Package ‘daewr’

May 10, 2020

Type Package
Title Design and Analysis of Experiments with R
Version 1.2-5
Date 2020-5-7
Maintainer John Lawson <lawsonjsl7net@gmail.com>
Description Contains Data frames and functions used in the book "Design and Analysis of Experiments with R".
License GPL-2
Imports lattice, FrF2, graphics, grDevices, stats, stringi
LazyLoad yes
LazyData yes
Suggests R.rsp
VignetteBuilder R.rsp
Author John Lawson [aut, cre],
 Gerhard Krennrich [aut]
Repository CRAN
Repository/R-Forge/Project daewr
Repository/R-Forge/Revision 205
Repository/R-Forge/Date/TimeStamp 2020-05-09 15:51:42
Date/Publication 2020-05-10 21:40:06 UTC
NeedsCompilation no

R topics documented:

daewr-package .. 4
Altscreen ... 4
antifungal ... 5
Apo ... 6
apple .. 7
arso ... 7
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>augm</td>
<td>8</td>
</tr>
<tr>
<td>Bdish</td>
<td>9</td>
</tr>
<tr>
<td>Bff</td>
<td>10</td>
</tr>
<tr>
<td>bha</td>
<td>11</td>
</tr>
<tr>
<td>BIBsize</td>
<td>11</td>
</tr>
<tr>
<td>bioequiv</td>
<td>13</td>
</tr>
<tr>
<td>bioeqv</td>
<td>13</td>
</tr>
<tr>
<td>blood</td>
<td>14</td>
</tr>
<tr>
<td>BoxM</td>
<td>15</td>
</tr>
<tr>
<td>BPmonitor</td>
<td>15</td>
</tr>
<tr>
<td>bread</td>
<td>16</td>
</tr>
<tr>
<td>cake</td>
<td>17</td>
</tr>
<tr>
<td>cement</td>
<td>17</td>
</tr>
<tr>
<td>chem</td>
<td>18</td>
</tr>
<tr>
<td>chipman</td>
<td>19</td>
</tr>
<tr>
<td>COdata</td>
<td>19</td>
</tr>
<tr>
<td>colormap</td>
<td>20</td>
</tr>
<tr>
<td>cont</td>
<td>21</td>
</tr>
<tr>
<td>cpipe</td>
<td>22</td>
</tr>
<tr>
<td>culture</td>
<td>23</td>
</tr>
<tr>
<td>dairy</td>
<td>24</td>
</tr>
<tr>
<td>DefScreen</td>
<td>24</td>
</tr>
<tr>
<td>drug</td>
<td>25</td>
</tr>
<tr>
<td>EEw1s1</td>
<td>26</td>
</tr>
<tr>
<td>EEw1s2</td>
<td>27</td>
</tr>
<tr>
<td>EEw1s3</td>
<td>28</td>
</tr>
<tr>
<td>EEw2s1</td>
<td>29</td>
</tr>
<tr>
<td>EEw2s2</td>
<td>30</td>
</tr>
<tr>
<td>EEw2s3</td>
<td>31</td>
</tr>
<tr>
<td>EEw3</td>
<td>32</td>
</tr>
<tr>
<td>eptaxr</td>
<td>33</td>
</tr>
<tr>
<td>eptaxs2</td>
<td>34</td>
</tr>
<tr>
<td>eptaxyb</td>
<td>35</td>
</tr>
<tr>
<td>Fcrit</td>
<td>36</td>
</tr>
<tr>
<td>fhstep</td>
<td>36</td>
</tr>
<tr>
<td>fhstepDS</td>
<td>37</td>
</tr>
<tr>
<td>firstm</td>
<td>38</td>
</tr>
<tr>
<td>FitDefSc</td>
<td>39</td>
</tr>
<tr>
<td>fnextrm</td>
<td>39</td>
</tr>
<tr>
<td>fntrmDS</td>
<td>40</td>
</tr>
<tr>
<td>Fpower</td>
<td>41</td>
</tr>
<tr>
<td>Fpower1</td>
<td>42</td>
</tr>
<tr>
<td>Fpower2</td>
<td>43</td>
</tr>
<tr>
<td>fullnormal</td>
<td>44</td>
</tr>
<tr>
<td>gagerr</td>
<td>46</td>
</tr>
<tr>
<td>gapstat</td>
<td>47</td>
</tr>
<tr>
<td>Gaptest</td>
<td>48</td>
</tr>
<tr>
<td>gear</td>
<td>50</td>
</tr>
</tbody>
</table>
R topics documented:

- halfnorm .. 51
- hardwood .. 52
- HierAFS .. 53
- ihstep ... 54
- inject ... 55
- LenthPlot .. 55
- LGB ... 57
- LGBc ... 58
- mod .. 60
- ModelRobust 61
- MPV ... 62
- Naph .. 62
- OptPB ... 63
- pastry ... 64
- PBDes ... 64
- pest ... 65
- pesticide .. 66
- plasma .. 67
- polvdat .. 67
- polymer ... 68
- prodstd ... 69
- qsr .. 70
- rcb .. 70
- residue ... 71
- rubber .. 72
- sausage ... 72
- Smotor .. 73
- soup .. 74
- soupmx ... 75
- splitPdes 75
- SPMPV .. 76
- strung .. 77
- strungtile 77
- sugarbeet 78
- taste .. 79
- teach .. 80
- Tet .. 80
- tile ... 81
- Treb .. 82
- Tukey1df .. 82
- vci .. 84
- virus .. 85
- volt ... 86
- web .. 87

Index .. 88
Description

This package contains the data sets and functions from the book Design and Analysis of Experiments with R published by CRC in 2013.

Details

Package: daewr
Type: Package
Version: 1.2-5
Date: 2012-05-10
License: GPL-2
LazyLoad: yes

Author(s)

John Lawson
Maintainer: John Lawson <lawsonjsl7net@gmail.com>

References

Examples

Fcrit(.05,2,15)
Fpower1(alpha=.05,nlev=3,nreps=4,Delta=3,sigma=sqrt(2.1))
BIBsize(6,3)

Altscreen

Alternate 16 run screening designs

Description

Recalls Jones and Montgomery’s 16 run screening designs from data frames

Usage

Altscreen(nfac, randomize=FALSE)
Arguments

nfac input- an integer
randomize input - logical

Value

a data frame containing the alternate screening design

Author(s)

John Lawson

References

Examples

Altscreen(6)
Altscreen(6, randomize=TRUE)

antifungal

Two-period crossover study of antifungal agent

Description

Data from the Two-period crossover study of an antifungal agent in chapter 9 of Design and Analysis of Experiments with R

Usage

data(antifungal)

Format

A data frame with 34 observations on the following 5 variables.

Group a factor with levels 1 2
Subject a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
Period a factor with levels 1 2
Treat a factor with levels A B
pl a numeric vector
Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(antifungal)

Apo

A data frame with 30 observations on the following 2 variables.

lab a factor with levels A B C D
conc a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(Apo)
Confounded apple slice browning experiment

Description

Data from the confounded apple slice browning experiment in chapter 7 of Design and Analysis of Experiments with R

Usage

data(apple)

Format

A data frame with 24 observations on the following 4 variables.

- Block a factor with levels 1 2 3 4
- A a factor with levels 0 1 2 3
- B a factor with levels 0 1 2
- rating a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(apple)

2^(7−3) arsenic removal experiment

Description

Data from the 2^{7−3} arsenic removal experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

data(arso)
Format

A data frame with 8 observations on the following 8 variables.

A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
D a factor with levels -1 1
E a factor with levels -1 1
F a factor with levels -1 1
G a factor with levels -1 1
y1 a numeric vector

data(arso)

data(augm) 2^((7-3)) arsenic removal experiment augmented with mirror image

Description

Data from the 2^(7-3) arsenic removal experiment augmented with mirror image in chapter 6 of Design and Analysis of Experiments with R

Usage

data(augm)

Format

A data frame with 8 observations on the following 8 variables.

A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
fold a factor with levels original mirror
D a factor with levels -1 1
E a factor with levels -1 1
F a factor with levels -1 1
G a factor with levels -1 1
y a numeric vector
Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(augm)

Bdish

Confounded Block Dishwashing Experiment

Description
Data from the Confounded Block Dishwashing Experiment in chapter 7 of Design and Analysis of Experiments with R

Usage
data(Bdish)

Format
A data frame with 16 observations on the following 5 variables.

Blocks a factor with levels 1 2 3 4
A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
D a factor with levels -1 1
y a numeric vector containing the response

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(Bdish)
Description
Data from the Confounded block fractional factorial mouse growth experiment in chapter 7 of Design and Analysis of Experiments with R

Usage
data(Bff)

Format
A data frame with 16 observations on the following 5 variables.

Blocks a factor with levels 1 2 3 4 5 6 7 8
A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
D a factor with levels -1 1
E a factor with levels -1 1
F a factor with levels -1 1
G a factor with levels -1 1
H a factor with levels -1 1
weight a numeric vector containing the response

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(Bff)
bha mouse liver enzyme experiment

Description
Data from the mouse liver enzyme experiment in chapter 4 of Design and Analysis of Experiments with R

Usage
data(bha)

Format
A data frame with 16 observations on the following 4 variables.

block a factor with levels 1 2
strain a factor with levels A/J 129O1a NIH BALB/c
 treat a factor with levels treated control
 y a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(bha)

BIBsize Balanced incomplete blocksize

Description
This function computes the number of blocks, treatment frequency and lambda for a potential BIB design

Usage
BIBsize(t,k)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>input - number of levels of the treatment factor</td>
</tr>
<tr>
<td>k</td>
<td>input - blocksize or number of experimental units per block</td>
</tr>
</tbody>
</table>
Value

a list containing the \(b \)=number of blocks, \(r \)=number of treatment replicates and \(\lambda \) for a potential BIB design with \(t \) levels of treatment factor and blocksize \(k \).

Author(s)

John Lawson

Examples

```
BIBsize(6,3)
## The function is currently defined as
BIBsize<-function(t,k)
{
  b<-t
  r<-0
  lambda<-0
  check<-0
  while (check==0) {
    while (r==0) {
      #cat("r=",r)
      testr<-(b*k)/t
      #cat("testr=",testr,"b=",b)
      if (testr==floor(testr)) {
        r<-testr
      } else {
        b<-b+1
      }
      #cat("b=",b, "r=",r)
      testl<-(r*(k-1))/(t-1)
      #cat("testl=",testl,"b=",b)
      if (testl==floor(testl)) {
        lambda<testl
        check=1
      } else {
        r<-0
        b<-b+1
        #cat("b=",b, "r=",r)
      }
    }
    #cat("lambda=")
  }
  cat("Possible BIB design with b=",b," and r="r," lambda="lambda,"n")
}
```
bioequiv

Extra-period crossover bioequivalence study

Description
Data from the extra-period crossover bioequivalence study in chapter 9 of Design and Analysis of Experiments with R

Usage
data(bioequiv)

Format
A data frame with 108 observations on the following 5 variables.

- **Group**: a factor with levels 1 2
- **Subject**: a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 25 26 27 28 30 31 32 33 34 35 36 120 122 129
- **Period**: a factor with levels 1 2 3
- **Treat**: a factor with levels A B
- **Carry**: a factor with levels none A B
- **y**: a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(bioequiv)

bioeqv

Latin Square bioequivalence experiment

Description
Data from the Latin Square bioequivalence experiment in chapter 4 of Design and Analysis of Experiments with R

Usage
data(bioeqv)
Format

A data frame with 9 observations on the following 4 variables.

- Period a factor with levels 1 2 3
- Subject a factor with levels 1 2 3
- Treat a factor with levels A B C
- AUC a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(bioeqv)

blood Variance component study of calcium in blood serum

Description

Data from the Variance component study of calcium in blood serum in chapter 5 of Design and Analysis of Experiments with R

Usage

data(blood)

Format

A data frame with 27 observations on the following 3 variables.

- sol a factor with levels 1 2 3 4
- lab a factor with levels A B C
- calcium a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(blood)
BoxM

Box and Meyer’s unreplicated 2^4 from Chapter 3

Description

Data from Box and Meyer’s unreplicated 2^4 in chapter 3 of Design and Analysis of Experiments with R

Usage

```r
data(BoxM)
```

Format

A data frame with 16 observations on the following 4 variables.

- `A` a numeric vector containing the coded (-1,1) levels of factor A
- `B` a numeric vector containing the coded (-1,1) levels of factor B
- `C` a numeric vector containing the coded (-1,1) levels of factor C
- `D` a numeric vector containing the coded (-1,1) levels of factor D
- `y` a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

References

Examples

```r
data(BoxM)
```

BPmonitor

blood pressure monitor experiment

Description

Data from the blood pressure monitor experiment experiment in Chapter 7 of Design and Analysis of Experiments with R

Usage

```r
data(BPmonitor)
```
bread

Format

A data frame with 12 observations on the following 3 variables.

- **Block** a factor with levels 1 2 3 4 5 6
- **Treatment** a factor with levels "P" "A" "B" "C"
- **pressure** a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(bread)

bread

Bread rise experiment data from Chapter 2

Description

Data from the bread rise experiment in chapter 2 of Design and Analysis of Experiments with R

Usage

data(bread)

Format

A data frame with 12 observations on the following 3 variables.

- **loaf** a numeric vector
- **time** a numeric vector
- **height** a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(bread)
Description

Data from the Split-Plot response surface for cake baking experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

data(cake)

Format

A data frame with 11 observations on the following 6 variables.

- Ovenrun a factor with levels 1 2 3 4
- x1 a numeric vector
- x2 a numeric vector
- y a numeric vector
- x1sq a numeric vector
- x2sq a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(cake)

Description

Data from the CCD design for cement workability experiment in chapter 10 of Design and Analysis of Experiments with R

Usage

data(cement)
Format

A data frame with 20 observations on the following 4 variables.

Block a factor with levels 1 2
x1 a numeric vector
x2 a numeric vector
x3 a numeric vector
y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(chem)

Description

Data from the Chemical process experiment in chapter 3 of Design and Analysis of Experiments with R

Usage

data(chem)

Format

A data frame with 16 observations on the following 4 variables.

A a numeric vector containing the coded (-1,1) levels of factor A
B a numeric vector containing the coded (-1,1) levels of factor B
C a numeric vector containing the coded (-1,1) levels of factor C
D a numeric vector containing the coded (-1,1) levels of factor D
y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(chem)
Description

Data from the Williams' crossover design for sprinting experiment in chapter 9 of Design and Analysis of Experiments with R.

Usage

data(chipman)

Format

A data frame with 36 observations on the following 5 variables.

- **Square**: a factor with levels 1 2
- **Group**: a factor with levels 1 2 3
- **Subject**: a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12
- **Period**: a factor with levels 1 2 3
- **Treat**: a factor with levels 1 2 3
- **Carry**: a factor with levels 0 1 2 3
- **Time**: a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(chipman)

Description

Data from the CO emissions experiment in chapter 3 of Design and Analysis of Experiments with R.

Usage

data(COdata)
Format

A data frame with 18 observations on the following 3 variables.

Eth a factor with levels 0.1 0.2 0.3
Ratio a factor with levels 14 15 16
CO a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(COdata)

colormap

This function makes a colormap of correlations in a design matrix

Description

This function makes a colormap of the correlations of a design matrix stored in the data frame design

Usage

colormap(design, mod)

Arguments

design input - a data frame containing columns of the numeric factor levels
mod input - a number indicating the model for the colormap 1 = linear model containing only the terms in the dataframe 2 = linear model plus two factor interactions 3 = linear model plus 2 and 3 factor interactions 4 = linear model plus 2, 3, and 4 factor interactions

Author(s)

John Lawson
Examples

color map of 2^{4-1} design
library(FrF2)
design <- FrF2(8, 4, randomize = FALSE)
colormap(design, mod=3)

Makes color map for saturated 2^{7-4} design in Figure 6.14 p. 197
library(FrF2)
design <- FrF2(8, 7)
colormap(design, mod=2)

Makes colormap of an Alternate Screening Design
library(daewr)
ascr <- Altscreen(7)
colormap(ascr, mod=2)

Makes colormap of a Model Robust Design
library(daewr)
MR16 <- ModelRobust('MR16m7g5', randomize = FALSE)
colormap(MR16, mod=2)

The function is currently defined as
function(design, mod) {
 ##################### Inputs ###
 # design - a data frame containing columns of the numeric factor levels
 # mod - the model for the color plot of correlations
 # 1 = Linear model containing only the terms in the data frame
 # 2 = Linear model plus two factor interactions
 # 3 = Linear model plus 2 and 3 factor interactions
 # 4 = Linear model plus 2, 3 and 4 factor interactions
 ##
 y <- runif(nrow(design), 0, 1)
 if(mod==1) {test <- model.matrix(lm(y~., data=design))}
 if(mod==2) {test <- model.matrix(lm(y~.^2, data=design))}
 if(mod==3) {test <- model.matrix(lm(y~.^3, data=design))}
 if(mod==4) {test <- model.matrix(lm(y~.^4, data=design))}
 names <- colnames(test)
 names <- gsub(':',(':', names)
 names <- gsub('1', '1', names)
 colnames(test) <- names
 cmas <- abs(cor(test[, ncol(test):2]))
 cmas <- cmas[cc(ncol(cmas)):1],]
 rgb.palette <- colorRampPalette(c("white", "black"), space = "rgb")
 levelplot(cmas, main="Map of absolute correlations", xlab="", ylab="", col.regions=rgb.palette(120),
 cuts=100, at=seq(0, 1, 0.01), scales=list(x=list(rot=90)))
}
Description
Data from the control factor array and summary statistics for controller circuit design experiment in chapter 12 of Design and Analysis of Experiments with R

Usage
data(cont)

Format
A data frame with 18 observations on the following 6 variables.
A a numeric vector
B a numeric vector
C a numeric vector
D a numeric vector
F a numeric vector
lns2 a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(cont)

cpipe Split-plot response surface for ceramic pipe experiment

Description
Data from the Split-plot response surface for ceramic pipe experiment in chapter 10 of Design and Analysis of Experiments with R

Usage
data(cpipe)

Format
A data frame with 48 observations on the following 6 variables.
WP a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12
A a numeric vector
B a numeric vector
P a numeric vector
Q a numeric vector
y a numeric vector
Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(cpipe)

data(culture)

Description

Data from the paecilomyces variotii culture experiment experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

data(culture)

Format

A data frame with 16 observations on the following 9 variables.

A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
D a factor with levels -1 1
E a factor with levels -1 1
F a factor with levels -1 1
G a factor with levels -1 1
H a factor with levels -1 1
y1 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(culture)
dairy

Repeated measures study with dairy cow diets

Description
Data from the Repeated measures study with dairy cow diets in chapter 9 of Design and Analysis of Experiments with R (compact format)

Usage
data(dairy)

Format
A data frame with 120 observations on the following 5 variables.

Diet a factor with levels "Barley" "Mixed" "Lupins"
pr1 a numeric vector
pr2 a numeric vector
pr3 a numeric vector
pr4 a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(dairy)

DefScreen

Definitive Screening Designs

Description
Recalls Jones and Nachtsheim’s Definitive screening designs for 3-level factors and 3-level factors with added 2-level categorical factors.

Usage
DefScreen(m, c=0, center=0, randomize=FALSE)
Arguments

- `m` input- an integer, the m=number of 3-level factors
- `c` input- an integer, the m=number of 2-level categorical factors, default is zero if not supplied
- `center` input- an integer, the number of extra center points. This must be zero when c>0
- `randomize` input - logical

Value

A data frame containing the definitive screening design with 3-level factors first followed by 2-level factors.

Author(s)

John Lawson

References

Examples

```
DefScreen(m=8,c=2)
DefScreen(12)
DefScreen(m=4,c=4, randomize=TRUE)
```

```
drug

Data from rat behavior experiment in Chapter 4

Description

Data from rat behavior experiment in Chapter 4 of Design and Analysis of Experiments with R

Usage

data(drug)

Format

A data frame with 50 observations on the following 3 variables.

- `rat` a factor with levels 1 2 3 4 5 6 7 8 9 10
- `dose` a factor with levels 0.0 0.5 1.0 1.5 2.0
- `rate` a numeric vector
Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(drug)

---

**D-efficient Estimation Equivalent Response Surface Designs**

Description
Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 1 whole plot factor and 1 sub-plot factor from a catalog

Usage
EEw1s1(des, randomize=FALSE)

Arguments
- **des**: input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog
- **randomize**: input- a logical

Value
design

Author(s)
John Lawson

References

Examples
EEw1s1()
EEw1s1('EE8R4WP')
EEw1s1('EE8R4WP', randomize=TRUE)
**Description**

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 1 whole plot factor and 2 sub-plot factors from a catalog.

**Usage**

```r
EEw1s2(des, randomize=FALSE)
```

**Arguments**

- **des**
  - input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog.

- **randomize**
  - input- a logical

**Value**

design

**Author(s)**

John Lawson

**References**


**Examples**

```r
EEw1s2()
EEw1s2('EE12R4WP')
EEw1s2('EE12R4WP', randomize=TRUE)
EEw1s2('EE12R6WP')
EEw1s2('EE12R6WP', randomize=TRUE)
EEw1s2('EE14R7WP')
EEw1s2('EE14R7WP', randomize=TRUE)
EEw1s2('EE15R5WP')
EEw1s2('EE15R5WP', randomize=TRUE)
EEw1s2('EE16R4WP')
EEw1s2('EE16R4WP', randomize=TRUE)
EEw1s2('EE18R6WP')
EEw1s2('EE18R6WP', randomize=TRUE)
EEw1s2('EE20R4WP')
EEw1s2('EE20R4WP', randomize=TRUE)
EEw1s2('EE20R5WP')
```
Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 1 whole plot factor and 3 sub-plot factors from a catalog.

Usage

EEw1s3(des, randomize=FALSE)

Arguments

des input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog

randomize input- a logical

Value

design

Author(s)

John Lawson
References

Examples
EEw2s1()
EEw2s1('EE16R4WP')
EEw2s1('EE16R4WP', randomize=TRUE)

---

EEw2s1  
*D-efficient Estimation Equivalent Response Surface Designs*

Description
Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 2 whole plot factors and 1 sub-plot factor from a catalog

Usage
EEw2s1(des, randomize=FALSE)

Arguments
- des  
  input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog
- randomize  
  input- a logical

Value
design

Author(s)
John Lawson

References

Examples
EEw2s1()
EEw2s1('EE21R7WP')
EEw1s1('EE21R7WP', randomize=TRUE)
**Description**

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 2 whole plot factors and 1 sub-plot factor from a catalog

**Usage**

```r
EEw2s2(des, randomize=FALSE)
```

**Arguments**

- `des` input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog
- `randomize` input- a logical

**Value**

`design`

**Author(s)**

John Lawson

**References**


**Examples**

```r
EEw2s2()
EEw2s2(‘EE21R7WP’) # Example search
EEw1s2(‘EE21R7WP’, randomize=TRUE)
```
**Description**

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 2 whole plot factors and 1 sub-plot factor from a catalog.

**Usage**

EEw2s3(des, randomize=FALSE)

**Arguments**

- des: input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog.
- randomize: input- a logical

**Value**

design

**Author(s)**

John Lawson

**References**


**Examples**

EEw2s3()
EEw2s3('EE24R8WP')
EEw1s3('EE24R8WP', randomize=TRUE)
Description

Recalls Jones and Goos JQT Estimation Equivalent Response Surface Designs for 3 whole plot factors and 1-2 sub-plot factors from a catalog.

Usage

EEw3(des, randomize=FALSE)

Arguments

des input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog.

randomize input- a logical

Value

design

Author(s)

John Lawson

References


Examples

EEw3()
EEw3("EE22R11WP")
EEw3("EE22R11WP", randomize=TRUE)
EEw3("EE48R12WP")
EEw3("EE48R12WP", randomize=TRUE)
Single array and raw response for silicon layer growth experiment

Description

Data from the single array and raw response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(eptaxr)

Format

A data frame with 64 observations on the following 9 variables.

A  a numeric vector
B  a numeric vector
C  a numeric vector
D  a numeric vector
E  a numeric vector
F  a numeric vector
G  a numeric vector
H  a numeric vector
y  a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(eptaxr)
eptaxs2  

Control array and variance of response for silicon layer growth experiment

Description

Data from the control array and variance of response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(eptaxs2)

Format

A data frame with 16 observations on the following 9 variables.

- A  a numeric vector
- B  a numeric vector
- C  a numeric vector
- D  a numeric vector
- E  a numeric vector
- F  a numeric vector
- G  a numeric vector
- H  a numeric vector
- s2 a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(eptaxs2)
Description

Data from the control array and mean response for silicon layer growth experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(eptaxyb)

Format

A data frame with 16 observations on the following 9 variables.

A a numeric vector
B a numeric vector
C a numeric vector
D a numeric vector
E a numeric vector
F a numeric vector
G a numeric vector
H a numeric vector
ybar a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(eptaxyb)
Fcrit

*F-Distribution critical values*

**Description**

Gets F-distribution critical values

**Usage**

`Fcrit(alpha, nu1, nu2)`

**Arguments**

- **alpha**: input - right tail area beyond critical value
- **nu1**: input - numerator degrees of freedom for F-distribution
- **nu2**: input - denominator degrees of freedom for F-distribution

**Value**

returned critical value

**Author(s)**

John Lawson

**Examples**

`Fcrit(.05,2,15)`

```r
The function is currently defined as
function(alpha,nu1,nu2) qf(1-alpha,nu1,nu2)
```

fhstep

*Subsequent steps in a forward stepwise regression that preserves model hierarchy*

**Description**

This function performs a single step of a hierarchical forward stepwise regression by entering additional term(s) to a model already created by ihstep or fhstep. If an interaction or quadratic term is entered first, the parent main effects are also entered into the model. This function is called by HierAFS.R

**Usage**

`fhstep(y,des,m,c,prvm)`
**Arguments**

- **y**
  - input - this is a data frame containing a single numeric column of response data.

- **des**
  - input - this is a data frame containing the numeric columns of the candidate independent variables. The column names of des are of length 1 i.e., letters of the alphabet. The m three-level factors always precede the c two-level factors in the design.

- **m**
  - input - this is an integer equal to the number of three-level factors in the design

- **c**
  - input - this is an integer equal to the number of two-level factors in the design. Note m+c must be equal to the number of columns of des.

- **prvm**
  - input - this is a vector of text names of the terms in the model. This is created as the value resulting from running ihstep or fhstep.

**Value**

returned vector of terms entered in the model at this step.

**Author(s)**

John Lawson

**Examples**

```r
library(daewr)
des <- DefScreen(m = 8)
pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,8.1,5.35)
trm<-ihstep(pd,des,m=8,c=0)
trm<-fhstep(pd,des,m=8,c=0,trm)
trm<-fhstep(pd,des,m=8,c=0,trm)
trm<-fhstep(pd,des,m=8,c=0,trm)
```

---

**fhstepDS**

*Forward Stepwise modeling taking into account special structure of Definitive Screening Design*

**Description**

This function performs a single step of a forward stepwise regression by entering an additional 2nd order term to a model already created by FitDefSc.R or fhstepDS.R. This function is called by FitDefSc.R

**Usage**

```
fhstepDS(y, des, m, c, prvm)
```
Arguments

\( y \)
input - this is a data frame containing a single numeric column of response data.

\( \text{des} \)
input - this is a data frame containing the numeric columns of the candidate independent variables. The column names of \( \text{des} \) are of length 1 i.e., letters of the alphabet. The \( m \) three-level factors always preceed the \( c \) two-level factors in the design.

\( m \)
input - this is an integer equal to the number of three-level factors in the design

\( c \)
input - this is an integer equal to the number of two-level factors in the design. Note \( m+c \) must be equal to the number of columns of \( \text{des} \).

\( \text{prvm} \)
input - this is a vector of text names of the terms in the model. This is created as the value resulting from running \( \text{ihstep} \) or \( \text{fhstep} \).

Value

returned vector of terms entered in the model at this step.

Author(s)

John Lawson

---

**firstm**

Find first term to enter forward stepwise regression that preserves model hierarchy

Description

This function finds the first term to enter a hierarchical forward stepwise regression. If the term is an interaction or quadratic term, the parent main effects are also included. This function is called by \( \text{ihstep.R} \).

Usage

```
firstm(y, des)
```

Arguments

\( y \)
input - this is a data frame containing a single numeric column of response data.

\( \text{des} \)
input - this is a data frame containing the numeric columns of the candidate independent variables. The column names of \( \text{des} \) are of length 1. The \( m \) three-level factors always preceed the \( c \) two-level factors in the design.

Value

returned vector of terms to be entered in the model at the first step.

Author(s)

John Lawson
**FitDefSc**

*An Effective Design Based Model Fitting Method for Definitive Screening Designs*

**Description**

This function performs fits a model to a Definitive Screening Design by first restricting main effects to the smallest main effects and those significant at at least the .20 level in a main effects model. Next forward stepwise selection is used to enter 2 factor interactions and quadratic effects.

**Usage**

```r
FitDefSc(y, design, alpha = .05)
```

**Arguments**

- `y` input - this is a vector containing a single numeric column of response data.
- `design` input - this is a data frame containing the numeric columns of the candidate independent variables created by the DefScreen function with only numerical factors i.e. `c=0`. The factor names or `colnames(design)` should always be of length 1 (for example letters of the alphabet "A", "B", etc.)
- `alpha` input - alpha to enter in the forward stepwise regression with second order candidates should be between 0.05 and 0.20

**Author(s)**

John Lawson

**Examples**

```r
design <- DefScreen(m = 5, c = 0, randomize = FALSE)
FitDefSc(Smeso, design, alpha = .12)
```

---

**fnextrm**  
*Find first term to enter forward stepwise regression that preserves model hierarchy*

**Description**

This function finds the first term to enter a hierarchical forward stepwise regression. If the term is an interaction or quadratic term, the parent main effects are also included. This function is called by ihstep.R
Usage

fnextrm(y, des, prvm)

Arguments

y input - this is a data frame containing a single numeric column of response data.

des input - this is a data frame containing the numeric columns of the candidate independent variables. The column names of des are of length 1. The m three-level factors always preceed the c two-level factors in the design.

prvm input - this is a vector of text names of the terms in the model. This is created as the value resulting from running ihstep or fhstep.

Value

returned vector of terms to be entered in the model at the next step.

Author(s)

John Lawson

---

fntrmDS

Find first term to enter forward stepwise regression that preserves model hierarchy

Description

This function finds the first term to enter a hierarchical forward stepwise regression. If the term is an interaction or quadratic term, the parent main effects are also included. This function is called by ihstep.R

Usage

fntrmDS(y, des, prvm)

Arguments

y input - this is a data frame containing a single numeric column of response data.

des input - this is a data frame containing the numeric columns of the candidate independent variables. The column names of des are of length 1. The m three-level factors always preceed the c two-level factors in the design.

prvm input - this is a vector of text names of the terms in the model. This is created as the value resulting from running ihstep or fhstep.

Value

returned vector of terms to be entered in the model at the next step.
Fpower

Description
Calculates the power for the non-central F-distribution

Usage
Fpower(alpha, nu1, nu2, nc)

Arguments
- alpha: input - critical value alpha
- nu1: input - degrees of freedom for numerator
- nu2: input - degrees of freedom for denominator
- nc: input - noncentrality parameter

Value
probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

Author(s)
John Lawson

Examples
Fpower(0.05,2,15,6.428)

## The function is currently defined as
function(alpha,nu1,nu2,nc) 1-pf(Fcrit(alpha,nu1,nu2),nu1,nu2,nc)
Description

Calculates the power for one-way ANOVA

Usage

Fpower1(alpha, nlev, nreps, Delta, sigma)

Arguments

alpha  input - significance level of the F-test.
nlev  input - the number of levels of the factor
nreps  input - the number of replicates in each level of the factor.
Delta  input - the size of a practical difference in two cell means.
sigma  input - the standard deviation of the experimental error.

Value

probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

Author(s)

John Lawson

Examples

Fpower1(alpha = 0.05, nlev = 3, nreps = 4, Delta = 3, sigma = sqrt(2.1))

rmin <- 2 # smallest number of replicates considered
rmax <- 6 # largest number of replicates considered
alpha <- rep(0.05, rmax - rmin + 1)
sigma <- rep(sqrt(2.1), rmax - rmin + 1)
nreps <- c(rmin:rmax)
nlev <- rep(3, rmax - rmin + 1)
nreps <- rmin:rmax
Delta <- rep(3, rmax - rmin + 1)
power <- Fpower1(alpha, nlev, nreps, Delta, sigma)
data.frame(r = nreps, Power = power)

## The function is currently defined as
Fpower1<-function(alpha=NULL, nlev=NULL, nreps=NULL, Delta=NULL, sigma=NULL) {

Fpower2

### Power Calculation for one way ANOVA #######

- **Argument list**
  - *alpha*: the significance level of the test
  - *nlev*: the number of levels of the factor
  - *nreps*: the number of replicates in each level of the factor
  - *Delta*: the size of a practical difference in two cell means
  - *sigma*: the standard deviation of the experimental error

if (is.null(alpha)|is.null(nlev)|is.null(nreps)|is.null(Delta)|is.null(sigma))
  stop("you must supply alpha, nlev, nreps, Delta and sigma")

\[
\text{css} = \frac{(\text{Delta}^2)}{2}
\]

\[
\text{nc} = \frac{(\text{nreps} \times \text{css})}{(\sigma^2)}
\]

\[
\text{df1} = \text{nlev} - 1
\]

\[
\text{df2} = (\text{nreps} - 1) \times \text{nlev}
\]

\[
\text{power} = 1 - \text{pf}(\text{Fcrit(alpha, df1, df2)}, \text{df1}, \text{df2}, \text{nc})
\]

return(power)

---

**Fpower2**  
*F-Distribution Power Calculation*

**Description**

Calculates the power for a two-way ANOVA

**Usage**

Fpower2(alpha,nlev,nreps,Delta,sigma)

**Arguments**

- **alpha**: input - significance level of the F-test.
- **nlev**: input - vector of length two containing the number of levels of the factors.
- **nreps**: input - the number of replicates in each combination of factor levels.
- **Delta**: input - the size of a practical difference in two marginal factor level means.
- **sigma**: input - the standard deviation of the experimental error.

**Value**

probability of exceeding fcrit(alpha, nu1,nu2) with the non-central F-distribution with nu1 and nu2 degrees of freedom and noncentrality parameter nc

**Author(s)**

John Lawson
Examples

```r
power <- Fpower2(.05, nlev = c(4,4), nreps=2, Delta= 1, sigma=.32)

rmin <- 2 # smallest number of replicates
rmax <- 4 # largest number of replicates
alpha <- .05
sigma <- .32
Delta <- 1.0
nlev <- c(4,4)
result <- Fpower2(alpha, nlev, nreps, Delta, sigma)
options(digits = 5)
result
```

```r
The function is currently defined as
Fpower2<-function(alpha=NULL, nlev=NULL,nreps=NULL, Delta=NULL, sigma=NULL)
{
 # Argument list
 # alpha the significance level of the test.
 # nlev vector containing the number of levels of the factors.
 # nreps the number of replicates in each combination of factor levels.
 # Delta the size of a practical difference in two marginal factor level means.
 # sigma the standard deviation of the experimental error.
 if (is.null(alpha)|is.null(nlev)|is.null(nreps)|is.null(Delta)|is.null(sigma))
 stop("you must supply alpha, nlev, nreps, Delta and sigma")
 nlev1 <- nlev[1]
 nlev2 <- nlev[2]
 nlev <- c(nlev1,nlev2)
 a <- 1
 b <- nlev[2]
 cssb <- (Delta^2)/2
 ncb <- a*(nreps*cssb)/(sigma^2)
 cssa<-(Delta^2)/2
 nca<- b*(nreps*cssa)/(sigma^2)
 dfa<- a-1
 dfb<- b-1
 df2<-c(nreps-1)*b*a
 powera <- 1-pf(Fcrit(alpha,dfa,df2),dfa,df2,nca)
 powerb <- 1-pf(Fcrit(alpha,dfb,df2),dfa,df2,nca)
 result <-cbind(nreps,df2,powera,powerb)
}
```

fullnormal

`fullnormal` function makes a full normal plot of the elements of the vector called `effects`

Description

This function makes a full normal plot of the elements of the vector called `effects`
Usage

fullnormal(effects, labs, alpha = 0.05, refline = "TRUE")

Arguments

effects input - vector of effects to be plotted
labs input - vector of labels of the effects to be plotted
alpha input - alpha level for labeling of significant effects using Lenth statistic
refline input - logical variable that indicates whether a reference line is added to the plot (default is "TRUE")

Author(s)

John Lawson

Examples

# Example Separate Normal plots of whole and split plot effects from an unreplicated split-plot
data(plasma)
sol<-lm(y~A*B*C*D*E,data=plasma)
summary(sol)
# get whole plot effects and split plot effects
effects<-coef(sol)
effects<-effects[2:32]
Wpeffects<-effects[1:4, 6:11, 16:19, 26]
Speffects<-effects[5,12:15,20:25,27:31]

#make separate normal plots
fullnormal(Wpeffects,names(Wpeffects),alpha=.10)
fullnormal(Speffects,names(Speffects),alpha=.05)

## The function is currently defined as
function (effects, labs, alpha = 0.05, refline = "TRUE")
{
crit <- LenthPlot(effects, alpha = alpha, plt = FALSE)["ME"]
names <- names(effects)
names <- gsub(":", ",", names)
names <- gsub("1", ",", names)
le <- length(effects)
for (i in 1:le) {
  logc <- (abs(effects[i]) <= crit)
  if (logc) {
    names[i] <- " "
  }
}
qqnorm(effects, ylab = "Estimated Effects", xlab = "Normal Scores")
x <- qqnorm(effects, plot = FALSE)
zcrr <- (x$x)
effp <- effects[zcr > 0]
zp <- zscr[zscr > 0]
namemp <- names[zscr > 0]
effn <- effects[zscr < 0]
zn <- zscr[zscr < 0]
namenn <- names[zscr < 0]
text(zp, effp, namemp, pos = 1)
text(zn, effn, namenn, pos = 3)
ahe <- abs(effects)
s0 <- 1.5 * median(ahe)
selehe <- ahe < (2.5 * s0)
pse = 1.5 * median(ahe[selehe])
if (refline) {
  abline(0, pse)
}

---

gagerr	Gauge R&R Study

Description
Data from the Gauge R&R Study in chapter 5 of Design and Analysis of Experiments with R

Usage
data(gagerr)

Format
A data frame with 60 observations on the following 3 variables.

part a factor with levels 1 2 3 4 5 6 7 8 9 10
oper a factor with levels 1 2 3
y a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(gagerr)
This function computes the gap statistic which is used to test for an outlier using Daniels method.

Usage

\[
gapstat(\beta, \text{pse})
\]

Arguments

- \(\beta\): input - vector of coefficients from saturated model fit to the data
- \(\text{pse}\): input - Lenth’s PSE statistic calculated from the elements of \(\beta\)

Value

- returned gap statistic

Author(s)

John Lawson

Examples

```r
The function is currently defined as
function (beta, pse)
{
 p <- length(beta)
 psehe <- pse
 sel <- beta >= 0
 betap <- beta[sel]
 betap <- sort(betap)
 betas <- betap[1]
 sel <- beta < 0
 betan <- beta[sel]
 nn <- length(betan)
 betan <- sort(betan)
 betal <- betan[nn]
 zl <- qnorm((nn - 0.375)/(p + 0.25))
 zs <- qnorm((nn + 1 - 0.375)/(p + 0.25))
 gap <- ((betas - betal)/psehe)/(zs - zl)
 return(gap)
}
```
**Gaptest**

*This function uses Daniel’s Method to find an outlier in an unreplicated $2^{(k-p)}$ design.*

---

**Description**

This function uses Daniel’s Method to find an outlier in an unreplicated $2^{(k-p)}$ design.

**Usage**

`Gaptest(DesY)`

**Arguments**

- `DesY` input this is a data frame containing an unreplicated $2^{(k-p)}$ design. The last variable in the data frame should be the numeric response.

**Author(s)**

John Lawson

**References**


**Examples**

```r
Example from Box(1991)
data(BoxM)
Gaptest(BoxM)
```

```r
The function is currently defined as
function (DesY)
{
 ncheck <- dim(DesY)
 ncheck <- ncheck[1]
 tcnd = TRUE
 if (ncheck == 8) {
 tcnd = FALSE
 }
 if (ncheck == 16) {
 tcnd = FALSE
 }
 if (ncheck == 32) {
 tcnd = FALSE
 }
 if (tcnd) {
```
stop("This function only works for 8, 16, or 32 run designs",
"
")
}
else {
  if (ncheck == 8)
    ncheck = 16
  critg16 <- c(1.7884, 5.1009)
  critg32 <- c(1.7297, 5.8758)
  modf <- lm(y ~ (.)^4, x = TRUE, data = DesY)
  nbeta <- dim(DesY)
  nbeta <- nbeta[1]
  he <- modf$coef
  selcol <- which(!is.na(he))
  he <- he[selcol]
  he <- he[-1]
  p <- length(he)
  n <- p + 1
  cn1 <- names(he)
  ccn1 <- gsub("[^A-Z]", ",", cn1)
  names(he) <- ccn1
  ahe <- abs(he)
  s0 <- 1.5 * median(ahe)
  selhe <- ahe < (2.5 * s0)
  pse = 1.5 * median(ahe[selhe])
  gap <- gapstat(he, pse)
  if (ncheck == 16) {
    test = (gap > critg16[1])
  }
  else {
    test = (gap > critg32[1])
  }
  if (test) {
    X <- modf$x
    X <- X[, selcol]
    X <- X[, -1]
    se <- as.matrix(sign(he), nrow = 1)
    sigef <- LGB(he, rpt = FALSE, plt = FALSE)
    for (i in 1:length(he)) {
      if (sigef[i] == "yes") {
        se[i] = 0
      }
    }
    sp <- X %*% se
    asp <- abs(sp)
    oo <- max.col(t(asp))
    ae <- abs(he)
    sae <- sort(ae)
    nsmall <- round(length(he)/2)
    bias <- 2 * sum(sae[1:nsmall])
    y <- DesY$y
    ycorr <- DesY$y
    ycorr[oo] <- ycorr[oo] + (-1 * sign(sp[oo])) * bias
    detect <- c(rep("no", n))
gear

Unreplicated split-plot fractional-factorial experiment on geometric distortion of drive gears

detect[oo] <- "yes"
cat("Initial Outlier Report", "\n")
cat("Standardized-Gap = ", gap, "Significant at 50th percentile", "\n")
DesYc <- cbind(DesY[, 1:(dim(DesY)[2] - 1)], ycorr)
modf <- lm(ycorr ~ (.)^4, x = TRUE, data = DesYc)
che <- modf$coef
che <- che[is.na(che)]
che <- che[-1]
p <- length(che)
n <- p + 1
cn <- names(che)
ccn <- gsub("[^A-Z", "", cn)
names(che) <- ccn
ache <- abs(che)
s0 <- 1.5 * median(ache)
seiche <- ache < (2.5 * s0)
psec <- 1.5 * median(ache[seiche])
gap <- gapstat(he, psec)
if (ncheck == 16)
test2 = (gap > critg16[2])
else test2 = (gap > critg32[2])
if (test2) {
  cat("Final Outlier Report", "\n")
cat("Standardized-Gap = ", gap, "Significant at 99th percentile", "\n")
cat(" ", "\n")
cat(" Corrrected Data Report ", "\n")
cat("Response Corrected Response Detect Outlier", "\n")
cat(paste(format(DesY$y, width = 8), format(DesYc$ycorr, width = 13), " ", format(detect, width = 10), "\n"), sep = "")
tce <- LGB(che)
}
else {
  cat("Final Outlier Report", "\n")
cat("No significant outlier detected in second pass", "\n")
LGB(he)
cat(" ", "\n")
}
}
**halfnorm**

*Description*

Data from the unreplicated split-plot fractional-factorial experiment on geometric distortion of drive gears in chapter 8 of Design and Analysis of Experiments with R

*Usage*

```r
data(gear)
```

*Format*

A data frame with 16 observations on the following 6 variables.

- **A** a factor with levels `-1 1`
- **B** a factor with levels `-1 1`
- **C** a factor with levels `-1 1`
- **P** a factor with levels `-1 1`
- **Q** a factor with levels `-1 1`
- **y** a numeric vector containing the response

*Source*

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

*Examples*

```r
data(gear)
```

---

**halfnorm**

*This function makes a half normal plot of the elements of the vector called effects*

---

*Description*

This function makes a half normal plot of the elements of the vector called effects

*Usage*

```r
halfnorm(effects, labs, alpha = 0.05, refline = "TRUE")
```

*Arguments*

- **effects** input - vector of effects to be plotted.
- **labs** input - vector of labels of the effects to be plotted.
- **alpha** input - alpha level for labeling of significant effects using Lenth statistic.
- **refline** input - logical variable that indicates whether a reference line is added to the plot (default is "TRUE").
Author(s)

John Lawson

Examples

```r
Example Separate Normal plots of whole and split plot effects from an unreplicated split-plot
data(plasma)
sol<-lm(y~A*B*C*D*E,data=plasma)
get whole plot effects and split plot effects
effects<-coef(sol)
effects<-effects[c(2:32)]
Wpeffects<-effects[c(1:4, 6:11, 16:19, 26)]
Speffects<-effects[c(5,12:15,20:25,27:31)]

make separate half normal plots
halfnorm(Wpeffects,names(Wpeffects),alpha=.10)
halfnorm(Speffects,names(Speffects),alpha=.05)
```

Description

Data from the low grade hardwood conjoint study in chapter 6 of Design and Analysis of Experiments with R

Usage

data(hardwood)

Format

A data frame with 12 observations on the following 5 variables.

- **Design**: a factor with levels "RC" "AC" "OCI" "OCII"
- **Price**: a numeric variable
- **Density**: a factor with levels "Clear" "Heavy" "Medium"
- **Guarantee**: a factor with levels "1y" "Un"
- **Rating**: a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(hardwood)
HierAFS  

**RSM forward regression keeping model hierarchy**

**Description**

This function performs a hierarchical forward stepwise regression. If an interaction or quadratic term is entered in the model, the parent main effects are also entered into the model.

**Usage**

HierAFS(y, x, m, c, step)

**Arguments**

- **y**
  - input - this is a vector containing a single numeric column of response data.

- **x**
  - input - this is a data frame containing the numeric columns of the candidate independent variables. The m three-level factors always precede the c two-level factors in the design. The factor names or colnames(x) should always be of length (for example letters of the alphabet "A", "B", etc.)

- **m**
  - input - this is an integer equal to the number of three-level factors in the design

- **c**
  - input - this is an integer equal to the number of two-level factors in the design. Note m+c must be equal to the number of columns of des.

- **step**
  - input - this is a single numeric value containing the number of steps requested.

**Value**

returned data frame the first column is a factor variable containing the formula for the model fit at each step, the second numeric column is the R-square statistic for the model fit with each formula.

**Author(s)**

Gerhard Krennrich, and modified by John Lawson

**Examples**

# Definitive Screening Design
library(daewr)
set.seed(1234)
x <- DefScreen(m=5, c=0)
x$y <- 3*x$A + 2*x$B + 3*x$A*x$B + 2*x$A^2 + 2*x$C+rnorm(nrow(x),0,.5)
HierAFS(x$y, x[, -6], m=5, c=0, step=3)

# Alternate Screening Example
library(daewr)
Design <- Altscreen(nfac=6, randomize=FALSE)
Thickness <- c(4494, 4592, 4357, 4489, 4513, 4483, 4288, 4448, 4691, 4671, 4219, 4271, 4530, 4632, 4337, 4391)
HierAFS(Thickness, Design, m=0, c=6, step=3)
ihstep

First step in a forward stepwise regression that preserves model hierarchy

Description

This function performs the first step of a hierarchical forward stepwise regression. If an interaction or quadratic term is entered first, the parent main effects are also entered into the model. This function is called by HierAFS.R

Usage

ihstep(y, des, m, c)

Arguments

y
  input - this is a data frame containing a single numeric column of response data.

des
  input - this is a data frame containing the numeric columns of the candidate independent variables. The column names of des are of length 1 i.e., letters of the alphabet. The m three-level factors always precede the c two-level factors in the design.

m
  input - this is an integer equal to the number of three-level factors in the design

Input - this is an integer equal to the number of two-level factors in the design. Note m+c must be equal to the number of columns of des.

Value

returned vector of terms entered in the model at this step.

Author(s)

John Lawson

Examples

library(daewr)
des <- DefScreen(m = 8)
pd<-c(5.35,4.4,12.91,3.79,4.15,14.05,11.4,4.29,3.56,11.4,10.09,5.9,9.54,4.53,3.919,8.1,5.35)
trm<-ihstep(pd,des,m=8,c=0)
Single array for injection molding experiment

Description
Data from the single array for injection molding experiment in chapter 12 of Design and Analysis of Experiments with R

Usage
data(inject)

Format
A data frame with 20 observations on the following 8 variables.

- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector
- E a numeric vector
- F a numeric vector
- G a numeric vector
- shrinkage a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(inject)

Lenth’s Plot of Effects

Description
Plot of the factor effects with significance levels based on robust estimation of contrast standard errors.
Usage

LenthPlot(obj, alpha = 0.05, plt = TRUE, limits = TRUE,
          xlab = "factors", ylab = "effects", faclab = NULL,
          cex.fac = par("cex.lab"), cex.axis=par("cex.axis"), adj = 1, ...)  

Arguments

obj object of class lm or vector with the factor effects.
alpha numeric. Significance level used for the margin of error (ME) and simultaneous margin of error (SME). See Lenth(1989).
plt logical. If TRUE, a spikes plot with the factor effects is displayed. Otherwise, no plot is produced.
limits logical. If TRUE ME and SME limits are displayed and labeled.
xlab character string. Used to label the x-axis. "factors" as default.
ylab character string. Used to label the y-axis. "effects" as default.
faclab list with components idx (numeric vector) and lab (character vector). The idx entries of effects vector (taken from obj) are labelled as lab. The rest of the effect names are blanked. If NULL all factors are labelled using the coefficients' name.
cex.fac numeric. Character size used for the factor labels.
cex.axis numeric. Character size used for the axis.
adj numeric between 0 and 1. Determines where to place the "ME" (margin of error) and the "SME" (simultaneous margin of error) labels (character size of 0.9*cex.axis). 0 for extreme left hand side, 1 for extreme right hand side.
... extra parameters passed to plot.

Details

If obj is of class lm, 2*coef(obj) is used as factor effect with the intercept term removed. Otherwise, obj should be a vector with the factor effects. Robust estimate of the contrasts standard error is used to calculate marginal (ME) and simultaneous margin of error (SME) for the provided significance (1- alpha) level. See Lenth(1989). Spikes are used to display the factor effects. If faclab is NULL, factors are labelled with the effects or coefficient names. Otherwise, those faclab$idx factors are labelled as faclab$lab. The rest of the factors are blanked.

Value

The function is called mainly for its side effect. It returns a vector with the value of alpha used, the estimated PSE, ME and SME.

Author(s)

LGB

References

Examples

# Example Separate Normal plots of whole and split plot effects from an unreplicated split-plot data(plasma)
sol<-lm(y~A+B+C*D+E, data=plasma)
sol
summary(sol)
# get whole plot effects and split plot effects
effects<-coef(sol)
LenthPlot(effects, alpha=.05)

This function uses the LGB Method to detect significant effects in unreplicated fractional factorials.

Description
This function uses the LGB Method to detect significant effects in unreplicated fractional factorials.

Usage
LGB(Beta, alpha = 0.05, rpt = TRUE, plt = TRUE, pltl = TRUE)

Arguments
Beta input - this is the numeric vector of effects or coefficients to be tested
alpha input - This is the significance level of the test
rpt input - this is a logical variable that controls whether the report is written (default is TRUE)
plt input - this is a logical variable that controls whether a half-normal plot is made (default is TRUE)
pltl input - this is a logical variable that controls whether the significance limit line is drawn on the half-normal plot (default is TRUE)

Author(s)
John Lawson

References
Examples

```r
data(chem)
modf <- lm(y ~ A*B*C*D, data=chem)
LGB(coef(modf)[-1], rpt=FALSE)
```

```r
The function is currently defined as
LGB <- function(Beta, alpha=.05, rpt=TRUE, plt=TRUE, pltl=TRUE) {
 sigLGB <- LGBc(Beta, alpha, rpt, plt, pltl)
}
```

LGBc

This function does the calculations for the LGB Method to detect significant effects in unreplicated fractional factorials.

Description

This function uses the LGB Method to detect significant effects in unreplicated fractional factorials.

Usage

```r
LGBc(Beta, alpha = 0.05, rpt = TRUE, plt = TRUE, pltl = TRUE)
```

Arguments

- `Beta`: input - this is the numeric vector of effects or coefficients to be tested
- `alpha`: input - This is the significance level of the test
- `rpt`: input - this is a logical variable that controls whether the report is written (default is TRUE)
- `plt`: input - this is a logical variable that controls whether a half-normal plot is made (default is TRUE)
- `pltl`: input - this is a logical variable that controls whether the significance limit line is drawn on the half-normal plot (default is TRUE)

Author(s)

John Lawson

References

Examples

data(chem)
modf<-lm(y~A*B+C*D,data=chem)
sig<-LGBc(coef(modf)[-1],rpt=FALSE)

## The function is currently defined as
function (Beta, alpha = 0.05, rpt = TRUE, plt = TRUE, pltl = TRUE)
{
siglev <- c(0.1, 0.05, 0.025, 0.01)
df <- c(7, 8, 11, 15, 16, 17, 26, 31, 32, 35, 63, 127)
crittab <- matrix(c(1.265, 1.196, 1.161, 1.122, 1.11, 1.106,
                   1.072, 1.063, 1.06, 1.059, 1.037, 1.023, 1.534, 1.385,
                   1.291, 1.201, 1.186, 1.178, 1.115, 1.099, 1.093, 1.091,
                   1.056, 1.034, 1.889, 1.606, 1.449, 1.297, 1.274, 1.26,
                   1.165, 1.14, 1.13, 1.127, 1.074, 1.043, 2.506, 2.026,
                   1.74, 1.447, 1.421, 1.377, 1.232, 1.197, 1.185, 1.178,
                   1.096, 1.058), ncol = 4, byrow = FALSE)
colind <- which(siglev == alpha, arr.ind = TRUE)
if (length(colind) == 0) {
  stop("this function works only when alpha= .1, .05, .025 or .01")
}
rowind <- which(df == length(Beta), arr.ind = TRUE)
if (length(rowind) == 0) {
  stop("this function works only for coefficient vectors of length 7,8,11,15,16,26,31,32,35,63,or 127")
}
critL <- crittab[rowind, colind]
acj <- abs(Beta)
ranks <- rank(acj, ties.method = "first")
s0 <- 1.5 * median(acj)
p <- (ranks - 0.5)/length(Beta)
z <- qnorm((p + 1)/2)
moda <- lm(acj ~ -1 + z)
 beta1 <- moda$coef
sel <- acj < 2.5 * s0
modi <- lm(acj[sel] ~ -1 + z[sel])
 beta2 <- modi$coef
Rn <- beta1/beta2
pred <- beta2 * z
n <- length(acj[sel])
df <- n - 1
sig <- sqrt(sum(modi$residuals^2)/df)
se.pred <- sig * (1 + 1/n + (z^2)/sum(z[sel]^2))^-0.5
pred.lim <- pred + qt(0.975, df) * se.pred
 sigi <- c(rep("no", length(Beta)))
 sel2 <- acj > pred.lim
 sigi[sel2] <- "yes"
if (plt) {
  plot(z, acj, xlab = "Half Normal Scores", ylab = "Absoulute Effects")
  lines(sort(z), sort(pred), lty = 1)
  for (i in 1:length(Beta)) {

}
if (sigi[i] == "yes")
    text(z[i], acj[i], names(Beta)[i], pos = 1)
}
if (pltl) {
    lines(sort(z), sort(pred.lim), lty = 3)
}
if (rpt) {
    cat("Effect Report", "\n")
    cat("\n")
    cat("Label Half Effect Sig(.05)", "\n")
    cat(paste(format(names(Beta), width = 8), format(Beta, width = 8), " ", format(sigi, width = 10), "\n"), sep = "")
    cat("\n")
    cat("Lawson, Grimshaw & Burt Rn Statistic = ", Rn, "\n")
    cat("95th percentile of Rn = ", critl, "\n")
}
return(sigi)
}

mod

Mod function

Description

Gets mod of a to base b

Usage

mod(a, b)

Arguments

a       input- an integer
b       input - an integer

Value

remainder of a/b or mod(a,b)

Author(s)

John Lawson
Examples

mod(5, 3)
## The function is currently defined as
mod <- function(a, b)
  {a - b * floor(a / b)}

Description
Recalls Li and Nachtsheim’s model robust factorial designs from a catalog of data frames

Usage
ModelRobust(des, randomize=FALSE)

Arguments
- des: input- a character variable containing the name of a design in the catalog. If left blank, the function prints a table showing all the design names in the catalog
- randomize: input- a logical

Value
design

Author(s)
John Lawson

References

Examples

ModelRobust()
ModelRobust("MR8m4g3")
ModelRobust("MR8m4g3", randomize=TRUE)
MPV

*mixture process variable experiment with mayonnaise*

Description

Data from the mixture process variable experiment with mayonnaise in chapter 11 of Design and Analysis of Experiments with R

Usage

data(MPV)

Format

A data frame with 35 observations on the following 4 variables.

x1  a numeric vector
x2  a numeric vector
x3  a numeric vector
z1  a numeric vector
z2  a numeric vector
y   a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(MPV)

Naph

*Yields of naphthalene black*

Description

Data from the Yields of naphthalene black of Chapter 5 in Design and Analysis of Experiments with R

Usage

data(Naph)
**OptPB**

**Format**
A data frame with 30 observations on the following 2 variables.

- **sample** a factor with levels 1 2 3 4 5 6
- **yield** a numeric vector

**Source**
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

```r
data(Naph)
```

---

**Optimum Plackett-Burman Designs**

**Description**
Selects the columns from a Plackett-Burman Design Produced by FrF2 that will minimize model dependence for main effects and two factor interactions and returns the design in a data frame

**Usage**

```r
OptPB(nruns, nfactors, randomize=FALSE)
```

**Arguments**

- **nruns** input- an integer representing the number of runs in the design
- **nfactors** input - in integer representing the number of factors in the design
- **randomize** input - logical

**Value**

design

**Author(s)**
John Lawson

**References**


**Examples**

```r
OptPB(12, 8)
```
pastry  

*Blocked response surface design for pastry dough experiment*

**Description**

Data from the Blocked response surface design for pastry dough experiment in chapter 10 of Design and Analysis of Experiments with R

**Usage**

```r
data(pastry)
```

**Format**

A data frame with 28 observations on the following 5 variables.

- `Block`: a factor with levels 1 2 3 4 5 6 7
- `x1`: a numeric vector
- `x2`: a numeric vector
- `x3`: a numeric vector
- `y`: a numeric vector

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

```r
data(pastry)
```

---

PBDes  

*Plackett-Burman Designs*

**Description**

Creates a 12, 20, or 24 run Plackett-Burman design in a data frame with numeric factor levels by cyclically rotating the factor levels in the first row

**Usage**

```r
PBDes(nruns, nfactors, randomize=FALSE)
```
**Arguments**

- `nruns`  
  input - an integer representing the number of runs in the design

- `nfactors`  
  input - an integer representing the number of factors in the design

- `randomize`  
  input - logical

**Value**

- `design`

**Author(s)**

John Lawson

**References**


**Examples**

- `PBDes(nruns=12,nfactors=11)`
- `PBDes(nruns=12,nfactors=11,randomize=TRUE)`
- `PBDes(nruns=12,nfactors=9)`
- `PBDes(nruns=20,nfactors=19)`
- `PBDes(nruns=24,nfact=16)`
- `PBDes(nruns=24,nfactors=23)`

---

**pest**

*Pesticide formulation experiment*

**Description**

Data from the Pesticide formulation experiment in chapter 11 of Design and Analysis of Experiments with R

**Usage**

- `data(pest)`

**Format**

A data frame with 13 observations on the following 4 variables.

- `x1` a numeric vector
- `x2` a numeric vector
- `x3` a numeric vector
- `y` a numeric vector
Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(pest)

pesticide

pesticide application experiment

Description
Data from the pesticide application experiment in chapter 5 of Design and Analysis of Experiments with R

Usage
data(pesticide)

Format
A data frame with 16 observations on the following 4 variables.

form a factor with levels A B
tech a factor with levels 1 2
plot a factor with levels 1 2
residue a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(pesticide)
plasma

Description

Data from the unreplicated split-plot $2^5$ experiment on plasma treatment of paper in chapter 8 of Design and Analysis of Experiments with R

Usage

data(plasma)

Format

A data frame with 32 observations on the following 6 variables.

A a factor with levels -1 1
B a factor with levels -1 1
C a factor with levels -1 1
D a factor with levels -1 1
E a factor with levels -1 1
y a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(plasma)

polvdat

Description

Data from the Polvoron mixture experiment in chapter 11 of Design and Analysis of Experiments with R

Usage

data(polvdat)
Format

A data frame with 12 observations on the following 4 variables.

- x1  a numeric vector
- x2  a numeric vector
- x3  a numeric vector
- y   a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(polvdat)

polymer

polymerization strength variability study

Description

Data from the polymerization strength variability study in chapter 5 of Design and Analysis of Experiments with R

Usage

data(polymer)

Format

A data frame with 120 observations on the following 5 variables.

- lot  a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
       28 29 30
- box  a factor with levels 1 2
- prep a factor with levels 1 2
- test a factor with levels 1 2
- strength  a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(polymer)
Data from the complete control factor array and noise factor array for connector experiment in chapter 12 of Design and Analysis of Experiments with R.

Usage

```r
data(prodstd)
```

Format

A data frame with 16 observations on the following 16 variables.

- A: a numeric vector
- B: a numeric vector
- C: a numeric vector
- D: a numeric vector
- E: a numeric vector
- F: a numeric vector
- G: a numeric vector
- Pof: a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

```r
data(prodstd)
```
qsar  

Library of substituted hydroxyphenylurea compounds

**Description**

Data from the Library of substituted hydroxyphenylurea compounds in chapter 10 of Design and Analysis of Experiments with R (compact format)

**Usage**

data(qsar)

**Format**

A data frame with 36 observations on the following 4 variables.

- **Compound**: a numeric vector
- **HE**: a numeric vector
- **DMz**: a numeric vector
- **S0K**: a numeric vector

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

data(qsar)

---

rcb  

generalized RCB golf driving experiment

**Description**

Data from the generalized RCB golf driving experiment in chapter 4 of Design and Analysis of Experiments with R

**Usage**

data(rcb)
Format

A data frame with 135 observations on the following 3 variables.

id   a factor with levels 1 2 3 4 5 6 7 8 9
teeth  a factor with levels 1 2 3
cdistance  a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(rcb)

---

residue  Herbicide degradation experiment

Description

Data from the Herbicide degradation experiment in chapter 9 of Design and Analysis of Experiments with R

Usage

data(residue)

Format

A data frame with 16 observations on the following 3 variables.

soil  a factor with levels "C" "P"
moisture  a factor with levels "L" "H"
temp  a factor with levels 10 30
X1  a numeric vector
X2  a numeric vector
X3  a numeric vector
X4  a numeric vector
X5  a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(residue)
rubber

*Rubber Elasticity data*

**Description**

Data from the Rubber Elasticity Study in chapter 5 of Design and Analysis of Experiments with R

**Usage**

```r
data(rubber)
```

**Format**

A data frame with 96 observations on the following 4 variables.

- `supplier` a factor with levels A B C D
- `batch` a factor with levels I II III IV
- `sample` a factor with levels 1 2
- `elasticity` a numeric vector

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

```r
data(rubber)
```

sausage

*Split-plot experiment on sausage casing with RCB in whole plot*

**Description**

Data from the Split-plot experiment on sausage casing with RCB in whole plot in chapter 7 of Design and Analysis of Experiments with R

**Usage**

```r
data(sausage)
```
Format

A data frame with 32 observations on the following 5 variables.

Block  a factor with levels 1 2
Gbatch  a factor with levels 1 2 3 4
A  a factor with levels -1 1
B  a factor with levels -1 1
C  a factor with levels -1 1
d  a factor with levels -1 1
ys  a numeric vector containing the response

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(sausage)

\[ \begin{array}{l}
\text{Smotor} \\
\text{Single array for starting motor experiment}
\end{array} \]

Description

Data from the single array for starting motor experiment in chapter 12 of Design and Analysis of Experiments with R

Usage

data(Smotor)

Format

A data frame with 18 observations on the following 6 variables.

A  a factor with levels 1 2
B  a factor with levels 1 2 3
C  a factor with levels 1 2 3
d  a factor with levels 1 2 3
E  a factor with levels 1 2
torque  a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall
Examples

data(Smotor)

soup

---

dry mix soup experiment

Description

Data from the dry mix soup experiment in chapter 6 of Design and Analysis of Experiments with R

Usage

data(soup)

Format

A data frame with 16 observations on the following 6 variables.

A  a factor with levels -1 1
B  a factor with levels -1 1
C  a factor with levels -1 1
D  a factor with levels -1 1
E  a factor with levels -1 1
y  a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(soup)
soupmx  

**Description**

Data from the dry soup mix variance component study of Chapter 5 in Design and Analysis of Experiments with R

**Usage**

```r
data(soupmx)
```

**Format**

A data frame with 12 observations on the following 2 variables.

- `batch`: a factor with levels 1 2 3 4
- `weight`: a numeric vector

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

```r
data(soupmx)
```

---

**splitPdes**  

**Description**

Data from the Split-plot cookie baking experiment in chapter 8 of Design and Analysis of Experiments with R

**Usage**

```r
data(splitPdes)
```

**Format**

A data frame with 24 observations on the following 5 variables.

- `short`: a factor with levels 100 80
- `trayT`: a factor with levels RoomT Hot
- `bakeT`: a factor with levels low mid high
- `batch`: a factor with levels 1 2
- `y`: a numeric vector
Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(splitPdes)

---

SPMPV Split-plot mixture process variable experiment with vinyl

Description
Data from the Split-plot mixture process variable experiment with vinyl in chapter 10 of Design and Analysis of Experiments with R

Usage
data(SPMPV)

Format
A data frame with 28 observations on the following 7 variables.

wp a factor with levels 1 2 3 4 5 6 7
z1 a numeric vector
z2 a numeric vector
x1 a numeric vector
x2 a numeric vector
x3 a numeric vector
y a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(SPMPV)
### strung

**Repeated measures study with dairy cow diets**

**Description**
Data from the Repeated measures study with dairy cow diets in chapter 9 of Design and Analysis of Experiments with R (strung out format)

**Usage**
```r
data(strung)
```

**Format**
A data frame with 120 observations on the following 5 variables.

- **Diet**  a factor with levels "Barley" "Mixed" "Lupins"
- **Cow**  a factor with levels 1 2 3 4 5 6 7 8 9 10
- **week**  a factor with levels 1 2 3 4
- **protein**  a numeric vector

**Source**
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**
```r
data(strung)
```

---

### strungtile

**Strung out control factor array and raw response data for Ina tile experiment**

**Description**
Data from the strung out control factor array and raw response data for Ina tile experiment in chapter 12 of Design and Analysis of Experiments with R

**Usage**
```r
data(strungtile)
```
Format

A data frame with 16 observations on the following 16 variables.

A a numeric vector
B a numeric vector
C a numeric vector
D a numeric vector
E a numeric vector
F a numeric vector
G a numeric vector
H a numeric vector
AH a numeric vector
BH a numeric vector
CH a numeric vector
DH a numeric vector
EH a numeric vector
FH a numeric vector
GH a numeric vector
y a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(strungtile)
Description

Data from the taste test panel experiment in Chapter 7 of Design and Analysis of Experiments with R.

Usage

data(taste)

Format

A data frame with 24 observations on the following 3 variables.

- panelist: a factor with levels 1 2 3 4 5 6 7 8 9 10 11 12
- recipe: a factor with levels "A" "B" "C" "D"
- score: a numeric vector

Source

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples

data(taste)
### teach

**Teaching experiment data from Chapter 2**

**Description**

Data from the teaching experiment in chapter 2 of Design and Analysis of Experiments with R

**Usage**

```r
data(teach)
```

**Format**

A data frame with 30 observations on the following 4 variables.

- **class**: a numeric vector
- **method**: a factor with levels 1 2 3
- **score**: a factor with levels 1 2 3 4 5
- **count**: a numeric vector

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

```r
data(teach)
```

### Tet

**Tetracycline concentration in plasma**

**Description**

Data from the Tetracycline concentration in plasma study in chapter 10 of Design and Analysis of Experiments with R (compact format)

**Usage**

```r
data(Tet)
```

**Format**

A data frame with 9 observations on the following 2 variables.

- **Time**: a numeric vector
- **Conc**: a numeric vector
Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(Tet)

tile
Control factor array and summary statistics for Ina tile experiment

Description
Data from the control factor array and summary statistics for Ina tile experiment in chapter 12 of Design and Analysis of Experiments with R

Usage
data(tile)

Format
A data frame with 8 observations on the following 11 variables.

A  a numeric vector
B  a numeric vector
C  a numeric vector
D  a numeric vector
E  a numeric vector
F  a numeric vector
G  a numeric vector
y1  a numeric vector
y2  a numeric vector
ybar a numeric vector
lns2 a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(tile)
Tukey1df

Tukey1df

Description
This function performs Tukey’s single degree of freedom test for interaction in an unreplicated two-factor design

Usage
Tukey1df(data)
Arguments

data
  input - this is a data frame with three variables, the first variable is a numeric response and next two variables are factors. There should be \( ab \) lines in the data frame where \( a \) is the number of levels of the first factor, and \( b \) is the number of levels of the second factor.

Author(s)

John Lawson

Examples

library(daewr)
data(virus)
Tukey1df(virus)

```r
The function is currently defined as
function (data)
{
 y <- data[, 1]
 Afactor <- data[, 2]
 Bfactor <- data[, 3]
 tst1 <- is.factor(Afactor)
 tst2 <- is.factor(Bfactor)
 tst3 <- is.numeric(y)
 if (tst1 & tst2 & tst3) {
 a <- nlevels(Afactor)
 b <- nlevels(Bfactor)
 } else {
 stop("The first column of the data frame is the numeric response, the 2nd and 3rd columns should be coded as factors")
 }
 tst4 <- max(a, b) > 2
 tst5 <- length(y) == a * b
 if (tst4 & tst5) {
 ybb <- with(data, tapply(y, Bfactor, mean))
 yba <- with(data, tapply(y, Afactor, mean))
 sbb <- with(data, tapply(y, Bfactor, sum))
 sba <- with(data, tapply(y, Afactor, sum))
 ybardd <- mean(y)
 CT <- (sum(y)^2)/(a * b)
 ssA <- sum(sba^2/b) - CT
 ssB <- sum(sbb^2/a) - CT
 ssE <- sum(y^2) - CT - ssA - ssB
 ybdj <- rep(ybb, 6)
 prody <- y * ybdj
 sumprod <- tapply(prody, Afactor, sum)
 leftsum <- sum(sumprod * yba)
 ssAB <- (a * b * (leftsum - (ssA + ssB + a * b * ybardd^2) * ybardd)^2/(ssA * ssB))
 ssR <- ssE - ssAB
 }
}
```
F <- ssAB/(ssR/((a - 1) * (b - 1) - 1))
Pval <- 1 - pf(F, 1, ((a - 1) * (b - 1) - 1))

```
cat("Source
df SS MS F Pr>F",
"\n")
cat("A ", paste(format(a - 1, width = 6),
 " ", format(round(ssA, 4), justify = "right"), " ",
 format(round(ssA/(a - 1), 4), justify = "right"),
 "\n"), sep = "")
cat("B ", paste(format(b - 1, width = 6),
 " ", format(round(ssB, 4), justify = "right"), " ",
 format(round(ssB/(b - 1), 4), justify = "right"),
 "\n"), sep = "")
cat("Error ", paste(format((b - 1) * (a - 1),
 width = 6), " ", format(round(ssE, 4), justify = "right"),
 " ", format(round(ssE/(a - 1) * (b - 1), 4), justify = "right"),
 "\n"), sep = "")
cat("NonAdditivity", paste(format(1, width = 6), " ",
 format(round(ssAB, 4), justify = "right"), " ",
 format(round(ssAB, 4), justify = "right"), " ",
 format(round(F, 2), justify = "right"), " ",
 format(round(Pval, 4), justify = "right"), "\n"), sep = "")
cat("Residual ", paste(format((b - 1) * (a - 1) -
 1, width = 6), " ", format(round(ssR, 4), justify = "right"),
 " ", format(round(ssR/((a - 1) * (b - 1) - 1), 4),
 justify = "right"), "\n"), sep = "")
```

else {
  stop("This function only works for unreplicated 2-factor
factorials with >2 levels for one of the factors")
}

vci

**vci**

confidence limits for method of moments estimators of variance components

---

**Description**

function for getting confidence intervals on variance components estimated by the method of moments

**Usage**

vci(confl,c1,ms1,nu1,c2,ms2,nu2)

**Arguments**

- **confl** input- confidence level
- **c1** input - linear combination coefficient of ms1 in the estimated variance component
ms1  input - Anova mean square 1
nu1  input - Anova degrees of freedom for mean square 1
c2  input - linear combination coefficient of ms2 in the estimated variance compo-
nent
ms2  input - Anova mean square 2
nu2  input - Anova degrees of freedom for mean square 2

Value

returned delta, Lower and Upper limits

Author(s)

John Lawson

Examples

vci(.90,.05,.014852,2,.05,.026885,18)
## The function is currently defined as
vci<-function(confl,c1,ms1,nu1,c2,ms2,nu2){
delta<-c1*ms1-c2*ms2
alpha<-1-confl
Falpha1<-qf(confl,nu1,10000000)
Falpha12<-qf(confl,nu1,nu2)
Fconf2<-qf(alpha,nu2,10000000)
Fconf12<-qf(alpha,nu1,nu2)
Falpha2<-qf(confl,nu2,10000000)
Fconf1<-qf(alpha,nu1,10000000)
Fconf12<-qf(alpha,nu1,nu2)
G1<-1-(1/Falpha1)
H2<-(1/Fconf2)-1
G12<-(Falpha12-1)**2-G1**2*Falpha12**2-H2**2)/Falpha12
VL<-G1**2*c1**2*ms1**2+H2**2*c2**2*ms2**2+G12*c1*c2*ms1*ms2
H1<-(1/Fconf1)-1
G2<-(1/Falpha12)
H12<-(1-Fconf12)**2-H1**2*Fconf12**2-G2**2)/Fconf12
VU<-H1**2*c1**2*ms1**2+G2**2*c2**2*ms2**2
L<-delta-sqrt(VL)
U<-delta+sqrt(VU)
cat("delta=",delta," Lower Limit=",L," Upper Limit="",U,"\n")
}
**Description**

Data from the Assay of Viral Contamination experiment in chapter 3 of Design and Analysis of Experiments with R

**Usage**

data(virus)

**Format**

A data frame with 18 observations on the following 3 variables.

- `y` a numeric vector
- `Sample` a factor with levels 1 2 3 4 5 6
- `Dilution` a factor with levels 3 4 5

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

**Examples**

data(virus)

---

**volt**

*Volt meter experiment data from Chapter 3*

---

**Description**

Data from the Volt meter experiment in chapter 3 of Design and Analysis of Experiments with R

**Usage**

data(volt)

**Format**

A data frame with 16 observations on the following 3 variables.

- `y` a numeric vector
- `A` a factor containing the levels (22, 32) of factor A
- `B` a factor containing the levels (0.5, 5.0) of factor B
- `C` a factor containing the levels (0.5, 5.0) of factor C

**Source**

Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall
Examples
data(web)

Description
Data from the web page design experiment in chapter 3 of Design and Analysis of Experiments with R

Usage
data(web)

Format
A data frame with 36 observations on the following 6 variables.

A a factor with levels 1 2
B a factor with levels 1 2
C a factor with levels 1 2
D a factor with levels 1 2
visitors a numeric vector
signup a numeric vector

Source
Design and Analysis of Experiments with R, by John Lawson, CRC/Chapman Hall

Examples
data(web)
Index

*Topic datagen
  Altscreen, 4
  BIBsize, 11
  DefScreen, 24
  EEw1s1, 26
  EEw1s2, 27
  EEw1s3, 28
  EEw2s1, 29
  EEw2s2, 30
  EEw2s3, 31
  EEw3, 32
  Fcrit, 36
  Fpower1, 42
  Fpower2, 43
  mod, 60
  ModelRobust, 61
  OptPB, 63
  PBDes, 64

*Topic datasets
  antifungal, 5
  Apo, 6
  apple, 7
  arso, 7
  augm, 8
  Bdish, 9
  Bff, 10
  bha, 11
  bioequiv, 13
  bioeqv, 13
  blood, 14
  BoxM, 15
  BPmonitor, 15
  bread, 16
  cake, 17
  cement, 17
  chem, 18
  chipman, 19
  COdata, 19
  cont, 21
  cpipe, 22
  culture, 23
  dairy, 24
  drug, 25
  eptaxr, 33
  eptaxs2, 34
  eptaxyb, 35
  gagerr, 46
  gear, 50
  hardwood, 52
  inject, 55
  MPV, 62
  Naph, 62
  pastry, 64
  pest, 65
  pesticide, 66
  plasma, 67
  polvdat, 67
  polymer, 68
  prodstd, 69
  qsar, 70
  rcb, 70
  residue, 71
  rubber, 72
  sausage, 72
  Smotor, 73
  soup, 74
  soupmx, 75
  splitPdes, 75
  SPMPV, 76
  strung, 77
  strungtile, 77
  sugarbeet, 78
  taste, 79
  teach, 80
  Tet, 80
  tile, 81
  Treb, 82
  virus, 85
volt, 86
web, 87
+Topic design
LenthPlot, 55
+Topic hplot
colormap, 20
fullnormal, 44
halfnorm, 51
+Topic htest
fhstep, 36
fhstepDS, 37
firstm, 38
FitDefSc, 39
fnextrm, 39
fntrmDS, 40
gapstat, 47
Gaptest, 48
HierAFS, 53
ihstep, 54
LGB, 57
LGBc, 58
TukeyYldf, 82
vci, 84
+Topic package
daewr-package, 4
Altscreen, 4
antifungal, 5
Apo, 6
apple, 7
arso, 7
augm, 8
Bdish, 9
Bff, 10
bha, 11
BIBsize, 11
bioequiv, 13
bioeqv, 13
blood, 14
BoxM, 15
BPmonitor, 15
bread, 16
cake, 17
cement, 17
chem, 18
chipman, 19
COdata, 19
colormap, 20
cont, 21
cpipe, 22
culture, 23
daewr (daewr-package), 4
daewr-package, 4
dairy, 24
DefScreen, 24
drug, 25
EEw1s1, 26
EEw1s2, 27
EEw1s3, 28
EEw2s1, 29
EEw2s2, 30
EEw2s3, 31
EEw3, 32
eptaxr, 33
eptaxs2, 34
eptaxyb, 35
Fcrit, 36
fhstep, 36
fhstepDS, 37
firstm, 38
FitDefSc, 39
fnextrm, 39
fntrmDS, 40
Fpower, 41
Fpower1, 42
Fpower2, 43
fullnormal, 44
gagerr, 46
gapstat, 47
Gaptest, 48
gear, 50
halfnorm, 51
hardwood, 52
HierAFS, 53
ihstep, 54
inject, 55
LenthPlot, 55
LGB, 57
LGBc, 58
mod, 60
ModelRobust, 61
MPV, 62

Naph, 62

OptPB, 63

pastry, 64
PBDes, 64
pest, 65
pesticide, 66
plasma, 67
polvdat, 67
polymer, 68
prostd, 69

qsar, 70

rcb, 70
residue, 71
rubber, 72

sausage, 72
Smotor, 73
soup, 74
soupmx, 75
splitPdes, 75
SPMPV, 76
strung, 77
strungtile, 77
sugarbeet, 78

taste, 79
teach, 80
Tet, 80
tile, 81
Treb, 82
Tukey1df, 82

vci, 84
virus, 85
volt, 86

web, 87