Package ‘dalmatian’

November 22, 2021

Title Automating the Fitting of Double Linear Mixed Models in ‘JAGS’ and ‘nimble’

Version 1.0.0

Description Automates fitting of double GLM in ‘JAGS’. Includes automatic generation of ‘JAGS’ scripts, running ‘JAGS’ or ‘nimble’ via the ‘rjags’ and ‘nimble’ package, and summarizing the resulting output. For further information see Bonner, Kim, Westneat, Mutzel, Wright, and Schofield <doi:10.18637/jss.v100.i10>.

Depends R (>= 3.5.0)

License GPL-2

LazyData true

VignetteBuilder knitr

Imports coda, ggmcmc, dglm, tidyr, dplyr, rlang

Suggests rmarkdown, rjags, nimble, knitr, ggplot2, parallel, dclone

RoxygenNote 7.1.2

Encoding UTF-8

NeedsCompilation no

Author Simon Bonner [aut, cre] (<https://orcid.org/0000-0003-2063-4572>), Hanna Kim [aut]

Maintainer Simon Bonner <simon.bonner@uwo.ca>

Repository CRAN

Date/Publication 2021-11-22 19:40:02 UTC

R topics documented:

betabin_data_1 ... 2
caterpillar ... 3
caterpillar.dalmatian ... 3
coeff.dalmatian .. 4
convergence ... 5
convergence.dalmatian ... 6
Simulated data for illustrating the beta-binomial model

Description

Simulated data to show how the beta-binomial model may be fit with fixed and random effects on both the mean and dispersion.

Usage

betabin_data_1

Format

A data frame containing 500 observations and 6 columns:

ID The individual ID.
Rep The replicate number.
x1 The value of the covariate for the mean.
x2 The value of the covariate for the dispersion.
m The number of Bernoulli trials for each observation.
y The number of successes.
caterpillar

Caterpillar (Generic)

Description
Caterpillar (Generic)

Usage
caterpillar(object, ...)

Arguments

object
Object to assess.

...
Ignored

Value
A list of ggplot objects that can be used to later reproduce the plots via print.

caterpillar.dalmatian

Caterpillar (dalmatian)

Description
Construct caterpillar plots for key (or selected) parameters in a dalmatian object.

Usage

S3 method for class 'dalmatian'
caterpillar(
 object,
 family = NULL,
 nstart = start(object$coda),
 nend = end(object$coda),
 nthin = thin(object$coda),
 show = TRUE,
 return_plots = TRUE,
 ...
)

Arguments

- **object**: Object of class `dalmatian` created by `dalmatian()`.
- **family**: String defining selected family of variables (see help for `ggs()`).
- **nstart**: Start point for computing summary statistics (relative to true start of chain).
- **nend**: End point for computing summary statistics (relative to true start of chain).
- **nthin**: Thinning factor for computing summary statistics (relative to full chain and not previously thinned output).
- **show**: If `TRUE` then plots are displayed on the computer screen and the session is paused between each plot.
- **return_plots**: If `TRUE` then a named list of ggplot objects containing the plots will be returned as output.
- **...**: Ignored

Value

A list of ggplot objects that can be used to later reproduce the plots via `print`.

References

coef.dalmatian

Coefficients function for dalmatian objects

Description

`coef (dalmatian)`

Usage

```r
## S3 method for class 'dalmatian'
coef(object, summary = NULL, ranef = NULL, ...)
```

Arguments

- **object**: Object of class `dalmatian` created by `dalmatian()`.
- **summary**: Posterior summaries computed from the supplied `dalmatian` object (optional).
- **ranef**: Random effects summary computed from the supplied `dalmatian` object (optional).
- **...**: Ignored
Details

Extracts coefficients for the mean and dispersion components of a dalmatian model.

Value

List of three lists named mean, dispersion, and joint each containing the posterior means of the coefficients corresponding to the fixed and random terms of that model component (if present).

Author(s)

Simon Bonner

References

Convergence Diagnostics (S3 Generic)

Description

Generic function for computing convergence diagnostics.

Usage

convergence(object, ...)

Arguments

object Object to asses.
... Ignored

Value

List containing Gelman-Rubin and Raftery convergence diagnostics and effective sample sizes for the selected parameters. This information is used to diagnose convergence of the MCMC sampling algorithms.

References

convergence.dalmatian Convergence

Description

Compute convergence diagnostics for a dalmatian object.

Usage

```r
## S3 method for class 'dalmatian'
convergence(
  object,
  pars = NULL,
  nstart = start(object$coda),
  nend = end(object$coda),
  nthin = coda::thin(object$coda),
  raftery = NULL,
  ...
)
```

Arguments

- `object` Object of class dalmatian created by dalmatian().
- `pars` List of parameters to assess. If NULL (default) then diagnostics are computed for the fixed effects and random effects standard deviations in the mean, dispersion, and joint components.
- `nstart` Start point for computing summary statistics (relative to true start of chain).
- `nend` End point for computing summary statistics (relative to true start of chain).
- `nthin` Thinning factor for computing summary statistics (relative to full chain and not previously thinned output).
- `raftery` List of arguments to be passed to raftery.diag(). Any values not provided will be set to their defaults (see help(raftery.diag()) for details).
- `...` Ignored

Value

List containing Gelman-Rubin and Raftery convergence diagnostics and effective sample sizes for the selected parameters. This information is used to diagnose convergence of the MCMC sampling algorithms.

References

dalmatian
Run DGLM in JAGS via rjags or in nimble

Description

The primary function which automates the running of JAGS and nimble.

See vignettes included in the package for full documentation. The list of available vignettes can be generated with `vignette(package="dalmatian")`.

Usage

```r
dalmatian(
  df,
  family = "gaussian",
  mean.model,
  dispersion.model,
  joint.model = NULL,
  jags.model.args,
  coda.samples.args,
  response = NULL,
  ntrials = NULL,
  rounding = FALSE,
  lower = NULL,
  upper = NULL,
  parameters = NULL,
  svd = FALSE,
  residuals = FALSE,
  gencode = NULL,
  run.model = TRUE,
  engine = "JAGS",
  n.cores = 1L,
  drop.levels = TRUE,
  drop.missing = TRUE,
  include.checks = TRUE,
  overwrite = FALSE,
  debug = FALSE,
  saveJAGSinput = NULL
)
```

Arguments

- **df**
 - Data frame containing the response and predictor values for each individual. (data.frame)
- **family**
 - Name of family of response distribution. Currently supported families include normal (gaussian) and negative binomial (nbinom). (character)
- **mean.model**
 - Model list specifying the structure of the mean. (list)
dispersion.model
Model list specifying the structure of the dispersion. (list)

joint.model
Model list specifying structure with parameter shared between linear predictors of the mean and variance. (list)

jags.model.args
List containing named arguments of jags.model. (list)

coda.samples.args
List containing named arguments of coda.samples. (list)

response
Name of variable in the data frame representing the response. (character)
ntrials
Name of variable in the data frame representing the number of independent trials for each observation of the beta binomial model.

rounding
Specifies that response has been rounded if TRUE. (logical)

lower
Name of variable in the data frame representing the lower bound on the response if rounded. (character)

upper
Name of variable in the data frame representing the upper bound on the response if rounded. (character)

parameters
Names of parameters to monitor. If NULL then default values are selected. (character)

svd
Compute Singular Variable Decomposition of model matrices to improve convergence. (logical)

residuals
If TRUE then compute residuals in output. (logical)
gencode
If TRUE then generate code potentially overwriting existing model file. By default generate code if the file does not exist and prompt user if it does. (logical)

run.model
If TRUE then run sampler. Otherwise, stop once code and data have been created. (logical)

eengine
Specifies the sampling software. Packages currently supported include JAGS (the default) and nimble. (character)
n.cores
Number of cores to use. If equal to 1 then chains will not be run in parallel. If greater than 1 then chains will be run in parallel using the designated number of cores.

drop.levels
If TRUE then drop unused levels from all factors in df. (logical)
drop.missing
If TRUE then remove records with missing response variable. (logical)
include.checks
If TRUE (default) then include extra Bernoulli variables in the model to ensure that the mean and dispersion parameters remain within their support. (logical)

overwrite
If TRUE then overwrite existing JAGS files (non-interactive sessions only). (logical)
debug
If TRUE then enter debug model. (logical)

saveJAGSinput
Directory to which jags.model input is saved prior to calling jags.model(). This is useful for debugging. No files saved if NULL. (character)

Details
The primary function in the package, dalmatian automates the generation of code, data, and initial values. These are then passed as arguments to function from the rjags package which automates the generation of samples from the posterior.
Value

An object of class dalmatian containing copies of the original data frame, the mean model, the dispersion model the arguments of jags.model and coda.samples. and the output of the MCMC sampler.

Author(s)

Simon Bonner

References

Examples

```r
## Not run:
## Load pied flycatcher data
data(pied_flycatchers_1)

## Create variables bounding the true load
pfdata$lower<-ifelse(pfdata$load==0,log(.001),log(pfdata$load-.049))
pfdata$upper=log(pfdata$load+.05)

## Mean model
mymean=list(fixed=list(name="alpha",
formula=~ log(IVI) + broodsize + sex,
priors=list(c("dnorm",0,.001))))

## Dispersion model
myvar=list(fixed=list(name="psi",
link="log",
formula=~broodsize + sex,
priors=list(c("dnorm",0,.001))))

## Set working directory
## By default uses a system temp directory. You probably want to change this.
workingDir <- tempdir()

## Define list of arguments for jags.model()
jm.args <- list(file=file.path(workingDir,"pied_flycatcher_1_jags.R"),n.adapt=1000)

## Define list of arguments for coda.samples()
cs.args <- list(n.iter=5000)

## Run the model using dalmatian
pfresults <- dalmatian(df=pfdata,
mean.model=mymean,
dispersion.model=myvar,
jags.model.args=jm.args)
```
gamma_data_1

Simulated data to show how the gamma model may be fit with fixed and random effects on both the mean and dispersion.

Description

Simulated data to show how the gamma model may be fit with fixed and random effects on both the mean and dispersion.

Usage

gamma_data_1

Format

A data frame containing 1500 observations and 5 columns:

- **ID** The individual ID.
- **Rep** The replicate number.
- **x1** The value of the covariate for the mean.
- **x2** The value of the covariate for the dispersion.
- **y** The response.

nbinom_data_1

Simulated data to show how the negative binomial model may be fit with fixed and random effects on both the mean and dispersion.

Description

Simulated data to show how the negative binomial model may be fit with fixed and random effects on both the mean and dispersion.

Usage

nbinom_data_1
pfdata

Format

A data frame containing 1500 observations and 5 columns:

- **ID** The individual ID.
- **Rep** The replicate number.
- **x1** The value of the covariate for the mean.
- **x2** The value of the covariate for the dispersion.
- **y** The count.

pfdata
Pied flycatcher feeding data

Description

Dataset containing 5795 records of 60 pied flycatchers from 33 nest boxes feeding their nestlings during a brood manipulation experiment.

Usage

pfdata

Format

A data frame containing 5795 rows and 17 variables

plot.dalmatian
Plot Function for dalmatian objects

Description

Create traceplots and caterpillar plots from output of the fitted model.

Usage

```r
## S3 method for class 'dalmatian'
plot(  
x,  
trace = TRUE,  
caterpillar = TRUE,  
show = TRUE,  
return_plots = FALSE,  
...  
)
```
Arguments

- **x**: Object of class `dalmatian` created by `dalmatian()`.
- **trace**: If TRUE (default) then generate traceplots.
- **caterpillar**: If TRUE (default) then generate caterpillar plots
- **show**: If TRUE (default) then display plots as they are generated.
- **return_plots**: If TRUE (not default) return a list of `ggplot` objects representing the plots.
- **...**: Ignored

Details

This function is a wrapper for the functions `traceplots.dalmatian()` and `caterpillar.dalmatian()` which create traceplots and caterpillar plots of all variables stored by the sampler. Further control is available by calling these functions directly.

Value

List of `ggplot` objects if `return_plots` is true.

Author(s)

Simon Bonner

References

Examples

```r
## Not run:
## Plot results for pied-flycatcher model without random effects
plot(pfresults)

## Plot results for pied-flycatcher model with random effects
plot(pfresults2)

## End(Not run)
```
predict.dalmatian Prediction method for dalmatian objects

Description

Prediction method for dalmatian objects

Usage

S3 method for class 'dalmatian'
predict(
 object,
 newdata = object$df,
 method = "mean",
 population = FALSE,
 se = TRUE,
 ci = TRUE,
 type = c("link", "response"),
 level = c(0.5, 0.95),
 ...
)

Arguments

object Object of class dalmatian created by dalmatian().
newdata data frame containing predictor values to predict response variables. Defaults to
data in object if not supplied. (data.frame)
method Method to construct the fitted model. Either posterior mean ("mean") or poste-
 rior mode ("mode") (character)
population If TRUE then generate predictions at the population level rather than the indi-
 vidual level. (logical)
se if TRUE return the posterior standard deviation (logical)
ci returning credible intervals for predictions if TRUE (logical)
type The type of prediction required (as in predict() for models generated by glm()).
 The default is on the scale of the linear predictors; the alternative "response" is
 on the scale of the response variable. E.g., if the link between the mean and
 its linear predictor is the logit function then the default prediction for the mean
 will be on the scale of the log-odds. If the link between the mean and its linear
 predictor is the log function then the defaults prediction will be on the scale of
 the log.
level vector of levels of credible intervals for predictions (numeric)
... Ignored

Value

predictions (list)
Description

Prints summary information about a fitted model of class `dalmatian`.

Usage

```r
## S3 method for class 'dalmatian'
print(x, summary = TRUE, convergence = TRUE, ...)
```

Arguments

- `x`: Object of class `dalmatian` created by `dalmatian()`.
- `summary`: If TRUE (default) compute posterior summary statistics via `summary.dalmatian()`.
- `convergence`: If TRUE (default) compute MCMC convergence diagnostics via `convergence.dalmatian()`.
- `...`: Ignored

Details

This function produces a description of the model’s structure and (by default) computes and prints the summary statistics computed via `summary.dalmatian()` and the MCMC convergence diagnostics computed via `convergence.dalmatian()`. Further control is available by calling these functions directly.

Value

List of two elements containing posterior summary statistics and convergence diagnostics (if requested).

Author(s)

Simon Bonner

References

Examples

Not run:
Print summary of dalmatian objects
print(pfresults)
print(pfresults2)
End(Not run)

print.dalmatian.summary

Print Summary (dalmatian)

Description

Print Summary (dalmatian)

Usage

S3 method for class 'dalmatian.summary'
print(x, digits = 2, ...)

Arguments

x Object of class dalmatian.summary created by summary.dalmatian().
digits Number of digits to display after decimal.
... Ignored

Value

No return value. This function prints the summary of a dalmatian object in a nicely formatted manner.

References

ranef.dalmatian Random Effects (dalmatian)

Description
Compute posterior summary statistics for the individual random effects in each part of the model.

Usage
```r
## S3 method for class 'dalmatian'
ranef(
  object,
  nstart = start(object$coda),
  nend = end(object$coda),
  nthin = thin(object$coda),
  ...
)
```

ranef Random Effects (S3 Generic)

Description
Generic function for exporting summaries of random effects.

Usage
```r
ranef(object, ...)
```

Arguments
- `object`: Input object
- `...`: Ignored

Value
List containing elements providing information on the predicted values of random effects as appropriate for the model.

References
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Object of class dalmatian created by dalmatian().</td>
</tr>
<tr>
<td>nstart</td>
<td>Start point for computing summary statistics (relative to true start of chain).</td>
</tr>
<tr>
<td>nend</td>
<td>End point for computing summary statistics (relative to true start of chain).</td>
</tr>
<tr>
<td>nthin</td>
<td>Thinning factor for computing summary statistics (relative to full chain and not previously thinned output).</td>
</tr>
<tr>
<td>...</td>
<td>Ignored</td>
</tr>
</tbody>
</table>

Value

List containing elements mean, dispersion, and/or joint as appropriate. Each element provides information on the predicted values of the random effects as appropriate for each component of the model.

References

residuals.dalmatian Residuals method for dalmatian fitted objects

Description

Computes posterior summaries of the residuals for each observation. Summary statistics include the posterior mean and the upper and lower bounds of the 95 If the response is not rounded then the residuals can either be sampled as part of the MCMC or computed during post-processing. If computed as part of the MCMC then residuals() will simply summarize the posterior distributions. Otherwise, residuals() will compute the residuals and their posterior summaries. If the response is rounded then the residuals must be sampled when the MCMC sampler is run.

Usage

```r
## S3 method for class 'dalmatian'
residuals(object, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Object of class dalmatian created by dalmatian().</td>
</tr>
<tr>
<td>...</td>
<td>Ignored</td>
</tr>
</tbody>
</table>

Value

Data frame containing original data augmented with posterior mean and lower and upper bounds of the 95 residual for each observation.
Author(s)
Simon Bonner

Examples

Not run:
Here we rerun the first example in
\code{vignettes(pied-flycatcher-1)} with \code{residuals = TRUE}
in order to sample the residuals and then use the \code{residuals()} function to summarize the posterior distributions. This is necessary
because the output is too large to store inside the package.

Load pied flycatcher data
data(pied_flycatchers_1)

Create variables bounding the true load
pfdata$lower = ifelse(pfdata$load == 0, log(.001), log(pfdata$load -.049))
pfdata$upper = log(pfdata$load + .05)

Model 1

Mean model
mymean = list(fixed = list(name = "alpha",
 formula = ~ log(IVI) + broodsize + sex,
 priors = list(c("dnorm", 0, .001)))))

Dispersion model
mydisp = list(fixed = list(name = "psi",
 link = "log",
 formula = ~ broodsize + sex,
 priors = list(c("dnorm", 0, .001)))))

Set working directory
workingDir <- tempdir()

Define list of arguments for jags.model()
jm.args <- list(file = file.path(workingDir, "pied_flycatcher_1_jags.R"), n.adapt = 1000)

Define list of arguments for coda.samples()
cs.args <- list(n.iter = 5000, thin = 20)

Run the model using dalmatian
pfresults <- dalmatian(df = pfdata,
 mean.model = mymean,
 dispersion.model = mydisp,
 jags.model.args = jm.args,
 coda.samples.args = cs.args,
 rounding = TRUE,
 lower = "lower",
 upper = "upper",
 residuals = TRUE)
setJAGSInits

n.cores = 3,
residuals = TRUE,
overwrite = TRUE,
debug=FALSE)

summarize residuals
res.pfresults <- residuals(object = pfresults)

End(Not run)

setJAGSInits Set initial values for dalmatian

Description
Set initial values for dalmatian

Usage

setJAGSInits(
 mean.model,
 dispersion.model,
 fixed.mean = NULL,
 fixed.dispersion = NULL,
 y = NULL,
 random.mean = NULL,
 sd.mean = NULL,
 random.dispersion = NULL,
 sd.dispersion = NULL
)

Arguments

mean.model Model list specifying the structure of the mean. (list)
dispersion.model Model list specifying the structure of the dispersion. (list)
fixed.mean Initial values for the fixed effects of the mean. (numeric)
fixed.dispersion Initial values for the fixed effects of the dispersion. (numeric)
y Initial values for the true response. This should only be specified if the rounding = TRUE in the main call to dalmatian.
random.mean Initial values for the random effects of the mean. (numeric)
sd.mean Initial values for the standard deviation of the random effects of the mean. (numeric)
random.dispersion Initial values for the random effects of the dispersion. (numeric)
sd.dispersion Initial values for the standard deviation of the random effects of the dispersion. (numeric)
Details

Allows the user to set initial values for dalmatian. Any values not specified will by initialized by JAGS.

Value

inits (list)

Author(s)

Simon Bonner

S3 method for class 'dalmatian'
summary(
 object,
 nstart = start(object$coda),
 nend = end(object$coda),
 nthin = thin(object$coda),
 ...
)

Arguments

object Object of class dalmatian created by dalmatian().
nstart Start point for computing summary statistics (relative to true start of chain).
nend End point for computing summary statistics (relative to true start of chain).
nthin Thinning factor for computing summary statistics (relative to full chain and not previously thinned output).
... Ignored

Value

output (list)

References

terms.dalmatian

Terms function for dalmatian objects

Description

`terms (dalmatian)`

Usage

```r
## S3 method for class 'dalmatian'
terms(x, ...)
```

Arguments

- `x` Object of class `dalmatian` created by `dalmatian()`.
- `...` Further object passed directly to `terms`. Recycled for each model component.

Details

Constructs a list of terms objects for each component of the model specified in the input object.

Value

List of with two lists named mean and dispersion each containing `terms` objects corresponding to the fixed and random components of that model component (if present).

Author(s)

Simon Bonner

traceplots

Traceplots (Generic)

Description

Traceplots (Generic)

Usage

```r
traceplots(object, ...)
```

Arguments

- `object` Object to assess.
- `...` Ignored
traceplots.dalmatian

Value
A list of ggplot objects that can be used to later reproduce the plots via print.

Description
Construct traceplots for key (or selected) parameters in a dalmatian object.

Usage
```r
## S3 method for class 'dalmatian'
traceplots(
  object,
  family = NULL,
  nstart = start(object$coda),
  nend = end(object$coda),
  nthin = thin(object$coda),
  show = TRUE,
  return_plots = TRUE,
  ...
)
```

Arguments
- `object`: Object of class dalmatian created by dalmatian().
- `family`: String defining selected family of variables (see help for ggs()).
- `nstart`: Start point for computing summary statistics (relative to true start of chain).
- `nend`: End point for computing summary statistics (relative to true start of chain).
- `nthin`: Thinning factor for computing summary statistics (relative to full chain and not previously thinned output).
- `show`: If TRUE then plots are displayed on the computer screen and the session is paused between each plot.
- `return_plots`: If TRUE then return list of ggplot objects.
- `...`: Ignored

Value
A list of ggplot objects that can be used to later reproduce the plots via print.

References
Simulated data for illustrating the use of weights

Description

Simulated data for illustrating the use of weights in the particular case when the responses are averages of observed with different denominators

Usage

weights_data_1

Format

An object of class data.frame with 100 rows and 3 columns.

Details

@format A data frame with 100 rows and 3 columns:

- n The number of observations.
- x The common predictor value.
- y The mean response value.
Index

* datasets
 betabin_data_1, 2
 gamma_data_1, 10
 nbinom_data_1, 10
 pfdata, 11
 weights_data_1, 23

betabin_data_1, 2

caterpillar, 3
 caterpillar.dalmatian, 3
 coef.dalmatian, 4
 convergence, 5
 convergence.dalmatian, 6

dalmatian, 7
 gamma_data_1, 10
 nbinom_data_1, 10

pfdata, 11
 plot.dalmatian, 11
 predict.dalmatian, 13
 print.dalmatian, 14
 print.dalmatian.summary, 15

ranef, 16
 ranef.dalmatian, 16
 residuals.dalmatian, 17

setJAGSInits, 19
 summary.dalmatian, 20

terms.dalmatian, 21
 traceplots, 21
 traceplots.dalmatian, 22

weights_data_1, 23