachid Boumaza <rachid.boumaza@agrocampus-ouest.fr>
Description The data consist of a set of variables measured on several groups of individuals. To each group is associated an estimated probability density function. The package provides tools to create or manage such data and functional methods (principal component analysis, multidimensional scaling, cluster analysis, discriminant analysis...) for such probability densities.
Depends R (>= 3.5.0), methods, stats, graphics, grDevices, utils, lattice, e1071, DescTools
Suggests MASS, multigroup
Encoding latin1
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-03 12:10:02 UTC

R topics documented:

dad-package .. 5
appendtofolderh .. 7
as.data.frame.folder ... 8
as.data.frame.folderh .. 9
as.data.frame.foldert .. 11
as.folder .. 12
as.folder.data.frame .. 12
as.folder.folderh .. 13
as.folderh .. 15
as.folderh.foldermtg 16
as.foldert .. 18
as.foldert.array ... 18
as.foldert.data.frame 19
association measures 21
association measures for folder 22
bandwidth.parameter 24
castles .. 25
castles.dated ... 25
castles.nondated .. 26
cor.folder .. 27
ddchisqsym ... 28
ddchisqsymphar ... 29
ddhellinger ... 30
ddhellingerpar .. 32
ddjeffreys ... 33
ddjeffreyspar .. 34
ddjensen .. 35
ddjensenpar ... 36
ddlp .. 38
ddlppar .. 39
departments .. 40
distl2d ... 41
distl2dnorm .. 42
distl2dnormpar ... 43
distl2dpar .. 45
dspg .. 46
dspgd2015 ... 47
dstatis.inter .. 48
fdiscd.misclass .. 50
fdiscd.predict .. 52
fhclustd ... 55
floribundity .. 58
fmdsd ... 59
folder ... 62
folderh ... 64
foldermtg .. 66
foldert ... 67
fpcad ... 69
fpcat .. 72
getcol.folderm .. 75
getcol.foldert ... 76
getrow.folder .. 77
getrow.foldert .. 78
hellinger .. 79
hellingerpar .. 80
interpret .. 81
R topics documented:

interpret.dstatis .. 82
interpret.fmdsd ... 84
interpret.fpcad .. 86
interpret.fpcat .. 87
interpret.mdsdd ... 89
is.dstatis .. 90
is.fdiscd.misclass .. 91
is.fdiscd.predict .. 92
is.fhclustd ... 92
is.fmdsd .. 93
is.folder ... 94
is.foldermtg ... 94
is.foldert .. 96
is.fpcad .. 96
is.mdsdd .. 97
jeffreys .. 98
jeffreyspar ... 99
kurtosis.folder ... 100
l2d ... 101
l2dpar ... 103
matddchisqsym ... 105
matddchisqsympar ... 106
matddhellinger ... 107
matddhellingerpar ... 108
matddjeffreys ... 109
matddjeffreyspar .. 110
matddjensen ... 111
matddjensenpar .. 112
matddlp .. 113
matddlppar ... 114
matdistl2d .. 115
matdistl2dnnorm ... 116
matdistl2dnnormpar 118
matdistl2dpar ... 119
mathellinger ... 120
mathellingerpar ... 121
matipl2d .. 122
matipl2dpar ... 124
matjeffreys .. 125
matjeffreyspar .. 126
matwasserstein .. 127
matwassersteinpar .. 128
mdsdd ... 129
mean.folder .. 132
mtgcomponents ... 133
mtgorder ... 134
mtgplant1 ... 135
R topics documented:

mtgplant2 ... 137
mtgrank ... 138
plot.dstatis ... 140
plot.fhclustd .. 141
plot.fmdsd .. 142
plot.foldert ... 143
plot.fpcad ... 144
plot.fpcat ... 145
plot.mdsdd .. 147
plotframes .. 148
print.dstatis ... 149
print.fdiscd.misclass ... 150
print.fdiscd.predict ... 151
print.fhclustd ... 152
print.fmdsd .. 153
print.foldermtg ... 155
print.foldert .. 156
print.fpcad .. 157
print.fpcat ... 158
print.mdsdd .. 159
read.mtg .. 160
rmcol.folder ... 162
rmcol.foldert ... 163
rmrow.folder .. 164
rmrow.foldert ... 165
roseflowers .. 166
roseleaves ... 166
rosephytomer .. 167
roses ... 168
skewness.folder .. 169
sqrtmatrix .. 170
summary.folder .. 171
summary.foldeh ... 172
summary.foldermtg .. 173
summary.foldert ... 174
var.folder .. 175
varietyleaves .. 176
wasserstein ... 176
wassersteinpar ... 178

Index ... 180
Description

The three-way data consists of a set of variables measured on several groups of individuals. To each group is associated an estimated probability density function. The package provides functional methods (principal component analysis, multidimensional scaling, cluster analysis, discriminant analysis...) for such probability densities.

Details

Package: dad
Type: Package
Version: 3.3.0
Date: 2019-07-02
License: GPL-2

To cite dad, use citation("dad").

The main functions applying to the probability densities are:

- `fpcad`: functional principal component analysis,
- `fpcat`: functional principal component analysis applied to data indexed according to time,
- `fmdsd`: multidimensional scaling,
- `fhclustd`: hierarchical clustering,
- `fdiscd.misclass`: functional discriminant analysis in order to compute the misclassification ratio with the one-leave-out method,
- `fdiscd.predict`: discriminant analysis in order to predict the class (synonymous with cluster, not to be confused with the class attribute of an R object) of each probability density whose class is unknown,
- `mdsdd`: multidimensional scaling of discrete probability distributions.

The above functions are completed by:

- A `print()` method for objects of class `fpcad`, `fmdsd`, `fdiscd.misclass`, `fdiscd.predict` or `mdsdd`, in order to display the results of the corresponding function,
- A `plot()` method for objects of class `fpcad`, `fmdsd`, `fhclustd` or `mdsdd`, in order to display some useful graphics attached to the corresponding function,
- A generic function `interpret` that applies to objects of class `fpcad`, `fmdsd` or `mdsdd`, helps the user to interpret the scores returned by the corresponding function, in terms of moments (`fpcad` or `fmdsd`) or in terms of marginal probability distributions (`mdsdd`).

We also introduce classes of objects and tools in order to handle collections of data frames:
• **folder** creates an object of class `folder`, that is a list of data frames which have in common the same columns.

The following functions apply to a folder and compute some statistics on the columns of its elements: `mean.folder`, `var.folder`, `cor.folder`, `skewness.folder` or `kurtosis.folder`.

• **folderh** creates an object of class `folderh`, that is a list of data frames with a hierarchic relation between each pair of consecutive data frames.

• **foldert** creates an object of class `foldert`, that is a list of data frames indexed according to time, concerning the same individuals and variables or not.

• **read.mtg** creates an object of class `foldermtg` from an MTG (Multiscale Tree Graph) file containing plant architecture data.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard with the contributions from Gilles Hunault, Julie Bourbeillon and Besnik Pumo

References

appendtofolderh

Adds a data frame to a folder.

Description

Creates an object of class `folderh` by appending a data frame to an object of class `folderh`. The appended data frame will be the first or last element of the returned `folderh`.

Usage

```r
appendtofolderh(fh, df, key, after = FALSE)
```

Arguments

- `fh` object of class `folderh`.
- `df` data frame to be appended to `fh`.
- `key` character string. The key defining the relation 1toN between `df` and the first (if `after` = FALSE, the default value) or last (if `after` = TRUE) data frame of `fh`.
- `after` logical. If FALSE (default), the data frame `df` is related to the first data frame of `fh`, and is appended as the first element of the returned `folderh`. If TRUE, `df` is related to the last data frame of `fh` and becomes the last element of the returned `folderh`.

Value

Returns an object of class `folderh`, that is a list of n + 1 data frames where n is the number of data frames of `fh`. The value of the attribute `attr`, "keys") is `c(key, attr(fh, "keys"))` if after = FALSE, `c(attr(fh, "keys"), key)` otherwise.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

`folderh`
as.data.frame.folder Folder to data frame

Description

Builds a data frame from an object of class folder.

Usage

S3 method for class 'folder'
as.data.frame(x, row.names = NULL, optional = FALSE, ..., group.name = "group")

Arguments

- **x**: object of class folder that is a list of data frames with the same column names.
- **row.names, optional**: for consistency with as.data.frame. as.data.frame.folder does not take them into account.
- **...**: further arguments passed to or from other methods.
- **group.name**: the name of the grouping variable. It is the name of the last column of the returned data frame.

Details

The data frame is simply obtained by row binding the data frames of the folder and adding a factor (as last column). The name of this column is given by group.name argument. The levels of this factor are the names of the elements of the folder.

Value

as.data.frame.folder returns a data frame.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

folder: object of class folder. as.folder.data.frame: build an object of class folder from a data frame.
Examples

data(iris)

iris.fold <- as.folder(iris, "Species")
print(iris.fold)

iris.df <- as.data.frame(iris.fold)
print(iris.df)

as.data.frame.folderh Hierarchic folder to data frame

Description

Builds a data frame from a folderh.

Usage

S3 method for class 'folderh'
as.data.frame(x, row.names = NULL, optional = FALSE, ...,
elt = names(x)[2], key = attr(x, "keys")[1])

Arguments

x object of class folderh containing N (N>=1) data frames: x[[1]],..., x[[N]],
 related by (N-1) keys: keys[1],..., keys[N-1].
row.names, optional
 for consistency with as.data.frame. Not taken into account.
... further arguments passed to or from other methods.
elt string. The name of one element of x, that is the data frame, say the j-th, whose
 rows are the rows of the returned data frame. See details.
key string. The name of an element of attr(x, "keys"), that is the key, say the
 k-th with k<j, which is the factor designating the last column of the returned
 data frame. See details.

Value

as.data.frame.folderh returns a data frame whose row names are those of x[[elt]] (that is
x[[j]]). The data frame contains the values of x[[elt]] and the corresponding values of the data
frames x[[k]], these correspondances being defined by the keys of the hierarchic folder.
The column names of the returned data frame are organized in three parts.

1. The first part consists in the key names keys[k],..., keys[j-1].
2. The second part consists in the values of x[[j]].
3. The third part consists in the values of x[[k]] except the key keys[k].

See the examples to view these details.
Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
folder, folderh, as.folder.folderh.

Examples

```r
# First example: rose flowers
data(roseflowers)
flg <- roseflowers$variety
flx <- roseflowers$flower

flfh <- folderh(flg, "rose", flx)
print(flfh)

fldf <- as.data.frame(flfh)
print(fldf)

# Second example: castles
data(castles.dated)
cag <- castles.dated$periods
cax <- castles.dated$stones

cafh <- folderh(cag, "castle", cax)
print(cafh)

cadf <- as.data.frame(cafh)
print(summary(cadf))

# Third example: leaves (example of a folderh with more than two data frames)
data(roseleaves)
lvr <- roseleaves$rose
lvs <- roseleaves$stem
lv1 <- roseleaves$leaf
lv11 <- roseleaves$leaflet

lfh <- folderh(lvr, "rose", lvs, "stem", lv1, "leaf", lv11)

lf1 <- as.data.frame(lfh, elt = "lvs", key = "rose")
print(lf1)

lf2 <- as.data.frame(lfh, elt = "lv1", key = "rose")
print(lf2)

lf3 <- as.data.frame(lfh, elt = "lv11", key = "rose")
print(lf3)

lf4 <- as.data.frame(lfh, elt = "lv11", key = "stem")
print(lf4)
```
Description

Builds a data frame from an object of class `foldert`.

Usage

```r
## S3 method for class 'foldert'
as.data.frame(x, row.names = NULL, optional = FALSE, ..., group.name = "time")
```

Arguments

- `x`: object of class `foldert` with the same row names. An object of class `foldert` is a list of data frames with the same column names, each of them corresponding to a time of observation.
- `row.names`, optional
 - for consistency with `as.data.frame`. `as.data.frame.foldert` does not take them into account.
- `...`: further arguments passed to or from other methods.
- `group.name`: the name of the grouping variable. It is the name of the last column of the returned data frame.
 - As the observations are indexed by time, the default value is `group.name = "time"`.

Details

`as.data.frame.foldert` uses `as.data.frame.folder`.

Value

`as.data.frame.foldert` returns a data frame.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

- `foldert`: object of class `foldert`. `as.foldert.data.frame`: build an object of class `foldert` from a data frame. `as.foldert.array`: build an object of class `foldert` from a 3d-array.

Examples

```r
data(floribundity)
ftflor <- foldert(floribundity, cols.select = "union", rows.select = "union")
print(ftflor)
dfflor <- as.data.frame(ftflor)
summary(dfflor)
```
Coerce to a folder

Description

Coerces a data frame or an object of class "folderh" to an object of class "folder".

Usage

as.folder(x, ..., groups = NULL)

Arguments

x an object of class data.frame or folderh.
 • data.frame: see \texttt{as.folder.data.frame}
 • folderh: see \texttt{as.folder.folderh}

... further arguments passed to or from other methods.

groups string. See \texttt{as.folder.data.frame}.

Value

an object of class \texttt{folder}.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

\texttt{folder}: objects of class \texttt{folder}. \texttt{as.data.frame.folder}: build a data frame from an object of class \texttt{folder}. \texttt{as.folder.data.frame}: build an object of class \texttt{folder} from a data frame. \texttt{as.folder.folderh}: build an object of class \texttt{folder} from an object of class \texttt{folderh}.

Data frame to folder

Description

Builds an object of class \texttt{folder} from a data frame.

Usage

\# S3 method for class 'data.frame'
as.folder(x, ..., groups = tail(colnames(x), 1))
Arguments

x data frame.

... further arguments passed to or from other methods.

groups string. The name of the column of x containing the grouping variable. \(x[, \text{groups}]\) must be a factor, otherwise, there is an error.

If omitted, the last column of x is used as grouping variable.

Value

\texttt{as.folder.data.frame} returns an object of class \texttt{folder} that is a list of data frames with the same column names.

Each element of the folder contains the data corresponding to one level of \(x[, \text{groups}]\).

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

\texttt{folder}: objects of class \texttt{folder}. \texttt{as.data.frame.folder}: build a data frame from an object of class \texttt{folder}. \texttt{as.folder.folderh}: build an object of class \texttt{folder} from an object of class \texttt{folderh}.

Examples

```r
# First example: iris (Fisher)
data(iris)
iris.fold <- as.folder(iris, "Species")
print(iris.fold)

# Second example: roses
data(roses)
roses.fold <- as.folder(roses, "Lot")
print(roses.fold)
```

Description

Creates an object of class \texttt{folder}, that is a list of data frames with the same column names, from a \texttt{folderh}.

Usage

```r
## S3 method for class 'folderh'
as.folder(x, ..., elt = names(x)[2], key = attr(x, "keys")[1])
```
Arguments

x object of class folder containing N (N>1) data frames: x[[1]],..., x[[N]], related by (N-1) keys: keys[1],..., keys[N-1].

... further arguments passed to or from other methods.

elt string. The name of one element of x, that is data frame, say the j-th, whose rows are distributed among the data frames of the returned folder. See details.

key string. The name of an element of attr(x, "keys"), that is the key, say the k-th with k<j, which is the factor whose levels are the names of the data frames of the returned folder. See details.

Value

as.folder.folderh returns an object of class folder, a list of data frames with the same columns. These data frames contain the values of x[[elt]] (or x[[j]]) and the corresponding values of the data frames x[[j-1]], ... x[[k]], these correspondences being defined by the keys of the hierarchic folder. The names of these data frames are given by the levels of the key attr(x, "keys")[[k]].

The rows of the data frame x[[elt]] (or x[[j]]) are distributed among the data frames of the returned folder accordingly to the levels of the key attr(x, "keys")[[k]]. So the row names of the 1-th data frame of the returned folder consist in the rows of x[[j]] corresponding to the 1-th level of the key attr(x, "keys")[[k]].

The column names of the data frames of the returned folder are the union of the column names of the data frames x[[k]],..., x[[j]] and are organized in two parts:

1. The first part consists in the columns of x[[k]] except the column corresponding to the key attr(x, "keys")[[k]].
2. For each i=k+1,...,j the column names of the data frame x[[i]] are reorganized so that the key attr(x, "keys")[[i]] is its first column. The columns of the reorganized data frames x[[k+1]],...,x[[j]] are concatenated. The result forms the second part.

Notice that if:

- the folderh has two data frames df1 and df2, where the factor corresponding to the key has T levels, and one column of df2, say df2[, "Fa"], is a factor with levels "a1",..., "ap"
- and the folder returned by as.folder includes T data frames dat1,..., datT,

then each of dat1,..., datT has a column named "Fa" which is a factor with the same levels "a1",..., "ap" as df2[, "Fa"].

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

folder, folderh. as.folder.folderh to build an object of class folder from an object of class folderh. as.data.frame.folder to build a data frame from an object of class folder. as.data.frame.folderh to build a data frame from an object of class folderh.
Examples

First example: flowers
data(roseflowers)
flg <- roseflowers$variety
flx <- roseflowers$flower

flfh <- folderh(flg, "rose", flx)
print(flfh)

flf <- as.folder(flfh)
print(flf)

Second example: castles
data(castles.dated)
cag <- castles.dated$periods
cax <- castles.dated$stones

cafh <- folderh(cag, "castle", cax)
print(cafh)

caf <- as.folder(cafh)
print(caf)

Third example: leaves (example of a folderh of more than two data frames)
data(roseleaves)
lvr <- roseleaves$rose
lvs <- roseleaves$stem
lvl <- roseleaves$leaf
lvll <- roseleaves$leaflet

lfh <- folderh(lvr, "rose", lvs, "stem", lvl, "leaf", lvll)

lf1 <- as.folder(lfh, elt = "lvs", key = "rose")
print(lf1)

lf2 <- as.folder(lfh, elt = "lvl", key = "rose")
print(lf2)

lf3 <- as.folder(lfh, elt = "lvll", key = "rose")
print(lf3)

lf4 <- as.folder(lfh, elt = "lvll", key = "stem")
print(lf4)

--

as.folderh Coerce to a folderh

Description

Coerces an object to an object of class folderh.
Usage

as.folderh(x, classes)

Arguments

x an object to be coerced to an object of class folderh. In the current version, it is an object of class "foldermtg" (see as.folderh.foldermtg).

classes argument useful for as.folderh.foldermtg.

Value

an object of class folderh.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

as.folderh.foldermtg: build an object of class folderh from an object of class foldermtg.

as.folderh.foldermtg Build a hierarchic folder from an object of class foldermtg

Description

Creates an object of class folderh from an object of class foldermtg.

Usage

S3 method for class 'foldermtg'
as.folderh(x, classes)

Arguments

x object of class foldermtg.

classes character vector. Codes of the vertex classes in the returned folderh. These codes are the names of the elements (data frames) of x containing the features on the vertices corresponding to the codes. These codes must be distinct, and the corresponding classes must have distinct scales (see foldermtg). Otherwise, there is an error.

These codes, except the one with the highest scale, are the keys of the returned folderh.

Details

This function uses folderh.
Value

An object of class `folderh`. Its elements are the data frames of `x` containing the features on vertices. Hence, each data frame matches with a class of vertex, and a scale. These data frames are in increasing order of the scale.

A column (factor) is added to the first data frame, containing the identifier of the vertex. Two columns are added to the second data frame:

1. the first one is a factor which gives, for each vertex, the name of the vertex of the first data frame which is its "parent",
2. and the second one is also a factor and contains the vertex’s identifier.

And so on for the third and following data frames, if relevant.

The column containing the vertex identifiers is redundant with the row names; anyway, it is necessary for `folderh`.

The key of the relationship between the two first data frame is given by the first column of each of these data frames. If there are more than two data frames, the key of the relationship between the `n`-th and `(n + 1)`-th data frames (\(n > 1\)) is given by the second column of the `n`-th data frame and the first column of the `(n + 1)`-th data frame.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

`read.mtg`: reads a MTG file and creates an object of class "foldermtg". `folderh`: object of class `folderh`.

Examples

```r
mtgfile <- system.file("extdata/plant1.mtg", package = "dad")
x <- read.mtg(mtgfile)

# folderh containing the plant ("P") and the stems ("A")
as.folderh(x, classes = c("P", "A"))

# folderh containing the plant ("P"), axes ("A") and phytomers ("M")
as.folderh(x, classes = c("P", "A", "M"))

# folderh containing the plant ("P") and the phytomers ("M")
as.folderh(x, classes = c("P", "M"))

# folderh containing the axes and phytomers
fhPM <- as.folderh(x, classes = c("A", "M"))
# coerce this folderh into a folder, and compute statistics on this folder
fPM <- as.folder(fhPM)
mean(fPM)
```
as.foldert

Coerce to a foldert

Description
Coerces a data frame or array to an object of class foldert.

Usage
as.foldert(x, ...)

Arguments
x an object of class data.frame or array.
 • data.frame: see as.foldert.data.frame
 • array: see as.foldert.array

... arguments passed to as.foldert.data.frame or as.foldert.array, further
arguments passed to or from other methods.

Value
an object of class foldert.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

as.foldert.array

Data frame to foldert

Description
Builds an object of class foldert from a 3d-array.

Usage
S3 method for class 'array'
as.foldert(x, ind = 1, var = 2, time = 3, ...)

Arguments
x a 3d-array.
ind, var, time three distinct integers among 1, 2 and 3.
 ind gives the dimension of the observations, var gives the dimension of the
 variables and ind gives the dimension of the times.

... further arguments passed to or from other methods.
Value

an object \(ft \) of class \texttt{foldert} that is a list of data frames, each of them corresponding to a time of observation; these data frames have the same column names. They necessarily have the same row names (attr(\(ft \), "same.rows")=TRUE). The "times" attribute of \(ft \): attr(\(ft \), "times") is a numeric vector, an ordered factor or an object of class \texttt{Date}, and contains the values of the dimension of \(x \) given by the \texttt{time} argument.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

\texttt{foldert}: objects of class \texttt{foldert}.

\texttt{as_foldert_data_frame}: build an object of class \texttt{foldert} from a data frame.

Examples

\begin{verbatim}
x <- array(c(rep(0, 5), rep(0, 5), rep(0, 5),
 rnorm(5, 2, 1), rnorm(5, 3, 2), rnorm(5, -2, 0.5),
 rnorm(5, 4, 1), rnorm(5, 5, 3), rnorm(5, -3, 1)),
 dim = c(5, 3, 3),
 dimnames = list(1:5, c("z1", "z2", "z3"), c("t1", "t2", "t3")))
The individuals which were observed are on the 1st dimension,
the variables are on the 2nd dimension and the times are on the 3rd dimension.
ft <- as.foldert(x, ind = 1, var = 2, time = 3)
\end{verbatim}

Description

Builds an object of class \texttt{foldert} from a data frame.

Usage

\begin{verbatim}
S3 method for class 'data.frame'
as.foldert(x, method = 1, ind = 1, timecol = 2, nvar = NULL, same.rows = TRUE, ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} data frame.
 \item \texttt{method} 1 or 2. Indicates the layout of the data frame \(x \) and, therefore, the method used to extract the data and build the \texttt{foldert}.
 \begin{itemize}
 \item If \texttt{method} = 1, there is a column containing the identifiers of the measured objects and a column containing the times. The other columns contain the observations.
 \item If \texttt{method} = 2, there is a column containing the identifiers of the measured objects and other columns containing the observed variables.
 \end{itemize}
\end{itemize}
• If method = 2, there is a column containing the identifiers of the measured objects, and the observations are organized as follows:
 – the observations corresponding to the 1st time are on columns timecol : (timecol + nvar - 1)
 – the observations corresponding to the 2nd time are on columns (timecol + nvar) : (timecol + 2nvar - 1)
 – and so on.

ind
 string or numeric. The name of the column of x containing the identifiers of the measured objects, or the number of this column.

timecol
 string or numeric.
 • If method = 1, timecol is the name or the number of the column of x containing the times of observation, or the number of this column. x[, timecol] must be of class "numeric", "ordered", "Date", "POSIXlt" or "POSIXct", otherwise, there is an error.
 • If method=2, timecol is the name or the number of the first column corresponding to the first observation. If there are duplicated column names and several columns are named by timecol, the first one is considered.

nvar
 integer. If method=2, indicates the number of variables observed at each time.
 Omitted if method=1.

same.rows
 logical. If TRUE (default), the elements of the returned foldert are data frames with the same row names.
 Necessarily TRUE if method = 2.

... further arguments passed to or from other methods.

Value
 an object ft of class foldert, that is a list of data frames organised according to time; these data frames have the same column names.

If method = 1, they can have the same row names (attr(ft, "same.rows") = TRUE) or not (attr(ft, "same.rows") = FALSE). The time attribute attr(ft, "times") has the same class as x[, timecol] (numeric vector, ordered factor or object of class "Date", "POSIXlt" or "POSIXct") and contains the values of x[, timecol].

If method = 2, they necessarily have the same row names: attr(ft, "same.rows") = TRUE and attr(ft, "times") is 1:length(ft).

The rownames of each data frame are the identifiers of the individuals, as given by x[, ind].

Author(s)
 Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
 foldert: objects of class foldert.
 as.data.frame.foldert: build a data frame from an object of class foldert.
 as.foldert.array: build an object of class foldert from a 3d-array.
Examples

First example: method = 1

times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01"))
x1 <- data.frame(t=times[1], ind=1:6,
 f=c("a","a","a","b","b","b"), z1=rep(0,6), z2=rep(0,6))
x2 <- data.frame(t=times[2], ind=c(1,4,6),
 f=c("a","b","b"), z1=rnorm(3,1,1), z2=rnorm(3,3,2))
x3 <- data.frame(t=times[3], ind=c(1,3:6),
 f=c("a","a","a","b","b"), z1=rnorm(5,3,2), z2=rnorm(5,6,3))
x <- rbind(x1, x2, x3)

ft1 <- as.foldert(x, method = 1, ind = "ind", timecol = "t", same.rows = TRUE)
print(ft1)

ft2 <- as.foldert(x, method = 1, ind = "ind", timecol = "t", same.rows = FALSE)
print(ft2)

data(castles.dated)
periods <- castles.dated$periods
stones <- castles.dated$stones
stones$stone <- rownames(stones)

castledf <- merge(periods, stones, by = "castle")
castledf$period <- as.numeric(castledf$period)
castledf$stone <- as.factor(paste(as.character(castledf$castle),
 as.character(castledf$stone), sep = "_"))

castfoldt1 <- as.foldert(castledf, method = 1, ind = "stone", timecol = "period",
 same.rows = FALSE)
summary(castfoldt1)

Second example: method = 2

times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01"))
y1 <- data.frame(z1=rep(0,6), z2=rep(0,6))
y2 <- data.frame(z1=rnorm(6,1,1), z2=rnorm(6,3,2))
y3 <- data.frame(z1=rnorm(6,3,2), z2=rnorm(6,6,3))
y <- cbind(ind = 1:6, y1, y2, y3)

ft3 <- as.foldert(y, method = 2, ind = "ind", timecol = 2, nvar = 2)
print(ft3)
Description

Computes pairwise association measures (Cramer's V, Pearson's contingency coefficient, phi, Tschuprow’s T) between the categorical variables of a data frame, using functions of the package `DescTools` (see `Assocs`).

Usage

```r
cramer.data.frame(x, check = TRUE)
pearson.data.frame(x, check = TRUE)
phi.data.frame(x, check = TRUE)
tschuprow.data.frame(x, check = TRUE)
```

Arguments

- `x` a data frame. Its columns should be factors.
- `check` logical. If `true` (default) the function checks if each column of `x` is a factor, and there is a warning if it is not.

Value

A square matrix whose elements are the pairwise association measures.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

Examples

```r
data(roses)
xr = roses[, c("Sha", "Den", "Sym", "rose")]
xr$Sha = cut(xr$Sha, breaks = c(0, 5, 7, 10))
xr$Den = cut(xr$Den, breaks = c(0, 4, 6, 10))
xr$Sym = cut(xr$Sym, breaks = c(0, 6, 8, 10))
cramer.data.frame(xr)
pearson.data.frame(xr)
phi.data.frame(xr)
tschuprow.data.frame(xr)
```
Description

Computes the pairwise association measures (Cramer’s V, Pearson’s contingency coefficient, phi, Tschuprow’s T) between the categorical variables of an object of class folder. The computation is carried out using the functions `cramer.data.frame`, `tschuprow.data.frame`, `pearson.data.frame` or `phi.data.frame`. These functions are built from corresponding functions of the package DescTools (see `assocs`).

Usage

```r
cramer.folder(xf)
tschuprow.folder(xf)
pearson.folder(xf)
phi.folder(xf)
```

Arguments

`xf` an object of class `folder` that is a list of data frames with the same column names. Its columns should be factors, otherwise there is a warning.

Value

A list the length of which is equal to the number of data frames of the folder. Each element of the list is a square matrix giving the pairwise association measures of the variables of the corresponding data frame.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

Examples

```r
data(roses)
xr = roses[,c("Sha", "Den", "Sym", "Rose")]
xr$Sha = cut(xr$Sha, breaks = c(0, 5, 7, 10))
xr$Den = cut(xr$Den, breaks = c(0, 4, 6, 10))
xr$Sym = cut(xr$Sym, breaks = c(0, 6, 8, 10))
xfolder = as.folder(xr, groups = "rose")
cramer.folder(xfolder)
pearson.folder(xfolder)
phi.folder(xfolder)
tschuprow.folder(xfolder)
```
bandwidth.parameter Parameter of the normal reference rule

Description

Computation of the parameter of the normal reference rule in order to estimate the (matrix) bandwidth.

Usage

bandwidth.parameter(p, n)

Arguments

p sample dimension.
n sample size.

details

The parameter is equal to:

\[h = \left(\frac{4}{n(p + 2)} \right)^{\frac{1}{p+4}} \]

It is based on the minimisation of the asymptotic mean integrated square error in density estimation when using the Gaussian kernel method (Wand and Jones, 1995).

Value

Returns the value required by the functions fpcad, fmdsd, fdiscd.misclass and fdiscd.predict when their argument windowh is set to NULL.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

Examples

```r
# Sample size :
n <- 20
# Number of variables :
p <- 3
bandwidth.parameter(p, n)
```
castles

Alsacian castles by year of building

Description

The data were collected by J.M. Rudrauf on Alsacian castles whose building year is known (even approximately). On each castle, he measured 4 structural parameters on a sample of building stones.

These data are about the same castles as in `castles.dated` data set.

Usage

```
data(castles)
```

Format

`castles` is a list of 46 data frames. Each of these data frames matches with one year (between 1136 and 1510) and contains measures on one or several castles which have been built since that year.

Each data frame has 5 to 101 rows (stones) and 5 columns: height, width, edging, boss (numeric) and castle (factor).

Source

Examples

```
data(castles)  
foldert(castles)
```

castles.dated

Dated Alsacian castles

Description

The data were collected by J.M. Rudrauf on Alsacian castles whose building period is known (even approximatively). On each castle, he measured 4 structural parameters on a sample of building stones.

Usage

```
data(castles.dated)
```
Format

castles.dated is a list of two data frames:

- castles.dated$stones: this first data frame has 1262 cases (rows) and 5 variables (columns) that are named height, width, edging, boss (numeric) and castle (factor).
- castles.dated$periods: this second data frame has 68 cases and 2 variables named castle and period; the column castle corresponds to the levels of the factor castle of the first data frame; the column period is a factor with 6 levels indicating the approximative building period. Thus this factor defines 6 classes of castles.

Source

Examples

data(castles.dated)
summary(castles.dated$stones)
summary(castles.dated$periods)

Description

The data were collected by J.M. Rudrauf on Alsacian castles whose building period is unknown. On each castle, he measured 4 structural parameters on a sample of building stones.

Usage

data(castles.nondated)

Format

castles.nondated is a list of two data frames:

- castles.nondated$stones: this first data frame has 1280 cases (rows) and 5 variables (columns) that are named height, width, edging, boss (numeric) and castle (factor).
- castles.nondated$periods: this second data frame has 67 cases and 2 variables named castle and period; the column castle corresponds to the levels of the factor castle of the first data frame; the column period is a factor indicating NA as the building period is unknown.

Notice that the data frames corresponding to the castles whose building period is known are those in castles.dated.
Source

Examples

data(castles.nondated)
summary(castles.nondated$stones)
summary(castles.nondated$periods)

cor.folder Correlation matrices of a folder of data sets

Description

Computes the correlation matrices of the elements of an object of class folder.

Usage

```r
cor.folder(x, use = "everything", method = "pearson")
```

Arguments

- `x`: an object of class `folder` that is a list of data frames with the same column names.
- `use`: an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs" (see `var`).
- `method`: a character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman": can be abbreviated.

Details

It uses `cor` to compute the variance matrix of the numeric columns of each element of the folder. If some columns of the data frames are not numeric, there is a warning, and the variances are computed on the numeric columns only.

Value

A list whose elements are the correlation matrices of the elements of the folder.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
See Also

folder to create an object is of class folder. mean.folder, var.folder, skewness.folder,
kurtosis.folder for other statistics for folder objects.

Examples

First example: iris (Fisher)
data(iris)
iris.fold <- as.folder(iris, "Species")
iris.cor <- cor.folder(iris.fold)
print(iris.cor)

Second example: roses
data(roses)
roses.fold <- as.folder(roses, "rose")
roses.cor <- cor.folder(roses.fold)
print(roses.cor)

ddchisqsym

Distance between probability distributions of discrete variables given samples

Description

Symmetrized chi-squared distance between two multivariate \((q > 1) \) or univariate \((q = 1) \) discrete probability distributions, estimated from samples.

Usage

ddchisqsym(x1, x2)

Arguments

x1, x2 vectors or data frames of \(q \) columns.

If they are data frames and have not the same column names, there is a warning.

Details

Let \(p_1 \) and \(p_2 \) denote the estimated probability distributions of the discrete samples \(x_1 \) and \(x_2 \). The symmetrized chi-squared distance between the discrete probability distributions of the samples are computed using the ddchisqsympar function.

Value

The distance between the two probability distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard
ddchisqsympar

References

See Also

ddchisqsympar: chi-squared distance between two discrete distributions, given the probabilities on their common support.

Other distances: dhellinger, ddjeffreys, ddjensen, ddlp.

Examples

```r
# Example 1
x1 <- c("A", "A", "B", "B")
x2 <- c("A", "A", "B", "B")
ddchisqsym(x1, x2)

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                  y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "B", "B")),
                  y = factor(c("a", "a", "b", "a", "b")))
ddchisqsym(x1, x2)
```

ddchisqsympar

Distance between discrete probability distributions given the probabilities on their common support

Description

Symmetrized chi-squared distance between two discrete probability distributions on the same support (which can be a Cartesian product of q sets), given the probabilities of the states (which are q-tuples) of the support.

Usage

`ddchisqsympar(p1, p2)`

Arguments

- `p1` array (or table) the dimension of which is q. The first probability distribution on the support.
- `p2` array (or table) the dimension of which is q. The second probability distribution on the support.
Details

The chi-squared distance between two discrete distributions p_1 and p_2 is given by:

$$ \sum_x (p_1(x) - p_2(x))^2 / p_2(x) $$

Then the symmetrized chi-squared distance is given by the formula:

$$ ||p_1 - p_2|| = \sum_x (p_1(x) - p_2(x))^2 / (p_1(x) + p_2(x)) $$

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

ddchisqsym: chi-squared distance between two estimated discrete distributions, given samples.
Other distances: ddhellingerpar, ddjeffreyspar, ddjensenpar, dllppar.

Examples

```r
# Example 1
p1 <- array(c(1/2, 1/2), dimnames = list(c("a", "b")))
p2 <- array(c(1/4, 3/4), dimnames = list(c("a", "b")))
ddchisqsym(p1, p2)

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
                 y = factor(c("a", "a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "b", "a", "b")))
p1 <- table(x1)/nrow(x1)
p2 <- table(x2)/nrow(x2)
ddchisqsym(p1, p2)
```
ddhellinger

Usage

ddhellinger(x1, x2)

Arguments

x1, x2 data frames of q columns or vectors.
If they are data frames and have not the same column names, there is a warning.

Details

Let \(p_1 \) and \(p_2 \) denote the estimated probability distributions of the discrete samples \(x_1 \) and \(x_2 \). The Matusita distance between the discrete probability distributions of the samples are computed using the \texttt{ddhellingerpar} function.

Value

The distance between the two probability distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

\texttt{ddhellingerpar}: Hellinger metric (Matusita distance) between two discrete distributions, given the on their common support probabilities.

Other distances: \texttt{ddchisqsym, ddjeffreys, ddjensen, ddp}.

Examples

Example 1
x1 <- c("A", "A", "B", "B")
x2 <- c("A", "A", "A", "B", "B")
ddhellinger(x1, x2)

Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "b", "a", "b")))
ddhellinger(x1, x2)
ddhellingerpar

Distance between discrete probability distributions given the probabilities on their common support

Description

Hellinger (or Matusita) distance between two discrete probability distributions on the same support (which can be a Cartesian product of q sets), given the probabilities of the states (which are q-tuples) of the support.

Usage

`ddhellingerpar(p1, p2)`

Arguments

- `p1` array (or table) the dimension of which is q. The first probability distribution on the support.
- `p2` array (or table) the dimension of which is q. The second probability distribution on the support.

Details

The Hellinger distance between two discrete distributions p_1 and p_2 is given by:
$$\sqrt{\sum_x \left(\sqrt{p_1(x)} - \sqrt{p_2(x)}\right)^2}$$

Notice that some authors divide this expression by $\sqrt{2}$.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

- `ddhellinger`: Hellinger distance between two estimated discrete distributions, given samples.
- Other distances: `ddchisqsympar`, `ddjeffreyspar`, `ddjensenpar`, `dlppar`.

Examples

```r
# Example 1
p1 <- array(c(1/2, 1/2), dimnames = list(c("a", "b")))
p2 <- array(c(1/4, 3/4), dimnames = list(c("a", "b")))
ddhellingerpar(p1, p2)

# Example 2
```
ddjeffreys

Description

Jeffreys divergence (symmetrized Kullback-Leibler divergence) between two multivariate \((q > 1)\) or univariate \((q = 1)\) discrete probability distributions, estimated from samples.

Usage

```r
ddjeffreys(x1, x2)
```

Arguments

- `x1, x2`: vectors or data frames of \(q\) columns.

 If they are data frames and have not the same column names, there is a warning.

Details

Let \(p_1\) and \(p_2\) denote the estimated probability distributions of the discrete samples \(x_1\) and \(x_2\). The Jeffreys divergence between the discrete probability distributions of the samples are computed using the `ddjeffreyspar` function.

Value

The divergence between the two probability distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

- `ddjeffreyspar`: Jeffreys distances between two discrete distributions, given the probabilities on their common support.
- Other distances: `ddchisqsym`, `ddhellinger`, `ddjensen`, `ddlp`.

```r
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                  y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                  y = factor(c("a", "a", "b", "a", "b")))
p1 <- table(x1)/nrow(x1)
p2 <- table(x2)/nrow(x2)
ddhellingerpar(p1, p2)
```
Example 1
x1 <- c("A", "A", "B", "B")
x2 <- c("A", "A", "B", "B")
ddjeffreyspar(x1, x2)

Example 2 (Its value can be infinity -Inf-)
x1 <- c("A", "A", "B", "C")
x2 <- c("A", "A", "B", "B")
ddjeffreyspar(x1, x2)

Example 3
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
 y = factor(c("a", "a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "b", "a", "b")))
ddjeffreyspar(x1, x2)

ddjeffreyspar | Distance between discrete probability distributions given the probabilities on their common support

Description
Jeffreys divergence (symmetrized Kullback-Leibler divergence) between two discrete probability distributions on the same support (which can be a Cartesian product of \(q \) sets), given the probabilities of the states (which are \(q \)-tuples) of the support.

Usage
ddjeffreyspar(p1, p2)

Arguments

p1
- array (or table) the dimension of which is \(q \). The first probability distribution on the support.

p2
- array (or table) the dimension of which is \(q \). The second probability distribution on the support.

Details
The Jeffreys divergence \(\|p_1 - p_2\| \) between two discrete distributions \(p_1 \) and \(p_2 \) is given by the formula:
\[
\|p_1 - p_2\| = \sum_x (p_1(x) - p_2(x)) \log(p_1(x)/p_2(x))
\]

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard
ddjensen

References

See Also

ddjeffreys: Jeffreys distance between two estimated discrete distributions, given samples.
Other distances: ddchisqsympar, ddhellingerpar, ddjensenpar, ddlppar.

Examples

Example 1
p1 <- array(c(1/2, 1/2), dimnames = list(c("a", "b")))
p2 <- array(c(1/4, 3/4), dimnames = list(c("a", "b")))
ddjeffreyspar(p1, p2)

Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "b", "a", "b")))
p1 <- table(x1)/nrow(x1)
p2 <- table(x2)/nrow(x2)
ddjeffreyspar(p1, p2)

ddjensen
Divergence between probability distributions of discrete variables given samples

Description

Jensen-Shannon divergence between two multivariate \((q > 1)\) or univariate \((q = 1)\) discrete probability distributions, estimated from samples.

Usage

```
ddjensen(x1, x2)
```

Arguments

- `x1, x2`: vectors or data frames of \(q\) columns.
 If they are data frames and have not the same column names, there is a warning.

Details

Let \(p_1\) and \(p_2\) denote the estimated probability distributions of the discrete samples \(x_1\) and \(x_2\). The Jensen-Shannon divergence between the discrete probability distributions of the samples are computed using the `ddjensenpar` function.
Value

The distance between the two probability distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

ddjensenpar: Jeffreys distances between two discrete distributions, given the probabilities on their common support.

Other distances: ddchisqsym, ddhellinger, ddjeffreys, ddip.

Examples

```r
# Example 1
x1 <- c("A", "A", "B", "B")
x2 <- c("A", "A", "B", "B")
ddjensen(x1, x2)

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
                 y = factor(c("a", "a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "b", "a", "b")))
ddjensen(x1, x2)
```

d djensenpar

Divergence between discrete probability distributions given the probabilities on their common support

Description

Jensen-Shannon divergence between two discrete probability distributions on the same support (which can be a Cartesian product of \(q \) sets), given the probabilities of the states (which are \(q \)-tuples) of the support.

Usage

ddjensenpar(p1, p2)
Arguments

- \(p_1 \) array (or table) the dimension of which is \(q \). The first probability distribution on the support.
- \(p_2 \) array (or table) the dimension of which is \(q \). The second probability distribution on the support.

Details

The Jensen-Shannon divergence \(||p_1 - p_2|| \) between two discrete distributions \(p_1 \) and \(p_2 \) is given by the formula:

\[
||p_1 - p_2|| = \sum_x \left(p_1(x) \log \left(\frac{2p_1(x)}{p_1(x) + p_2(x)} \right) + p_2(x) \log \left(\frac{2p_2(x)}{p_1(x) + p_2(x)} \right) \right)
\]

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

- \texttt{ddjensen}: Jensen-Shannon distance between two estimated discrete distributions, given samples.
- Other distances: \texttt{ddchisqsympar}, \texttt{ddhellingerpar}, \texttt{ddjeffreyspar}, \texttt{dlpppar}.

Examples

```r
# Example 1
p1 <- array(c(1/2, 1/2), dimnames = list(c("a", "b")))
p2 <- array(c(1/4, 3/4), dimnames = list(c("a", "b")))
ddjensenpar(p1, p2)

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "b", "a", "b")))
p1 <- table(x1)/nrow(x1)
p2 <- table(x2)/nrow(x2)
ddjensenpar(p1, p2)
```
Distance between probability distributions of discrete variables given samples

Description

L^p distance between two multivariate ($q > 1$) or univariate ($q = 1$) discrete probability distributions, estimated from samples.

Usage

```
dlp(x1, x2, p = 1)
```

Arguments

- `x1`, `x2`: vectors or data frames of q columns.
 - If they are data frames and have not the same column names, there is a warning.

Details

Let p_1 and p_2 denote the estimated probability distributions of the discrete samples x_1 and x_2. The L^p distance between the discrete probability distributions of the samples are computed using the `ddlppar` function.

Value

The distance between the two discrete probability distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also

- `ddlppar`: L^p distance between two discrete distributions, given the probabilities on their common support.
- Other distances: `ddchisqsym`, `ddhellinger`, `ddjeffreys`, `ddjensen`.
Examples

```r
# Example 1
x1 <- c("A", "A", "B", "B")
x2 <- c("A", "A", "A", "B", "B")
ddlp(x1, x2)
dlp(par(x1, x2, p = 2))

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "B", "B")),
                 y = factor(c("a", "b", "a", "b")))
dlp(x1, x2)
```

ddlp

Distance between discrete probability distributions given the probabilities on their common support

Description

L^p distance between two discrete probability distributions on the same support (which can be a Cartesian product of q sets), given the probabilities of the states (which are q-tuples) of the support.

Usage

```r
ddlppar(p1, p2, p = 1)
```

Arguments

- `p1` array (or table) the dimension of which is q. The first probability distribution on the support.
- `p2` array (or table) the dimension of which is q. The second probability distribution on the support.
- `p` integer. Parameter of the distance.

Details

The L^p distance $||p_1 - p_2||$ between two discrete distributions p_1 and p_2 is given by the formula:

$$||p_1 - p_2||^p = \sum_x |p_1(x) - p_2(x)|^p$$

If $p = 1$, it is the variational distance.
If $p = 2$, it is the Patrick-Fisher distance.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard
References

See Also

ddlp: L^p distance between two estimated discrete distributions, given samples.
Other distances: ddchisqsympar, ddhellingerpar, ddjeffreyspar, ddjensenpar.

Examples

Example 1
p1 <- array(c(1/2, 1/2), dimnames = list(c("a", "b")))
p2 <- array(c(1/4, 3/4), dimnames = list(c("a", "b")))
ddlppar(p1, p2)
ddlppar(p1, p2, p=2)

Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "b", "a", "b")))
p1 <- table(x1)/nrow(x1)
p2 <- table(x2)/nrow(x2)
ddlppar(p1, p2)

departments

French departments and regions

Description

Departments and regions of metropolitan France.

Usage

data(departments)

Format

departments is a data frame with 96 rows and 4 columns (factors):

• coded: departments: numbers
• diplome: departments: names
• agri: regions: ISO code
• arti: region: names

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard
dist12d

Source

INSEE. Code officiel géographique au 1er janvier 2018.

Examples

```r
data(departments)
print(departments)
```

dist12d

L^2 distance between probability densities

Description

\[L^2 \text{ distance between two multivariate (} p > 1 \text{) or univariate (dimension: } p = 1 \text{) probability densities, estimated from samples.} \]

Usage

```r
dist12d(x1, x2, method = "gaussiand", check = FALSE, varw1 = NULL, varw2 = NULL)
```

Arguments

- `x1, x2`: the samples from the probability densities (see `12d`.
- `method`: string. It can be:
 - "gaussiand" if the densities are considered to be Gaussian.
 - "kern" if they are estimated using the Gaussian kernel method.
- `check`: logical. When TRUE (the default is FALSE) the function checks if the covariance matrices (if `method = "gaussiand"`) or smoothing bandwidth matrices (if `method = "kern"`) are not degenerate, before computing the inner product.
 Notice that if \(p = 1 \), it checks if the variances or smoothing parameters are not zero.
- `varw1, varw2`: the bandwidths when the densities are estimated by the kernel method (see `12d`.

Details

The function `dist12d` computes the distance between \(f_1 \) and \(f_2 \) from the formula

\[
||f_1 - f_2||^2 = <f_1, f_1> + <f_2, f_2> - 2 <f_1, f_2>
\]

For some information about the method used to compute the \(L^2 \) inner product or about the arguments, see `12d`.

Value

The \(L^2 \) distance between the two densities.

Be careful! If `check = FALSE` and one smoothing bandwidth matrix is degenerate, the result returned can not be considered.
dist12dnorm

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
matdist12d in order to compute pairwise distances between several densities.

Examples

```r
require(MASS)
m1 <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3, mu = m1, Sigma = v1)
x2 <- mvrnorm(n = 5, mu = m2, Sigma = v2)
dist12d(x1, x2, method = "gaussiand")
dist12d(x1, x2, method = "kern")
dist12d(x1, x2, method = "kern", varw1 = v1, varw2 = v2)
```

dist12dnorm L^2 distance between L^2-normed probability densities

Description

L^2 distance between two multivariate ($p > 1$) or univariate (dimension: $p = 1$) L^2-normed probability densities, estimated from samples, where a L^2-normed probability density is the original probability density function divided by its L^2-norm.

Usage

dist12dnorm(x1, x2, method = "gaussiand", check = FALSE, varw1 = NULL, varw2 = NULL)

Arguments

- `x1, x2` the samples from the probability densities (see `l2d`.
- `method` string. It can be:
 - "gaussiand" if the densities are considered to be Gaussian.
 - "kern" if they are estimated using the Gaussian kernel method.
- `check` logical. When TRUE (the default is FALSE) the function checks if the covariance matrices (if `method = "gaussiand"`) or smoothing bandwidth matrices (if `method = "kern"`) are not degenerate, before computing the inner product.
 Notice that if $p = 1$, it checks if the variances or smoothing parameters are not zero.
- `varw1, varw2` the bandwidths when the densities are estimated by the kernel method (see `l2d`).
Details

Given densities \(f_1 \) and \(f_2 \), the function \texttt{distl2dnormpar} computes the distance between the \(L^2 \)-normed densities \(f_1/||f_1|| \) and \(f_2/||f_2|| \):

\[
2 - 2 < f_1, f_2 > /(||f_1||||f_2||)
\]

For some information about the method used to compute the \(L^2 \) inner product or about the arguments, see \texttt{l2d}.

Value

The \(L^2 \) distance between the two \(L^2 \)-normed densities.

Be careful! If \texttt{check = FALSE} and one smoothing bandwidth matrix is degenerate, the result returned can not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

\texttt{distl2d} for the distance between two probability densities.
\texttt{matdistl2dnorm} in order to compute pairwise distances between several \(L^2 \)-normed densities.

Examples

```r
require(MASS)
m1 <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3, mu = m1,Sigma = v1)
x2 <- mvrnorm(n = 5, mu = m2,Sigma = v2)
distl2dnorm(x1, x2, method = "gaussiand")
distl2dnorm(x1, x2, method = "kern")
distl2dnorm(x1, x2, method = "kern", varw1 = v1, varw2 = v2)
```

<table>
<thead>
<tr>
<th>distl2dnormpar</th>
<th>(L^2) distance between (L^2)-normed Gaussian densities given their parameters</th>
</tr>
</thead>
</table>

Description

\(L^2 \) distance between two multivariate (\(p > 1 \)) or univariate (dimension: \(p = 1 \)) \(L^2 \)-normed Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate) where a \(L^2 \)-normed probability density is the original probability density function divided by its \(L^2 \)-norm.
Usage

distl2dnormpar(mean1, var1, mean2, var2, check = FALSE)

Arguments

mean1, mean2 means of the probability densities.
var1, var2 variances ($p = 1$) or covariance matrices ($p > 1$) of the probability densities.
check logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate, before computing the inner product.
 If the variables are univariate, it checks if the variances are not zero.

Details

Given densities f_1 and f_2, the function distl2dnormpar computes the distance between the L^2-normed densities $f_1 / ||f_1||$ and $f_2 / ||f_2||$:

$$2 - 2 < f_1, f_2 > / (||f_1|| ||f_2||)$$

For some information about the method used to compute the L^2 inner product or about the arguments, see distlRdpar; the norm $||f||$ of the multivariate Gaussian density f is equal to $(4\pi)^{-p/4} \det(\text{var})^{-1/4}$.

Value

The L^2 distance between the two L^2-normed Gaussian densities.

Be careful! If check = FALSE and one variance matrix is degenerated (or one variance is zero if the densities are univariate), the result returned must not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

distl2dpar for the distance between two probability densities.
matdistl2d in order to compute pairwise distances between several densities.

Examples

e1 <- c(1,1,1);
e2 <- matrix(c(1,0,0,0,16,0,0,0,25), ncol = 3);
e2 <- c(0,1,0);
e3 <- matrix(c(1,0,0,0,1,0,0,0,1), ncol = 3);
distl2dnormpar(e1, e2, e3)
distl2dpar

L^2 distance between Gaussian densities given their parameters

Description

L^2 distance between two multivariate ($p > 1$) or univariate (dimension: $p = 1$) Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate).

Usage

```r
distl2dpar(mean1, var1, mean2, var2, check = FALSE)
```

Arguments

- `mean1, mean2`: means of the probability densities.
- `var1, var2`: variances ($p = 1$) or covariance matrices ($p > 1$) of the probability densities.
- `check`: logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate, before computing the inner product. If the variables are univariate, it checks if the variances are not zero.

Details

The function `distl2dpar` computes the distance between two densities, say f_1 and f_2, from the formula:

$$||f_1 - f_2||^2 = <f_1, f_1> + <f_2, f_2> - 2<f_1, f_2>$$

For some information about the method used to compute the L^2 inner product or about the arguments, see `l2dpar`.

Value

The L^2 distance between the two densities.

Be careful! If `check = FALSE` and one variance matrix is degenerated (or one variance is zero if the densities are univariate), the result returned must not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

`matdistl2d` in order to compute pairwise distances between several densities.
Examples

```r
u1 <- c(1,1,1);
v1 <- matrix(c(4,0,0,16,0,0,0,25), ncol = 3);
u2 <- c(0,0,1);
v2 <- matrix(c(1,0,0,1,0,0,0,1), ncol = 3);
dist12dpar(u1,v1,u2,v2)
```

dspg

<table>
<thead>
<tr>
<th>Diploma x Socio professional group</th>
</tr>
</thead>
</table>

Description

Contingency tables of the counts of Diploma x Socio professional group of France

Usage

```r
data(dspg)
```

Format

dspg is a list of 7 arrays (each one corresponding to a year: 1968, 1975, 1982, 1990, 1999, 2010, 2015) of 4 rows (each one corresponding to a level of diploma) and 6 columns (each one corresponding to a socio professional group).

- csp: Socio professional group
- diplome: Diploma
- agri: farmer (agriculteur)
- arti: craftsperson (artisan)
- cadr: senior manager (cadre superieur)
- pint: middle manager (profession intermediaire)
- empl: employee (employe)
- ouvr: worker (ouvrier)
- bepc: brevet
- cap: NVQ (cap)
- bac: baccalaureate
- sup: higher education (superieur)

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

Source

INSEE. Population active de 25 à 54 ans ayant un emploi et chomeurs par categorie socioprofessionnelle et diplome par commune et departement (1968 à 2015).
Examples

```r
data(dspg)
names(dspg)
print(dspg[[1]])```

---

**Diploma x Socio professional group by departement in 2015**

---

**Description**

Contingency tables of the counts of Diploma x Socio professional group by metropolitian France departement in year 2015.

**Usage**

data(dspgd2015)

**Format**

dspgd2015 is a list of 96 arrays (each one corresponding to a department, designated by its official geographical code) of 4 rows (each one corresponding to a level of diploma) and 6 columns (each one corresponding to a socio professional group).

- **csp**: Socio professional group
- **diplome**: Diploma
- **agri**: farmer (agriculteur)
- **arti**: craftsperson (artisan)
- **cadr**: senior manager (cadre sup\'erieur)
- **pint**: middle manager (profession interm\'ediaire)
- **empl**: employee (employ\'e)
- **ouvr**: worker (ouvrier)
- **bepc**: brevet
- **cap**: NVQ (cap)
- **bac**: baccalaureate
- **sup**: higher education (sup\'erieur)

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

**Source**

Examples

data(dspgd2015)
names(dspgd2015)
print(dspgd2015[[1]])

dstatis.inter

Dual STATIS method (interstructure stage)

Description

Performs the first stage (interstructure) of the dual STATIS method in order to describe a data folder, consisting of \( T \) groups of individuals on which are observed \( p \) variables. It returns an object of class dstatis.

Usage

dstatis.inter(xf, normed = TRUE, centered = FALSE, data.scaled = FALSE, nb.factors = 3, nb.values = 10, sub.title = "", plot.eigen = TRUE, plot.score = FALSE, nscore = 1:3, group.name = "group", filename = NULL)

Arguments

- \( xf \): object of class \textit{folder}. Its elements are data frames with \( p \) numeric columns. If there are non numeric columns, there is an error. The \( t^{th} \) element (\( t = 1, \ldots, T \)) matches with the \( t^{th} \) group.
- \( \text{normed} \): logical. If TRUE (default), the scalar products are normed.
- \( \text{centered} \): logical. If TRUE (default is FALSE), the scalar products are centered.
- \( \text{data.scaled} \): logical. If TRUE, the data of each group are centered and scaled. The analysis is then performed on the correlation matrices. If FALSE (default), the analysis is performed on the covariance matrices.
- \( \text{nb.factors} \): numeric. Number of returned principal scores (default \( \text{nb.factors} = 3 \)).
- \( \text{nb.values} \): numerical. Number of returned eigenvalues (default \( \text{nb.values} = 10 \)).
- \( \text{sub.title} \): string. If provided, the subtitle for the graphs.
- \( \text{plot.eigen} \): logical. If TRUE (default), the barplot of the eigenvalues is plotted.
- \( \text{plot.score} \): logical. If TRUE, the graphs of principal scores are plotted. A new graphic device is opened for each pair of principal scores defined by \( \text{nscore} \) argument.
- \( \text{nscore} \): numeric vector. If \( \text{plot.score} = \text{TRUE} \), the numbers of the principal scores which are plotted. By default it is equal to \( \text{nscore} = 1:3 \). Its components cannot be greater than \( \text{nb.factors} \).
- \( \text{group.name} \): string. Name of the grouping variable. Default: \( \text{groupname} = \text{"group"} \).
- \( \text{filename} \): string. Name of the file in which the results are saved. By default (\( \text{filename} = \text{NULL} \)) the results are not saved.
Details

The covariance matrices (if data.scale is FALSE) or correlation matrices (if TRUE) per group are computed. The matrix $W$ of the scalar products between these covariance matrices is then computed.

To perform the STATIS method, see the function DSTATIS of the multigroup package.

Value

Returns an object of class dstatis, that is a list including:

- inertia: data frame of the eigenvalues and percentages of inertia.
- contributions: data frame of the contributions to the first nb.factors principal components.
- qualities: data frame of the qualities on the first nb.factors principal factors.
- scores: data frame of the first nb.factors scores of the spectral decomposition of $W$.
- norm: vector of the $L^2$ norms of the densities.
- means: list of the means.
- variances: list of the covariance matrices.
- correlations: list of the correlation matrices.
- skewness: list of the skewness coefficients.
- kurtosis: list of the kurtosis coefficients.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

print.dstatis, plot.dstatis, interpret.dstatis.

DSTATIS

Examples

data(roses)
rosesf <- as.folder(roses[,c("Sha","Den","Sym","rose")])

# Dual STATIS on the covariance matrices
result1 <- dstatis.inter(rosesf, data.scaled = FALSE, group.name = "rose")
print(result1)
plot(result1)

# Dual STATIS on the correlation matrices
result2 <- dstatis.inter(rosesf, data.scaled = FALSE, group.name = "rose")
fdiscd.misclass

Misclassification ratio in functional discriminant analysis of probability densities.

Description

Computes the one-leave-out misclassification ratio of the rule allocating \( T \) groups of individuals, one group after another, to one class of groups (among \( K \) classes of groups) using the \( L^2 \) distances between the density function associated to the group to allocate and the density functions associated to the \( K \) classes.

Usage

```r
fdiscd.misclass(xf, class.var, gaussiand = TRUE, distance = "jeffreys", crit = 1, kern = NULL, windowh = NULL)
```

Arguments

- `xf`: object of class `folderh` with two data frames:
  - The first one has at least two columns. One column contains the names of the \( T \) groups (all the names must be different). An other column is a factor with \( K \) levels partitionning the \( T \) groups into \( K \) classes.
  - The second one has \( (p + 1) \) columns. The first \( p \) columns are numeric (otherwise, there is an error). The last column is a factor with \( T \) levels defining \( T \) groups. Each group, say \( t \), consists of \( n_t \) individuals.
- `class.var`: string. The name of the class variable.
- `distance`: The distance or divergence used to compute the differences between densities. It can be:
  - "jeffreys" (default) the Jeffreys measure (symmetrised Kullback-Leibler divergence)
  - "hellinger" the Hellinger (Matusita) distance
  - "wasserstein" the Wasserstein distance
  - "12" the \( L^2 \) distance
- `crit`: 1, 2 or 3. In order to select the densities associated to the classes. See Details. If distance is "hellinger", "jeffreys" or "wasserstein", crit is necessarily 1 (see Details).
- `gaussiand`: logical. If TRUE (default), the probability densities are supposed Gaussian. If FALSE, densities are estimated using the Gaussian kernel method. If distance is "hellinger", "jeffreys" or "wasserstein", gaussiand is necessarily TRUE.
kern

string. If gaussiand = FALSE, this argument sets the kernel used in the estimation method. Currently, only the Gaussian kernel is available: the settings kern = "gauss" and kern = NULL are equivalent. Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

windowh

strictly positive numeric value. If windowh = NULL (default), the bandwidths are computed using the bandwidth.parameter function. Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

Details

To the group \(t\) is associated the density denoted \(f_t\). To the class \(k\) consisting of \(T_k\) groups is associated the density denoted \(g_k\). The crit argument selects the estimation method of the \(K\) densities \(g_k\).

1. The density \(g_k\) is estimated using the whole data of this class, that is the rows of \(x\) corresponding to the \(T_k\) groups of the class \(k\).
2. The \(T_k\) densities \(f_t\) are estimated using the corresponding data from \(x\). Then they are averaged to obtain an estimation of the density \(g_k\), that is \(g_k = \frac{1}{T_k} \sum f_t\).
3. Each previous density \(f_t\) is weighted by \(n_t\) (the number of rows of \(x\) corresponding to \(f_t\)). Then they are averaged, that is \(g_k = \frac{1}{\sum n_t} \sum n_t f_t\).

The last two methods are available only for the \(L^2\)-distance. If the divergences between densities are computed using the Hellinger or Wasserstein distance or the Jeffreys measure, only the first of these methods is available.

Value

Returns an object of class fdiscd.misclass, that is a list including:

classification
data frame with 4 columns:

- factor giving the group name. The column name is the same as that of the column \((p + 1)\) of \(x\),
- the prior class of the group if it is available, or NA if not,
- alloc: the class allocation computed by the discriminant analysis method,
- misclassed: boolean. TRUE if the group is misclassed, FALSE if it is well-classed, NA if the prior class of the group is unknown.

confusion.mat

confusion matrix,
misalloc.per.class

the misclassification ratio per class,

misclassed

the misclassification ratio,
distances

matrix with \(T\) rows and \(K\) columns, of the distances \(d_{tk}\): \(d_{tk}\) is the distance between the group \(t\) and the class \(k\),

proximities

matrix of the proximity indices (in percents) between the groups and the classes. The proximity of the group \(t\) to the class \(k\) is computed as so: \(\frac{1}{d_{tk}} \sum_{t=1}^{T} \frac{1}{d_{tt}}\).
Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

Examples
```r
data(castles.dated)
castles.stones <- castles.dated$stones
castles.periods <- castles.dated$periods
castlesfh <- folderh(castles.periods, "castle", castles.stones)
result <- fdiscd.misclass(castlesfh, "period")
print(result)
```

**fdiscd.predict** 
*Predicting the class of a group of individuals with discriminant analysis of probability densities.*

Description
Allocates several groups of individuals, one group after another, to one class of groups (among $K$ classes of groups) using the $L^2$ distances between the density function associated to the group to allocate and the density functions associated to the $K$ classes.

Usage
```r
fdiscd.predict(xf, class.var, gaussiand = TRUE, distance = "jeffreys", crit = 1,
kern = NULL, windowh = NULL, misclass.ratio = FALSE)
```

Arguments
- **xf** object of class `folderh` with two data frames:
  - The first one has at least two columns. One column contains the names of the $T$ groups (all the names must be different). An other column is a factor with $K$ levels partitionning the $T$ groups into $K$ classes.
  - The second one has $(p + 1)$ columns. The first $p$ columns are numeric (otherwise, there is an error). The last column is a factor with $T$ levels defining $T$ groups. Each group, say $t$, consists of $n_t$ individuals.

Notice that for the versions earlier than 2.0, fdiscd.predict applied to two data frames.
class.var string. The name of the class variable.

distance The distance or divergence used to compute the differences between densities. It can be:
- "jeffreys" (default) the Jeffreys measure (symmetrised Kullback-Leibler divergence)
- "hellinger" the Hellinger (Matusita) distance
- "wasserstein" the Wasserstein distance
- "L2" the $L^2$ distance

crit 1, 2 or 3. In order to select the densities associated to the classes. See Details.
If distance is "hellinger", "jeffreys" or "wasserstein", crit is necessarily 1 (see Details).

gaussiand logical. If TRUE (default), the probability densities are supposed Gaussian. If FALSE, densities are estimated using the Gaussian kernel method.
If distance is "hellinger", "jeffreys" or "wasserstein", gaussiand is necessarily TRUE.

kern string. If gaussiand = FALSE, this argument sets the kernel used in the estimation method. Currently, only the Gaussian kernel is available: the settings kern = "gauss" and kern = NULL are equivalent.
Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

windowh strictly positive number. If windowh = NULL (default), the bandwidths are computed using the `bandwidth.parameter` function.
Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

misclass.ratio logical (default FALSE). If TRUE, the confusion matrix and misclassification ratio are computed on the groups whose prior class is known. In order to compute the misclassification ratio by the one-leave-out method, use the `fdiscd.misclass` function.

Details
To the group $t$ is associated the density denoted $f_t$. To the class $k$ consisting of $T_k$ groups is associated the density denoted $g_k$. The crit argument selects the estimation method of the $K$ densities $g_k$.

1. The density $g_k$ is estimated using the whole data of this class, that is the rows of $x$ corresponding to the $T_k$ groups of the class $k$.

2. The $T_k$ densities $f_t$ are estimated using the corresponding data from $x$. Then they are averaged to obtain an estimation of the density $g_k$, that is $g_k = (1/T_k) \sum f_t$.

3. Each previous density $f_t$ is weighted by $n_t$ (the number of rows of $x$ corresponding to $f_t$). Then they are averaged, that is $g_k = (1/ \sum n_t) \sum n_t f_t$.

The last two methods are available only for the $L^2$-distance. If the divergences between densities are computed using the Hellinger or Wasserstein distance or the Jeffreys measure, only the first of these methods is available.
**Value**

Returns an object of class `fdiscd.predict`, that is a list including:

- `prediction`: data frame with 3 columns:
  - factor giving the group name. The column name is the same as that of the column \((p + 1)\) of \(x\),
  - `class.known`: the prior class of the group if it is available, or NA if not,
  - `class.predict`: the class allocation predicted by the discriminant analysis method. If `misclass.ratio = TRUE`, the class allocations are computed for all groups. Otherwise (default), they are computed only for the groups whose class is unknown.

- `distances`: matrix with \(T\) rows and \(K\) columns, of the distances \(d_{tk}\): \(d_{tk}\) is the distance between the group \(t\) and the class \(k\), computed with the measure given by argument distance (\(L^2\)-distance, Hellinger distance or Jeffreys measure),

- `proximities`: matrix of the proximities (in percents). The proximity of a group \(t\) to the class \(k\) is computed as so: \(\frac{1}{d_{tk}} / \sum_{l=1}^{K} \frac{1}{d_{tl}}\).

- `confusion.mat`: the confusion matrix (if `misclass.ratio = TRUE`)

- `misclassed`: the misclassification ratio (if `misclass.ratio = TRUE`)

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**References**


**Examples**

data(castles.dated)
data(castles.nondated)
castles.stones <- rbind(castles.dated$stones, castles.nondated$stones)
castles.periods <- rbind(castles.dated$periods, castles.nondated$periods)
castlesfh <- folderh(castles.periods, "castle", castles.stones)

# With the L^2-distance

# - crit=1
resultl2.1 <- fdiscd.predict(castlesfh, "period", distance="l2", crit=1)
print(resultl2.1)

# - crit=2
resultl2.2 <- fdiscd.predict(castlesfh, "period", distance="l2", crit=2)
print(resultl2.2)
# - crit=3
result12.3 <- fdiscd.predict(castlesfh, "period", distance="12", crit=3)
print(result12.3)

# With the Hellinger distance
resulthell <- fdiscd.predict(castlesfh, "period", distance="hellinger")
print(resulthell)

# With the Jeffreys measure
resultjeff <- fdiscd.predict(castlesfh, "period", distance="jeffreys")
print(resultjeff)

---

fhclustd  
**Hierarchic cluster analysis of probability densities**

**Description**

Performs functional hierarchic cluster analysis of probability densities. It returns an object of class `fhclustd`. It applies `hclust` to the distance matrix between the $T$ densities.

**Usage**

```r
fhclustd(xf, gaussiand = TRUE, distance = "jeffreys", kern = NULL, windowh=NULL, normed = (distance == "12"), data.centered = FALSE, data.scaled = FALSE, common.variance = FALSE, sub.title = "", filename = NULL, method.hclust = "complete", group.name = "group")
```

**Arguments**

- **xf**: object of class `folder`. Its elements are data frames with $p$ numeric columns. If there are non numeric columns, there is an error. The $t^{th}$ element ($t = 1, \ldots, T$) matches with the $t^{th}$ group.

- **distance**: The distance or divergence used to compute the distance matrix between the densities. It can be:
  - "jeffreys" (default) the Jeffreys measure (symmetrised Kullback-Leibler divergence)
  - "hellinger" the Hellinger (Matusita) distance
  - "wasserstein" the Wasserstein distance
  - "12" the $L^2$ distance

- **gaussiand**: logical. If TRUE (default), the probability densities are supposed Gaussian. If FALSE, densities are estimated using the Gaussian kernel method.

If distance is "hellinger", "jeffreys" or "wasserstein", gaussiand is necessarily TRUE (see Details).
kern: string. If gaussiand = FALSE (default is TRUE), this argument sets the kernel used in the estimation method. Currently, only the Gaussian kernel is available: the settings kern = "gauss" and kern = NULL are equivalent. Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

windowh: either a list of T bandwidths (one per density associated to a group), or a strictly positive number. If windowh = NULL (default), the bandwidths are automatically computed. See Details. Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

normed: logical. If TRUE (default if distance="l2"), the densities are normed before computing the distances; anyway, that does not change the result of the clustering. If distance is "hellinger", "jeffreys" or "wasserstein", normed is necessarily FALSE (see Details).

data.centered: logical. If TRUE (default is FALSE), the data of each group are centered.

data.scaled: logical. If TRUE (default is FALSE), the data of each group are centered (even if data.centered = FALSE) and scaled.

common.variance: logical. If TRUE (default is FALSE), a common covariance matrix (or correlation matrix if data.scaled = TRUE), computed on the whole data, is used. If FALSE (default), a covariance (or correlation) matrix per group is used.

sub.title: string. If provided, the subtitle for the graphs.

filename: string. Name of the file in which the results are saved. By default (filename = NULL) the results are not saved.

method.hclust: the agglomeration method to be used for the clustering. See the method argument of the hclust function.

group.name: string. Name of the grouping variable. Default: group.name = "group".

Details

In order to compute the distances/dissimilarities between the groups, the T probability densities f_i corresponding to the T groups of individuals are either parametrically estimated (gaussiand = TRUE) or estimated using the Gaussian kernel method (gaussiand = FALSE). In the latter case, the windowh argument provides the list of the bandwidths to be used. Notice that in the multivariate case (p>1), the bandwidths are positive-definite matrices. The distances between the T groups of individuals are given by the L^2-distances between the T probability densities f_i corresponding to these groups. The hclust function is then applied to the distance matrix to perform the hierarchical clustering on the T groups.

If windowh is a numerical value, the matrix bandwidth is of the form hS, where S is either the square root of the covariance matrix (p>1) or the standard deviation of the estimated density.

If windowh = NULL (default), h in the above formula is computed using the bandwidth.parameter function.

The distance or dissimilarity between the estimated densities is either the L^2 distance, the Hellinger distance, the Jeffreys measure (symmetrised Kullback-Leibler divergence) or the Wasserstein distance.
fhclusd

- If it is the $L^2$ distance (distance="l2"), the densities can be either parametrically estimated or estimated using the Gaussian kernel.
- If it is the Hellinger distance (distance="hellinger"), the Jeffreys measure (distance="jeffreys") or the Wasserstein distance (distance = "wasserstein"), the densities are considered Gaussian and necessarily parametrically estimated.

Value

Returns an object of class fhclusd, that is a list including:

- distances: matrix of the $L^2$-distances between the estimated densities.
- clust: an object of class hclust.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

fdiscd.predict, fdiscd.misclass

Examples

data(castles.dated)
stones <- castles.dated$stones
periods <- castles.dated$periods

periods123 <- periods[periods$period %in% 1:3, "castle"]
stones123 <- stones[stones$castle %in% periods123, ]
stones123$castle <- as.factor(as.character(stones123$castle))
yf <- as.folder(stones123)

# Jeffreys measure (default):
resultjef <- fhclusd(yf)
print(resultjef)
print(resultjef, dist.print = TRUE)
plot(resultjef)
plot(resultjef, hang = -1)

# Use cutree (stats package) to get the partition
cutree(resultjef$clust, k = 1:4)
cutree(resultjef$clust, k = 5)
cutree(resultjef$clust, h = 0.041)

# Hellinger distance:
resulthel <- fhclusd(yf, distance = "hellinger")
print(resulthel)
print(resulthel, dist.print = TRUE)
plot(result1)
plot(result1, hang = -1)

# Use cutree (stats package) to get the partition
cutree(result1$clust, k = 1:4)
cutree(result1$clust, k = 5)
cutree(result1$clust, h = 0.041)

## Not run:
# L2-distance:

xf <- as.folder(stones)
result <- fhclust(xf, distance = "l2")
print(result)
print(result, dist.print = TRUE)
plot(result)
plot(result, hang = -1)

# Use cutree (stats package) to get the partition
cutree(result$clust, k = 1:5)
cutree(result$clust, k = 5)
cutree(result$clust, h = 0.18)

## End(Not run)

periods123 <- periods[periods$period %in% 1:3, "castle"]
stones123 <- stones[stones$castle %in% periods123, ]
stones123$castle <- as.factor(as.character(stones123$castle))
yf <- as.folder(stones123)
result123 <- fhclust(yf, distance = "l2")
print(result123)
print(result123, dist.print = TRUE)
plot(result123)
plot(result123, hang = -1)

# Use cutree (stats package) to get the partition
cutree(result123$clust, k = 1:4)
cutree(result123$clust, k = 5)
cutree(result123$clust, h = 0.041)

---

floribundity  
Rose flowering

**Description**

These data are collected on eight rosebushes from four varieties, during summer 2010 in Angers, France. They give measures of the flowering.
Usage

data("floribundity")

Format

floribundity is a list of 16 data frames, each corresponding to an observation date. Each one of these data frames has 3 or 4 columns:

- rose: the number of the rosebush, that is an identifier.
- variety: factor. The variety of the rosebush.
- area (when available): numeric. The ratio of flowering area to the whole plant area, measured on the photograph of the rosebush.
- nflowers (when available): integer. The number of flowers on the rosebush.

The row names of these data frames are the rose identifiers.

Examples

data(floribundity)
foldt <- foldert(floribundity, times = as.Date(names(floribundity)), rows.select = "union")
summary(foldt)

fmdsd

Multidimensional scaling of probability densities

Description

Applies the multidimensional scaling (MDS) method to probability densities in order to describe a data folder, consisting of \( T \) groups of individuals on which are observed \( p \) variables. It returns an object of class fmdsd. It applies cmdscale to the distance matrix between the \( T \) densities.

Usage

fmdsd(xf, gaussiand = TRUE, distance = c("jeffreys", "hellinger", "wasserstein", "12", "12norm"), windowh=NULL, data.centered = FALSE, data.scaled = FALSE, common.variance = FALSE, add = TRUE, nb.factors = 3, nb.values = 10, sub.title = "", plot.eigen = TRUE, plot.score = FALSE, nscore = 1:3, filename = NULL, group.name = "group")

Arguments

xf object of class folder. Its elements are data frames with \( p \) numeric columns. If there are non numeric columns, there is an error. The \( t^{th} \) element \((t = 1, \ldots, T)\) matches with the \( t^{th} \) group.

Notice that for the versions earlier than 2.0, fmdsd applied to a data frame.

gaussiand logical. If TRUE (default), the probability densities are supposed Gaussian. If FALSE, densities are estimated using the Gaussian kernel method.
distance  The distance or divergence used to compute the distance matrix between the densities.
If gaussiand = TRUE, the densities are parametrically estimated and the distance can be:
- "jeffreys" (default) the Jeffreys measure (symmetrised Kullback-Leibler divergence),
- "hellinger" the Hellinger (Matusita) distance,
- "wasserstein" the Wasserstein distance,
- "l2" the $L^2$ distance,
- "l2norm" the densities are normed and the $L^2$ distance between these normed densities is used;
If gaussiand = FALSE, the densities are estimated by the Gaussian kernel method and the distance can be "l2" (default) or "l2norm".

windowh  either a list of $T$ bandwidths (one per density associated to a group), or a strictly positive number. If windowh = NULL (default), the bandwidths are automatically computed. See Details.
Omitted when distance is "hellinger", "jeffreys" or "wasserstein" (see Details).

data.centered  logical. If TRUE (default is FALSE), the data of each group are centered.
data.scaled  logical. If TRUE (default is FALSE), the data of each group are centered (even if data.centered = FALSE) and scaled.
common.variance  logical. If TRUE (default is FALSE), a common covariance matrix (or correlation matrix if data.scaled = TRUE), computed on the whole data, is used. If FALSE (default), a covariance (or correlation) matrix per group is used.
add  logical indicating if an additive constant should be computed and added to the non diagonal dissimilarities such that the modified dissimilarities are Euclidean (default TRUE; see add argument of cmdscale).
nb.factors numeric. Number of returned principal coordinates (default nb.factors = 3). Warning: The plot.fmdsd and interpret.fmdsd functions cannot take into account more than nb.factors principal factors.
nb.values numeric. Number of returned eigenvalues (default nb.values = 10).
sub.title string. Subtitle for the graphs (default NULL).
plot.eigen logical. If TRUE (default), the barplot of the eigenvalues is plotted.
plot.score logical. If TRUE, the graphs of new coordinates are plotted. A new graphic device is opened for each pair of coordinates defined by nscore argument.
nscore numeric vector. If plot.score = TRUE, the numbers of the principal coordinates which are plotted. By default it is equal to nscore = 1:3. Its components cannot be greater than nb.factors.
filename string. Name of the file in which the results are saved. By default (filename = NULL) they are not saved.
group.name string. Name of the grouping variable. Default: groupname = "group".
Details

In order to compute the distances/dissimilarities between the groups, the \( T \) probability densities \( f_i \) corresponding to the \( T \) groups of individuals are either parametrically estimated (\texttt{gaussiand = TRUE}) or estimated using the Gaussian kernel method (\texttt{gaussiand = FALSE}). In the latter case, the \texttt{windowh} argument provides the list of the bandwidths to be used. Notice that in the multivariate case (\( p > 1 \)), the bandwidths are positive-definite matrices.

If \texttt{windowh} is a numerical value, the matrix bandwidth is of the form \( hS \), where \( S \) is either the square root of the covariance matrix (\( p > 1 \)) or the standard deviation of the estimated density.

If \texttt{windowh = NULL} (default), \( h \) in the above formula is computed using the \texttt{bandwidth.parameter} function.

The distance or dissimilarity between the estimated densities is either the \( L^2 \) distance, the Hellinger distance, the Jeffreys measure (symmetrised Kullback-Leibler divergence) or the Wasserstein distance.

- If it is the \( L^2 \) distance (\texttt{distance = "12" or distance = "12norm"}), the densities can be either parametrically estimated or estimated using the Gaussian kernel.
- If it is the Hellinger distance (\texttt{distance = "hellinger"}), the Jeffreys measure (\texttt{distance = "jeffreys"}) or the Wasserstein distance (\texttt{distance = "wasserstein"}), the densities are considered Gaussian and necessarily parametrically estimated.

Value

Returns an object of class \texttt{fmdsd}, i.e. a list including:

- \texttt{inertia} data frame of the eigenvalues and percentages of inertia.
- \texttt{scores} data frame of the \texttt{nb.factors} first principal coordinates.
- \texttt{means} list of the means.
- \texttt{variances} list of the covariance matrices.
- \texttt{correlations} list of the correlation matrices.
- \texttt{skewness} list of the skewness coefficients.
- \texttt{kurtosis} list of the kurtosis coefficients.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also
fpcad print.fmdsd, plot.fmdsd, interpret.fmdsd, bandwidth.parameter

Examples

data(roses)
rosesf <- as.folder(roses[,c("Sha","Den","Sym","rose")])

# MDS on Gaussian densities (on sensory data)
# using the Jeffreys measure (default):
resultjeff <- fmdsd(rosesf, distance = "jeffreys")
print(resultjeff)
plot(resultjeff)

# using the Hellinger distance:
resulthellin <- fmdsd(rosesf, distance = "hellinger")
print(resulthellin)
plot(resulthellin)

# using the Wasserstein distance:
resultwass <- fmdsd(rosesf, distance = "wasserstein")
print(resultwass)
plot(resultwass)

# Gaussian case, using the L2-distance:
resultl2 <- fmdsd(rosesf, distance = "l2")
print(resultl2)
plot(resultl2)

# Gaussian case, using the L2-distance between normed densities:
resultl2norm <- fmdsd(rosesf, distance = "l2norm")
print(resultl2norm)
plot(resultl2norm)

# Non Gaussian case, using the L2-distance,
# the densities are estimated using the Gaussian kernel method:
result <- fmdsd(rosesf, distance = "l2", gaussiand = FALSE, group.name = "rose")
print(result)
plot(result)

folder

Folder of data sets

Description

Creates an object of class "folder" (called folder below), that is a list of data frames with the same column names. Thus, these data sets are on the same variables. They can be on the same individuals or not.
Usage

folder(x1, x2 = NULL, ..., cols.select = "intersect", rows.select = "")

Arguments

x1 data frame or list of data frames.
  • If x1 is a data frame, x2 must be provided.
  • If x1 is a list of data frames, its elements are the datasets of the folder. In this case, there is no x2 argument.

x2 data frame. Must be provided if x1 is a data frame.

... optional. One or several data frames. When x1 and x2 are data frames, these are the other data frames.

cols.select string. Gives the method used to choose the column names of the data frames of the folder. This argument can be:
  "intersect" (default) the column names of the data frames in the folder are the intersection of the column names of all the data frames given as arguments.
  "union" the column names of the data frames in the folder are the union of the column names of all the data frames given as arguments. When necessary, the rows of the returned data frames are completed by NA. If cols.select is a character vector, it gives the column names selected in the data frames given as arguments. The corresponding columns constitute the columns of the elements of the returned folder. Notice that when a column name is not present in all data frames (given as arguments), the data are completed by NA.

rows.select string. Gives the method used to choose the row names of the data frames of the folder. This argument can be:
  "" (default) the data frames of the folder have the same rows as those which were passed as arguments.
  "intersect" the row names of the data frames in the folder are the intersection of the row names of all the data frames given as arguments.
  "union" the row names of the data frames in the folder are the union of the row names of all the data frames given as arguments. When necessary, the columns of the data frames returned are completed by NA.

Details

The class folder has a logical attributes attr("same.rows").
The data frames in the returned folder all have the same column names. That means that the same variables are observed in every data sets.
If the rows.select argument is "union" or "intersect", the elements of the returned folder have the same rows. That means that the same individuals are present in every data sets. This allows to consider the evolution of each individual among time.
If rows.select is "", every rows of this folder are different, and the row names are made unique by adding the name of the data frame to the row names. In this case, The individuals of the data sets are assumed to be all different. Or, at least, the user does not mind if they are the same or not.
folderh

Value

Returns an object of class "folder", that is a list of data frames.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

is.folder to test if an object is of class folder. folderh to build a folder of several data frames with a hierarchic relation between each pair of consecutive data frames.

Examples

# First example
x1 <- data.frame(x = rnorm(10), y = 1:10)
x2 <- data.frame(x = rnorm(10), z = runif(10, 1, 10))
f1 <- folderh(x1, x2)
print(f1)

f2 <- folderh(x1, x2, cols.select = "union")
print(f2)

# Second example
data(iris)
iris.set <- iris[iris$Species == "setosa", 1:4]
iris.ver <- iris[iris$Species == "versicolor", 1:4]
iris.vir <- iris[iris$Species == "virginica", 1:4]
irisf1 <- folderh(iris.set, iris.ver, iris.vir)
print(irisf1)

listofdf <- list(df1 = iris.set, df2 = iris.ver, df3 = iris.vir)
irisf2 <- folderh(listofdf, x2 = NULL)
print(irisf2)

folderh
Hierarchic folder of n data frames related in pairs by (n-1) keys

Description

Creates an object of class folderh, that is a list of n > 1 data frames whose rows are related by (n-1) keys, each key defining a relation "1 to N" between the two adjacent data frames passed as arguments of the function.

Usage

folderh(df1, key1, df2, ..., na.rm = TRUE)
folderh

Arguments

- df1: data frame with at least two columns. It contains a factor (whose name is given by key1 argument) whose levels are taken exactly once.
- key1: character string. The name of the factor of the data frames df1 and df2 which contains the key of the relations "1 to N" between the two datasets.
- df2: data frame with at least two columns. It contains a factor column (named by keys argument) with the same levels as df1[, key1] (see Details).
- ...: optional. One or several supplementary character strings and data frames, ordered as follows: key2, df3, ... The argument key2 indicates the key defining the relation "1 to N" between the data frames df2 and df3, and so on.
- na.rm: logical. If TRUE, the rows of each data frame for which the key is NA are removed.

Details

The object of class folderh is a list of \( n \geq 2 \) data frames.

- If no optional arguments are given via ..., that is \( n = 2 \), the two data frames of the list have a column named by the attribute attr(, "keys") (argument key1), which is a factor with the same levels. Each one of these levels occur exactly once in the first data frame of the list.
- If some supplementary data frames and supplementary strings key2, df3, ... are given as optional arguments, \( n \) is the number of data frames given as arguments. Then, the attribute attr(, "keys") is a vector of \( n - 1 \) character strings. For \( i = 1, \ldots, N - 1 \), its \( i \)-th element is the name of a column of the \( i \)-th and \((i + 1)\)-th data frames of the folderh, which are factors with the same levels. Each one of these levels occur exactly once in the \( i \)-th data frame.

If there are more than two data frames, folderh computes a folderh with the two last data frames, and then uses the function appendtofolderh to append each one of the other data frames to the folderh.

Value

Returns an object of class folderh. Its elements are the data frames passed as arguments, and the attribute attr(, "keys") contains the character arguments.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

is.folderh to test if an object is of class folderh. folder for a folder of data frames with no hierarchic relation between them. as.folder.folderh (or as.data.frame.folderh) to build an object of class folder (or a data frame) from an object of class folderh.
Description

An object of S3 class "foldermtg" is built and returned by the function read.mtg.

Value

An object of this S3 class is a list of at least 5 data frames (see the Value section in read.mtg): classes, description, features, topology, coordinates...

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

read.mtg print.foldermtg mtgorder

Examples

mtgfile1 <- system.file("extdata/plant1.mtg", package = "dad")
x1 <- read.mtg(mtgfile1)
print(x1)

mtgfile2 <- system.file("extdata/plant2.mtg", package = "dad")
x2 <- read.mtg(mtgfile2)
print(x2)
foldert

Folder of data sets among time

Description

Creates an object of class "foldert" (called foldert below), that is a list of data frames, each of them corresponding to a time of observation. These data sets are on the same variables. They can be on the same individuals or not.

Usage

foldert(x1, x2 = NULL, ..., times = NULL, cols.select = "intersect", rows.select = "")

Arguments

x1  data frame or list of data frames.
   • If x1 is a data frame, x2 must be provided.
   • If x1 is a list of data frames, its elements are the datasets of the folder. In this case, there is no x2 argument.

x2  data frame. Must be provided if x1 is a data frame. Omitted if x1 is a list of data frames.

...  optional. One or several data frames when x1 is a data frame. These supplementary data frames are added to the list of data frames constituting the returned foldert.

times  Vector of the “times” of observations. It can be either numeric, or an ordered factor or an object of class "Date", "POSIXlt" or "POSIXct". If omitted, it is 1:N where N is the number of data frame arguments (if x1 is a data frame) or the length of x1 (if it is a list).
   So there is an order relationship between these times.

cols.select  string or character vector. Gives the method used to choose the column names of the data frames of the foldert. This argument can be:
   "intersect" (default) the column names of the data frames in the foldert are the intersection of the column names of all the data frames given as arguments.
   "union" the column names of the data frames in the foldert are the union of the column names of all the data frames given as arguments. When necessary, the rows of the returned data frames are completed by NA.
If cols.select is a character vector, it gives the column names selected in the data frames given as arguments. The corresponding columns constitute the columns of the elements of the returned foldert. Notice that when a column name is not present in all data frames (given as arguments), the data are completed by NA.
rows.select is a string. Gives the method used to choose the row names of the data frames of the foldert. This argument can be:

"" (default) the data frames of the foldert have the same rows as those which were passed as arguments.

"intersect" the row names of the data frames in the foldert are the intersection of the row names of all the data frames given as arguments.

"union" the row names of the data frames in the foldert are the union of the row names of all the data frames given as arguments. When necessary, the columns of the data frames returned are completed by NA.

Details

The class "foldert" has an attribute attr("times") (the times argument, when provided) and a logical attribute attr("same.rows").

The data frames in the returned foldert all have the same column names. That means that the same variables are observed in every data sets.

If the rows.select argument is "union" or "intersect", the elements of the returned foldert have the same rows. That means that the same individuals are present in every data sets. This allows to consider the evolution of each individual among time.

If rows.select is "", every rows of this foldert are different, and the row names are made unique by adding the name of the data frame to the row names. In this case, The individuals of the data sets are assumed to be all different. Or, at least, the user does not mind if they are the same or not.

Value

Returns an object of class "foldert", that is a list of data frames. The elements of this list are ordered according to time.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

is.foldert to test if an object is of class foldert. as.foldert.data.frame: build an object of class foldert from a data frame. as.foldert.array: build an object of class foldert from a 3d-array.

Examples

```r
x <- data.frame(
 xyz = rep(c("A", "B", "C"), each = 2),
 xy = letters[1:6],
 x1 = rnorm(6),
 x2 = rnorm(6, 2, 1),
 row.names = paste0("i", 1:6))

y <- data.frame(
 xyz = c("A", "A", "B", "C"),
 xy = c("a", "b", "a", "c"),
 y1 = rnorm(4, 4, 2),
 row.names = c(paste0("i", c(1, 2, 4, 6)))))
```
z <- data.frame(xyz = c("A", "B", "C"),  
                z1 = rnorm(3),  
                row.names = c("i1", "i2", "i5"))

# Columns selected by the user
ftc. <- foldert(x, y, z, cols.select = c("xyz", "x1", "y1", "z1"))
print(ftc.)

# cols.select = "union": all the variables (columns) of each data frame are kept
ftcun <- foldert(x, y, z, cols.select = "union")
print(ftcun)

# cols.select = "intersect": only variables common to all data frames
ftcint <- foldert(x, y, z, cols.select = "intersect")
print(ftcint)

# rows.select = "": the rows of the data frames are unchanged  
# and the rownames are made unique
ftr. <- foldert(x, y, z, rows.select = "")
print(ftr.)

# rows.select = "union": all the individuals (rows) of each data frame are kept
ftrun <- foldert(x, y, z, rows.select = "union")
print(ftrun)

# rows.select = "intersect": only individuals common to all data frames
ftrint <- foldert(x, y, z, rows.select = "intersect")
print(ftrint)

# Define the times (times argument)
ftimes <- foldert(x, y, z, times = as.Date(c("2018-03-01", "2018-04-01", "2018-05-01")))
print(ftimes)

---

**Usage**

fpcad(xf, gaussiand = TRUE, kern = NULL, windowh = NULL, normed = TRUE,  
      centered = FALSE, data.centered = FALSE, data.scaled = FALSE,  
      common.variance = FALSE, nb.factors = 3, nb.values = 10, sub.title = "",  
      plot.eigen = TRUE, plot.score = FALSE, nscore = 1:3, group.name = "group",  
      filename = NULL)
Arguments

**xf**

object of class `folder`. Its elements are data frames with $p$ numeric columns. If there are non numeric columns, there is an error. The $t^{th}$ element ($t = 1, \ldots, T$) matches with the $t^{th}$ group.

Notice that for the versions earlier than 2.0, `fpcad` applied to a data frame.

**gaussiand**

logical. If `TRUE` (default), the probability densities are supposed Gaussian. If `FALSE`, densities are estimated using the Gaussian kernel method.

**kern**

string. If `gaussiand = FALSE` (default is `TRUE`), this argument sets the kernel used in the estimation method. Currently, only the Gaussian kernel is available: the settings `kern = "gauss"` and `kern = NULL` are equivalent.

**windowh**

either a list of $T$ bandwidths (one per density associated to a group), or a strictly positive number. If `windowh = NULL` (default), the bandwidths are automatically computed. See Details.

**normed**

logical. If `TRUE` (default), the densities are normed before computing the distances.

**centered**

logical. If `TRUE` (default is `FALSE`), the densities are centered.

**data.centered**

logical. If `TRUE` (default is `FALSE`), the data of each group are centered.

**data.scaled**

logical. If `TRUE` (default is `FALSE`), the data of each group are centered (even if `data.centered = FALSE`) and scaled.

**common.variance**

logical. If `TRUE` (default is `FALSE`), a common covariance matrix (or correlation matrix if `data.scaled = TRUE`), computed on the whole data, is used. If `FALSE` (default), a covariance (or correlation) matrix per group is used.

**nb.factors**

numeric. Number of returned principal scores (default `nb.factors = 3`). Warning: The `plot.fpcad` and `interpret.fpcad` functions cannot take into account more than `nb.factors` principal factors.

**nb.values**

numerical. Number of returned eigenvalues (default `nb.values = 10`).

**sub.title**

string. If provided, the subtitle for the graphs.

**plot.eigen**

logical. If `TRUE` (default), the barplot of the eigenvalues is plotted.

**plot.score**

logical. If `TRUE`, the graphs of principal scores are plotted. A new graphic device is opened for each pair of principal scores defined by `nscore` argument.

**nscore**

numeric vector. If `plot.score = TRUE`, the numbers of the principal scores which are plotted. By default it is equal to `nscore = 1:3`. Its components cannot be greater than `nb.factors`.

**group.name**

string. Name of the grouping variable. Default: `groupname = "group"`.

**filename**

string. Name of the file in which the results are saved. By default (`filename = NULL`) the results are not saved.

Details

The $T$ probability densities $f_t$ corresponding to the $T$ groups of individuals are either parametrically estimated (`gaussiand = TRUE`) or estimated using the Gaussian kernel method (`gaussiand = FALSE`).
In the latter case, the `windowh` argument provides the list of the bandwidths to use. Notice that in the multivariate case \((p>1)\) the bandwidths are positive-definite matrices.

If `windowh` is a numerical value, the matrix bandwidth is of the form \(hS\), where \(S\) is either the square root of the covariance matrix \((p>1)\) or the standard deviation of the estimated density.

If `windowh = NULL` (default), \(h\) in the above formula is computed using the `bandwidth.parameter` function.

### Value

Returns an object of class `fpcad`, that is a list including:

- `inertia`: data frame of the eigenvalues and percentages of inertia.
- `contributions`: data frame of the contributions to the first `nb.factors` principal components.
- `qualities`: data frame of the qualities on the first `nb.factors` principal factors.
- `scores`: data frame of the first `nb.factors` principal scores.
- `norm`: vector of the \(L^2\) norms of the densities.
- `means`: list of the means.
- `variances`: list of the covariance matrices.
- `correlations`: list of the correlation matrices.
- `skewness`: list of the skewness coefficients.
- `kurtosis`: list of the kurtosis coefficients.

### Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

### References


### See Also

`print.fpcad`, `plot.fpcad`, `interpret.fpcad`, `bandwidth.parameter`
Examples

data(roses)
    # Case of a normed non-centred PCA of Gaussian densities (on 3 architectural
    # characteristics of roses: shape (Sha), foliage density (Den) and symmetry (Sym))
rosesf <- as.folder(roses[,c("Sha","Den","Sym","rose")])
result3 <- fpcad(rosesf, group.name = "rose")
print(result3)
plot(result3)

    # Flower colors of the roses
scores <- result3$scores
scores <- data.frame(scores, color = scores$rose)
levels(scores$color) <- c(A = "yellow", B = "yellow", C = "pink", D = "yellow", E = "red",
                         F = "yellow", G = "pink", H = "pink", I = "yellow", J = "yellow")
    # Scores according to the first two principal components, per color
plot(scores$PC.1, scores$PC.2, pch = 19, col = as.character(scores$color), cex = 1.5)

---

**fpcat**

Functional PCA of probability densities among time

Description

Performs functional principal component analysis of probability densities in order to describe a data “folder”, consisting of individuals on which are observed $p$ variables on $T$ times. It returns an object of class fpcat.

Usage

fpcat(xf, gaussiand = TRUE, kern = NULL, windowh = NULL, normed = TRUE,
       centered = FALSE, data.centered = FALSE, data.scaled = FALSE,
       common.variance = FALSE, nb.factors = 3, nb.values = 10, sub.title = "",
       plot.eigen = TRUE, plot.score = FALSE, nscore = 1:3, group.name="time",
       filename = NULL)

Arguments

- **xf** object of class `folder` that is a list of data frames with the same column names, each of them corresponding to a time of observation. Its elements are data frames with $p$ numeric columns. If there are non numeric columns, there is an error. The $t^{th}$ element ($t = 1, \ldots, T$) matches with the $t^{th}$ time of observation. All other arguments are the same as for fpcad, except group.name.

- **gaussiand** logical. If TRUE (default), the probability densities are supposed Gaussian. If FALSE, densities are estimated using the Gaussian kernel method (as fpcad).

- **kern** string. If gaussiand = FALSE (default is TRUE), this argument sets the kernel used in the estimation method. Currently, only the Gaussian kernel is available: the settings kern = “gauss” and kern = NULL are equivalent (as fpcad).
windowh either a list of $T$ bandwidths (one per density associated to a group), or a strictly positive number. If \text{windowh} = \text{NULL} (default), the bandwidths are automatically computed (as \text{fpcad}). See Details.

normed logical. If \text{TRUE} (default), the densities are normed before computing the distances (as \text{fpcad}).

centered logical. If \text{TRUE} (default is \text{FALSE}), the densities are centered (as \text{fpcad}).

data.centered logical. If \text{TRUE} (default is \text{FALSE}), the data of each group are centered (as \text{fpcad}).

data.scaled logical. If \text{TRUE} (default is \text{FALSE}), the data of each group are centered (even if \text{data.centered} = \text{FALSE}) and scaled (as \text{fpcad}).

common.variance logical. If \text{TRUE} (default is \text{FALSE}), a common covariance matrix (or correlation matrix if \text{data.scaled} = \text{TRUE}), computed on the whole data, is used. If \text{FALSE} (default), a covariance (or correlation) matrix per group is used (as \text{fpcad}).

\text{nb.factors} numeric. Number of returned principal scores (default \text{nb.factors} = 3) (as \text{fpcad}).

Warning: The \text{plot.fpcad} and \text{interpret.fpcad} functions cannot take into account more than \text{nb.factors} principal factors (as \text{fpcad}).

\text{nb.values} numerical. Number of returned eigenvalues (default \text{nb.values} = 10) (as \text{fpcad}).

\text{sub.title} string. Subtitle for the graphs (default \text{NULL}) (as \text{fpcad}).

\text{plot.eigen} logical. If \text{TRUE} (default), the barplot of the eigenvalues is plotted (as \text{fpcad}).

\text{plot.score} logical. If \text{TRUE}, the graphs of principal scores are plotted. A new graphic device is opened for each pair of principal scores defined by \text{nscore} argument (as \text{fpcad}).

\text{nscore} numeric vector. If \text{plot.score} = \text{TRUE}, the numbers of the principal scores which are plotted. By default it is equal to \text{nscore} = 1:3. Its components cannot be greater than \text{nb.factors} (as \text{fpcad}).

\text{group.name} name of the grouping variable, that is the observation times. Default: "time".

\text{filename} string. Name of the file in which the results are saved. By default (\text{filename} = \text{NULL}) the results are not saved (as \text{fpcad}).

Details

The $T$ probability densities $f_t$ corresponding to the $T$ times of observation are either parametrically estimated or estimated using the Gaussian kernel method (see \text{fpcad} for the use of the arguments indicating the method used to estimate these densities).

Value

Returns an object of class \text{fpcat}, that is a list including:

\text{times} vector of the times of observation.

\text{inertia} data frame of the eigenvalues and percentages of inertia.

\text{contributions} data frame of the contributions to the first \text{nb.factors} principal components.
qualities: data frame of the qualities on the first `nb.factors` principal factors.
scores: data frame of the first `nb.factors` principal scores.

norm: vector of the $L^2$ norms of the densities.

means: list of the means.

variances: list of the covariance matrices.
correlations: list of the correlation matrices.
skewness: list of the skewness coefficients.
kurtosis: list of the kurtosis coefficients.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

`print.fpcat`, `plot.fpcat`, `bandwidth.parameter`

Examples

```r
times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01", "2017-06-01"))
x1 <- data.frame(z1=rnorm(6,1,5), z2=rnorm(6,3,3))
x2 <- data.frame(z1=rnorm(6,4,6), z2=rnorm(6,5,2))
x3 <- data.frame(z1=rnorm(6,7,2), z2=rnorm(6,8,4))
x4 <- data.frame(z1=rnorm(6,9,3), z2=rnorm(6,10,2))
ft <- foldert(x1, x2, x3, x4, times = times, rows.select="intersect")
print(ft)
result <- fpcat(ft)
print(result)
plot(result)
```
**getcol.folder**

*Select columns in all elements of a folder*

**Description**

Select columns in all data frames of a folder.

**Usage**

```r
getcol.folder(object, name)
```

**Arguments**

- `object`: object of class `folder` that is a list of data frames with the same column names.
- `name`: character vector. The names of the columns to be selected in each data frame of the folder.

**Value**

A folder with the same number of elements as `object`. Its $k^{th}$ element is a data frame, and its columns are the columns of `object[[k]]` given by `name`.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**See Also**

- `folder`: object of class `folder`.
- `rmcol.folder`: remove columns in all elements of a folder.
- `getrow.folder`: select rows in all elements of a folder.
- `rmrow.folder`: remove rows in all elements of a folder.

**Examples**

```r
data(iris)

iris.fold <- as.folder(iris, "Species")
getcol.folder(iris.fold, "Sepal.Length")
getcol.folder(iris.fold, c("Petal.Length", "Petal.Width"))
```
getcol.foldert

Select columns in all elements of a foldert

Description

Select columns in all data frames of a foldert.

Usage

getcol.foldert(object, name)

Arguments

object 
object of class foldert that is a list of data frames with the same column names, each of them corresponding to a time of observation.

name 
character vector. The names of the columns to be selected in each data frame of the foldert.

Value

A foldert with the same number of elements as object. Its $k^{th}$ element is a data frame, and its columns are the columns of object[[k]] given by name.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

foldert: object of class foldert.
rmcol.foldert: remove columns in all elements of a foldert.
getrow.foldert: select rows in all elements of a foldert.
rmrow.foldert: remove rows in all elements of a foldert.

Examples

data(floribundity)

ft0 <- foldert(floribundity, cols.select = "union")
getcol.foldert(ft0, c("rose", "variety"))
getrow.folder

Select rows in all elements of a folder

Description

Select rows in all data frames of a folder.

Usage

getrow.folder(object, name)

Arguments

  object  object of class folder that is a list of data frames with the same column names.
  name    character vector. The names of the rows to be selected in each data frame of the folder.

Value

A folder with the same number of elements as object. Its \(k^{th}\) element is a data frame, and its rows are the rows of object[[k]] given by name.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

  folder: object of class folder.
  rmrow.folder: remove rows in all elements of a folder.
  getcol.folder: select rows in all elements of a folder.
  rmcol.folder: remove rows in all elements of a folder.

Examples

  data(iris)
  iris.fold <- as.folder(iris, "Species")
  getrow.folder(iris.fold, c(1:5, 51:55, 101:105))
getrow.foldert

Select rows in all elements of a foldert

Description

Select rows in all data frames of a foldert.

Usage

getrow.foldert(object, name)

Arguments

object

object of class foldert that is a list of data frames with the same column names, each of them corresponding to a time of observation.

name

character vector. The names of the rows to be selected in each data frame of the foldert.

Value

A foldert with the same number of elements as object. Its \( k^{th} \) element is a data frame, and its rows are the rows of object[[k]] given by name.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

foldert: object of class foldert.
rmrow.foldert: remove rows in all elements of a foldert.
getcol.foldert: select columns in all elements of a foldert.
rmcol.foldert: remove columns in all elements of a foldert.

Examples

data(floribundity)

ft0 <- foldert(floribundity, cols.select = "union", rows.select = "union")
getrow.foldert(ft0, c("16", "51"))
**Description**

Hellinger distance between two multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities (see Details).

**Usage**

```r
distance <- hellinger(x1, x2, check = FALSE)
```

**Arguments**

- `x1, x2`: the samples from the probability densities.
- `check`: logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

**Details**

The Hellinger distance between the two Gaussian densities is computed by using the `hellingerpar` function and the density parameters estimated from samples.

**Value**

Returns the Hellinger distance between the two probability densities.

Be careful! If `check = FALSE` and one smoothing bandwidth matrix is degenerate, the result returned can not be considered.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**References**


**See Also**

- `hellingerpar`: Hellinger distance between Gaussian densities, given their parameters.
Examples

```r
require(MASS)
m1 <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3, mu = m1, Sigma = v1)
x2 <- mvrnorm(n = 5, mu = m2, Sigma = v2)
hellinger(x1, x2)
```

---

**hellingerpar**  
*Hellinger distance between Gaussian densities given their parameters*

**Description**

Hellinger distance between two multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate) (see Details).

**Usage**

```r
hellingerpar(mean1, var1, mean2, var2, check = FALSE)
```

**Arguments**

- `mean1`: \(p\)-length numeric vector: the mean of the first Gaussian density.
- `var1`: \(p \times p\) symmetric numeric matrix \( (p > 1)\) or numeric \( (p = 1)\): the covariance matrix \( (p > 1)\) or the variance \( (p = 1)\) of the first Gaussian density.
- `mean2`: \(p\)-length numeric vector: the mean of the second Gaussian density.
- `var2`: \(p \times p\) symmetric numeric matrix \( (p > 1)\) or numeric \( (p = 1)\): the covariance matrix \( (p > 1)\) or the variance \( (p = 1)\) of the second Gaussian density.
- `check`: logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

**Details**

The mean vectors \((m1\) and \(m2)\) and variance matrices \((v1\) and \(v2)\) given as arguments \((\text{mean1},\ \text{mean2},\ \text{var1}\) and \(\text{var2})\) are used to compute the Hellinger distance between the two Gaussian densities, equal to:

\[
(2(1 - 2^{p/2} \det(v1v2)^{1/4} \det(v1 + v2)^{-1/2} e^{p/4}(t(m1 - m2)(v1 + v2)^{-1}(m1 - m2))})^{1/2}
\]

If \(p = 1\) the means and variances are numbers, the formula is the same ignoring the following operators: \(t\) (transpose of a matrix or vector) and \(\det\) (determinant of a square matrix).
**Value**

The Hellinger distance between two Gaussian densities.

Be careful! If `check = FALSE` and one covariance matrix is degenerated (multivariate case) or one variance is zero (univariate case), the result returned must not be considered.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**References**


**See Also**

- `hellinger`: Hellinger distance between Gaussian densities estimated from samples.

**Examples**

```r
m1 <- c(1,1)
v1 <- matrix(c(4,1,1,9),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(1,0,0,1),ncol = 2)
hellingerpar(m1,v1,m2,v2)
```

**Description**

This generic function provides a tool for the interpretation of the results of `fmdsd`, `dstatis`, `fpcad`, `fpcat` or `mdsdd` function.

**Usage**

```r
interpret(x, nscore = 1:3, ...)
```

**Arguments**

- **x**
  - object of class `fmdsd`, `dstatis`, `fpcad`, `fpcat` or `mdsdd`.
    - `fmdsd`: see `interpret.fmdsd`
    - `dstatis`: see `interpret.dstatis`
    - `fpcad`: see `interpret.fpcad`
    - `fpcat`: see `interpret.fpcat`
    - `mdsdd`: see `interpret.mdsdd`
interpret.dstatis

nscore numeric vector. Selects the columns of the data frame x$scores to be interpreted.

Warning: Its components cannot be greater than the nb.factors argument in the call of the fpcad or fpcat function.

... Arguments to be passed to the methods, such as moment (for interpret.fmdsd, interpret.dstatis, interpret.fpcad and interpret.fpcat), or mma (for interpret.mdsdd).

Value

Returns a list including:

pearson matrix of Pearson correlations between selected scores and moments, probabilities or associations.
spearman matrix of Spearman correlations between selected scores and moments, probabilities or associations.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

interpret.fmdsd; interpret.dstatis; interpret.fpcad; interpret.fpcat; interpret.mdsdd.

interpret.dstatis  Scores of the dstatis function vs. moments of the densities

Description

Applies to an object of class dstatis, plots the principal scores vs. the moments of the densities (means, standard deviations, variances, correlations, skewness and kurtosis coefficients), and computes the correlations between these scores and moments.

Usage

## S3 method for class 'dstatis'
interpret(x, nscore = 1:3, moment = "mean", ...)
interpret.dstatis

Arguments

**x**
object of class dstatis (returned by the `dstatis.inter` function).

**nscore**
numeric vector. Selects the columns of the data frame `x$scores` to be interpreted.

Warning: Its components cannot be greater than the `nb.factors` argument in the call of the `dstatis.inter` function.

**moment**
characters string. Selects the moments to cross with scores:
- "mean" (means)
- "sd" (standard deviations)
- "cov" (covariances)
- "cor" (correlation coefficients)
- "skewness" (skewness coefficients)
- "kurtosis" (kurtosis coefficients)
- "all" (for univariate densities only. It simultaneously considers means, standard deviations, variances and skewness and kurtosis coefficients)

... Arguments to be passed to methods.

Details

A new graphics device is opened for each score column. A device can contain up to 9 graphs. If there are too many (more than 36) graphs for each score, a multipage PDF file is created in the current working directory, and the graphs are displayed in it.

The number of principal scores to be interpreted cannot be greater than `nb.factors` of the data frame `x$scores` returned by the function `dstatis.inter`.

Value

Returns a list including:

- **pearson** matrix of Pearson correlations between selected scores and moments.
- **spearman** matrix of Spearman correlations between selected scores and moments.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

dstats.inter; plot.dstatis.
Examples

data(roses)
rosesf <- as.folder(roses[,c("Sha","Den","Sym","rose")])

# Dual STATIS on the covariance matrices
result <- dstatis.inter(rosesf, group.name = "rose")
interpret(result)
interpret(result, moment = "var")
interpret(result, moment = "cor")
interpret(result, nscore = 1:2)

interpret.fmdsd(Scores of the fmdsd function vs. moments of the densities)

Description

Applies to an object of class fmdsd, plots the scores vs. the moments of the densities (means, standard deviations, variances, correlations, skewness and kurtosis coefficients), and computes the correlations between these scores and moments.

Usage

### S3 method for class 'fmdsd'
interpret(x, nscore = 1:3, moment = "mean", ...)

Arguments

- **x**
  - object of class fmdsd (returned by the fmdsd function).

- **nscore**
  - numeric vector. Selects the columns of the data frame x$scores consisting of the score vectors.
  
  **Warning:** Its components cannot be greater than the nb.factors argument in the call of the fmdsd function.

- **moment**
  - character string. Selects the moments to cross with scores:
    - "mean" (means, which is the default value)
    - "sd" (standard deviations)
    - "cov" (covariances)
    - "cor" (correlation coefficients)
    - "skewness" (skewness coefficients)
    - "kurtosis" (kurtosis coefficients)
    - "all" (for univariate densities only. It simultaneously considers means, standard deviations, variances and skewness and kurtosis coefficients)

... Arguments to be passed to methods.
Details

A new graphics device is opened for each score column. A device can contain up to 9 graphs. If there are too many (more than 36) graphs for each score, a multipage PDF file is created in the current working directory, and the graphs are displayed in it.

The number of principal scores to be interpreted cannot be greater than \( nb \cdot factors \) of the data frame \( x \cdot scores \) returned by the function \( fmdsd \).

Value

Returns a list including:

- `pearson` matrix of Pearson correlations between selected scores and moments.
- `spearman` matrix of Spearman correlations between selected scores and moments.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

`fmdsd`; `plot.fmdsd`.

Examples

data(roses)
x <- roses[,c("Sha","Den","Sym","rose")]
rosesfold <- as.folder(x)
result1 <- fmdsd(rosesfold)
interpret(result1)
interpret(result1, moment = "var")
interpret(result1, nscore = 1:2)
**interpret.fpcad**

**Scores of the fpcad function vs. moments of the densities**

**Description**

Applies to an object of class `fpcad`, plots the principal scores vs. the moments of the densities (means, standard deviations, variances, correlations, skewness and kurtosis coefficients), and computes the correlations between these scores and moments.

**Usage**

```r
S3 method for class 'fpcad'
interpret(x, nscore = 1:3, moment = "mean", ...)
```

**Arguments**

- `x` object of class `fpcad` (returned by the `fpcad` function).
- `nscore` numeric vector. Selects the columns of the data frame `x$scores` to be interpreted.
  
  **Warning:** Its components cannot be greater than the `nb.factors` argument in the call of the `fpcad` function.
- `moment` characters string. Selects the moments to cross with scores:
  - "mean" (means)
  - "sd" (standard deviations)
  - "cov" (covariances)
  - "cor" (correlation coefficients)
  - "skewness" (skewness coefficients)
  - "kurtosis" (kurtosis coefficients)
  - "all" (for univariate densities only. It simultaneously considers means, standard deviations, variances and skewness and kurtosis coefficients)

... Arguments to be passed to methods.

**Details**

A new graphics device is opened for each score column. A device can contain up to 9 graphs. If there are too many (more than 36) graphs for each score, a multipage PDF file is created in the current working directory, and the graphs are displayed in it.

The number of principal scores to be interpreted cannot be greater than `nb.factors` of the data frame `x$scores` returned by the function `fpcad`.

**Value**

Returns a list including:

- `pearson` matrix of Pearson correlations between selected scores and moments.
- `spearman` matrix of Spearman correlations between selected scores and moments.
interpret.fpcat

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also
fpcad; plot.fpcad.

Examples

data(roses)
rosefold <- as.folder(roses[,c("Sha","Den","Sym","rose")])
result1 <- fpcad(rosefold)
interpret(result1)
interpret(result1, moment = "var")
interpret(result1, moment = "cor")
interpret(result1, nscore = 1:2)

Description
This function applies to an object of class fpcat and does the same as for an object of class fpcad: it plots the principal scores vs. the moments of the densities (means, standard deviations, variances, correlations, skewness and kurtosis coefficients), and computes the correlations between these scores and moments.

In the next version of the package, this function will be updated by some more graphics.

Usage

## S3 method for class 'fpcat'
interpret(x, nscore = 1:3, moment = "mean", ...)

Arguments

x          object of class fpcat (returned by the fpcat function).
nscore     numeric vector. Selects the columns of the data frame x$scores to be interpreted.
            Warning: Its components cannot be greater than the nb.factors argument in the call of the fpcat function.
moment     characters string. Selects the moments to cross with scores:
• "mean" (means)
• "sd" (standard deviations)
• "cov" (covariances)
• "cor" (correlation coefficients)
• "skewness" (skewness coefficients)
• "kurtosis" (kurtosis coefficients)
• "all" (for univariate densities only. It simultaneously considers means, standard deviations, variances and skewness and kurtosis coefficients)

Details

A new graphics device is opened for each score column. A device can contain up to 9 graphs. If there are too many (more than 36) graphs for each score, a multipage PDF file is created in the current working directory, and the graphs are displayed in it.

The number of principal scores to be interpreted cannot be greater than \( \text{nb.factors} \) of the data frame \( \text{x$scores} \) returned by the function \text{fpcat}.

Value

Returns a list including:

- **pearson** matrix of Pearson correlations between selected scores and moments.
- **spearman** matrix of Spearman correlations between selected scores and moments.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

- \text{fpcat; plot.fpcat}.

Examples

```r
Alsacian castles with their building year
data(castles)
castyear <- foldert(lapply(castles, "[", 1:4))
fpcayear <- fpcat(castyear, group.name = "year")
interpret(fpcayear)
interpret(fpcayear, moment="var")
```
**interpret.mdsdd**

Scores of the mdsdd function vs. marginal probability distributions or association measures

**Description**

Applies to an object of class "mdsdd", plots the scores vs. the marginal probability distributions or pairwise association measures of the discrete variables, and computes the correlations between these scores and probabilities or association measures (see Details).

**Usage**

```r
S3 method for class 'mdsdd'
interpret(x, nscore = 1:3, mma = c("marg1", "marg2", "assoc"), ...)
```

**Arguments**

- `x` object of class mdsdd (returned by the mdsdd function).
- `nscore` numeric vector. Selects the columns of the data frame `x$scores` consisting of the score vectors.
  Warning: Its components cannot be greater than the `nb.factors` argument in the call of the mdsdd function.
- `mma` character. Indicates which measures will be considered:
  - "marg1": the probability distribution of each variable.
  - "marg2": the joint probability distribution of each pair of variables.
  - "assoc": the pairwise association measures of the variables.
- `...` Arguments to be passed to methods.

**Details**

A new graphics device is opened for each score column. A device can contain up to 9 graphs. If there are too many (more than 36) graphs for each score, a multipage PDF file is created in the current working directory, and the graphs are displayed in it.

The number of principal scores to be interpreted cannot be greater than `nb.factors` of the data frame `x$scores` returned by the function mdsdd.

**Value**

Returns a list including:

- `pearson` matrix of Pearson correlations between selected scores and probabilities or association measures.
- `spearman` matrix of Spearman correlations between selected scores and probabilities or association measures.
is.dstatis

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

See Also
mdsdd; plot.mdsdd.

Examples

# INSEE (France): Diploma x Socio professional group, seven years.
data(dspg)
xlista = dspg
a <- mdsdd(xlista)
interpret(a)

# Example 3 with a list of 96 arrays (departments)
data(dspgd2015)
xd = dspgd2015
res = mdsdd(xd, group.name = "coded")
interpret(res)
plot(res, fontsize.points = 0.7)

# Each department is represented by its name
data(departments)
coor = merge(res$scores, departments, by = "coded")
dev.new()
plot(coor$PC.1, coor$PC.2, type = "n")
text(coor$PC.1, coor$PC.2, coor$named, cex = 0.5)

# Each department is represented by its region
dev.new()
plot(coor$PC.1, coor$PC.2, type = "n")
text(coor$PC.1, coor$PC.2, coor$coder, cex = 0.7)

is.dstatis(x)

Arguments

x object to be tested.
is.fdiscd.misclass

Value

TRUE if its argument is of class \texttt{dstatis}, and FALSE otherwise.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

dstatis.inter.

\begin{verbatim}
is.fdiscd.misclass   Class fdiscd.misclass
\end{verbatim}

Description

Tests if its argument is an object of class \texttt{fdiscd.misclass} (see Details of the function \texttt{fdiscd.misclass}).

Usage

\texttt{is.fdiscd.misclass(x)}

Arguments

\begin{itemize}
  \item \texttt{x} object to be tested.
\end{itemize}

Value

TRUE if its argument is of class \texttt{fdiscd.misclass}, and FALSE otherwise.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

\texttt{fdiscd.misclass}.
is.fdiscd.predict \hspace{1cm} \textit{Class} \hspace{0.5cm} fdiscd.predict

\textbf{Description}

Tests if its argument is an object of class \texttt{fdiscd.predict} (see Details of the function \texttt{fdiscd.predict}).

\textbf{Usage}

\texttt{is.fdiscd.predict(x)}

\textbf{Arguments}

\texttt{x} \hspace{1cm} \text{object to be tested.}

\textbf{Value}

\texttt{TRUE} if its argument is of class \texttt{fdiscd.predict}, and \texttt{FALSE} otherwise.

\textbf{Author(s)}

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

\textbf{See Also}

\texttt{fdiscd.predict}.

\begin{center}
\hline
\textbf{is.fhclustd} \hspace{1cm} \textit{Class} \hspace{0.5cm} fhclustd
\end{center}

\textbf{Description}

Tests if its argument is an object of class \texttt{fhclustd} (see Details of the function \texttt{fhclustd}).

\textbf{Usage}

\texttt{is.fhclustd(x)}

\textbf{Arguments}

\texttt{x} \hspace{1cm} \text{object to be tested.}

\textbf{Value}

\texttt{TRUE} if its argument is of class \texttt{fhclustd}, and \texttt{FALSE} otherwise.
is.fmdsd

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

fhclustd.

Description

Tests if its argument is an object of class fmdsd (see Details of the function fmdsd).

Usage

is.fmdsd(x)

Arguments

x object to be tested.

Value

TRUE if its argument is of class fmdsd, and FALSE otherwise.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

fmdsd.
is.folder

Description
Tests if its argument is an object of class folder (see folder).

Usage
is.folder(x)

Arguments
x object to be tested.

Value
TRUE if its argument is of class folder, and FALSE otherwise.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
folder to create an object of class folder.

is.folderh

Description
Tests if its argument is an object of class folderh (see folderh).

Usage
is.folderh(x)

Arguments
x object to be tested.

Value
TRUE if its argument is of class folderh, and FALSE otherwise.
is.foldermtg

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
folderh to create an object of class folderh.

is.foldermtg

Class foldermtg

Description
Tests if its argument is an object of class foldermtg (see read.mtg).

Usage
is.foldermtg(x)

Arguments
x object to be tested.

Value
TRUE if its argument is of class foldermtg, and FALSE otherwise.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
read.mtg to read a MTG file and create an object of class foldermtg.
is.foldert  

**Class** foldert

**Description**
Tests if its argument is an object of class foldert (see `foldert`).

**Usage**

```
is.foldert(x)
```

**Arguments**

- `x` object to be tested.

**Value**

TRUE if its argument is of class foldert, and FALSE otherwise.

**Author(s)**
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**See Also**

- `foldert` to create an object of class foldert.

---

is.fpcad  

**Class** fpcad

**Description**
Tests if its argument is an object of class fpcad (see Details of the function `fpcad`).

**Usage**

```
is.fpcad(x)
```

**Arguments**

- `x` object to be tested.

**Value**

TRUE if its argument is of class fpcad, and FALSE otherwise.
Description

Tests if its argument is an object of class mdsdd (see Details of the function mdsdd).

Usage

is.mdsdd(x)

Arguments

x object to be tested.

Value

TRUE if its argument is of class mdsdd, and FALSE otherwise.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

mdsdd.
Jeffreys measure between Gaussian densities

Description

Jeffreys measure (or symmetrised Kullback-Leibler divergence) between two multivariate \( p > 1 \) or univariate \( p = 1 \) Gaussian densities given samples (see Details).

Usage

jeffreys(x1, x2, check = FALSE)

Arguments

x1, x2 the samples from the probability densities.
check logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

Details

The Jeffreys measure between the two Gaussian densities is computed by using the jeffreyspar function and the density parameters estimated from samples.

Value

Returns the Jeffreys measure between the two probability densities.

Be careful! If check = FALSE and one smoothing bandwidth matrix is degenerate, the result returned must not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

jeffreyspar: Jeffreys measure between Gaussian densities, given their parameters.
Examples

```r
require(MASS)
ml <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2)
ml2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3, mu = ml,Sigma = v1)
x2 <- mvrnorm(n = 5, mu = ml2, Sigma = v2)
jeffreys(x1, x2)
```

Description

Jeffreys measure (or symmetrised Kullback-Leibler divergence) between two multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities, given their parameters (mean vectors and covariance matrices if they are multivariate, means and variances if univariate) (see Details).

Usage

```r
jeffreyspar(mean1, var1, mean2, var2, check = FALSE)
```

Arguments

- `mean1`: \(p\)-length numeric vector: the mean of the first Gaussian density.
- `var1`: \(p \times p\) symmetric numeric matrix \((p > 1)\) or numeric \((p = 1)\): the covariance matrix \((p > 1)\) or the variance \((p = 1)\) of the first Gaussian density.
- `mean2`: \(p\)-length numeric vector: the mean of the second Gaussian density.
- `var2`: \(p \times p\) symmetric numeric matrix \((p > 1)\) or numeric \((p = 1)\): the covariance matrix \((p > 1)\) or the variance \((p = 1)\) of the second Gaussian density.
- `check`: logical. When `TRUE` (the default is `FALSE`) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

Details

Let \(m_1\) and \(m_2\) the mean vectors, \(v_1\) and \(v_2\) the covariance matrices, the Jeffreys' measure of the two Gaussian densities is equal to:

\[
(1/2)t(m_1 - m_2)(v_1^{-1} + v_2^{-1})(m_1 - m_2) - (1/2)tr((v_1^{-1} - v_2^{-1}))
\]

If \(p = 1\) the means and variances are numbers, the formula is the same ignoring the following operators: \(t\) (transpose of a matrix or vector) and \(tr\) (trace of a square matrix).
The Jeffreys measure between two Gaussian densities.

Be careful! If check = FALSE and one covariance matrix is degenerated (multivariate case) or one variance is zero (univariate case), the result returned must not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

jeffreys: Jeffreys measure of two parametrically estimated Gaussian densities, given samples.

Examples

```r
m1 <- c(1,1)
v1 <- matrix(c(4,1,1,9),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(1,0,0,1),ncol = 2)
jeffreyspar(m1,v1,m2,v2)
```

---

**kurtosis.folder**

**Kurtosis coefficients of a folder of data sets**

**Description**

Computes the kurtosis coefficient by column of the elements of an object of class folder.

**Usage**

```r
kurtosis.folder(x, na.rm = FALSE, type = 3)
```

**Arguments**

- **x**
  - an object of class folder.
- **na.rm**
  - logical. Should missing values be omitted from the calculations? (see kurtosis)
- **type**
  - an integer between 1 and 3 (see kurtosis).
Details

It uses \texttt{kurtosis} to compute the mean by numeric column of each element of the folder. If some columns of the data frames are not numeric, there is a warning, and the means are computed on the numeric columns only.

Value

A list whose elements are the kurtosis coefficients by column of the elements of the folder.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

\texttt{folder} to create an object is of class \texttt{folder}. \texttt{mean.folder}, \texttt{var.folder}, \texttt{cor.folder}, \texttt{skewness.folder} for other statistics for \texttt{folder} objects.

Examples

# First example: iris (Fisher)
data(iris)
iris.fold <- \texttt{as.folder}(iris, "Species")
iris.kurtosis <- \texttt{kurtosis.folder}(iris.fold)
\texttt{print}(iris.kurtosis)

# Second example: roses
data(roses)
roses.fold <- \texttt{as.folder}(roses, "rose")
roses.kurtosis <- \texttt{kurtosis.folder}(roses.fold)
\texttt{print}(roses.kurtosis)

\begin{Verbatim}
\texttt{12d} \quad \textit{L}^2 \textit{inner product of probability densities}
\end{Verbatim}

Description

\textit{L}^2 \textit{inner product of two multivariate} \((p > 1)\) \textit{or univariate} \((p = 1)\) \textit{probability densities, estimated from samples.}

Usage

\texttt{12d(x1, x2, method = "gaussiand", check = FALSE, varw1 = NULL, varw2 = NULL)}
Arguments

\textbf{x1} \hspace{1cm} \text{a matrix or data frame of} \ n_1 \ \text{rows (observations) and} \ p \ \text{columns (variables)} \ \text{or a vector of length} \ n_1.

\textbf{x2} \hspace{1cm} \text{matrix or data frame of} \ n_2 \ \text{rows and} \ p \ \text{columns or vector of length} \ n_2.

\textbf{method} \hspace{1cm} \text{string. It can be:}

- "gaussiand" \text{if the densities are considered to be Gaussian.}
- "kern" \text{if they are estimated using the Gaussian kernel method.}

\textbf{check} \hspace{1cm} \text{logical. When TRUE (the default is FALSE) the function checks if the covariance matrices (if method = "gaussiand") or smoothing bandwidth matrices (if method = "kern") are not degenerate, before computing the inner product. Notice that if} \ p = 1, \text{it checks if the variances or smoothing parameters are not zero.}

\textbf{varwQ, varwR} \hspace{1cm} p \times p \text{symmetric matrices: the smoothing bandwidths for the estimation of the probability densities. If they are omitted, the smoothing bandwidths are computed using the normal reference rule matrix bandwidth (see details).}

Details

- If method = "gaussiand", \text{the mean vectors and the variance matrices} (v_1 \text{ and } v_2) \text{of the two samples are computed, and they are used to compute the inner product using the 12dpar function.}

- If method = "kern", \text{the densities of both samples are estimated using the Gaussian kernel method. These estimations are then used to compute the inner product. If varw1 and varw2 arguments are omitted, the smoothing bandwidths are computed using the normal reference rule matrix bandwidth:}

\[ h_1 v_1^{1/2} \]

where

\[ h_1 = \left( 4/(n_1(p + 2)) \right)^{1/(p+4)} \]

\text{for the first density. Idem for the second density after making the necessary changes.}

Value

The \( L^2 \) inner product of the two probability densities. \hfill \\
Be careful! If check = FALSE and one smoothing bandwidth matrix is degenerate, the result returned can not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
References


See Also

l2dpar for Gaussian densities whose parameters are given.

Examples

```r
require(MASS)
m1 <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3, mu = m1,Sigma = v1)
x2 <- mvrnorm(n = 5, mu = m2, Sigma = v2)
l2d(x1, x2, method = "gaussiand")
l2d(x1, x2, method = "kern")
l2d(x1, x2, method = "kern", varw1 = v1, varw2 = v2)
```

Description

$L^2$ inner product of multivariate ($p > 1$) or univariate ($p = 1$) Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate).

Usage

```r
l2dpar(mean1, var1, mean2, var2, check = FALSE)
```

Arguments

- **mean1**: $p$-length numeric vector: the mean of the first Gaussian density.
- **var1**: $p \times p$ symmetric numeric matrix ($p > 1$) or numeric ($p = 1$): the covariance matrix ($p > 1$) or the variance ($p = 1$) of the first Gaussian density.
- **mean2**: $p$-length numeric vector: the mean of the second Gaussian density.
- **var2**: $p \times p$ symmetric numeric matrix ($p > 1$) or numeric ($p = 1$): the covariance matrix ($p > 1$) or the variance ($p = 1$) of the second Gaussian density.
check logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

Details

Computes the inner product of two Gaussian densities, equal to:

\[(2\pi)^{-p/2} \det(var1+var2)^{-1/2} \exp(-1/2 t(mean1-mean2)(var1+var2)^{-1}(mean1-mean2))\]

If \(p = 1\) the means and variances are numbers, the formula is the same ignoring the following operators: \(t\) (transpose of a matrix or vector) and \(\det\) (determinant of a square matrix).

Value

The \(L^2\) inner product between two Gaussian densities.

Be careful! If check = FALSE and one covariance matrix is degenerated (multivariate case) or one variance is zero (univariate case), the result returned must not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

\l2d\ for parametrically estimated Gaussian densities or nonparametrically estimated densities, given samples;

Examples

\begin{verbatim}
  m1 <- c(1,1)
  v1 <- matrix(c(4,1,1,9),ncol = 2)
  m2 <- c(0,1)
  v2 <- matrix(c(1,0,0,1),ncol = 2)
  l2dpar(m1,v1,m2,v2)
\end{verbatim}
Description

Computes the matrix of the symmetric Chi-squared distances between several multivariate or univariate discrete probability distributions, estimated from samples.

Usage

matddchisqsym(x)

Arguments

x object of class "folder" containing the data. Its elements are data frames (one data frame per distribution) whose columns are factors.

Value

Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise symmetric chi-squared distances between the distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddchisqsym.
matddchisqsympar for discrete probability densities, given the probabilities on the same support.

Examples

# Example 1
x1 <- data.frame(x = c("A", "A", "B", "B"))
x2 <- data.frame(x = c("A", "A", "A", "B", "B"))
x3 <- data.frame(x = c("A", "A", "B", "B", "B"))
xf <- folder(x1, x2, x3)
matddchisqsym(xf)

# Example 2
x1 <- data.frame(x = factor(c("a", "a", "a", "b", "b")),
                 y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                 y = factor(c("a", "a", "a", "b", "b")))
matddchisqsympar

Matrix of distances between discrete probability densities given the probabilities on their common support

Description

Computes the matrix of the symmetric Chi-squared distances between several multivariate or univariate discrete probability distributions on the same support (which can be a Cartesian product of q sets), given the probabilities of the states (which are q-tuples) of the support.

Usage

matddchisqsympar(freq)

Arguments

freq list of arrays. Their dim attribute is a vector with length q, its elements containing the numbers of levels of the sets. Each array contains the probabilities of the discrete distribution on the same support.

Value

Positive symmetric matrix whose order is equal to the number of distributions, consisting of the pairwise symmetric chi-squared distances between these distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddchisqsympar.
matddchisqsym for discrete probability densities which are estimated from the data.

```r
y = factor(c("a", "a", "b", "a", "b"))
x3 <- data.frame(x = factor(c("A", "A", "B", "B", "B")), y = factor(c("a", "b", "a", "b", "a", "b")))
xf <- folder(x1, x2, x3)
matddchisqsym(xf)
```
Description

Computes the matrix of the Hellinger (or Matusita) distances between several multivariate or univariate discrete probability distributions, estimated from samples.

Usage

matddhellinger(x)

Arguments

x

object of class "folder" containing the data. Its elements are data frames (one data frame per distribution) whose columns are factors.

Value

Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise Hellinger distances between the distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddhellinger.

matddhellingerpar for discrete probability densities, given the probabilities on the same support.

Examples

# Example 1
x1 <- data.frame(x = c("A", "A", "B", "B"))
x2 <- data.frame(x = c("A", "A", "A", "B", "B"))
x3 <- data.frame(x = c("A", "A", "B", "B", "B"))
xf <- folder(x1, x2, x3)
matddhellinger(xf)

# Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
                y = factor(c("a", "a", "a", "b", "b")))
Matrix of distances between discrete probability densities given the probabilities on their common support

Description

Computes the matrix of the Hellinger (or Matusita) distances between several multivariate or univariate discrete probability distributions on the same support (which can be a Cartesian product of $q$ sets), given the probabilities of the states (which are $q$-tuples) of the support.

Usage

matddhellingerpar(freq)

Arguments

freq list of arrays. Their dim attribute is a vector with length $q$, its elements containing the numbers of levels of the sets. Each array contains the probabilities of the discrete distribution on the same support.

Value

Positive symmetric matrix whose order is equal to the number of distributions, consisting of the pairwise Hellinger distances between these distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddhellingerpar.
matddhellinger for discrete probability densities which are estimated from the data.
**matddjeffreys**  
*Matrix of distances between discrete probability densities given samples*

**Description**

Computes the matrix of the Jeffreys divergences between several multivariate or univariate discrete probability distributions, estimated from samples.

**Usage**

```r
matddjeffreys(x)
```

**Arguments**

- `x`: object of class "folder" containing the data. Its elements are data frames (one data frame per distribution) whose columns are factors.

**Value**

Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise Jeffreys divergences between the distributions.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

**References**


**See Also**

- `ddjeffreys`
- `matddjeffreyspar` for discrete probability densities, given the probabilities on the same support.

**Examples**

```r
Example 1
x1 <- data.frame(x = c("A", "A", "B", "B"))
x2 <- data.frame(x = c("A", "A", "B", "B"))
x3 <- data.frame(x = c("A", "A", "B", "B", "B"))
xf <- folder(x1, x2, x3)
matddhellinger(xf)

Example 2
x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
 y = factor(c("a", "a", "a", "b", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
 y = factor(c("a", "a", "a", "b", "b", "b")))
```
matddjeffreyspar

Matrix of divergences between discrete probability densities given the probabilities on their common support

Description

Computes the matrix of the Jeffreys divergences between several multivariate or univariate discrete probability distributions on the same support (which can be a Cartesian product of \( q \) sets), given the probabilities of the states (which are \( q \)-tuples) of the support.

Usage

matddjeffreyspar(freq)

Arguments

freq  
list of arrays. Their dim attribute is a vector with length \( q \), its elements containing the numbers of levels of the sets. Each array contains the probabilities of the discrete distribution on the same support.

Value

Positive symmetric matrix whose order is equal to the number of distributions, consisting of the pairwise Jeffreys divergences between these distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddjeffreyspar.
matddjeffreys for discrete probability densities which are estimated from the data.
matddjensen

Matrix of divergences between discrete probability densities given samples

Description

Computes the matrix of the Jensen-Shannon divergences between several multivariate or univariate discrete probability distributions, estimated from samples.

Usage

matddjensen(x)

Arguments

x object of class "folder" containing the data. Its elements are data frames (one data frame per distribution) whose columns are factors.

Value

Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise Jensen-Shannon divergences between the distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddjensen.

matddjensenpar for discrete probability densities, given the probabilities on the same support.

Examples

# Example 1
x1 <- data.frame(x = c("A", "A", "B", "B"))
x2 <- data.frame(x = c("A", "B", "A", "B"))
x3 <- data.frame(x = c("A", "B", "A", "B", "B"))
xf <- folder(x1, x2, x3)
matdhellinger(xf)

# Example 2
x1 <- data.frame(x = factor(c("a", "a", "a", "b", "b")),
y = factor(c("a", "a", "a", "b", "b")))
x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
y = factor(c("a", "a", "b", "b")))
x3 <- data.frame(x = factor(c("a", "a", "b", "b")))
y = factor(c("a", "a", "b", "a", "b"))
x3 <- data.frame(x = factor(c("A", "A", "B", "B", "B", "B")),
                 y = factor(c("a", "b", "a", "b", "a", "b")))
xf <- folder(x1, x2, x3)
matddhellinger(xf)

matddjensenpar  Matrix of divergences between discrete probability densities given the
probabilities on their common support

Description
Computes the matrix of the Jensen-Shannon divergences between several multivariate or univariate
discrete probability distributions on the same support (which can be a Cartesian product of \( q \) sets),
given the probabilities of the states (which are \( q \)-tuples) of the support.

Usage
matddjensenpar(freq)

Arguments
freq  list of arrays. Their \texttt{dim} attribute is a vector with length \( q \), its elements contain-
ing the numbers of levels of the \textit{sets}. Each array contains the probabilities of
the discrete distribution on the same support.

Value
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise
Jensen-Shannon divergences between the discrete probability densities.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also
ddjensenpar.
matddjensen for discrete probability densities which are estimated from the data.
matddlp  Matrix of distances between discrete probability distributions given samples

Description
Computes the matrix of the $L^p$ distances between several multivariate or univariate discrete probability distributions, estimated from samples.

Usage
matddlp(x, p = 1)

Arguments
x object of class "folder" containing the data. Its elements are data frames (one data frame per distribution) whose columns are factors.
p integer. Parameter of the distance.

Value
Positive symmetric matrix whose order is equal to the number of data frames (or distributions), consisting of the pairwise $L^p$ distances between the distributions.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References

See Also
dlp.
matddlppar for discrete probability distributions, given the probabilities on the same support.

Examples
# Example 1
x1 <- data.frame(x = c("A", "A", "B", "B"))
x2 <- data.frame(x = c("A", "A", "A", "B", "B"))
x3 <- data.frame(x = c("A", "A", "B", "B", "B", "B"))
xf <- folder(x1, x2, x3)
matddlp(xf)
matddlp(xf, p = 2)

# Example 2
Description

Computes the matrix of the $L^p$ distances between several multivariate or univariate discrete probability distributions on the same support (which can be a Cartesian product of $q$ sets), given the probabilities of the states (which are $q$-tuples) of the support.

Usage

matddlppar(freq, p = 1)

Arguments

freq
list of arrays. Their dim attribute is a vector with length $q$, its elements containing the numbers of levels of the sets. Each array contains the probabilities of the discrete distribution on the same support.

p
integer. Parameter of the distance.

Value

Positive symmetric matrix whose order is equal to the number of distributions, consisting of the pairwise $L^p$ distances between these distributions.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

ddlppar.
matddlp for discrete probability distributions which are estimated from samples.
matdistl2d

**Matrix of \( L^2 \) distances between probability densities**

**Description**

Computes the matrix of the \( L^2 \) distances between several multivariate \((p > 1)\) or univariate \((p = 1)\) probability densities, estimated from samples.

**Usage**

```r
matdistl2d(x, method = "gaussian", varwL = NULL)
```

**Arguments**

- `x`: object of class "folder" containing the data. Its elements have only numeric variables (observations of the probability densities). If there are non numeric variables, there is an error.
- `method`: string. It can be:
  - "gaussian" if the densities are considered to be Gaussian.
  - "kern" if they are estimated using the Gaussian kernel method.
- `varwL`: list of matrices. The smoothing bandwidths for the estimation of each probability density. If they are omitted, the smoothing bandwidths are computed using the normal reference rule matrix bandwidth (see details of the `lRd` function).

**Value**

Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise distances between the probability densities.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**See Also**

- `distl2d`
- `matdistl2dpar` when the probability densities are Gaussian, given the parameters (means and variances).

**Examples**

```r
data(roses)
Multivariate:
X <- as.folder(roses[,c("Sha","Den","Sym","rose")], groups = "rose")
summary(X)
mean.X <- mean(X)
```
matdist12d

## matdist12d

**Matrix of \( L^2 \) distances between \( L^2 \)-normed probability densities**

### Description

Computes the matrix of the \( L^2 \) distances between several multivariate \((p > 1)\) or univariate \((p = 1)\) \( L^2 \)-normed probability densities, estimated from samples, where a \( L^2 \)-normed probability density is the original probability density function divided by its \( L^2 \)-norm.

### Usage

```r
matdist12d(x, method = "gaussiand", varwl = NULL)
```

### Arguments

- **x**: object of class "folder" containing the data. Its elements have only numeric variables (observations of the probability densities). If there are non numeric variables, there is an error.
- **method**: string. It can be:
  - "gaussiand" if the densities are considered to be Gaussian.
• "kern" if they are estimated using the Gaussian kernel method.

\text{varwl} \quad \text{list of matrices. The smoothing bandwidths for the estimation of each probability density. If they are omitted, the smoothing bandwidths are computed using the normal reference rule matrix bandwidth (see details of the \texttt{12d} function).}

\textbf{Value}

Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise distances between the $L^p$-normed probability densities.

\textbf{Author(s)}

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

\textbf{See Also}

\texttt{distl2dnorm}, \texttt{matdistl2d} for the distance matrix between probability densities. \texttt{matdistl2dnormpar} when the probability densities are Gaussian, given the parameters (means and variances).

\textbf{Examples}

\begin{verbatim}
data(roses)

# Multivariate: X <- as.folder(roses[,c("Sha","Den","Sym","rose")], groups = "rose") summary(X) mean.X <- mean(X) var.X <- var.folder(X)

# Parametrically estimated Gaussian densities: matdistl2dnorm(X)

## Not run: # Estimated densities using the Gaussian kernel method (normal reference rule bandwidth): matdistl2dnorm(X, method = "kern")

# Estimated densities using the Gaussian kernel method (bandwidth provided): matdistl2dnorm(X, method = "kern", varwl = var.X)

## End(Not run)

# Univariate: X1 <- as.folder(roses[,c("Sha","rose")], groups = "rose") summary(X1) mean.X1 <- mean(X1) var.X1 <- var.folder(X1)

# Parametrically estimated Gaussian densities: matdistl2dnorm(X1)
\end{verbatim}
matdistl2dnormpar

Matrix of $L^2$ distances between $L^2$-normed Gaussian densities given their parameters

Description
Computes the matrix of the $L^2$ distances between several multivariate ($p > 1$) or univariate ($p = 1$) $L^2$-normed Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate), where a $L^2$-normed Gaussian density is the original probability density function divided by its $L^2$-norm.

Usage
matdistl2dnormpar(meanL, varL)

Arguments
meanL list of the means ($p = 1$) or vector means ($p > 1$) of the Gaussian densities.
varL list of the variances ($p = 1$) or covariance matrices ($p > 1$) of the Gaussian densities.

Value
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise distances between the $L^2$-normed probability densities.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
distl2dnormpar.
matdistl2dp for the distance matrix between Gaussian densities, given their parameters.
matdistl2dnorm for the distance matrix between normed probability densities which are estimated from the data.
**Examples**

```r
Multivariate:
X <- roses[,c("Sha","Den","Sym","rose")]
summary(X)
mean.X <- as.list(by(X[, 1:3], X$rose, colMeans))
var.X <- as.list(by(X[, 1:3], X$rose, var))

Gaussian densities, given parameters
matdistl2dnormpar(mean.X, var.X)

Univariate:
X1 <- roses[,c("Sha","rose")]
summary(X1)
mean.X1 <- by(X1$Sha, X1$rose, mean)
var.X1 <- by(X1$Sha, X1$rose, var)

Gaussian densities, given parameters
matdistl2dnormpar(mean.X1, var.X1)
```

---

**Description**

Computes the matrix of the $L^2$ distances between several multivariate ($p > 1$) or univariate ($p = 1$) Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate).

**Usage**

```r
matdistl2dpar(meanL, varL)
```

**Arguments**

- **meanL**: list of the means ($p = 1$) or vector means ($p > 1$) of the Gaussian densities.
- **varL**: list of the variances ($p = 1$) or covariance matrices ($p > 1$) of the Gaussian densities.

**Value**

Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise distances between the probability densities.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
See Also

distl2dpar.
matdistl2d for the distance matrix between probability densities which are estimated from the data.

Examples

data(roses)

# Multivariate:
X <- roses[,c("Sha","Den","Sym","rose")]
summary(X)
mean.X <- as.list(by(X[, 1:3], X$rose, colMeans))
var.X <- as.list(by(X[, 1:3], X$rose, var))

# Gaussian densities, given parameters
matdistl2dpar(mean.X, var.X)

# Univariate:
X1 <- roses[,c("Sha","rose")]
summary(X1)
mean.X1 <- by(X1$Sha, X1$rose, mean)
var.X1 <- by(X1$Sha, X1$rose, var)

# Gaussian densities, given parameters
matdistl2dpar(mean.X1, var.X1)

mathellinger Matrix of Hellinger distances between Gaussian densities

Description

Computes the matrix of the Hellinger distances between several multivariate \( (p > 1) \) or univariate \( (p = 1) \) Gaussian densities given samples and using hellinger.

Usage

mathellinger(x)

Arguments

x object of class "folder" containing the data. Its elements have only numeric variables (observations of the probability densities). If there are non numeric variables, there is an error.

Value

Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise Hellinger distances between the probability densities.
**mathellingerpar**

**Author(s)**
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**See Also**
hellinger.

**mathellingerpar** when the probability densities are Gaussian, given the parameters (means and variances).

**Examples**

data(roses)

# Multivariate:
X <- as.folder(roses[,c("Sha","Den","Sym","rose")], groups = "rose")
summary(X)
mathellinger(X)

# Univariate :
X1 <- as.folder(roses[,c("Sha","rose")], groups = "rose")
summary(X1)
mathellinger(X1)

<table>
<thead>
<tr>
<th>mathellingerpar</th>
<th>Matrix of Hellinger distances between Gaussian densities given their parameters</th>
</tr>
</thead>
</table>

**Description**
Computes the matrix of the Hellinger distances between several multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities, given their means and variances, using **hellingerpar**.

**Usage**

mathellingerpar(meanL, varL)

**Arguments**

- **meanL**: list of the means \((p = 1)\) or vector means \((p > 1)\) of the Gaussian densities.
- **varL**: list of the variances \((p = 1)\) or covariance matrices \((p > 1)\) of the Gaussian densities.

**Value**
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise distances between the Gaussian densities.
matipl2d

Matrix of $L^2$ inner products of probability densities

Description

Computes the matrix of the $L^2$ inner products between several multivariate ($p > 1$) or univariate ($p = 1$) probability densities, estimated from samples, using l2d.

Usage

matipl2d(x, method = "gaussiand", varwL = NULL)

Arguments

x

object of class "folder" containing the data. Its elements have only numeric variables (observations of the probability densities). If there are non numeric variables, there is an error.

method

string. It can be:
- "gaussiand" if the densities are considered to be Gaussian.
- "kern" if they are estimated using the Gaussian kernel method.
matipl2d

varwl

list of matrices. The smoothing bandwidths for the estimation of each probability density. If they are omitted, the smoothing bandwidths are computed using the normal reference rule matrix bandwidth (see details of the \texttt{lRd} function).

**Value**

Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise inner products between the probability densities.

**Author(s)**

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

**See Also**

\texttt{lRd}.

\texttt{matipl2dpar} when the probability densities are Gaussian, given the parameters (means and variances).

**Examples**

```r
data(roses)
Multivariate:
X <- as.folder(roses[,c("Sha","Den","Sym","rose")], groups = "rose")
summary(X)
mean.X <- mean(X)
var.X <- var.folder(X)

Parametrically estimated Gaussian densities:
matipl2d(X)

Estimated densities using the Gaussian kernel method (normal reference rule bandwidth):
matipl2d(X, method = "kern")

Estimated densities using the Gaussian kernel method (bandwidth provided):
matipl2d(X, method = "kern", varwl = var.X)

Univariate:
X1 <- as.folder(roses[,c("Sha","rose")], groups = "rose")
summary(X1)
mean.X1 <- mean(X1)
var.X1 <- var.folder(X1)

Parametrically estimated Gaussian densities:
matipl2d(X1)

Estimated densities using the Gaussian kernel method (normal reference rule bandwidth):
matipl2d(X1, method = "kern")

Estimated densities using the Gaussian kernel method (bandwidth provided):
matipl2d(X1, method = "kern", varwl = var.X1)
```
matipl2dpar  Matrix of $L^2$ inner products of Gaussian densities

Description
Computes the matrix of the $L^2$ inner products between several multivariate ($p > 1$) or univariate ($p = 1$) Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate).

Usage
matipl2dpar(meanL, varL)

Arguments
meanL list of the means ($p = 1$) or vector means ($p > 1$) of the Gaussian densities.
varL list of the variances ($p = 1$) or covariance matrices ($p > 1$) of the Gaussian densities.

Value
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise inner products between the Gaussian densities.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
l2dpar.
matipl1d for the distance matrix between probability densities which are estimated from the data.

Examples
data(roses)
# Multivariate:
X <- roses[,c("Sha","Den","Sym","rose")]
summary(X)
mean.X <- as.list(by(X[, 1:3], X$rose, colMeans))
var.X <- as.list(by(X[, 1:3], X$rose, var))

# Gaussian densities, given parameters
matipl2dpar(mean.X, var.X)

# Univariate :
X1 <- roses[,c("Sha","rose")]

matjeffreys

summary(X1)
mean.X1 <- by(X1$Sha, X1$rose, mean)
var.X1 <- by(X1$Sha, X1$rose, var)

# Gaussian densities, given parameters
matipl2dpar(mean.X1, var.X1)

```
matjeffreys

Matrix of Jeffreys measures (symmetrised Kullback-Leibler diver-
gences) between Gaussian densities

Description
Computes the matrix of the Jeffreys measures between several multivariate (p > 1) or univariate (p = 1) Gaussian densities, given samples.

Usage
matjeffreys(x)

Arguments
x

 object of class "folder" containing the data. Its elements have only numeric variables (observations of the probability densities). If there are non numeric variables, there is an error.

Value
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise Jeffreys measures between the Gaussian densities.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
matjeffreyspar if the parameters of the Gaussian densities are known.

Examples

data(roses)

Multivariate:
X <- as.folder(roses[,c("Sha","Den","Sym","rose")], groups = "rose")
summary(X)
matjeffreys(X)

Univariate :
```
Matrix of Jeffreys measures (symmetrised Kullback-Leibler divergences) between Gaussian densities

Description
Computes the matrix of the Jeffreys measures between several multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate), using `jeffreyspar`.

Usage
`matjeffreyspar(meanL, varL)`

Arguments
- `meanL`: list of the means \((p = 1)\) or vector means \((p > 1)\) of the Gaussian densities.
- `varL`: list of the variances \((p = 1)\) or covariance matrices \((p > 1)\) of the probability densities.

Value
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise Jeffreys measures between the Gaussian densities.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
- `jeffreyspar`
- `matjeffreys` for the matrix of Jeffreys divergences between probability densities which are estimated from the data.

Examples
```r
X1 <- as.folder(roses[, c("Sha", "Rose")], groups = "rose")
summary(X1)
matjeffreys(X1)
```
matwasserstein

matjeffreyspar(mean.X, var.X)

# Univariate:
X1 <- roses[,c("Sha","rose")]
summary(X1)
mean.X1 <- by(X1$Sha, X1$rose, mean)
var.X1 <- by(X1$Sha, X1$rose, var)
matjeffreyspar(mean.X1, var.X1)

matwasserstein Matrix of 2-Wassterstein distance between Gaussian densities

Description

Computes the matrix of the 2-Wassterstein distances between several multivariate ($p > 1$) or univariate ($p = 1$) Gaussian densities, given samples.

Usage

matwasserstein(x)

Arguments

x object of class "folder" containing the data. Its elements have only numeric variables (observations of the probability densities). If there are non numeric variables, there is an error.

Value

Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise 2-Wassterstein distance between the Gaussian densities.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

matwassersteinpar if the parameters of the Gaussian densities are known.

Examples

data(roses)

# Multivariate:
X <- as.folder(roses[,c("Sha","Den","Sym","rose")], groups = "rose")
summary(X)
matwasserstein(X)
matwassersteinpar

Matrix of 2-Wasserstein distances between Gaussian densities

Description
Computes the matrix of the 2-Wasserstein distances between several multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities, given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate), using \texttt{wassersteinpar}.

Usage
\[
\text{matwassersteinpar}(\text{meanL}, \text{varL})
\]

Arguments
\begin{itemize}
\item \texttt{meanL} \hspace{1cm} list of the means \((p = 1)\) or vector means \((p > 1)\) of the Gaussian densities.
\item \texttt{varL} \hspace{1cm} list of the variances \((p = 1)\) or covariance matrices \((p > 1)\) of the probability densities.
\end{itemize}

Value
Positive symmetric matrix whose order is equal to the number of densities, consisting of the pairwise 2-Wasserstein distances between the Gaussian densities.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
\texttt{wasserstein}, \texttt{matwasserstein} for the matrix of 2-Wasserstein distances between probability densities which are estimated from the data.

Examples
\[
data(\text{roses})
\]
\begin{verbatim}
# Univariate:
X1 <- as.folder(\text{roses}[,c("Sha","rose")], \text{groups} = "rose")
summary(X1)
matwasserstein(X1)
\end{verbatim}
\begin{verbatim}
# Multivariate:
X <- \text{roses}[,c("Sha","Den","Sym","rose")]
summary(X)
mean.X <- as.list(by(X[, 1:3], X$\text{rose}, \text{colMeans}))
var.X <- as.list(by(X[, 1:3], X$\text{rose}, \text{var}))
\end{verbatim}
mdsdd

Multidimensional scaling of discrete probability distributions

Description

Applies the multidimensional scaling (MDS) method to discrete probability distributions in order to describe \( T \) groups of individuals on which are observed \( q \) categorical variables. It returns an object of class mdsdd. It applies cmdscale to the distance matrix between the \( T \) distributions.

Usage

mdsdd(xf, distance = c("l1", "l2", "chisqsym", "hellinger", "jeffreys", "jensen", "lp"), nb.factors = 3, nb.values = 10,
association = c("cramer", "tschuprow", "pearson", "phi"),
sub.title = "", plot.eigen = TRUE, plot.score = FALSE,
nscore = 1:3, filename = NULL, group.name = "group", add = TRUE, p)

Arguments

xf

object of class folder, or list of arrays (or tables).

If it is a folder, its elements are data frames with \( q \) columns (considered as factors). The \( t^{th} \) element \( (t = 1, \ldots, T) \) matches with the \( t^{th} \) group.

If it is a list of arrays (or tables), the \( t^{th} \) element \( (t = 1, \ldots, T) \) is the table of the joint distribution (absolute or relative frequencies) of the \( t^{th} \) group. These arrays have the same shape, and their elements are non-negative numbers (if they are not, there is an error).

distance

The distance or divergence used to compute the distance matrix between the discrete distributions (see Details). It can be:

- "l1" (default) the \( L^p \) distance with \( p = 1 \)
- "l2" the \( L^p \) distance with \( p = 2 \)
- "chisqsym" the symmetric Chi-squared distance
- "hellinger" the Hellinger metric (Matusita distance)
- "jeffreys" the Jeffreys distance (symmetrised Kullback-Leibler divergence)
- "jensen" the Jensen-Shannon distance
- "lp" the \( L^p \) distance with \( p \) given by the argument \( p \) of the function.
nb.factors numeric. Number of returned principal coordinates (default nb.factors = 3). This number must be less than \( T - 1 \).
Warning: The plot.mdsdd and interpret.mdsdd functions cannot take into account more than nb.factors principal factors.

nb.values numeric. Number of returned eigenvalues (default nb.values = 10).

association The association measure between two discrete distributions to be used (see Details). It can be:

- "cramer" (default) Cramer's V (see cramer.folder).
- "tschuprow" Tschuprow's T (tschuprow.folder).
- "pearson" Pearson's contingency coefficient (pearson.folder).
- "phi" phi (phi.folder).

sub.title string. Subtitle for the graphs (default NULL).

plot.eigen logical. If TRUE (default), the barplot of the eigenvalues is plotted.

plot.score logical. If TRUE, the graphs of new coordinates are plotted. A new graphic device is opened for each pair of coordinates defined by nscore argument.

nscore numeric vector. If plot.score = TRUE, the numbers of the principal coordinates which are plotted. By default, nscore = 1:3. Its components cannot be greater than nb.factors.

filename string. Name of the file in which the results are saved. By default (filename = NULL) they are not saved.

group.name string. Name of the grouping variable. Default: groupname = "group".

add logical indicating if an additive constant should be computed and added to the non diagonal dissimilarities such that the modified dissimilarities are Euclidean (default TRUE; see add argument of cmdscale).

p integer. Optional. When distance = "1p" \((L^p \text{ distance with } p > 2)\), \(p\) is the parameter of the distance.

Details

If a folder is given as argument, the \( T \) discrete probability distributions \( f_t \) corresponding to the \( T \) groups of individuals are estimated from observations. Then the distances/dissimilarities between the estimated distributions are computed, using the distance or divergence defined by the distance argument:

If the distance is "11", "12" or "1p", the distances are computed by the function matdd1ppar. Otherwise, it can be computed by matddchisqsypar ("chisqsym"), matddhellingerpar ("hellinger"), matddjeffreyspar ("jeffreys") or matddjensenpar ("jensen").

The association measures are computed accordingly to the value of the parameter association The computation uses the corresponding function of the package DescTools (see Assocs). Notice that an association measure between a constant variable with any other variable is set to zero. The association measure between each variable with itself is not computed and the diagonal of the returned association matrices is set to NA.
Value

Returns an object of class mdsdd, that is a list including:

- **inertia**: data frame of the eigenvalues and the percentages of their sum.
- **scores**: data frame of the coordinates along the nb. factors first principal coordinates.
- **jointp**: list of arrays. The joint probability distribution for each group.
- **margins**: list of two data frames giving respectively:
  - The probability distribution of each variable for each group. Each column of the data frame corresponds to one level of one categorical variable and contains the probabilities of this level in each group.
  - The joint probability distribution of each pair of variables for each group. Each column of the data frame corresponds to one pair of levels of two categorical variables (one level per variable) and contains the probabilities of this pair of levels in each group.
- **associations**: list of \( T \) matrices. Each matrix corresponds to a group and gives the pairwise association measures between the \( q \) categorical variables.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

References


See Also

print.mdsdd, plot.mdsdd, interpret.mdsdd

Examples

```r
Example 1 with a folder (10 groups) of 3 factors
obtained by converting numeric variables
data(roses)
xr = roses[,c("Sha", "Den", "Sym", "rose")]
xr$Sha = cut(xr$Sha, breaks = c(0, 5, 7, 10))
xr$Den = cut(xr$Den, breaks = c(0, 4, 6, 10))
xr$Sym = cut(xr$Sym, breaks = c(0, 6, 8, 10))
xf = as.folder(xr, groups = "rose")
a = mdsdd(xf)
print(a)
print(a$jointp)
print(a$margins[[1]]) # equivalent to print(a$margins$margin1)
print(a$margins[[2]])
print(a$associations)

Example 2 with a list of 7 arrays
```
mean.folder

Means of a folder of data sets

Description

Computes the means by column of the elements of an object of class `folder`.

Usage

```r
S3 method for class 'folder'
mean(x, ..., na.rm = FALSE)
```

Arguments

- `x` an object of class `folder` that is a list of data frames with the same column names.
- `...` further arguments passed to or from other methods.
- `na.rm` logical. Should missing values (including NaN) be omitted from the calculations? (see `mean` or `colMeans`)

Details

It uses `colMeans` to compute the mean by numeric column of each element of the folder. If some columns of the data frames are not numeric, there is a warning, and the means are computed on the numeric columns only.

Value

A list whose elements are the mean by column of the elements of the folder.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

`folder` to create an object of class `folder`. `var.folder`, `cor.folder`, `skewness.folder`, `kurtosis.folder` for other statistics for `folder` objects.
Examples

```r
First example: iris (Fisher)
data(iris)
iris.fold <- as.folder(iris, "Species")
iris.means <- mean(iris.fold)
print(iris.means)

Second example: roses
data(roses)
roses.fold <- as.folder(roses, "rose")
roses.means <- mean(roses.fold)
print(roses.means)
```

Description

For a vertex in an object of class `foldermtg`, computes its decomposition into vertices of an upper scale.

Usage

```r
mtgcomponents(x, vertex, scale)
```

Arguments

- **x**: an object of class `foldermtg`.
- **vertex**: character. The identifier of a vertex. These identifiers are the rownames of the data frame `x$topology`.
- **scale**: integer. The scale of the components of `vertex` which will be returned.

Details

If `vertex` is a vertex of scale `i`, then `scale` (the scale of the returned components of `vertex`) must be higher than `i`. For example, if `vertex` is a vertex of scale 2, then `scale > 2`, for instance `scale = 3`. The returned components are then vertices of scale 3 which have a decomposition relationship with `vertex`.

Value

A character vector, containing the identifiers of the components of `vertex`.

If there is no component, then the returned vector is empty.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
mtgorder

References
Cokelaer, T. and Pradal, C. (2010). MTG user guide (Functions for moving in MTGs)

See Also
read.mtg: reads a MTG file and builds an object of class foldermtg.
mtgorder, mtgrank.

Examples
mtgfile <- system.file("extdata/plant1.mtg", package = "dad")
xmtg <- read.mtg(mtgfile)

# Vertex of class "P" (plant, of scale 1), components of class 2 (axes: "A")
mtgcomponents(xmtg, vertex = "v01", scale = 2)

# Vertex of class "P" (plant, of scale 1), components of class 3 ("O", "M" and "I")
mtgcomponents(xmtg, vertex = "v01", scale = 3)

# Vertex of class "A" (stem, of scale 2), components of class 3 ("O", "M" and "I")
mtgcomponents(xmtg, vertex = "v12", scale = 3)

mtgorder Branching order of vertices

Description
Computes the branching order of vertices contained in an object of class foldermtg. The order of a vertex is the number of the column of topology, which contains this vertex.

Usage
mtgorder(x, classes = "all", display = FALSE)

Arguments
x an object of class foldermtg.
classes character vector. The classes of entities for which the branching order is computed. If omitted, the branching orders are computed for all entities.
display logical. If TRUE, the data frames of x corresponding to classes are displayed. Default: FALSE.

Details
Returns x after appending the branching orders of the vertices of the classes given in the argument classes. The branching orders are appended to the data frames containing the vertices (one data frame per class) and the values of their corresponding features.
Value

Returns an object of class `foldermtg`, that is a list of data frames.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

`read.mtg`: reads a MTG file and builds an object of class `foldermtg`.

`mtgorder`.

Examples

```r
mtgfile <- system.file("extdata/plant1.mtg", package = "dad")
xmtg <- read.mtg(mtgfile)

The branching orders
ymtg <- mtgorder(xmtg)
print(ymtg)

Add the branching orders to the 'foldermtg'
xmtg <- mtgorder(xmtg, display = TRUE)
```

---

Class `foldermtg`

Description

These data produced by the SAGAH team (Sciences Agronomiques Appliquées à l’Horticulture, now Research Institute on Horticulture and Seeds), provide the topological structure of a rosebush.

Usage

`data("mtgplant1")`

Format

This object of class `foldermtg` is a list of 10 data frames:

- `mtgplant1$classes`: data frame with 6 rows and 5 columns named SYMBOL (factor: the classes of the vertices), SCALE (integer: the scale at which they appear), DECOMPOSITION (factor), INDEXATION (factor) and DEFINITION (factor).

The vertex classes are:
- P: the whole plant (scale 1)
- A: the axes (scale 2)
- O, M, I: the ..., metamers (phytomers) and inflorescences (scale 3)

* `mtgplant1$description`: data frame with 8 rows and 4 columns (factors) named LEFT, RIGHT, RELTYPE and MAX.

* `mtgplant1$features`: data frame with 13 rows and 2 columns (factors) named NAME and TYPE.

* `mtgplant1$topology`: data frame with 88 rows and 4 columns:
  - `order1`, `order2` and `order3` (factors): the codes of the vertices, as they are found in the MTG table of the MTG file. The column on which a code appears gives the branching order of the corresponding vertex.
  - `vertex` (character): the same codes of vertices, on a single column.

* `mtgplant1$coordinates`: data frame with 86 rows and 6 columns (numeric) named `xx`, `yy` and 22: cartesian coordinates of the vertices, and `aa`, `bb` and `cc`: an other coordinates system.

* `mtgplant1$P`, `mtgplant1$A`, `mtgplant1$M`, `mtgplant1$I`: data frames of the features on the vertices (all numeric).

### Details

This object of class `foldermtg` can be built by reading the data in a MTG file (see examples).

### References


### See Also

- `read.mtg`: to read an MTG file and build an object of class MTG.
- `mtgplant2`: an other example of such data.

### Examples

```r
data(mtgplant1)
print(mtgplant1)

To read these data from a MTG file:
mtgfile1 <- system.file("extdata/plant1.mtg", package = "dad")
mtgplant1 <- read.mtg(mtgfile1)
print(mtgplant1)
```
mtgplant2

Class foldermtg

Description

These data provides the topology of a bushy plant.

Usage

data(“mtgplant2”)

Format

This object of class foldermtg is a list of 9 data frames:

- mtgplant2$classes: data frame with 6 rows and 5 columns named SYMBOL (factor: the classes of the vertices), SCALE (integer: the scale at which they appear), DECOMPOSITION (factor), INDEXATION (factor) and DEFINITION (factor).
  The vertex classes are:
  - P: the whole plant (scale 1)
  - A: the axes (scale 2)
  - F, I: the flower and internodes (scale 3)
- mtgplant2$description: data frame with 4 rows and 4 columns (factors) named LEFT, RIGHT, RELTYPE and MAX.
- mtgplant2$features: data frame with 9 rows and 2 columns (factors) named NAME and TYPE.
- mtgplant2$topology: data frame with 14 rows and 3 columns:
  - order1 and order2 (factors): the codes of the vertices, as they are found in the MTG table of the MTG file. The column on which a code appears gives the branching order of the corresponding vertex.
  - vertex (character): the same codes of vertices, on a single column.
- mtgplant2$coordinates: data frame with 0 rows and 0 columns (there are no spatial coordinates in these MTG data).
- mtgplant2$P, mtgplant2$A, mtgplant2$F and mtgplant2$I: data frames of the features on the vertices (all numeric).

Details

This object of class foldermtg can be built by reading the data in a MTG file (see examples).

References

See Also

read.mtg: to read an MTG file and build an object of class MTG.

mtgplant1: an other example of such data.

Examples

data(mtgplant2)
print(mtgplant2)

# To read these data from a MTG file:
mtgfile2 <- system.file("extdata/plant2.mtg", package = "dad")
mtgplant2 <- read.mtg(mtgfile2)
print(mtgplant2)

mtgrank

Ranks of vertices in a decomposition

Description

Computes the rank of the vertices contained in an object of class foldermtg. The vertex sequences resulting from a decomposition of other vertices, the rank of the vertices making up the sequences are computed from the beginning of the sequence or from its end. These ranks can be absolute or relative.

For example: ranks of the phytomeres and inflorescences in each stem.

Usage

mtgrank(x, classe, parent.class = NULL, sibling.classes = NULL, relative = FALSE, from = c("origin", "end"), rank.name = "Rank", display = FALSE)

Arguments

x an object of class foldermtg.

classe character. The class of the vertices for which the ranks are computed.

parent.class character. The class of the parent entities of those for which the ranks are computed. If omitted, the entities of scale maxscal - 1, where maxscal is the highest scale in x data.

sibling.classes character vector. The classes of vertices appearing at the same scale as classe, which are used in the computing of the ranks.

If omitted, only the vertices of class classe are used to compute the ranks.

relative logical. If TRUE, the relative ranks are computed, i.e. ranks from 0 to 1. Default: FALSE.
from character. It can be "origin" (default) or "end". If from = "origin", the ranks are computed from the origin to the end, i.e. from 1 to its maximum (from 0 to 1 if relative = TRUE). If from = "end", they are computed from the end to the origin, i.e. from the maximum to 1 (from 1 to 0 if relative = TRUE).

rank.name character. Name of the rank column that is appended to x[[classe]]. The default is "Rank".

display logical. If TRUE, the data frames of x corresponding to classes are displayed. Default: FALSE.

Details
If the branching orders of the entities given by classe, parent.class and, if relevant, sibling.classes are not contained in x, mtgrank() uses mtgorder to compute them. The ranks are appended to the data frames containing the vertices (one data frame per class) and the values of their corresponding features.

Value
Returns an object of class foldermtg, that is a list of data frames.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also
read.mtg: reads a MTG file and builds an object of class foldermtg.
mtgorder.

Examples
mtgfile <- system.file("extdata/plant1.mtg", package = "dad")
xmtg <- read.mtg(mtgfile)

ymtg <- mtgrank(xmtg, "M")
print(ymtg)

mtgrank(xmtg, "M", display = TRUE)

mtgrank(xmtg, "M", parent.class = "A", display = TRUE)
mtgrank(xmtg, "M", parent.class = "A", sibling.classes = c("0", "1"), display = TRUE)
mtgrank(xmtg, "M", relative = TRUE, display = TRUE)
mtgrank(xmtg, "M", from = "origin", display = TRUE)
mtgrank(xmtg, "M", from = "end", display = TRUE)
plot.dstats

Plotting scores of STATIS method (interstructure) analysis

Description

Applies to an object of class dstats (see details of the dstats.inter function). Plots the scores.

Usage

## S3 method for class 'dstats'
plot(x, nscore = 1:3, sub.title = NULL, fontsize.points = 1.5, ...)

Arguments

x
object of class dstats (returned by dstats.inter).

nscore
numeric vector. The numbers of the score vectors to be plotted.

Warning: Its components cannot be greater than the nb.factors argument in the call of the dstats.inter function.

sub.title
string. Subtitle to be added to each graph.

fontsize.points
Numeric. Expansion of the characters (or symbols) of the groups on the graph. This works as a multiple of par("cex") (see points).

... optional arguments to plot methods.

Details

Plots the principal scores returned by the dstats.inter function. A new graphics window is opened for each pair of principal axes defined by the nscore argument.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

dstats.inter; print.dstats; interpret.dstats.
Examples

```r
data(roses)
rosesf <- as.folder(roses[,c("Sha","Den","Sym","rose")])

Dual STATIS on the covariance matrices
result <- dstatis.inter(rosesf, data.scaled = FALSE, group.name = "rose")
plot(result)
```

Description

Applies to an object of class fhclustd (see details of the fhclustd function). Plots the dendogram.

Usage

```r
S3 method for class 'fhclustd'
plot(x, labels = NULL, hang = 0.1, check = TRUE, axes = TRUE,
 frame.plot = FALSE, ann = TRUE, main = "Cluster Dendrogram",
 sub = NULL, xlab = NULL, ylab = "Height", ...)
```

Arguments

- `x`: object of class fhclustd (returned by fhclustd).
- `labels`, `hang`, `check`, `axes`, `frame.plot`, `ann`, `main`, `sub`, `xlab`, `ylab`
  Arguments concerning the graphical representation of the dendogram. See plot.hclust.
- `...`: Further graphical arguments. E.g., `cex` controls the size of the labels (if plotted) in the same way as `text`.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

- `fhclustd`; `print.fhclustd`

Examples

```r
data(castles.dated)
xf <- as.folder(castles.dated$stones)
Not run:
result <- fhclustd(xf)
plot(result)
plot(result, hang = -1)

End(Not run)
```
Description

Applies to an object of class `fmdsd` (see the details section of the `fmdsd` function). Plots the scores.

Usage

```r
S3 method for class 'fmdsd'
plot(x, nscore = 1:3, sub.title = NULL, fontsize.points = 1.5, ...)
```

Arguments

- `x` object of class `fmdsd`.
- `nscore` numeric vector. The numbers of the score vectors to be plotted.
  - Warning: Its components cannot be greater than the `nb.factors` argument in the call of the `fmdsd` function.
- `sub.title` string. Subtitle to be added to each graph.
- `fontsize.points` Numeric. Expansion of the characters (or symbols) of the groups on the graph.
  - This works as a multiple of `par("cex")` (see `points`).
- `...` optional arguments to `plot` methods.

Details

Plots the principal scores returned by the function `fmdsd`. A new graphics window is opened for each pair of principal score vectors defined by the `nscore` argument.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References


See Also

`fmdsd`; `print.fmdsd`; `interpret.fmdsd`. 
plot.foldert  

Examples

```r
data(roses)
x <- roses[,c("Sha","Den","Sym","rose")]
rosesfold <- as.folder(x)
result <- fmdsd(rosesfold)
plot(result)
```

plot.foldert  

Plotting data of a foldert

Description

Applies to an object of class `foldert` (called foldert below) that is a list. Plots the longitudinal evolution of a numeric variable for every individuals.

Usage

```r
S3 method for class 'foldert'
plot(x, which = TRUE, type = "l", lty = 1:5, col = 1:6,
 ylim = NULL, ylab = which, main = "", ...)```

Arguments

- `x`
 object of class `foldert` that is a list of data frames with the same column names, each of them corresponding to a time of observation.

- `which`
 character. Name of a column of the data frames of `x`. It gives the name of the variable to be plotted.

 For each element `x[[k]]` of `x`, `x[[k]]` must be numeric. Otherwise, there is an error.

- `na.inter`
 logical. If `TRUE` (default), for each individual, the missing values are deleted before plotting its evolution. If `FALSE`, the line corresponding to each individual is interrupted if there is a missing value, as for `matplot`.

- `type`
 character string (length 1 vector) or vector of 1-character strings (default "l") indicating the type of plot for each of the individuals followed among time, that is for each line of the data frames in the foldert. For further information about this argument, see `matplot`.

- `lty`
 vector of line types. The first element is for the first individual, the second element for the second individual, etc. Line types will be used cyclically until all plots are drawn.

- `col`
 vector of colors. Colors are used cyclically.

- `ylim`
 ranges of y axis. `xlim` is as in `matplot`. See details.

- `ylab`
 a label for the y axis. Default: the name of the plotted variable (which argument).

- `main`
 an overall title for the plot: see `title`.

- `...`
 optional arguments to `plot` methods.
Details

Internally, plot.foldert builds a matrix mdata containing the data of the variable given by which argument. The element mdata[ind, t] of this matrix is the value of the variable which for the individual ind: x[[t]][ind, which]. If the ylim argument is omitted, the range of y axis is given by range(mdata, na.rm = TRUE)*c(0, 1.2).

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

foldert: object of class foldert. as.foldert.data.frame: build an object of class foldert from a data frame. as.foldert.array: build an object of class foldert from a 3d-array.

Examples

data(floribundity)
ftflor <- foldert(floribundity, cols.select = "union", rows.select = "union")
plot(ftflor, which = "nflowers", ylab = "Number of flowers per plant",
 main = "Floribundity of rosebushes, 2010, Angers (France)")
fontsize.points

Numeric. Expansion of the characters (or symbols) of the groups on the graph. This works as a multiple of `par("cex")` (see points).

... optional arguments to `plot` methods.

Details

Plots the principal scores returned by the `fpcad` function. A new graphics window is opened for each pair of principal axes defined by the `nscore` argument.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

`fpcad`, `print.fpcad`, `interpret.fpcad`.

Examples

data(roses)
rosefold <- as.folder(roses[,c("Sha","Den","Sym","rose")])
result <- fpcad(rosefold)
plot(result)

plot.fpcat

Plotting scores of principal component analysis of density functions among time

Description

Applies to an object of class `fpcat` (see details of the `fpcat` function). Plots the scores.

Usage

```r
## S3 method for class 'fpcat'
plot(x, nscore = 1:3, sub.title = NULL, fontsize.points = 1.5, ...)
```
Arguments

x object of class fpcat (returned by fpcat).

nscore numeric vector. The numbers of the score vectors to be plotted.

Warning: Its components cannot be greater than the nb.factors argument in the call of the fpcat function.

sub.title string. Subtitle to be added to each graph.

fontsize.points Numeric. Expansion of the characters (or symbols) of the groups on the graph. This works as a multiple of par("cex") (see points).

Details

Plots:

- the principal scores returned by the fpcat function with arrows from the point corresponding to each time to the next one; a new graphics window is opened for each pair of principal axes defined by the nscore argument.
- the principal scores among time with arrows from each time to the next one; a new graphics window is opened for each principal axis defined by the nscore argument.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

fpcat; print.fpcat

Examples

times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01", "2017-06-01"))
x1 <- data.frame(z1=rnorm(6,1,5), z2=rnorm(6,3,3))
x2 <- data.frame(z1=rnorm(6,4,6), z2=rnorm(6,5,2))
x3 <- data.frame(z1=rnorm(6,7,2), z2=rnorm(6,8,4))
x4 <- data.frame(z1=rnorm(6,9,3), z2=rnorm(6,10,2))
ft <- foldert(x1, x2, x3, x4, times = times, rows.select="intersect")
print(ft)
result <- fpcat(ft)
plot(result)
Plotting scores of multidimensional scaling analysis of discrete distributions

Description

Applies to an object of class "mdsdd" (see the details section of the mdsdd function). Plots the scores.

Usage

```r
## S3 method for class 'mdsdd'
plot(x, nscore = 1:2, sub.title = NULL, fontsize.points = 1.5, ...)
```

Arguments

- `x`: object of class mdsdd.
- `nscore`: numeric vector. The numbers of the score vectors to be plotted. Warning: Its components cannot be greater than the `nb.factors` argument in the call of the fmdsd function.
- `sub.title`: string. Subtitle to be added to each graph.
- `fontsize.points`: Numeric. Expansion of the characters (or symbols) of the groups on the graph. This works as a multiple of `par("cex")` (see `points`).
- `...`: optional arguments to `plot` methods.

Details

Plots the principal scores returned by the function mdsdd. A new graphics window is opened for each pair of principal score vectors defined by the `nscore` argument.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

See Also

mdsdd; print.mdsdd; interpret.mdsdd.

Examples

```r
# INSEE (France): Diploma x Socio professional group, seven years.
data(dspg)
xlista = dspg
a <- mdsdd(xlista)
plot(a)
```
plotframes

Plotting of two sets of variables

Description

Plots a set of numeric variables vs. another set and prints the pairwise correlations. It uses the function `xyplot` of lattice package.

Usage

```
plotframes(x, y, font.size = 12, layout = NULL)
```

Arguments

- **x**
 data frame. Variables on x coordinates.
- **y**
 data frame. Variables on y coordinates.
- **font.size**
 integer. Size of the characters in the strips.
- **layout**
 numeric vector of length 2 or 3 giving the number of columns, rows, and optionally pages of the lattice. If omitted, the graphs will be displayed on 3 lines and 3 columns, with a number of pages set to the required number.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

Examples

```r
require(MASS)
x <- c(0,0)
x <- matrix(c(1,0,0,1),ncol = 2)
ym <- c(0,1)
y <- matrix(c(4,1,1,9),ncol = 2)
x <- as.data.frame(mvrnorm(n = 10, mu = mx, Sigma = vx))
y <- as.data.frame(mvrnorm(n = 10, mu = my, Sigma = vy))
colnames(x) <- c("x1", "x2")
colnames(y) <- c("y1", "y2")
plotframes(x, y)
```
print.dstatis

Printing results of STATIS method (interstructure) analysis

Description
Applies to an object of class "dstatis". Prints the numeric results returned by the dstatis.inter function.

Usage
```r
## S3 method for class 'dstatis'
print(x, mean.print = FALSE, var.print = FALSE,
cor.print = FALSE, skewness.print = FALSE, kurtosis.print = FALSE,
digits = 2, ...)
```

Arguments
- `x` object of class "dstatis", returned by the dstatis.inter function.
- `mean.print` logical. If TRUE, prints for each group the means and standard deviations of the variables and the norm of the density.
- `var.print` logical. If TRUE, prints for each group the variances and covariances of the variables.
- `cor.print` logical. If TRUE, prints for each group the correlations between the variables.
- `skewness.print` logical. If TRUE, prints for each group the skewness coefficients of the variables.
- `kurtosis.print` logical. If TRUE, prints for each group the kurtosis coefficients of the variables.
- `digits` numeric. Number of significant digits for the display of numeric results.
- `...` optional arguments to print methods.

Details
By default, are printed the inertia explained by the `nb.values` (see dstatis.inter) first principal components, the contributions, the qualities of representation of the densities along the `nb.factors` (see dstatis.inter) first principal components, and the principal scores.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also
dstatis.inter; plot.dstatis; interpret.dstatis; print.dstatis.
Examples

```r
data(roses)
rosesf <- as.folder(roses[,c("Sha","Den","Sym","rose")])

# Dual STATIS on the covariance matrices
result <- dstats.inter(rosesf, data.scaled = FALSE, group.name = "rose")
print(result)
```

print.fdiscd.misclass

Printing results of discriminant analysis of probability density functions

Description

Applies to an object of class "fdiscd.misclass". Prints the numerical results of `fdiscd.misclass`.

Usage

```r
## S3 method for class 'fdiscd.misclass'
print(x, dist.print=FALSE, prox.print=FALSE, digits=2, ...)
```

Arguments

- `x` : object of class "fdiscd.misclass", returned by `fdiscd.misclass`.
- `dist.print` : logical. Its default value is FALSE. If TRUE, prints the matrix of distances between, on one side, the groups (densities) and, on the other side, the classes (of groups or densities).
- `prox.print` : logical. Its default value is FALSE. If TRUE, prints the matrix of proximity indices (in percent) between, on one side, the groups (densities) and, on the other side, the classes (of groups or densities).
- `digits` : numeric. Number of significant digits for the display of numerical results.
- `...` : optional arguments to print methods.

Details

By default, are printed the whole misallocation ratio, the confusion matrix (allocations versus origins) with the misallocation ratios per class, and the data frame whose rows are the groups, and whose columns are the origin classes and allocation classes, and a logical variable indicating misclassification.

If `dist.print = TRUE` or `prox.print = TRUE`, the distances or proximity indices (in percent) between groups and classes, are displayed.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
References

See Also

fdiscd.misclass; print.

Examples

data(castles.dated)
castlesfh <- folder(castles.dated$periods, "castle", castles.dated$stones)
result <- fdiscd.misclass(castlesfh, "period")
print(result)
print(result, dist.print=TRUE)
print(result, prox.print=TRUE)

print.fdiscd.predict

Printing results of discriminant analysis of probability density functions

Description

print function, applied to an object of class "fdiscd.predict", prints numerical results of fdiscd.predict.

Usage

S3 method for class 'fdiscd.predict'
print(x, dist.print=TRUE, prox.print=FALSE, digits=2, ...)

Arguments

x object of class "fdiscd.predict", returned by fdiscd.predict.
dist.print logical. If TRUE (the default), prints the matrix of distances between, on one side, the groups (densities) and, on the other side, the classes (of groups or densities).
prox.print logical. Its default value is FALSE. If TRUE, prints the matrix of proximity indices between, on one side, the groups (densities) and, on the other side, the classes (of groups or densities).
digits numerical. Number of significant digits for the display of numerical results.
... optional arguments to print methods.
Details

By default, are printed:

- if available (if `misclass.ratio` argument of `fdiscd.predict` was TRUE), the whole misallocation ratio, the confusion matrix (allocations versus origins) and the misallocation ratio per class are printed.
- the data frame the rows of which are the groups, and the columns of which are of the origin (NA if not available) and allocation classes.

If `dist.print = TRUE` or `prox.print = TRUE`, the distances or proximity indices between groups and classes, are displayed.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

`fdiscd.predict`; `print`.

Examples

data(castles.dated)
data(castles.nondated)
castles.stones <- rbind(castles.dated$stones, castles.nondated$stones)
castles.periods <- rbind(castles.dated$periods, castles.nondated$periods)
castlesfh <- folderh(castles.periods, "castle", castles.stones)
result <- fdiscd.predict(castlesfh, "period")
print(result)
print(result, prox.print=TRUE)

print.fhclusd Printing results of a hierarchical clustering of probability density functions

Description

`print` function, applied to an object of class "fhclusd", prints numerical results of `fhclusd`.
Usage

```r
## S3 method for class 'fhclustd'
print(x, dist.print=FALSE, digits=2, ...)
```

Arguments

- `x` object of class "fhclustd", returned by `fhclustd`.
- `dist.print` logical. If `TRUE` (default: `FALSE`), prints the matrix of distances between the groups (densities).
- `digits` numerical. Number of significant digits for the display of numerical results.
- `...` optional arguments to `print` methods.

Details

If `dist.print = TRUE`, the distances between groups are displayed.

By default, the result of the clustering is printed. The display is the same as that of the `print.hclust` function.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

`fhclustd`; `print`.

Examples

```r
data(castles.dated)
x <- as.folder(castles.dated$stones)
## Not run:
result <- fhclustd(xf)
print(result)
print(result, dist.print = TRUE)
## End(Not run)
```

Description

Applies to an object of class "fmdsd". Prints the numeric results returned by the `fmdsd` function.
Usage

```r
# S3 method for class 'fmdsd'
print(x, mean.print = FALSE, var.print = FALSE,
      cor.print = FALSE, skewness.print = FALSE, kurtosis.print = FALSE,
      digits = 2, ...)
```

Arguments

- `x` object of class "fmdsd", returned by the `fmdsd` function.
- `mean.print` logical. If TRUE, prints for each group the means and standard deviations of the variables and the norm of the density.
- `var.print` logical. If TRUE, prints for each group the variances and covariances of the variables.
- `cor.print` logical. If TRUE, prints for each group the correlations between the variables.
- `skewness.print` logical. If TRUE, prints for each group the skewness coefficients of the variables.
- `kurtosis.print` logical. If TRUE, prints for each group the kurtosis coefficients of the variables.
- `digits` numeric. Number of significant digits for the display of numeric results.
- `...` optional arguments to `print` methods.

Details

By default, are printed the inertia explained by the `nb.values` (see `fmdsd`) first coordinates and the `nb.factors` (see `fmdsd`) coordinates of the densities.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

- `fmdsd`, `plot.fmdsd`, `interpret.fmdsd`, `print`

Examples

```r
data(roses)
x <- roses[,c("Sha","Den","Sym","rose")]
rosesfold <- as.folder(x)
result <- fmdsd(rosesfold)
print(result)
print(result, mean.print = TRUE)
```
print.foldermtg

Description

print function, applied to an object of class "foldermtg", prints an MTG (Multiscale Tree Graph) folder, as returned by foldermtg function.

Usage

S3 method for class 'foldermtg'

print(x, classes = TRUE, description = FALSE, features = TRUE,
 topology = FALSE, coordinates = FALSE, ...)

Arguments

x an object of class foldermtg.

classes logical. If TRUE (default), prints the data frame describing the classes (CLASSES: table in the MTG file).

description logical. If TRUE (default: FALSE), prints the description data frame (DESCRIPTION: table in the MTG file).

features logical. If TRUE (default), prints the data frame of the features and their types (FEATURES: table in the MTG file).

topology logical. If TRUE (default: FALSE), prints the data frame of the plant topology.

coordinates logical. If TRUE (default: FALSE), prints the spatial coordinates of the entities of the plant.

... optional arguments to print methods.

Details

If classes, description or features are TRUE, the corresponding data frames are displayed.

If topology = TRUE, the plant structure is displayed; and if coordinates = TRUE, the spatial coordinates are displayed.

By default, the data frames containing the features on the vertices per class are printed.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

read.mtg: reads a MTG file and creates an object of class "foldermtg".
print.foldert

Examples

mtgfile1 <- system.file("extdata/plant1.mtg", package = "dad")
xmtg1 <- read.mtg(mtgfile1)
print(xmtg1)
print(xmtg1, topology = TRUE)
print(xmtg1, coordinates = TRUE)

mtgfile2 <- system.file("extdata/plant2.mtg", package = "dad")
xmtg2 <- read.mtg(mtgfile2)
print(xmtg2)
print(xmtg2, topology = TRUE)
print(xmtg2, coordinates = TRUE)

Description

print function, applied to an object of class "foldert". prints a foldert, as returned by foldert or as.foldert function.

Usage

S3 method for class 'foldert'
print(x, ...)

Arguments

x an object of class foldert.
...
optional arguments to print methods.

Details

The foldert is printed. In any data frame x[[t]] of this foldert, if a row is entirely NA (which means that the corresponding individual was not observed at time t), this row are not printed.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

foldert: object of class foldert. as.foldert.data.frame: build an object of class foldert from a data frame. as.foldert.array: build an object of class foldert from a 3d-array.
print.fpcad

Examples

data(floribundity)

ft <- foldert(floribundity, cols.select = "union", rows.select = "union")
print(ft)

print.fpcad

Printing results of a functional PCA of probability densities

Description

Applies to an object of class "fpcad". Prints the numeric results returned by the fpcad function.

Usage

S3 method for class 'fpcad'
print(x, mean.print = FALSE, var.print = FALSE,
cor.print = FALSE, skewness.print = FALSE, kurtosis.print = FALSE,
digits = 2, ...)

Arguments

x object of class "fpcad", returned by the fpcad function.
mean.print logical. If TRUE, prints for each group the means and standard deviations of the variables and the norm of the density.
var.print logical. If TRUE, prints for each group the variances and covariances of the variables.
cor.print logical. If TRUE, prints for each group the correlations between the variables.
skewness.print logical. If TRUE, prints for each group the skewness coefficients of the variables.
kurtosis.print logical. If TRUE, prints for each group the kurtosis coefficients of the variables.
digits numeric. Number of significant digits for the display of numeric results.
... optional arguments to print methods.

Details

By default, are printed the inertia explained by the nb.values (see fpcad) first principal components, the contributions, the qualities of representation of the densities along the nb.factors (see fpcad) first principal components, and the principal scores.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
References

See Also
fpcad; plot.fpcad; interpret.fpcad; print.

Examples
data(roses)
rosefold <- as.folder(roses[,c("Sha","Den","Sym","rose")])
result <- fpcad(rosefold)
print(result)
print(result, mean.print = TRUE)

print.fpcat

Printing results of a functional PCA of probability densities among time

Description
Applies to an object of class "fpcat". Prints the numeric results returned by the fpcad function.

Usage
S3 method for class 'fpcad'
print(x, mean.print = FALSE, var.print = FALSE, cor.print = FALSE, skewness.print = FALSE, kurtosis.print = FALSE, digits = 2, ...)

Arguments
x
mean.print
var.print
cor.print
skewness.print
kurtosis.print
digits
...

object of class "fpcat", returned by the fpcad function.
logical. If TRUE, prints for each observation time the means and standard deviations of the variables and the norm of the density.
logical. If TRUE, prints for each observation time the variances and covariances of the variables.
logical. If TRUE, prints for each observation time the correlations between the variables.
logical. If TRUE, prints for each observation time the skewness coefficients of the variables.
logical. If TRUE, prints for each observation time the kurtosis coefficients of the variables.
numeric. Number of significant digits for the display of numeric results.
optional arguments to print methods.
Details

By default, are printed the vector of observation times (numeric, ordered factor or object of class "Date"), the inertia explained by the nb.values (see fpcat) first principal components, the contributions, the qualities of representation of the densities along the nb.factors (see fpcat) first principal components, and the principal scores.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

fpcat; plot.fpcat; print.

Examples

times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01", "2017-06-01"))
x1 <- data.frame(z1=rnorm(6,1,5), z2=rnorm(6,3,3))
x2 <- data.frame(z1=rnorm(6,4,6), z2=rnorm(6,5,2))
x3 <- data.frame(z1=rnorm(6,7,2), z2=rnorm(6,8,4))
x4 <- data.frame(z1=rnorm(6,9,3), z2=rnorm(6,10,2))
ft <- foldert(x1, x2, x3, x4, times = times, rows.select="intersect")
print(ft)
result <- fpcat(ft)

print(result)
print(result, mean.print = TRUE, var.print = TRUE)
Arguments

- **x**: object of class "mdsdd", returned by the `mdsdd` function.
- **joint**: logical. If `TRUE`, prints for each group the table of estimated joint distribution.
- **margin1**: logical. If `TRUE`, prints for each group the data frame of estimated marginal distributions.
- **margin2**: logical. If `TRUE`, prints for each group the data frame of the estimated marginal distributions per combination of two variables.
- **association**: logical. If `TRUE`, prints for each group the matrix of the pairwise association measures of the variables.
- **...**: optional arguments to `print` methods.

Details

By default, are printed the inertia explained by the `nb.values` (see `mdsdd`) first coordinates and the `nb.factors` (see `mdsdd`) coordinates of the densities.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Sabine Demotes-Mainard

See Also

- `mdsdd`; `plot.mdsdd`; `interpret.mdsdd`

Examples

```r
# INSEE (France): Diploma x Socio professional group, seven years.
data(dspg)
xlista = dspg
a <- mdsdd(xlista)
print(a, joint = TRUE, margin1 = TRUE, margin2 = TRUE)
```

Description

Reads an MTG (Multiscale Tree Graph) file and returns an object of class `foldermtg`, that is a list of data frames (see Details).

Usage

`read.mtg(file, ...)`
Arguments

 file character. Path of the MTG file.
 ... optional arguments to print methods.

Details

Recalling that a MTG file is a text file that can be opened with a spreadsheet (Excel, LibreOffice-Calc...). Its 4 tables are:

- **CLASSES**: In this table the first column, named SYMBOL, contains the symbolic character denoting each botanical entity (or vertex class, plant component...) used in the MTG (for example, P for plant, A for axis...). The second column, named SCALE, represents the scale at which each entity appears in the MTG (for example 1 for P, 2 for axis...).

- **DESCRIPTION**: This table displays the relations between the vertices: + (branching relationship) or < (successor relationship).

- **FEATURES**: This table contains the features that can be attached to the vertices and their types: INT (integer), REAL (real numbers), STRING (character)...

- **MTG**: This table describes the plant topology, that is the vertices (one vertex per row) and their relations, the spatial coordinates of each vertex and the values taken by each vertex on the above listed features.

 Each vertex is labelled by its class, designating its botanical entity, and its index, designating its position among its immediate neighbours having the same scale. Each vertex label is preceded by + or <, seen above, or by the symbol / (decomposition relationship) that means that the corresponding vertex is the first vertex of the decomposition of the vertex which precedes /.

 Notice that the column number of a vertex matches with its branching order. The vertices of scale k resulting from the decomposition of a vertex of scale k-1, named parent vertex, have the same order as that of the parent vertex.

 See the example below.

Value

`read.mtg` returns an object, say x, of class `fodermtg`, that is a list of at least 6 data frames:

- **classes** the table CLASSES: in the MTG file.
- **description** the table DESCRIPTION: in the MTG file.
- **features** the table FEATURES: in the MTG file.
- **topology** data frame containing the first columns of the "MTG:" table of the MTG file. If the maximum branching order of the elements of the MTG is p, then `x$topology` has p columns.

 If the i-th vertex appears on the j-th column, it means that its branching order is j, that is it belongs to a vertex of the j-th order.

- **coordinates** data frame of the spatial coordinates of the entities. It has six columns: XX, YY, ZZ (cartesian coordinates), AA, BB, CC (angle coordinates). If there are no coordinates in the MTG file, this data frame has 0 row.
The sixth and following elements are \texttt{nclass} data frames, \texttt{nclass} being the number of classes in the MTG file. Each data frame matches with a vertex class, such as "P" (plant), "A" (axes), "M" (metamers or phytomers), and contains the features on the corresponding vertices.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also
\texttt{print.foldermtg}
\texttt{mtgorder}

Examples

```r
mtgfile1 <- system.file("extdata/plant1.mtg", package = "dad")
x1 <- read.mtg(mtgfile1)
print(x1)

mtgfile2 <- system.file("extdata/plant2.mtg", package = "dad")
x2 <- read.mtg(mtgfile2)
print(x2)
```

rmcol.folder

Remove columns in all elements of a folder

Description
Remove some columns in all data frames of a folder.

Usage
```
rmcol.folder(object, name)
```

Arguments

- \texttt{object} object of class \texttt{folder} that is a list of data frames with the same column names.
- \texttt{name} character vector. The names of the columns to be removed in each data frame of the folder.

Value
A folder with the same number of elements as \texttt{object}. Its \textit{k}th element is a data frame, and its columns are the columns of \texttt{object[[k]]}, except those given by \texttt{name}.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

folder: object of class folder.
getcol.folder: select columns in all elements of a folder.
getrow.folder: select rows in all elements of a folder.
rmrow.folder: remove rows in all elements of a folder.

Examples

data(iris)

iris.fold <- as.folder(iris, "Species")
rmcol.folder(iris.fold, c("Petal.Length", "Petal.Width"))

Description
Remove some columns in all data frames of a foldert.

Usage

rmcol.foldert(object, name)

Arguments

object object of class folder that is a list of data frames with the same column names, each of them corresponding to a time of observation.
name character vector. The names of the columns to be removed in each data frame of the foldert.

Value

A foldert with the same number of elements as object. Its k^{th} element is a data frame, and its columns are the columns of object[[k]], except those given by name.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
rmrow.folder

See Also
foldert: object of class foldert.
getcol.foldert: select columns in all elements of a foldert.
getrow.foldert: get rows in all elements of a foldert.
rmrow.foldert: remove rows in all elements of a foldert.

Examples
data(floribundity)

ft0 <- foldert(floribundity, cols.select = "union", rows.select = "union")
ft0
rmcol.foldert(ft0, c("area"))

rmrow.folder Remove rows in all elements of a folder

Description
Remove some rows in all data frames of a folder.

Usage
rmrow.folder(object, name)

Arguments
object object of class foldert that is a list of data frames with the same column names.
name character vector. The names of the rows to be removed in each data frame of the folder.

Value
A folder with the same number of elements as object. Its k^{th} element is a data frame, and its rows are the rows of object[[k]], except those given by name.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
foldert: object of class foldert.
getrow.foldert: select rows in all elements of a folder.
getcol.foldert: select columns in all elements of a folder.
rmcol.foldert: remove columns in all elements of a folder.
Examples

```r
data(iris)
iris.fold <- as.folder(iris, "Species")
rmrow.foldert(iris.fold, as.character(seq(1, 150, by = 2)))
```

Description

Remove some rows in all data frames of a foldert.

Usage

```r
rmrow.foldert(object, name)
```

Arguments

- `object`: object of class `foldert` that is a list of data frames with the same column names, each of them corresponding to a time of observation.
- `name`: character vector. The names of the rows to be removed in each data frame of the foldert.

Value

A foldert with the same number of elements as `object`. Its k^{th} element is a data frame, and its rows are the rows of `object[[k]]`, except those given by `name`.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

- `foldert`: object of class `foldert`.
- `getrow.foldert`: select rows in all elements of a foldert.
- `getcol.foldert`: select columns in all elements of a foldert.
- `rmcol.foldert`: remove columns in all elements of a foldert.

Examples

```r
data(floribundity)
ft0 <- foldert(floribundity, cols.select = "union", rows.select = "union")
ft0
rmrow.foldert(ft0, c("rose", c("16", "51")))
```
roseflowers

Rose flowers

Description

The data are extracted from measures on roses from an agronomic experiment in a greenhouse and outdoors.

Usage

```r
data(roseflowers)
```

Format

roseflowers is a list of two data frames:

- *roseflowers$variety*: this first data frame has 5 rows and 3 columns (factors) named place, rose and variety.
- *roseflowers$flower*: this second data frame has 11 cases and 5 columns named numflower (the order number of the flower), rose, diameter and height (the diameter and height of the flower), and nleaves (the number of the leaves of the axis).

Examples

```r
data(roseflowers)
summary(roseflowers$variety)
summary(roseflowers$flower)
```

roseleaves

Rose leaves

Description

The data are extracted from measures on roses from an agronomic experiment in a greenhouse and outdoors.

Usage

```r
data("roseleaves")
```
rosephytomer

Format

roseleaves is a list of four data frames:

- `roseflowers$rose`: data frame with 7 rows and 3 columns (factors) named rose, place and variety.
- `roseflowers$stem`: data frame with 12 rows and 5 columns named rose, stem, date, order (the ramification order of the stem) and nleaves (the number of leaves of the stem).
- `roseflowers$leaf`: data frame with 35 rows and 5 columns named stem, leaf, rank (the rank of the leaf on the stem), nleaflets and lrachis (the number of leaflets of the leaf and the length of its rachis).
- `roseflowers$leaflet`: data frame with 221 rows and 4 columns named leaf, leaflet, lleaflet and wleaflet (the length and width of the leaflet).

Each row (rose) in `roseleaves$rose` pertains to several rows (stems) in `roseleaves$stem`.
Each row (stem) in `roseleaves$rose` pertains to several rows (leaves) in `roseleaves$leaf`.
Each row (leaf) in `roseleaves$rose` pertains to several rows (leaflets) in `roseleaves$leaflet`.

Examples

data(roseleaves)
summary(roseleaves$rose)
summary(roseleaves$stem)
summary(roseleaves$leaf)
summary(roseleaves$leaflet)

Description

These data are extracted from measures on rosebushes during a study on leaf and internode expansion dynamics. For four rosebushes, on each metamer, the length of the terminal leaflet and the length of the internode were measured on several days, from the 24 April 2010 to the 19 July 2010. The metasters which have no leaflets are omitted.

Usage

data("rosephytomer")

Format

A data frame with 643 rows (4 plants, 7, 8 or 9 metasters per plant, 37 days of observation) and 6 columns:

date a POSIXct
nplant a factor with levels 113 114 118 121. Numbers of the plants.
rank numeric. Rank of the metamer on the stem.

lengthleaf, linternode numeric. Length of the terminal leaflet, length of the internode.

phytomer factor. Identifiers of the metamers.

Source

Examples

data(rosephytomer)
as.foldert(rosephytomer, method = 1, ind = "phytomer", timecol = "date", same.rows = TRUE)

Description

Sensory data characterising the visual aspect of 10 rosebushes

Usage

`data(roses)`

Format

roses is a data frame of sensory data with 420 rows (10 products, 14 assessors, 3 sessions) and 17 columns. The first 16 columns are numeric and correspond to 16 visual characteristics of rosebushes. The last column is a factor giving the name of the corresponding rosebush.

- Sha: top sided shape
- Den: foliage thickness
- Sym: plant symmetry
- Vgr: stem vigour
- Qrm: quantity of stems
- Htr: branching level
- Qfl: quantity of flowers
- Ef1: staggering of flowering
- Mvf1: flower enhancement
- Dif1: flower size
- Qfr: quantity of faded flowers/fruit
• Qbt: quantity of floral buds
• Def1: density of flower petals
• Vcf1: intensity of flower colour
• Tfe: leaf size
• Vfe: darkness of leaf colour
• rose: factor with 10 levels: A, B, C, D, E, F, G, H, I and J

Source

Examples
data(roses)
summary(roses)

skewness.folder Skewness coefficients of a folder of data sets

Description
Computes the skewness coefficient by column of the elements of an object of class folder.

Usage
skewness.folder(x, na.rm = FALSE, type = 3)

Arguments
x an object of class folder that is a list of data frames with the same column names.
na.rm logical. Should missing values be omitted from the calculations? (see skewness)
type an integer between 1 and 3 (see skewness).

Details
It uses skewness to compute the mean by numeric column of each element of the folder. If some columns of the data frames are not numeric, there is a warning, and the means are computed on the numeric columns only.

Value
A list whose elements are the skewness coefficients by column of the elements of the folder.
sqrtmatrix

Square root of a symmetric, positive semi-definite matrix

Description

Calculation of the square root of a positive semi-definite matrix (see Details for the definition of such a matrix).

Usage

sqrtmatrix(mat)

Arguments

mat numeric matrix.

Details

The matrix mat must be symmetric and positive semi-definite. Otherwise, there is an error.

The square root of the matrix mat is the positive semi-definite matrix M such as t(M) %*% M = mat.

Do not confuse with sqrt(mat), which returns the square root of the elements of mat.

The computation is based on the diagonalisation of mat. The eigenvalues smaller than 10^-16 are identified as null values.
Value
Matrix: the square root of the matrix mat.

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

Examples
M2 <- matrix(c(5, 4, 4, 5), nrow = 2)
M <- sqrtmatrix(M2)
M

summary.folder Summarize a folder

Description
Summarize an object of class folder.

Usage
S3 method for class 'folder'
summary(object, ...)

Arguments
object object of class folder that is a list of data frames with the same column names.
...
 further arguments passed to or from other methods.

Value
A list, each element of it contains the summary of the corresponding element of object. This list has an attribute attr("same.rows").

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
folder: object of class folder. as.folder.data.frame: build an object of class folder from a data frame.

Examples
data(iris)
iris.fold <- as.folder(iris, "Species")
summary(iris.fold)
summarize.folderh

Summarize a folderh

Description
Summarize an object of class folderh.

Usage
```r
## S3 method for class 'folderh'
summary(object, ...)
```

Arguments
- `object`: object of class `folderh` that is a list of data frames.
- `...`: further arguments passed to or from other methods.

Value
A list, each element of it containing the summary of the corresponding element of `object`. This list has an attribute `attr(L BkeysBI)` (see `folderh`).

Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also
- `folderh`: object of class folderh.

Examples
```r
# First example
mtgf <- system.file("extdata/plant1.mtg", package = "dad")
x <- read.mtg(mtgf)
fh1 <- as.folderh(x, classes = c("P", "A", "M"))
summary(fh1)

# Second example
data(roseleaves)
roses <- roseleaves$rose
stems <- roseleaves$stem
leaves <- roseleaves$leaf
leaflets <- roseleaves$leaflet
fh2 <- folderh(roses, "rose", stems, "stem", leaves, "leaf", leaflets)
summary(fh2)
```
Description

Summary method for S3 class foldermtg.

Usage

S3 method for class 'foldermtg'
summary(object, ...)

Arguments

- object: an object of class `foldermtg`.
- ...: optional arguments to summary methods.

Value

The summary of the data frames containing the vertices of each class and the values of the features on these vertices.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

- `read.mtg`: reads a MTG file and creates an object of class "foldermtg".

Examples

```r
mtgfile1 <- system.file("extdata/plant1.mtg", package = "dad")
x1 <- read.mtg(mtgfile1)
summary(x1)

mtgfile2 <- system.file("extdata/plant2.mtg", package = "dad")
x2 <- read.mtg(mtgfile2)
summary(x2)
```
summarize.foldert

Summarize a foldert

Description

Summarize an object of class foldert.

Usage

S3 method for class 'foldert'

summary(object, ...)

Arguments

object object of class foldert that is a list of data frames organised according to time.
...

further arguments passed to or from other methods.

Value

A list, each element of it contains the summary of the corresponding element of object. This list has two attributes attr(, "times") and attr(, "same.rows").

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

foldert: object of class foldert. as.foldert.data.frame: build an object of class foldert from a data frame. as.foldert.array: build an object of class foldert from a 3d-array.

Examples

1st example
data(floribundity)
ftflor <- foldert(floribundity, cols.select = "union", rows.select = "union")
summary(ftflor)
var.folder

Variance matrices of a folder of data sets

Description

Computes the variance matrices of the elements of an object of class folder.

Usage

var.folder(x, na.rm = FALSE, use = "everything")

Arguments

x an object of class folder that is a list of data frames with the same column names.

na.rm logical. Should missing values be removed? (see var)

use an optional character string giving a method for computing covariances in the presence of missing values. This must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs" (see var).

Details

It uses var to compute the variance matrix of the numeric columns of each element of the folder. If some columns of the data frames are not numeric, there is a warning, and the variances are computed on the numeric columns only.

Value

A list whose elements are the variance matrices of the elements of the folder.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

See Also

folder to create an object is of class folder. mean.folder, cor.folder, skewness.folder, kurtosis.folder for other statistics for folder objects.

Examples

First example: iris (Fisher)
data(iris)
iris.fold <- as.folder(iris, "Species")
iris-vars <- var.folder(iris.fold)
print(iris.vars)
Second example: roses

data(roses)
roses.fold <- as.folder(roses, "rose")
roses.vars <- var.folder(roses.fold)
print(roses.vars)

variety.leaves | Rose variety leaves

Description

The data are extracted from measures on roses from an agronomic experiment in a greenhouse and outdoors.

Usage

data("variety.leaves")

Format

variety.leaves is an object of class "folderh", that is a list of two data frames:

- variety.leaves$variety: data frame with 31 rows and 2 columns (factors) named rose and variety.
- variety.leaves$leaves: data frame with 581 rows and 5 columns named rose, nleaflet (number of leaflets), lrachis (length of the rachis), lleaflet (length of the principal leaflet) and wleaflet (width of the principal leaflet).

Examples

data(variety.leaves)
summary(variety.leaves)

wasserstein | 2-Wasserstein distance between Gaussian densities

Description

The 2-Wasserstein distance between two multivariate \((p > 1) \) or univariate \((p = 1) \) Gaussian densities (see Details).

Usage

wasserstein(x1, x2, check = FALSE)
wasserstein

Arguments

x1, x2
the samples from the probability densities.

check
logical. When TRUE (the default is FALSE) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

Details

The Wasserstein distance between the two Gaussian densities is computed by using the `wassersteinpar` function and the density parameters estimated from samples.

Value

Returns the 2-Wasserstein distance between the two probability densities.

Be careful! If `check = FALSE` and one smoothing bandwidth matrix is degenerate, the result returned can not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

`wassersteinpar`: 2-Wasserstein distance between Gaussian densities, given their parameters.

Examples

```r
require(MASS)
m1 <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3,mu = m1,Sigma = v1)
x2 <- mvrnorm(n = 5, mu = m2, Sigma = v2)
wasserstein(x1, x2)
```


\textbf{Description}

The 2-Wasserstein distance between two multivariate \((p > 1)\) or univariate \((p = 1)\) Gaussian densities given their parameters (mean vectors and covariance matrices if the densities are multivariate, or means and variances if univariate) (see Details).

\textbf{Usage}

\begin{verbatim}
 wassersteinpar(mean1, var1, mean2, var2, check = FALSE)
\end{verbatim}

\textbf{Arguments}

- \textit{mean1}: \(p\)-length numeric vector: the mean of the first Gaussian density.
- \textit{var1}: \(p\times p\) symmetric numeric matrix \((p > 1)\) or numeric \((p = 1)\): the covariance matrix \((p > 1)\) or the variance \((p = 1)\) of the first Gaussian density.
- \textit{mean2}: \(p\)-length numeric vector: the mean of the second Gaussian density.
- \textit{var2}: \(p\times p\) symmetric numeric matrix \((p > 1)\) or numeric \((p = 1)\): the covariance matrix \((p > 1)\) or the variance \((p = 1)\) of the second Gaussian density.
- \textit{check}: logical. When \texttt{TRUE} (the default is \texttt{FALSE}) the function checks if the covariance matrices are not degenerate (multivariate case) or if the variances are not zero (univariate case).

\textbf{Details}

The mean vectors \((m_1\) and \(m_2\)) and variance matrices \((v_1\) and \(v_2\)) given as arguments (\texttt{mean1}, \texttt{mean2}, \texttt{var1} and \texttt{var2}) are used to compute the 2-Wasserstein distance between the two Gaussian densities, equal to:

\[
(\|m_1 - m_2\|^2 + \text{trace}((v_1 + v_2) - 2 \ast (v_2^{1/2}v_1v_2^{1/2})^{1/2}))^{1/2}
\]

If \(p = 1\):

\[
((m_1 - m_2)^2 + v_1 + v_2 - 2 \ast (v_1 \ast v_2)^{1/2})^{1/2}
\]

\textbf{Value}

The 2-Wasserstein distance between two Gaussian densities.

Be careful! If \texttt{check} = \texttt{FALSE} and one covariance matrix is degenerated (multivariate case) or one variance is zero (univariate case), the result returned must not be considered.
Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

See Also

wasserstein: 2-Wasserstein distance between Gaussian densities estimated from samples.

Examples
```r
m1 <- c(1,1)
v1 <- matrix(c(4,1,1,9),ncol = 2)
m2 <- c(0,1)
v2 <- matrix(c(1,0,0,1),ncol = 2)
wassersteinpar(m1,v1,m2,v2)
```
Index

*Topic datasets
 castles, 25
 castles.dated, 25
 castles.nondated, 26
 departments, 40
dspg, 46
dspgd2015, 47
floribundity, 58
mtgplantQ, 135
mtgplantR, 137
roseflowers, 166
roseleaves, 166
rosephytomer, 167
roses, 168
varietyleaves, 176
append.df2folderh (appendtofolderh), 7
appendtofolderh, 7, 65
as.data.frame, 8, 9, 11
as.data.frame.folder, 8, 11–14
as.data.frame.folderh, 9, 14, 65
as.data.frame.foldert, 11, 20
as.folder, 12
as.folder.data.frame, 8, 12, 12, 171
as.folder.foldert, 10, 12, 13, 13, 14, 65
as.foldersh, 15
as.foldersh.foldertmtg, 16, 16
as.foldert, 18, 156
as.foldert.array, 11, 18, 18, 20, 68, 144, 156, 174
as.foldert.data.frame, 11, 18, 19, 19, 68, 144, 156, 174
association measures, 21
association measures for folder, 22
Assocs, 22, 23, 130
bandwidth.parameter, 24, 51, 53, 56, 61, 62, 71, 74

castles, 25
castles.dated, 25, 25, 26

castles.nondated, 26
cmdscale, 59, 60, 129, 130
colMeans, 132
cor, 27
cor.folder, 6, 27, 101, 132, 170, 175
corf (cor.folder), 27
cramer.data.frame, 23
cramer.data.frame (association measures), 21
cramer.folder, 130
cramer.folder (association measures for folder), 22
dad (dad-package), 5
dad-package, 5
ddchisqsym, 28, 30, 31, 33, 36, 38, 105
ddchisqsympar, 28, 29, 30, 32, 35, 37, 40, 106
ddhellinger, 29, 30, 32, 33, 36, 38, 107
ddhellingerpar, 30, 31, 32, 35, 37, 40, 108
ddjeffreys, 29, 31, 33, 35, 36, 38, 109
ddjeffreyspar, 30, 32, 33, 34, 37, 40, 110
ddjensen, 29, 31, 33, 35, 37, 38, 111
ddjensenpar, 30, 32, 35, 36, 40, 112
ddlp, 29, 31, 33, 35, 36, 38, 40, 113
ddlppar, 30, 32, 35, 37, 38, 39, 114
departments, 40
df2folder (as.folder.data.frame), 12
dist.l2d.gp (distl2dpar), 45
dist.l2d.gs (distl2d), 41
dist.l2d.kga (distl2d), 41
dist.l2d.kgw (distl2d), 41
distl2d, 41, 43, 115
distl2dpar, 41, 43, 115
distl2dpar, 44, 45, 120
dspg, 46
dspgd2015, 47
DSTATIS, 49
dstats (dstats.inter), 48

180
INDEX

dstatis.inter, 48, 83, 90, 91, 140, 149
fdiscd.misclass, 5, 24, 50, 53, 57, 91, 150, 151
fdiscd.predict, 5, 24, 52, 57, 92, 151, 152
fhclusld, 5, 53, 55, 92, 93, 141, 152, 153
floribundy, 58
fmdsd, 5, 24, 59, 84, 85, 93, 142, 147, 153, 154
folder, 6, 8, 10, 12–14, 23, 27, 28, 48, 55, 59, 62, 65, 70, 75, 77, 94, 100, 101, 129, 132, 162–164, 169–171, 175
folder2df (as.data.frame.folder), 8
folderh, 6, 7, 9, 10, 14–17, 50, 52, 64, 64, 94, 95, 172
folderh2df (as.data.frame.folderh), 9
folderh2folder (as.folder.folderh), 13
foldermtg, 16, 66, 133–135, 137–139, 155, 173
foldert, 6, 11, 18–20, 67, 72, 76, 78, 96, 143, 144, 156, 163–165, 174
fpcad, 5, 24, 62, 69, 72, 73, 82, 86, 87, 96, 97, 144, 145, 157, 158
fpcat, 5, 72, 82, 87, 88, 145, 146, 158, 159
getcol.folder, 75, 77, 163, 164
getcol.foldert, 76, 78, 164, 165
getrow.folder, 75, 77, 163, 164
getrow.foldert, 76, 78, 164, 165
hclust, 55–57
hellinger, 79, 81, 120, 121
hellingerpar, 79, 80, 121, 122
interpret, 5, 81
interpret.dstatis, 49, 81, 82, 82, 140, 149
interpret.fmdsd, 60, 62, 81, 82, 84, 142, 154
interpret.fpcad, 70, 71, 73, 81, 82, 86, 86, 145, 158
interpret.fpcat, 81, 82, 87
interpret.mdsdd, 81, 82, 89, 130, 131, 147, 160
is.dstatis, 90
is.fdiscd.misclass, 91
is.fdiscd.predict, 92
is.fhclusld, 92
is.fmdsd, 93
is.folder, 64, 94
is.folderh, 63, 94
is.foldermtg, 95
is.foldert, 68, 96
is.fpcad, 96
is.mdsdd, 97
jeffreys, 98, 100
jeffreyspar, 98, 99, 126
kurtosis, 100, 101
kurtosis.folder, 6, 28, 100, 132, 170, 175
kurtosisf (kurtosis.folder), 100
12d, 41–43, 101, 104, 115, 117, 122, 123
12d.gp (12dpar), 103
12dpar, 44, 45, 102, 103, 103, 124
mat.dist.12d.gp (matdist12dpar), 119
mat.dist.12d.gs (matdist12d), 115
mat.dist.12d.kga (matdist12d), 115
mat.dist.12d.kgw (matdist12d), 115
mat.ip.12d.gp (matipl2dpar), 124
mat.ip.12d.gs (matipl2d), 122
mat.ip.12d.kga (matipl2d), 122
mat.ip.12d.kgw (matipl2d), 122
matddchisqsym, 105, 106
matddchisqsympar, 105, 106, 130
matdhellinger, 107, 108
matdhellingerpar, 107, 108, 130
matddjeffreys, 109, 110
matddjeffreyspar, 109, 110, 130
matddjensen, 111, 112
matddjensenpar, 111, 112, 130
matddlp, 113, 114
matddlppar, 113, 114, 130
matdist12d, 42, 44, 45, 115, 117, 120
matdist12dnorm, 43, 116, 118
matdist12dnormpar, 117, 118
matdist12dpar, 115, 118, 119
mathehellinger, 120, 122
mathehellingerpar, 121, 121
matipl2d, 122, 124
matipl2dpar, 123, 124
matjeffreys, 125, 126
matjeffreyspar, 125, 126
matplot, 143
matwasserstein, 127, 128
matwassersteinpar, 127, 128
mdsdd, 5, 89, 90, 91, 129, 147, 159, 160
mean, 132
mean.folder, 6, 28, 101, 132, 170, 175
meanf (mean.folder), 132
mtgcomponents, 133
mtgorder, 66, 134, 134, 135, 139, 162
mtgplant1, 135, 138
mtgplant2, 136, 137
mtgrank, 134, 138

pearson.data.frame, 23
pearson.data.frame (association measures), 21
pearson.folder, 130
pearson.folder (association measures for folder), 22

phi.data.frame, 23
phi.data.frame (association measures), 21
phi.folder, 130
phi.folder (association measures for folder), 22

plot.dstatis, 49, 83, 140, 149
plot.fhcudst, 141
plot.fmdd, 60, 62, 85, 142, 154
plot.folder, 143
plot.fpcad, 70, 71, 73, 87, 144, 158
plot.fpcat, 74, 88, 145, 159
plot.hclust, 141
plot.mdsdd, 90, 130, 131, 147, 160
plot.frames, 148

points, 140, 142, 145–147
print, 151–154, 158, 159
print.dstatis, 49, 140, 149, 149
print.fdisd.missclass, 150
print.fdisdisc.predict, 151
print.fhcudst, 141, 152
print.fmdd, 62, 142, 153
print.folder.mtg, 66, 155, 162
print.foldert, 156
print.fpcad, 71, 145, 157
print.fpcat, 74, 146, 158
print.hclust, 153
print.mdsdd, 131, 147, 159

read.mtg, 6, 17, 66, 95, 134–136, 138, 139, 155, 160, 173
rmcol.folder, 75, 77, 162, 164
rmcol.foldert, 76, 78, 163, 165
rmrow.folder, 75, 77, 163, 164
rmrow.foldert, 76, 78, 164, 165
roseflowers, 166

roseleaves, 166
rosephytomer, 167
roses, 168

skewness, 169
skewness.folder, 6, 28, 101, 132, 169, 175
skewnessf (skewness.folder), 169

sqrtmatrix, 170

summary.folder, 171
summary.folderh, 172
summary.folder.mtg, 173
summary.foldert, 174

text, 141
title, 143
topology, 134
topology (read.mtg), 160
tschuprow.data.frame, 23
tschuprow.data.frame (association measures), 21
tschuprow.folder, 130
tschuprow.folder (association measures for folder), 22

var, 27, 175
var.folder, 6, 28, 101, 132, 170, 175
varf (var.folder), 175

varietyleaves, 176

wasserstein, 128, 176, 179
wassersteinpar, 128, 177, 178

xypoll, 148