Package ‘datawizard’

October 22, 2022

Type Package

Title Easy Data Wrangling and Statistical Transformations

Version 0.6.3

Maintainer Indrajeet Patil <patilindrajeet.science@gmail.com>

Description A lightweight package to assist in key steps involved in any data analysis workflow: (1) wrangling the raw data to get it in the needed form, (2) applying preprocessing steps and statistical transformations, and (3) compute statistical summaries of data properties and distributions. It is also the data wrangling backend for packages in ‘easystats’ ecosystem.

License GPL (>= 3)

URL https://easystats.github.io/datawizard/

BugReports https://github.com/easystats/datawizard/issues

Depends R (>= 3.6)

Imports insight (>= 0.18.5), stats, utils

Suggests bayestestR, boot, brms, data.table, dplyr (>= 1.0), effectsize, gamm4, ggplot2, haven, htmltools, htr, knitr, lme4, mediation, parameters, poorman (>= 0.2.6), psych, readxl, readr, rio, rmarkdown, rstanarm, see, testthat (>= 3.1.0), tidyr, withr

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.2.1

Config/testthat/edition 3

Config/Needs/website rstudio/bslib, r-lib/pkgdown, easystats/easystatstemplate

NeedsCompilation no
R topics documented:

adjust ... 3
 categorize .. 6
center ... 10
goaf ... 14
goaf_to_numeric ... 16
goaf_overlap ... 16
goaf_overlap ... 19
goaf_add_prefix ... 21
goaf_overlap ... 24
goaf_extract .. 25
goaf_group ... 28
goaf_match ... 30
goaf_merge ... 32
goaf_partition ... 35
goaf_peek .. 37
goaf_read ... 39
goaf_relocate ... 41
goaf_restore_type .. 43
goaf_rotate ... 44
goaf_tabulate ... 45
goaf_to_long ... 48
goaf_to_wide ... 51
demean ... 54
describe_distribution ... 58
distribution_mode .. 62
efc ... 62
find_columns .. 62
nhanes_sample ... 66
adjust

A function to adjust for the effect of other variables in the dataset. This function is based on underlying regression models, allowing for flexibility in fitting multilevel partialization, non-linear partialization, and fitting models under a Bayesian framework. The values returned are the residuals of the regression models. A regular correlation between two adjusted variables is equivalent to the partial correlation between them.

Description

This function can be used to adjust the data for the effect of other variables present in the dataset. It is based on an underlying fitting of regression models, allowing for quite some flexibility, such as including factors as random effects in mixed models (multilevel partialization), continuous variables as smooth terms in general additive models (non-linear partialization) and/or fitting these models under a Bayesian framework. The values returned by this function are the residuals of the regression models. Note that a regular correlation between two "adjusted" variables is equivalent to the partial correlation between them.

Usage

```r
adjust(
  data,
  effect = NULL,
  select = NULL,
  exclude = NULL,
  multilevel = FALSE,
  additive = FALSE,
  bayesian = FALSE,
```
```r
keep_intercept = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = FALSE
)

data_adjust(
  data,
  effect = NULL,
  select = NULL,
  exclude = NULL,
  multilevel = FALSE,
  additive = FALSE,
  bayesian = FALSE,
  keep_intercept = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = FALSE
)
```

Arguments

- **data**
 - A data frame.

- **effect**
 - Character vector of column names to be adjusted for (regressed out). If `NULL` (the default), all variables will be selected.

- **select**
 - Variables that will be included when performing the required tasks. Can be either
 - a variable specified as a literal variable name (e.g., `column_name`),
 - a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., `c("col1", "col2", "col3")`),
 - a formula with variable names (e.g., `~column_1 + column_2`),
 - a vector of positive integers, giving the positions counting from the left (e.g. 1 or `c(1, 3, 5)`),
 - a vector of negative integers, giving the positions counting from the right (e.g., `-1` or `-1:-3`),
 - one of the following select-helpers: `starts_with()`, `ends_with()`, `contains()`, a range using `:` or `regex("\"\")`. `starts_with()`, `ends_with()`, and `contains()` accept several patterns, e.g `starts_with("Sep", "Petal")`.
 - or a function testing for logical conditions, e.g. `is.numeric()` (or `is.numeric`), or any user-defined function that selects the variables for which the function returns `TRUE` (like: `foo <- function(x) mean(x) > 3`),
 - ranges specified via literal variable names, select-helpers (except `regex()`) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a `-`, e.g. `-ends_with("\"\")`, `-is.numeric` or `-Sepal.Width:Petal.Length`. **Note:** Negation means that matches are **excluded**, and thus, the exclude argument can be used alternatively. For instance, `select=-ends_with("Length")` (with `-`) is equivalent to `exclude=ends_with("Length")`.
  ```r
  ```
adjust

(no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

multilevel
If TRUE, the factors are included as random factors. Else, if FALSE (default), they are included as fixed effects in the simple regression model.

additive
If TRUE, continuous variables as included as smooth terms in additive models. The goal is to regress-out potential non-linear effects.

bayesian
If TRUE, the models are fitted under the Bayesian framework using rstanarm.

keep_intercept
If FALSE (default), the intercept of the model is re-added. This avoids the centering around 0 that happens by default when regressing out another variable (see the examples below for a visual representation of this).

ignore_case
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

verbose
Toggle warnings.

Value
A data frame comparable to data, with adjusted variables.

Examples

adjusted_all <- adjust(attitude)
head(adjusted_all)
adjusted_one <- adjust(attitude, effect = "complaints", select = "rating")
head(adjusted_one)

adjust(attitude, effect = "complaints", select = "rating", bayesian = TRUE)
adjust(attitude, effect = "complaints", select = "rating", additive = TRUE)
attitude$complaints_LMH <- cut(attitude$rating, 3)
adjust(attitude, effect = "complaints_LMH", select = "rating", multilevel = TRUE)

Generate data
data <- simulate_correlation(n = 100, r = 0.7)
data$V2 <- (5 * data$V2) + 20 # Add intercept

Adjust
adjusted <- adjust(data, effect = "V1", select = "V2")
adjusted_icpt <- adjust(data, effect = "V1", select = "V2", keep_intercept = TRUE)

Visualize
plot(data$V1, data$V2,
 pch = 19, col = "blue",
 ylim = c(min(adjusted$V2), max(data$V2)),
 main = "Original (blue), adjusted (green), and adjusted - intercept kept (red) data"
)
abline(lm(V2 ~ V1, data = data), col = "blue")
points(adjusted$V1, adjusted$V2, pch = 19, col = "green")
abline(lm(V2 ~ V1, data = adjusted), col = "green")
points(adjusted_icpt$V1, adjusted_icpt$V2, pch = 19, col = "red")
abline(lm(V2 ~ V1, data = adjusted_icpt), col = "red")

categorize

_recode (or "cut") data into groups of values.

Description

This function divides the range of variables into intervals and recodes the values inside these intervals according to their related interval. It is basically a wrapper around base R’s `cut()`, providing a simplified and more accessible way to define the interval breaks (cut-off values).

Usage

categorize(x, ...)

S3 method for class 'numeric'
categorize(
 x,
 split = "median",
 n_groups = NULL,
 range = NULL,
 lowest = 1,
 labels = NULL,
 verbose = TRUE,
 ...
)

S3 method for class 'data.frame'
categorize(
 x,
 select = NULL,
 ...
categorize

exclude = NULL,
split = "median",
n_groups = NULL,
range = NULL,
lowest = 1,
labels = NULL,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)

Arguments

x A (grouped) data frame, numeric vector or factor.
... not used.
split Character vector, indicating at which breaks to split variables, or numeric values with values indicating breaks. If character, may be one of "median", "mean", "quantile", "equal_length", or "equal_range". "median" or "mean" will return dichotomous variables, split at their mean or median, respectively. "quantile" and "equal_length" will split the variable into n_groups groups, where each group refers to an interval of a specific range of values. Thus, the length of each interval will be based on the number of groups. "equal_range" also splits the variable into multiple groups, however, the length of the interval is given, and the number of resulting groups (and hence, the number of breaks) will be determined by how many intervals can be generated, based on the full range of the variable.
n_groups If split is "quantile" or "equal_length", this defines the number of requested groups (i.e. resulting number of levels or values) for the recoded variable(s). "quantile" will define intervals based on the distribution of the variable, while "equal_length" tries to divide the range of the variable into pieces of equal length.
range If split = "equal_range", this defines the range of values that are recoded into a new value.
lowest Minimum value of the recoded variable(s). If NULL (the default), for numeric variables, the minimum of the original input is preserved. For factors, the default minimum is 1. For split = "equal_range", the default minimum is always 1, unless specified otherwise in lowest.
labels Character vector of value labels. If not NULL, categorize() will returns factors instead of numeric variables, with labels used for labelling the factor levels.
verbose Toggle warnings.
select Variables that will be included when performing the required tasks. Can be either
• a variable specified as a literal variable name (e.g., column_name),
categorize

- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g. 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal")
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length.

Note: Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

append Logical or string. If TRUE, recoded or converted variables get new column names and are appended (column bind) to x, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function: "_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or "_s" for slide(). If append=FALSE, original variables in x will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains(""), or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

Value

x, recoded into groups. By default x is numeric, unless labels is specified. In this case, a factor is
categorize

returned, where the factor levels (i.e. recoded groups are labelled accordingly.

Splits and breaks (cut-off values)

Breaks are in general exclusive, this means that these values indicate the lower bound of the next group or interval to begin. Take a simple example, a numeric variable with values from 1 to 9. The median would be 5, thus the first interval ranges from 1-4 and is recoded into 1, while 5-9 would turn into 2 (compare cbind(1:9, categorize(1:9))). The same variable, using split = "quantile" and n_groups = 3 would define breaks at 3.67 and 6.33 (see quantile(1:9, probs = c(1/3, 2/3))), which means that values from 1 to 3 belong to the first interval and are recoded into 1 (because the next interval starts at 3.67), 4 to 6 into 2 and 7 to 9 into 3.

Reencoding into groups with equal size or range

split = "equal_length" and split = "equal_range" try to divide the range of x into intervals of similar (or same) length. The difference is that split = "equal_length" will divide the range of x into n_groups pieces and thereby defining the intervals used as breaks (hence, it is equivalent to cut(x, breaks = n_groups)), while split = "equal_range" will cut x into intervals that all have the length of range, where the first interval by defaults starts at 1. The lowest (or starting) value of that interval can be defined using the lowest argument.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

See Also

- Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()
- Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()
- Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()
- Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()
- Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(), ranktransform(), winsorize()
- Split and merge data frames: data_partition(), data_merge()
- Functions to find or select columns: data_select(), data_find()
- Functions to filter rows: data_match(), data_filter()

Examples

set.seed(123)
x <- sample(1:10, size = 50, replace = TRUE)
table(x)
by default, at median
table(categorize(x))

into 3 groups, based on distribution (quantiles)
table(categorize(x, split = "quantile", n_groups = 3))

into 3 groups, user-defined break
table(categorize(x, split = c(3, 5)))

set.seed(123)
x <- sample(1:100, size = 500, replace = TRUE)

into 5 groups, try to recode into intervals of similar length,
i.e. the range within groups is the same for all groups
table(categorize(x, split = "equal_length", n_groups = 5))

into 5 groups, try to return same range within groups
i.e. 1-20, 21-40, 41-60, etc. Since the range of "x" is
1-100, and we have a range of 20, this results into 5
groups, and thus is for this particular case identical
to the previous result.
table(categorize(x, split = "equal_range", range = 20))

return factor with value labels instead of numeric value
set.seed(123)
x <- sample(1:10, size = 30, replace = TRUE)
categorize(x, "equal_length", n_groups = 3)
categorize(x, "equal_length", n_groups = 3, labels = c("low", "mid", "high"))

center

center

Centering (Grand-Mean Centering)

Description

Performs a grand-mean centering of data.

Usage

```r
center(x, ...)
```

```r
centre(x, ...)
```

```r
## S3 method for class 'numeric'
center(
  x,
  robust = FALSE,
  weights = NULL,
  reference = NULL,
  center = NULL,
)```

```r
```
verbose = TRUE,
...
)

## S3 method for class 'data.frame'
center(
  x,
  select = NULL,
  exclude = NULL,
  robust = FALSE,
  weights = NULL,
  reference = NULL,
  center = NULL,
  force = FALSE,
  remove_na = c("none", "selected", "all"),
  append = FALSE,
  ignore_case = FALSE,
  verbose = TRUE,
  regex = FALSE,
  ...
)

Arguments

x A (grouped) data frame, a (numeric or character) vector or a factor.

... Currently not used.

robust Logical, if TRUE, centering is done by subtracting the median from the variables.
If FALSE, variables are centered by subtracting the mean.

weights Can be NULL (for no weighting), or:

  • For data frames: a numeric vector of weights, or a character of the name of
    a column in the data.frame that contains the weights.
  • For numeric vectors: a numeric vector of weights.

reference A data frame or variable from which the centrality and deviation will be com-
puted instead of from the input variable. Useful for standardizing a subset or
new data according to another data frame.

center Numeric value, which can be used as alternative to reference to define a refer-
ence centrality. If center is of length 1, it will be recycled to match the length
of selected variables for centering. Else, center must be of same length as the
number of selected variables. Values in center will be matched to selected vari-
bles in the provided order, unless a named vector is given. In this case, names
are matched against the names of the selected variables.

verbose Toggle warnings and messages.

select Variables that will be included when performing the required tasks. Can be either

  • a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g. `1` or `c(1, 3, 5)`),
• a vector of negative integers, giving the positions counting from the right (e.g., `-1` or `-1:-3`),
• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using : or regex(""). starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. `find_columns(iris, select = c("Species", "Test"))` will just return "Species".

**exclude**
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

**force**
Logical, if TRUE, forces centering of factors as well. Factors are converted to numerical values, with the lowest level being the value 1 (unless the factor has numeric levels, which are converted to the corresponding numeric value).

**remove_na**
How should missing values (NA) be treated: if "none" (default): each column’s standardization is done separately, ignoring NAs. Else, rows with NA in the columns selected with select / exclude ("selected") or in all columns ("all") are dropped before standardization, and the resulting data frame does not include these cases.

**append**
Logical or string. If TRUE, centered variables get new column names (with the suffix "_c") and are appended (column bind) to x, thus returning both the original and the centered variables. If FALSE, original variables in x will be overwritten by their centered versions. If a character value, centered variables are appended with new column names (using the defined suffix) to the original data frame.

**ignore_case**
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

**regex**
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains(""") or select = regex(""""), however, since the select-helpers may not work when called from inside other functions (see ‘Details’), this argument may be used as workaround.

Value

The centered variables.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

Note

Difference between centering and standardizing: Standardized variables are computed by subtracting the mean of the variable and then dividing it by the standard deviation, while centering variables involves only the subtraction.

See Also

If centering within-clusters (instead of grand-mean centering) is required, see `demean()`. For standardizing, see `standardize()`.

Examples

data(iris)

# entire data frame or a vector
head(iris$Sepal.Width)
head(center(iris$Sepal.Width))
head(center(iris))
head(center(iris, force = TRUE))

# only the selected columns from a data frame
center(anscombe, select = c("x1", "x3"))
center(anscombe, exclude = c("x1", "x3"))

# centering with reference center and scale
d <- data.frame(
    a = c(-2, -1, 0, 1, 2),
    b = c(3, 4, 5, 6, 7)
)

# default centering at mean
center(d)
coef_var

# centering, using 0 as mean
center(d, center = 0)

# centering, using -5 as mean
center(d, center = -5)

calc_var

Compute the coefficient of variation

Description
Compute the coefficient of variation (CV, ratio of the standard deviation to the mean, \( \sigma/\mu \)) for a set of numeric values.

Usage

coef_var(x, ...)
distribution_coef_var(x, ...)

## S3 method for class 'numeric'
coef_var(
x,
mu = NULL,
sigma = NULL,
method = c("standard", "unbiased", "median_mad", "qcd"),
trim = 0,
na.rm = FALSE,
n = NULL,
...
)

Arguments

\( x \)  
A numeric vector of ratio scale (see details), or vector of values than can be coerced to one.

\( ... \)  
Further arguments passed to computation functions.

\( mu \)  
A numeric vector of mean values to use to compute the coefficient of variation. If supplied, \( x \) is not used to compute the mean.

\( sigma \)  
A numeric vector of standard deviation values to use to compute the coefficient of variation. If supplied, \( x \) is not used to compute the SD.

\( method \)  
Method to use to compute the CV. Can be "standard" to compute by dividing the standard deviation by the mean, "unbiased" for the unbiased estimator for normally distributed data, or one of two robust alternatives: "median_mad" to divide the median by the `stats::mad()` function, or "qcd" (quartile coefficient of dispersion, interquartile range divided by the sum of the quartiles [twice the midhinge]): \((Q_3 - Q_1)/(Q_3 + Q_1))\).
**trim**

the fraction (0 to 0.5) of values to be trimmed from each end of x before the mean and standard deviation (or alternatives) are computed. Values of trim outside the range of (0 to 0.5) are taken as the nearest endpoint.

**na.rm**

Logical. Should NA values be removed before computing (TRUE) or not (FALSE, default)?

**n**

If method = "unbiased" and both mu and sigma are provided (not computed from x), what sample size to use to adjust the computed CV for small-sample bias?

**Details**

CV is only applicable of values taken on a ratio scale: values that have a fixed meaningfully defined 0 (which is either the lowest or highest possible value), and that ratios between them are interpretable. For example, how many sandwiches have I eaten this week? 0 means "none" and 20 sandwiches is 4 times more than 5 sandwiches. If I were to center the number of sandwiches, it will no longer be on a ratio scale (0 is no "none" it is the mean, and the ratio between 4 and -2 is not meaningful). Scaling a ratio scale still results in a ratio scale. So I can re define "how many half sandwiches did I eat this week (= sandwiches * 0.5) and 0 would still mean "none", and 20 half-sandwiches is still 4 times more than 5 half-sandwiches.

This means that CV is **NOT** invariant to shifting, but it is to scaling:

```r
sandwiches <- c(0, 4, 15, 0, 0, 5, 2, 7)
coef_var(sandwiches)
#> [1] 1.239094
coef_var(sandwiches / 2) # same
#> [1] 1.239094
coef_var(sandwiches + 4) # different! 0 is no longer meaningful!
#> [1] 0.6290784
```

**Value**

The computed coefficient of variation for x.

**Examples**

```r
c coef_var(1:10)
c coef_var(c(1:10, 100), method = "median_mad")
c coef_var(c(1:10, 100), method = "qcd")
c coef_var(mu = 10, sigma = 20)
c coef_var(mu = 10, sigma = 20, method = "unbiased", n = 30)
```
### coerce_to_numeric

**Convert to Numeric (if possible)**

**Description**

Tries to convert vector to numeric if possible (if no warnings or errors). Otherwise, leaves it as is.

**Usage**

```r
coerce_to_numeric(x)
```

**Arguments**

- `x`  
A vector to be converted.

**Value**

Numeric vector (if possible)

**Examples**

```r
coerce_to_numeric(c("1", "2"))
coerce_to_numeric(c("1", "2", "A"))
```

### convert_na_to

**Replace missing values in a variable or a data frame.**

**Description**

Replace missing values in a variable or a data frame.

**Usage**

```r
convert_na_to(x, ...)
```

---

## S3 method for class 'numeric'

```r
convert_na_to(x, replacement = NULL, verbose = TRUE, ...)
```

## S3 method for class 'character'

```r
convert_na_to(x, replacement = NULL, verbose = TRUE, ...)
```

## S3 method for class 'data.frame'

```r
convert_na_to(
 x,
 select = NULL,
 exclude = NULL,
 ...)
```
convert_na_to

replacement = NULL,
replace_num = replacement,
replace_char = replacement,
replace_fac = replacement,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,

Arguments

x
A numeric, factor, or character vector, or a data frame.

... Not used.

replacement Numeric or character value that will be used to replace NA.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., column_name),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or c(-1, -3)),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.
replace_num  Value to replace NA when variable is of type numeric.
replace_char Value to replace NA when variable is of type character.
replace_fac  Value to replace NA when variable is of type factor.
ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.
regex        Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

Value
x, where NA values are replaced by replacement.

Selection of variables - the select argument
For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

Examples
# Convert NA to 0 in a numeric vector
convert_na_to(
  c(9, 3, NA, 2, 3, 1, NA, 8),
  replacement = 0
)

# Convert NA to "missing" in a character vector
convert_na_to(
  c("a", NA, "d", "z", NA, "t"),
  replacement = "missing"
)

### For data frames

# Convert all NA to 0 in numeric variables, and all NA to "missing" in character variables
convert_to_na

convert_to_na(
  test_df,
  replace_num = 0,
  replace_char = "missing"
)

# Convert a specific variable in the data frame
convert_to_na(
  test_df,
  replace_num = 0,
  replace_char = "missing",
  select = "x"
)

# Convert all variables starting with "x"
convert_to_na(
  test_df,
  replace_num = 0,
  replace_char = "missing",
  select = starts_with("x")
)

# Convert NA to 1 in variable 'x2' and to 0 in all other numeric
# variables
convert_to_na(
  test_df,
  replace_num = 0,
  select = list(x2 = 1)
)

---

**convert_to_na**  
*Convert non-missing values in a variable into missing values.*

**Description**  
Convert non-missing values in a variable into missing values.

**Usage**  

```r
convert_to_na(x, ...)
```

## S3 method for class 'numeric'
convert_to_na(x, na = NULL, verbose = TRUE, ...)

## S3 method for class 'factor'
convert_to_na(x, na = NULL, drop_levels = FALSE, verbose = TRUE, ...)

## S3 method for class 'data.frame'
convert_to_na(
  x,
  select = NULL,
  exclude = NULL,
  na = NULL,
  drop_levels = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

Arguments

x      A vector, factor or a data frame.
...    Not used.
nanumeric, character vector or logical (or a list of numeric, character vectors or logicals) with values that should be converted to NA. Numeric values applied to numeric vectors, character values are used for factors, character vectors or date variables, and logical values for logical vectors.
verbose Toggle warnings.
drop_levels Logical, for factors, when specific levels are replaced by NA, should unused levels be dropped?
select Variables that will be included when performing the required tasks. Can be either
  a variable specified as a literal variable name (e.g., column_name),
  a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
  a formula with variable names (e.g., ~column_1 + column_2),
  a vector of positive integers, giving the positions counting from the left (e.g. 1 or c(1, 3, 5)),
  a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
  one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal"),
  or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
  ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.
If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. `find_columns(iris, select = c("Species", "Test"))` will just return "Species".

**exclude**

See `select`, however, column names matched by the pattern from `exclude` will be excluded instead of selected. If NULL (the default), excludes no columns.

**ignore_case**

Logical, if TRUE and when one of the select-helpers or a regular expression is used in `select`, ignores lower/upper case in the search pattern when matching against variable names.

**regex**

Logical, if TRUE, the search pattern from `select` will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains(""), or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

**Value**

x, where all values in na are converted to NA.

**Examples**

```r
x <- sample(1:6, size = 30, replace = TRUE)
x # values 4 and 5 to NA
convert_to_na(x, na = 4:5)

data frames
set.seed(123)
x <- data.frame(
 a = sample(1:6, size = 20, replace = TRUE),
 b = sample(letters[1:6], size = 20, replace = TRUE),
 c = sample(c(30:33, 99), size = 20, replace = TRUE)
)
for all numerics, convert 5 to NA. Character/factor will be ignored.
convert_to_na(x, na = 5)

for numerics, 5 to NA, for character/factor, "f" to NA
convert_to_na(x, na = list(6, "f"))

select specific variables
convert_to_na(x, select = c("a", "b"), na = list(6, "f"))
```

---

**data_addprefix**

Rename columns and variable names
Description
Safe and intuitive functions to rename variables or rows in data frames. `data_rename()` will rename column names, i.e., it facilitates renaming variables. `data_addprefix()` or `data_addsuffix()` add prefixes or suffixes to column names. `data_rename_rows()` is a convenient shortcut to add or rename row names of a data frame, but unlike `row.names()`, its input and output is a data frame, thus, integrating smoothly into a possible pipe-workflow.

Usage

```r
data_addprefix(
 data,
 pattern,
 select = NULL,
 exclude = NULL,
 ignore_case = FALSE,
 regex = FALSE,
 verbose = TRUE,
 ...
)
```

```r
data_addsuffix(
 data,
 pattern,
 select = NULL,
 exclude = NULL,
 ignore_case = FALSE,
 regex = FALSE,
 verbose = TRUE,
 ...
)
```

```r
data_rename(data, pattern = NULL, replacement = NULL, safe = TRUE, ...)
```

```r
data_rename_rows(data, rows = NULL)
```

Arguments

data A data frame, or an object that can be coerced to a data frame.

pattern Character vector. For `data_rename()`, indicates columns that should be selected for renaming. Can be `NULL` (in which case all columns are selected). For `data_addprefix()` or `data_addsuffix()`, a character string, which will be added as prefix or suffix to the column names.

select Variables that will be included when performing the required tasks. Can be either
- a variable specified as a literal variable name (e.g., `column_name`),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., `c("col1", "col2", "col3")`).
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
• a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
• one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""). starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

**exclude**
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

**ignore_case**
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

**regex**
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see ‘Details’), this argument may be used as workaround.

**verbose**
Toggle warnings.

... Other arguments passed to or from other functions.

**replacement**
Character vector. Indicates the new name of the columns selected in pattern. Can be NULL (in which case column are numbered in sequential order). If not NULL, pattern and replacement must be of the same length.

**safe**
Do not throw error if for instance the variable to be renamed/removed doesn’t exist.

**rows**
Vector of row names.

**Value**
A modified data frame.
See Also

- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

```r
Add prefix / suffix to all columns
head(data_addprefix(iris, "NEW_"))
head(data_addsuffix(iris, "_OLD"))

Rename columns
head(data_rename(iris, "Sepal.Length", "length"))
data_rename(iris, "FakeCol", "length", safe=FALSE) # This fails
head(data_rename(iris, "FakeCol", "length")) # This doesn't
head(data_rename(iris, c("Sepal.Length", "Sepal.Width"), c("length", "width")))

Reset names
head(data_rename(iris, NULL))

Change all
head(data_rename(iris, paste0("Var", 1:5)))
```

---

**data_arrange**

*Arrange rows by column values*

**Description**

data_arrange() orders the rows of a data frame by the values of selected columns.

**Usage**

data_arrange(data, select = NULL, safe = TRUE)

**Arguments**

data A data frame, or an object that can be coerced to a data frame.
select Character vector of column names. Use a dash just before column name to arrange in decreasing order, for example "-_x1".
safe Do not throw an error if one of the variables specified doesn’t exist.
Value

A data frame.

Examples

# Arrange using several variables
data_arrange(head(mtcars), c("gear", "carb"))

# Arrange in decreasing order
data_arrange(head(mtcars), "-carb")

## Not run:
# Throw an error if one of the variables specified doesn't exist
data_arrange(head(mtcars), c("gear", "foo"), safe = FALSE)

## End(Not run)

### data_extract

**Extract one or more columns or elements from an object**

Description

data_extract() (or its alias extract()) is similar to $. It extracts either a single column or element from an object (e.g., a data frame, list), or multiple columns resp. elements.

Usage

data_extract(data, select, ...)

## S3 method for class 'data.frame'
data_extract(
  data,
  select,
  name = NULL,
  extract = "all",
  as_data_frame = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

Arguments

data

The object to subset. Methods are currently available for data frames and data frame extensions (e.g., tibbles).
Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., column_name),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal"),
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. Note: Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

... For use by future methods.

An optional argument that specifies the column to be used as names for the vector elements after extraction. Must be specified either as literal variable name (e.g., column_name) or as string ("column_name"). name will be ignored when a data frame is returned.

String, indicating which element will be extracted when select matches multiple variables. Can be "all" (the default) to return all matched variables, "first" or "last" to return the first or last match, or "odd" and "even" to return all odd-numbered or even-numbered matches. Note that "first" or "last" return a vector (unless as_data_frame = TRUE), while "all" can return a vector (if only one match was found) or a data frame (for more than one match). Type safe return values are only possible when extract is "first" or "last" (will always return a vector) or when as_data_frame = TRUE (always returns a data frame).

Logical, if TRUE, will always return a data frame, even if only one variable was matched. If FALSE, either returns a vector or a data frame. See extract for details.

Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains(""), or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

Toggle warnings.

data_extract() can be used to select multiple variables or pull a single variable from a data frame. Thus, the return value is by default not type safe - data_extract() either returns a vector or a data frame.

Extracting single variables (vectors): When select is the name of a single column, or when select only matches one column, a vector is returned. A single variable is also returned when extract is either "first" or "last". Setting as_data_frame to TRUE overrides this behaviour and always returns a data frame.

Extracting a data frame of variables: When select is a character vector containing more than one column name (or a numeric vector with more than one valid column indices), or when select uses one of the supported select-helpers that match multiple columns, a data frame is returned. Setting as_data_frame to TRUE always returns a data frame.

A vector (or a data frame) containing the extracted element, or NULL if no matching variable was found.

Examples

# single variable
data_extract(mtcars, cyl, name = gear)
data_extract(mtcars, "cyl", name = gear)
data_extract(mtcars, -1, name = gear)
data_extract(mtcars, cyl, name = 0)
data_extract(mtcars, cyl, name = "row.names")

# selecting multiple variables
head(data_extract(iris, starts_with("Sepal")))
head(data_extract(iris, ends_with("Width")))
head(data_extract(iris, 2:4))

# select first of multiple variables
data_extract(iris, starts_with("Sepal"), extract = "first")

# select first of multiple variables, return as data frame
head(data_extract(iris, starts_with("Sepal"), extract = "first", as_data_frame = TRUE))
Create a grouped data frame

Description

This function is comparable to dplyr::group_by(), but just following the datawizard function design. data_ungroup() removes the grouping information from a grouped data frame.

Usage

```r
data_group(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
data_ungroup(data, verbose = TRUE, ...)
```

Arguments

- `data`: A data frame
- `select`: Variables that will be included when performing the required tasks. Can be either
  - a variable specified as a literal variable name (e.g., `column_name`),
  - a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., `c("col1", "col2", "col3")`),
  - a formula with variable names (e.g., `~column_1 + column_2`),
  - a vector of positive integers, giving the positions counting from the left (e.g. `1` or `c(1, 3, 5)`),
  - a vector of negative integers, giving the positions counting from the right (e.g., `-1` or `-1:-3`),
  - one of the following select-helpers: `starts_with()`, `ends_with()`, `contains()`, `starts_with()`, `ends_with()`, and `contains()` accept several patterns, e.g `starts_with("Sep", "Petal")`.
  - or a function testing for logical conditions, e.g. `is.numeric()` (or `is.numeric`), or any user-defined function that selects the variables for which the function returns `TRUE` (like: `foo <- function(x) mean(x) > 3`),
  - ranges specified via literal variable names, select-helpers (except `regex()`) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a `-`, e.g. `-ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For instance, select=ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

**exclude**
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

**ignore_case**
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

**regex**
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

**verbose**
Toggle warnings.

**...**
Arguments passed down to other functions. Mostly not used yet.

**Value**
A grouped data frame, i.e. a data frame with additional information about the grouping structure saved as attributes.

**Examples**

```r
data(efc)
suppressPackageStartupMessages(library(poorman, quietly = TRUE))

total mean
efc %>%
 summarize(mean_hours = mean(c12hour, na.rm = TRUE))

mean by educational level
efc %>%
data_group(c172code) %>%
 summarize(mean_hours = mean(c12hour, na.rm = TRUE))
```
data_match

Description

Return a filtered (or sliced) data frame or row indices of a data frame that match a specific condition.

data_filter() works like data_match(), but works with logical expressions or row indices of a
data frame to specify matching conditions.

Usage

```r
data_match(x, to, match = "and", return_indices = FALSE, drop_na = TRUE, ...)
data_filter(x, filter, ...)
```

Arguments

- `x`: A data frame.
- `to`: A data frame matching the specified conditions. Note that if `match` is a value other than "and", the original row order might be changed. See 'Details'.
- `match`: String, indicating with which logical operation matching conditions should be combined. Can be "and" (or "&"), "or" (or "|") or "not" (or "!").
- `return_indices`: Logical, if FALSE, return the vector of rows that can be used to filter the original data frame. If FALSE (default), returns directly the filtered data frame instead of the row indices.
- `drop_na`: Logical, if TRUE, missing values (NAs) are removed before filtering the data. This is the default behaviour, however, sometimes when row indices are requested (i.e. `return_indices=TRUE`), it might be useful to preserve NA values, so returned row indices match the row indices of the original data frame.
- `...`: Not used.
- `filter`: A logical expression indicating which rows to keep, or a numeric vector indicating the row indices of rows to keep. Can also be a string representation of a logical expression. e.g. `filter = "x > 4"`. This might be useful when used in packages to avoid defining undefined global variables.

Details

For `data_match()`, if `match` is either "or" or "not", the original row order from `x` might be changed. If preserving row order is required, use `data_filter()` instead.

```r
mimics subset() behaviour, preserving original row order
head(data_filter(mtcars[\c("mpg", "vs", "am")], vs == 0 | am == 1))
#> mpg vs am
#> Mazda RX4 21.0 0 1
#> Mazda RX4 Wag 21.0 0 1
```
While `data_match()` works with data frames to match conditions against, `data_filter()` is basically a wrapper around `subset(subset = <filter>).` However, unlike `subset()`, it preserves label attributes and is useful when working with labelled data.

### Value

A filtered data frame, or the row indices that match the specified configuration.

### See Also

- Functions to rename stuff: `data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder(), data_relocate(), data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long(), data_to_wide(), data_rotate()`
- Functions to recode data: `rescale(), reverse(), categorize(), recode_values(), slide()`
- Functions to standardize, normalize, rank-transform: `center(), standardize(), normalize(), ranktransform(), winsorize()`
- Split and merge data frames: `data_partition(), data_merge()`
- Functions to find or select columns: `data_select(), data_find()`
- Functions to filter rows: `data_match(), data_filter()`

### Examples

```r
data_match(mtcars, data.frame(vs = 0, am = 1))
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))
```

# observations where "vs" is NOT 0 AND "am" is NOT 1
```r
data_match(mtcars, data.frame(vs = 0, am = 1), match = "not")
```
# equivalent to
```r
data_filter(mtcars, vs != 0 & am != 1)
```

# observations where EITHER "vs" is 0 OR "am" is 1
```r
data_match(mtcars, data.frame(vs = 0, am = c(0, 1)), match = "or")
```
data_match(mtcars, data.frame(vs = 0, am = 1), match = "or")
# equivalent to
data_filter(mtcars, vs == 0 | am == 1)

# slice data frame by row indices
data_filter(mtcars, 5:10)

# Define a custom function containing data_filter() and pass variable names
# to it using curly brackets
my_filter <- function(data, variable) {
  data_filter(data, {variable} <= 20)
}
my_filter(mtcars, "mpg")

# Pass complete filter-condition as string
my_filter <- function(data, condition) {
  data_filter(data, {condition})
}
my_filter(mtcars, "am != 0")

# string can also be used directly as argument
data_filter(mtcars, "am != 0")

---

**data_merge**

Merge (join) two data frames, or a list of data frames

### Description

Merge (join) two data frames, or a list of data frames. However, unlike base R's `merge()`, `data_merge()` offers a few more methods to join data frames, and it does not drop data frame nor column attributes.

### Usage

```r
data_merge(x, ...)
data_join(x, ...)
```

### S3 method for class 'data.frame'
```r
data_merge(x, y, join = "left", by = NULL, id = NULL, verbose = TRUE, ...)
```

### S3 method for class 'list'
```r
data_merge(x, join = "left", by = NULL, id = NULL, verbose = TRUE, ...)
```

### Arguments

- **x, y**
  A data frame to merge. `x` may also be a list of data frames that will be merged. Note that the list-method has no `y` argument.
- **...**
  Not used.
data_merge

join   Character vector, indicating the method of joining the data frames. Can be "full", "left" (default), "right", "inner", "anti", "semi" or "bind". See details below.

by  Specifications of the columns used for merging.

id   Optional name for ID column that will be created to indicate the source data frames for appended rows. Only applies if join = "bind".

verbose  Toggle warnings.

Details

Merging data frames: Merging data frames is performed by adding rows (cases), columns (variables) or both from the source data frame (y) to the target data frame (x). This usually requires one or more variables which are included in both data frames and that are used for merging, typically indicated with the by argument. When by contains a variable present in both data frames, cases are matched and filtered by identical values of by in x and y.

Left- and right-joins: Left- and right joins usually don’t add new rows (cases), but only new columns (variables) for existing cases in x. For join = "left" or join = "right" to work, by must indicate one or more columns that are included in both data frames. For join = "left", if by is an identifier variable, which is included in both x and y, all variables from y are copied to x, but only those cases from y that have matching values in their identifier variable in x (i.e. all cases in x that are also found in y get the related values from the new columns in y). If there is no match between identifiers in x and y, the copied variable from y will get a NA value for this particular case. Other variables that occur both in x and y, but are not used as identifiers (with by), will be renamed to avoid multiple identical variable names. Cases in y where values from the identifier have no match in x’s identifier are removed. join = "right" works in a similar way as join = "left", just that only cases from x that have matching values in their identifier variable in y are chosen.

In base R, these are equivalent to merge(x, y, all.x = TRUE) and merge(x, y, all.y = TRUE).

Full joins: Full joins copy all cases from y to x. For matching cases in both data frames, values for new variables are copied from y to x. For cases in y not present in x, these will be added as new rows to x. Thus, full joins not only add new columns (variables), but also might add new rows (cases).

In base R, this is equivalent to merge(x, y, all = TRUE).

Inner joins: Inner joins merge two data frames, however, only those rows (cases) are kept that are present in both data frames. Thus, inner joins usually add new columns (variables), but also remove rows (cases) that only occur in one data frame.

In base R, this is equivalent to merge(x, y).

Binds: join = "bind" row-binds the complete second data frame y to x. Unlike simple rbind(), which requires the same columns for both data frames, join = "bind" will bind shared columns from y to x, and add new columns from y to x.
Value

A merged data frame.

See Also

- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

```r
x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 2:4)
x
y
"by" will default to all shared columns, i.e. "c" and "id". New columns # "d" and "e" will be copied from "y" to "x", but there are only two cases # in "x" that have the same values for "c" and "id" in "y", only those cases # have values in the copied columns, the other case gets "NA".
data_merge(x, y, join = "left")

we change the id-value here
x <- data.frame(a = 1:3, b = c("a", "b", "c"), c = 5:7, id = 1:3)
y <- data.frame(c = 6:8, d = c("f", "g", "h"), e = 100:102, id = 3:5)
x
y
no cases in "y" have the same matching "c" and "id" as in "x", thus # copied variables from "y" to "x" copy no values, all get NA.
data_merge(x, y, join = "left")

one case in "y" has a match in "id" with "x", thus values for this # case from the remaining variables in "y" are copied to "x", all other # values (cases) in those remaining variables get NA
data_merge(x, y, join = "left", by = "id")
data(mtcars)
x <- mtcars[1:5, 1:3]
y <- mtcars[28:32, 4:6]
```
# add ID common column
x$id <- 1:5
y$id <- 3:7

# left-join, add new variables and copy values from y to x,
# where "id" values match
data_merge(x, y)

# right-join, add new variables and copy values from x to y,
# where "id" values match
data_merge(x, y, join = "right")

# full-join
data_merge(x, y, join = "full")

data(mtcars)
x <- mtcars[1:5, 1:3]
y <- mtcars[28:32, c(1, 4:5)]

# add ID common column
x$id <- 1:5
y$id <- 3:7

# left-join, no matching rows (because columns "id" and "disp" are used)
# new variables get all NA values
data_merge(x, y)

# one common value in "mpg", so one row from y is copied to x
data_merge(x, y, by = "mpg")

# only keep rows with matching values in by-column
data_merge(x, y, join = "semi", by = "mpg")

# only keep rows with non-matching values in by-column
data_merge(x, y, join = "anti", by = "mpg")

# merge list of data frames. can be of different rows
x <- mtcars[1:5, 1:3]
y <- mtcars[28:31, 3:5]
z <- mtcars[11:18, c(1, 3:4, 6:8)]
x$id <- 1:5
y$id <- 4:7
z$id <- 3:10
data_merge(list(x, y, z), join = "bind", by = "id", id = "source")
Description

Creates data partitions (for instance, a training and a test set) based on a data frame that can also be stratified (i.e., evenly spread a given factor) using the group argument.

Usage

data_partition(
    data,
    proportion = 0.7,
    group = NULL,
    seed = NULL,
    row_id = ".row_id",
    verbose = TRUE,
    training_proportion = proportion,
    ...
)

Arguments

data A data frame, or an object that can be coerced to a data frame.
proportion Scalar (between 0 and 1) or numeric vector, indicating the proportion(s) of the training set(s). The sum of proportion must not be greater than 1. The remaining part will be used for the test set.
group A character vector indicating the name(s) of the column(s) used for stratified partitioning.
seed A random number generator seed. Enter an integer (e.g. 123) so that the random sampling will be the same each time you run the function.
row_id Character string, indicating the name of the column that contains the row-id’s.
verbose Toggle messages and warnings.
training_proportion Deprecated, please use proportion.
... Other arguments passed to or from other functions.

Value

A list of data frames. The list includes one training set per given proportion and the remaining data as test set. List elements of training sets are named after the given proportions (e.g., $p_{0.7}$), the test set is named $\text{test}$.

See Also

- Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()
- Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()
- Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()
- Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()
data_peek

- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

data(iris)
out <- data_partition(iris, proportion = 0.9)
out$test
nrow(out$p_0.9)

# Stratify by group (equal proportions of each species)
out <- data_partition(iris, proportion = 0.9, group = "Species")
out$test

# Create multiple partitions
out <- data_partition(iris, proportion = c(0.3, 0.3))
lapply(out, head)

# Create multiple partitions, stratified by group - 30% equally sampled
# from species in first training set, 50% in second training set and
# remaining 20% equally sampled from each species in test set.
out <- data_partition(iris, proportion = c(0.3, 0.5), group = "Species")
lapply(out, function(i) table(i$Species))

---

data_peek

**Peek at values and type of variables in a data frame**

**Description**

This function creates a table a data frame, showing all column names, variable types and the first values (as many as fit into the screen).

**Usage**

data_peek(x, ...)

## S3 method for class 'data.frame'
data_peek(  
x,  
select = NULL,  
exclude = NULL,  
ignore_case = FALSE,  
regex = FALSE,  
width = NULL,  
...  
)
verbose = TRUE,
...
)

Arguments

x
A data frame.

... not used.

select Variables that will be included when performing the required tasks. Can be either
- a variable specified as a literal variable name (e.g., column_name),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g. 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g. starts_with("Sep", "Petal").
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -starts_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.
width  Maximum width of line length to display. If NULL, width will be determined using options$width.
verbose  Toggle warnings.

Value
A data frame with three columns, containing information about the name, type and first values of the input data frame.

Note
To show only specific or a limited number of variables, use the select argument, e.g. select = 1:5 to show only the first five variables.

Examples
```r
data(efc)
data_peek(efc)
show variables two to four
data_peek(efc, select = 2:4)
```

Description
This function imports data from various file types. It is a small wrapper around haven::read_spss(), haven::read_stata(), haven::read_sas(), readxl::read_excel() and data.table::fread() resp. readr::read_delim() (the latter if package data.table is not installed). Thus, supported file types for importing data are data files from SPSS, SAS or Stata, Excel files or text files (like '.csv' files). All non-supported file types are passed to rio::import().

Usage
```r
data_read(path,
 path_catalog = NULL,
 encoding = NULL,
 convert_factors = TRUE,
 verbose = TRUE,
 ...
)
```
Arguments

- **path**
  Character string, the file path to the data file.

- **path_catalog**
  Character string, path to the catalog file. Only relevant for SAS data files.

- **encoding**
  The character encoding used for the file. Usually not needed.

- **convert_factors**
  If TRUE (default), numeric variables, where all values have a value label, are assumed to be categorical and converted into factors. If FALSE, no variable types are guessed and no conversion of numeric variables into factors will be performed. See also section 'Differences to other packages'.

- **verbose**
  Toggle warnings and messages.

... Arguments passed to the related `read_*()` function.

Value

A data frame.

Supported file types

`data_read()` is a wrapper around the **haven**, **data.table**, **readr**, **readxl** and **rio** packages. Currently supported file types are `.txt`, `.csv`, `.xls`, `.xlsx`, `.sav`, `.por`, `.dta` and `.sas` (and related files). All other file types are passed to `rio::import()`.

Compressed files (zip) and URLs

`data_read()` can also read the above mentioned files from URLs or from inside zip-compressed files. Thus, path can also be a URL to a file like "http://www.url.com/file.csv". When path points to a zip-compressed file, and there are multiple files inside the zip-archive, then the first supported file is extracted and loaded.

General behaviour

`data_read()` detects the appropriate `read_*()` function based on the file-extension of the data file. Thus, in most cases it should be enough to only specify the path argument. However, if more control is needed, all arguments in ... are passed down to the related `read_*()` function.

Differences to other packages that read foreign data formats

`data_read()` is most comparable to `rio::import()`. For data files from SPSS, SAS or Stata, which support labelled data, variables are converted into their most appropriate type. The major difference to `rio::import()` is that `data_read()` automatically converts fully labelled numeric variables into factors, where imported value labels will be set as factor levels. If a numeric variable has no value labels or less value labels than values, it is not converted to factor. In this case, value labels are preserved as "labels" attribute. Character vectors are preserved. Use `convert_factors = FALSE` to remove the automatic conversion of numeric variables to factors.
data_relocate (reorder) columns of a data frame

Description

data_relocate() will reorder columns to specific positions, indicated by before or after. data_reorder() will instead move selected columns to the beginning of a data frame. Finally, data_remove() removes columns from a data frame. All functions support select-helpers that allow flexible specification of a search pattern to find matching columns, which should be reordered or removed.

Usage

data_relocate(
  data,
  select,
  before = NULL,
  after = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

data_reorder(
  data,
  select,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

data_remove(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

Arguments

data A data frame.
**select** Variables that will be included when performing the required tasks. Can be either
- a variable specified as a literal variable name (e.g., `column_name`),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., `c("col1", "col2", "col3")`),
- a formula with variable names (e.g., `-column_1 + column_2`),
- a vector of positive integers, giving the positions counting from the left (e.g., `1` or `c(1, 3, 5)`),
- a vector of negative integers, giving the positions counting from the right (e.g., `-1` or `-1:-3`),
- one of the following select-helpers: `starts_with()`, `ends_with()`, `contains()`, a range using `:` or `regex("\"\")`, `starts_with()`, `ends_with()`, and `contains()` accept several patterns, e.g. `starts_with("Sep", "Petal")`.
- or a function testing for logical conditions, e.g. `is.numeric()` (or `is.numeric`), or any user-defined function that selects the variables for which the function returns `TRUE` (like: `foo <- function(x) mean(x) > 3`),
- ranges specified via literal variable names, select-helpers (except `regex()`) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a `-`, e.g. `-ends_with("\"\")`, `-is.numeric` or `-Sepal.Width:Petal.Length`. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, `select=-ends_with("Length")` (with `=`) is equivalent to `exclude=ends_with("Length")` (no `=`). In case negation should not work as expected, use the exclude argument instead.

If `NULL`, selects all columns. Patterns that found no matches are silently ignored, e.g. `find_columns(iris, select = c("Species", "Test"))` will just return "Species".

**before, after** Destination of columns. Supplying neither will move columns to the left-hand side; specifying both is an error. Can be a character vector, indicating the name of the destination column, or a numeric value, indicating the index number of the destination column. If `-1`, will be added before or after the last column.

**ignore_case** Logical, if `TRUE` and when one of the select-helpers or a regular expression is used in `select`, ignores lower/upper case in the search pattern when matching against variable names.

**regex** Logical, if `TRUE`, the search pattern from `select` will be treated as regular expression. When `regex = TRUE`, select **must** be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. `regex = TRUE` is comparable to using one of the two select-helpers, `select = contains("\"\")` or `select = regex("\"\")`, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

**verbose** Toggle warnings.

... Arguments passed down to other functions. Mostly not used yet.

**exclude** See `select`, however, column names matched by the pattern from `exclude` will be excluded instead of selected. If `NULL` (the default), excludes no columns.
**data_restoretype**

A data frame with reordered columns.

**See Also**

- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

**Examples**

```r
Reorder columns
head(data_relocate(iris, select = "Species", before = "Sepal.Length"))
head(data_relocate(iris, select = "Species", before = "Sepal.Width"))
head(data_relocate(iris, select = "Sepal.Width", after = "Species"))
 # same as
head(data_relocate(iris, select = "Sepal.Width", after = -1))

reorder multiple columns
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = "Sepal.Width"))
 # same as
head(data_relocate(iris, select = c("Species", "Petal.Length"), after = 2))

Reorder columns
head(data_reorder(iris, c("Species", "Sepal.Length")))
head(data_reorder(iris, c("Species", "dupa"))) # Safe for non-existing cols

Remove columns
head(data_remove(iris, "Sepal.Length"))
head(data_remove(iris, starts_with("Sepal")))
```

**data_restoretype**  
*Restore the type of columns according to a reference data frame*

**Description**

Restore the type of columns according to a reference data frame

**Usage**

`data_restoretype(data, reference = NULL, ...)`
Arguments

- **data**: A data frame to pivot.
- **reference**: A reference data frame from which to find the correct column types.
- **...**: Currently not used.

Value

A data frame with columns whose types have been restored based on the reference data frame.

Examples

```r
data <- data.frame(
 Sepal.Length = c("1", "3", "2"),
 Species = c("setosa", "versicolor", "setosa"),
 New = c("1", "3", "4")
)
fixed <- data_restoretype(data, reference = iris)
summary(fixed)
```

**data_rotate**

*Rotate a data frame*

Description

This function rotates a data frame, i.e. columns become rows and vice versa. It's the equivalent of using `t()` but restores the `data.frame` class, preserves attributes and prints a warning if the data type is modified (see example).

Usage

```r
data_rotate(data, rownames = NULL, colnames = FALSE, verbose = TRUE)
data_transpose(data, rownames = NULL, colnames = FALSE, verbose = TRUE)
```

Arguments

- **data**: A data frame.
- **rownames**: Character vector (optional). If not NULL, the data frame’s rownames will be added as (first) column to the output, with rownames being the name of this column.
- **colnames**: Logical or character vector (optional). If TRUE, the values of the first column in `x` will be used as column names in the rotated data frame. If a character vector, values from that column are used as column names.
- **verbose**: Toggle warnings.
**data_tabulate**

Create frequency tables of variables

**Description**

This function creates frequency tables of variables, including the number of levels/values as well as the distribution of raw, valid and cumulative percentages.
Usage

data_tabulate(x, ...)

## Default S3 method:
data_tabulate(x, drop_levels = FALSE, name = NULL, verbose = TRUE, ...)

## S3 method for class 'data.frame'
data_tabulate(
  x,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  collapse = FALSE,
  drop_levels = FALSE,
  verbose = TRUE,
  ...
)

Arguments

x A (grouped) data frame, a vector or factor.

... not used.

drop_levels Logical, if TRUE, factor levels that do not occur in the data are included in the
table (with frequency of zero), else unused factor levels are dropped from the
frequency table.

name Optional character string, which includes the name that is used for printing.

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be either

  • a variable specified as a literal variable name (e.g., column_name),
  • a string with the variable name (e.g., "column_name"), or a character vector
    of variable names (e.g., c("col1", "col2", "col3")),
  • a formula with variable names (e.g., ~column_1 + column_2),
  • a vector of positive integers, giving the positions counting from the left (e.g.
    1 or c(1, 3, 5)),
  • a vector of negative integers, giving the positions counting from the right
    (e.g., -1 or -1:-3),
  • one of the following select-helpers: starts_with(), ends_with(), contains(),
    a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal")
  • or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
    or any user-defined function that selects the variables for which the function
    returns TRUE (like: foo <- function(x) mean(x) > 3).
data_tabulate

- ranges specified via literal variable names, select-helpers (except regex()), and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

**exclude**
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

**ignore_case**
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

**regex**
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

**collapse**
Logical, if TRUE collapses multiple tables into one larger table for printing. This affects only printing, not the returned object.

**Value**
A data frame, or a list of data frames, with one frequency table as data frame per variable.

**Examples**

```r
data(efc)

vector/factor
data_tabulate(efc$c172code)

data frame
data_tabulate(efc, c("e42dep", "c172code"))

grouped data frame
suppressPackageStartupMessages(library(poorman, quietly = TRUE))
efc %>%
 group_by(c172code) %>%
 data_tabulate("e16sex")

collapse tables
efc %>%
```

data_to_long

Reshape (pivot) data from wide to long

Description

This function "lengthens" data, increasing the number of rows and decreasing the number of columns. This is a dependency-free base-R equivalent of tidyr::pivot_longer().

Usage

```r
data_to_long(
 data,
 select = "all",
 names_to = "name",
 names_prefix = NULL,
 names_sep = NULL,
 names_pattern = NULL,
 values_to = "value",
 values_drop_na = FALSE,
 rows_to = NULL,
 ignore_case = FALSE,
 regex = FALSE,
 ...,
 cols,
 colnames_to
)
```

```r
reshape_longer(
 data,
 select = "all",
 names_to = "name",
 names_prefix = NULL,
 names_sep = NULL,
 names_pattern = NULL,
 values_to = "value",
 values_drop_na = FALSE,
 rows_to = NULL,
 ignore_case = FALSE,
 regex = FALSE,
 ...,
 cols,
 colnames_to
)
```

data_to_long

```r
rows_to = NULL,
ignore_case = FALSE,
regex = FALSE,
...,
cols,
colnames_to = TRUE)
```

**Arguments**

- **data**: A data frame to pivot.
- **select**: Variables that will be included when performing the required tasks. Can be either
  - a variable specified as a literal variable name (e.g., `column_name`),
  - a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., `c("col1", "col2", "col3")`),
  - a formula with variable names (e.g., `~column_1 + column_2`),
  - a vector of positive integers, giving the positions counting from the left (e.g., `1` or `c(1, 3, 5)`),
  - a vector of negative integers, giving the positions counting from the right (e.g., `-1` or `-1:-3`),
  - one of the following select-helpers: `starts_with()`, `ends_with()`, `contains()`, `starts_with()`, `ends_with()`, and `contains()` accept several patterns, e.g `starts_with("Sep", "Petal")`,
  - or a function testing for logical conditions, e.g. `is.numeric()` (or `is_numeric`), or any user-defined function that selects the variables for which the function returns `TRUE` (like: `foo <- function(x) mean(x) > 3`),
  - ranges specified via literal variable names, select-helpers (except `regex()`) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a `-`, e.g. `-ends_with("\")`, `-is.numeric` or `-Sepal.Width:Petal.Length`. **Note**: Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, `select=-ends_with("Length")` (with `-`) is equivalent to `exclude=ends_with("Length")` (no `-`). In case negation should not work as expected, use the exclude argument instead.
- **names_to**: The name of the new column that will contain the column names.
- **names_prefix**: A regular expression used to remove matching text from the start of each variable name.
- **names_sep, names_pattern**: If `names_to` contains multiple values, this argument controls how the column name is broken up. `names_pattern` takes a regular expression containing matching groups, i.e. ".(*)".
- **values_to**: The name of the new column that will contain the values of the pivoted variables.
values_drop_na  If TRUE, will drop rows that contain only NA in the values_to column. This effectively converts explicit missing values to implicit missing values, and should generally be used only when missing values in data were created by its structure.

rows_to  The name of the column that will contain the row names or row numbers from the original data. If NULL, will be removed.

ignore_case  Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex  Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see ‘Details’), this argument may be used as workaround.

...  Currently not used.

cols  Identical to select. This argument is here to ensure compatibility with tidyr::pivot_longer(). If both select and cols are provided, cols is used.

colnames_to  Deprecated. Use names_to instead.

Value

If a tibble was provided as input, reshape_longer() also returns a tibble. Otherwise, it returns a data frame.

See Also

- Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()
- Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()
- Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()
- Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()
- Functions to standardize, normalize, rank-transform: center(), standardize(), normalize(), ranktransform(), winsorize()
- Split and merge data frames: data_partition(), data_merge()
- Functions to find or select columns: data_select(), data_find()
- Functions to filter rows: data_match(), data_filter()

Examples

```r
wide_data <- data.frame(replicate(5, rnorm(10)))

Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:5))
data_to_long(wide_data)

Customizing the names
data_to_wide

Reshape (pivot) data from long to wide

Description

This function "widens" data, increasing the number of columns and decreasing the number of rows. This is a dependency-free base-R equivalent of `tidyr::pivot_wider()`.

Usage

`data_to_wide(
 data,
 id_cols = NULL,
 values_from = "Value",
 names_from = "Name",
 names_sep = "-",
 names_prefix = "",
 names_glue = NULL,
 values_fill = NULL,
 verbose = TRUE,
 ...)`
Arguments

data | A data frame to pivot.
id_cols | The name of the column that identifies the rows. If NULL, it will use all the unique rows.
values_from | The name of the column that contains the values to be used as future variable values.
names_from | The name of the column that contains the levels to be used as future column names.
names_sep | If names_from or values_from contains multiple variables, this will be used to join their values together into a single string to use as a column name.
names_prefix | String added to the start of every variable name. This is particularly useful if names_from is a numeric vector and you want to create syntactic variable names.
names_glue | Instead of names_sep and names_prefix, you can supply a glue specification that uses the names_from columns to create custom column names. Note that the only delimiters supported by names_glue are curly brackets, { and }.
values_fill | Optionally, a (scalar) value that will be used to replace missing values in the new columns created.
verbose | Toggle warnings.
| Not used for now.
colnames_from | Deprecated. Use names_from instead.
rows_from | Deprecated. Use id_cols instead.
sep | Deprecated. Use names_sep instead.
Value

If a tibble was provided as input, `reshape_wider()` also returns a tibble. Otherwise, it returns a data frame.

See Also

- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

data_long <- read.table(header = TRUE, text = "
subject sex condition measurement
1 M control 7.9
1 M cond1 12.3
1 M cond2 10.7
2 F control 6.3
2 F cond1 10.6
2 F cond2 11.1
3 F control 9.5
3 F cond1 13.1
3 F cond2 13.8
4 M control 11.5
4 M cond1 13.4
4 M cond2 12.9")

reshape_wider(
 data_long,
 id_cols = "subject",
 names_from = "condition",
 values_from = "measurement"
)

reshape_wider(
 data_long,
 id_cols = "subject",
 names_from = "condition",
 names_prefix = "Var.",
 names_sep = "."
)
production <- expand.grid(
 product = c("A", "B"),
 country = c("AI", "EI"),
 year = 2000:2014
)
production <- data_filter(production, (product == "A" & country == "AI") | product == "B")
production$production <- rnorm(nrow(production))
reshape_wider(
 production,
 names_from = c("product", "country"),
 values_from = "production",
 names_glue = "prod_\{product\}_{country}"
)

demean

Compute group-meaned and de-meaned variables

Description
demean() computes group- and de-meaned versions of a variable that can be used in regression
analysis to model the between- and within-subject effect. degroup() is more generic in terms of
the centering-operation. While demean() always uses mean-centering, degroup() can also use the
mode or median for centering.

Usage
demean(
 x,
 select,
 group,
 suffix_demean = ".within",
 suffix_groupmean = ".between",
 add_attributes = TRUE,
 verbose = TRUE
)
degroup(
 x,
 select,
 group,
 center = "mean",
 suffix_demean = ".within",
 suffix_groupmean = ".between",
 add_attributes = TRUE,


```r
demean = TRUE
)

detrend(
  x,
  select,
  group,
  center = "mean",
  suffix_demean = "_within",
  suffix_groupmean = "_between",
  add_attributes = TRUE,
  verbose = TRUE
)
```

Arguments

- `x` A data frame.
- `select` Character vector (or formula) with names of variables to select that should be group- and de-meaned.
- `group` Character vector (or formula) with the name of the variable that indicates the group- or cluster-ID.
- `suffix_demean`, `suffix_groupmean` String value, will be appended to the names of the group-meaned and de-meaned variables of `x`. By default, de-meaned variables will be suffixed with "_within" and grouped-meaned variables with "_between".
- `add_attributes` Logical, if TRUE, the returned variables gain attributes to indicate the within- and between-effects. This is only relevant when printing `model_parameters()` - in such cases, the within- and between-effects are printed in separated blocks.
- `verbose` Toggle warnings and messages.
- `center` Method for centering. `demean()` always performs mean-centering, while `degroup()` can use `center = "median"` or `center = "mode"` for median- or mode-centering, and also "min" or "max".

Details

Heterogeneity Bias: Mixed models include different levels of sources of variability, i.e. error terms at each level. When macro-indicators (or level-2 predictors, or higher-level units, or more general: group-level predictors that vary within and across groups) are included as fixed effects (i.e. treated as covariate at level-1), the variance that is left unaccounted for this covariate will be absorbed into the error terms of level-1 and level-2 (Baum and Gelman 2006; Gelman and Hill 2007, Chapter 12.6): “Such covariates contain two parts: one that is specific to the higher-level entity that does not vary between occasions, and one that represents the difference between occasions, within higher-level entities” (Bell et al. 2015). Hence, the error terms will be correlated with the covariate, which violates one of the assumptions of mixed models (iid, independent and identically distributed error terms). This bias is also called the heterogeneity bias (Bell et al. 2015). To resolve this problem, level-2 predictors used as (level-1) covariates should be separated into their "within" and "between" effects by "de-meaning" and "group-meaning": After
demeaning time-varying predictors, “at the higher level, the mean term is no longer constrained by Level 1 effects, so it is free to account for all the higher-level variance associated with that variable” (Bell et al. 2015).

Panel data and correlating fixed and group effects: `demean()` is intended to create group- and de-meaned variables for panel regression models (fixed effects models), or for complex random-effect-within-between models (see Bell et al. 2015, 2018), where group-effects (random effects) and fixed effects correlate (see Bafumi and Gelman 2006). This can happen, for instance, when analyzing panel data, which can lead to **Heterogeneity Bias**. To control for correlating predictors and group effects, it is recommended to include the group-meaned and de-meaned version of **time-varying covariates** (and group-meaned version of **time-invariant covariates** that are on a higher level, e.g. level-2 predictors) in the model. By this, one can fit complex multilevel models for panel data, including time-varying predictors, time-invariant predictors and random effects.

Why mixed models are preferred over fixed effects models: A mixed models approach can model the causes of endogeneity explicitly by including the (separated) within- and between-effects of time-varying fixed effects and including time-constant fixed effects. Furthermore, mixed models also include random effects, thus a mixed models approach is superior to classic fixed-effects models, which lack information of variation in the group-effects or between-subject effects. Furthermore, fixed effects regression cannot include random slopes, which means that fixed effects regressions are neglecting “cross-cluster differences in the effects of lower-level controls (which) reduces the precision of estimated context effects, resulting in unnecessarily wide confidence intervals and low statistical power” (Heisig et al. 2017).

Terminology: The group-meaned variable is simply the mean of an independent variable within each group (or id-level or cluster) represented by group. It represents the cluster-mean of an independent variable. The regression coefficient of a group-meaned variable is the **between-subject-effect**. The de-meaned variable is then the centered version of the group-meaned variable. De-meaning is sometimes also called person-mean centering or centering within clusters. The regression coefficient of a de-meaned variable represents the **within-subject-effect**.

De-meaning with continuous predictors: For continuous time-varying predictors, the recommendation is to include both their de-meaned and group-meaned versions as fixed effects, but not the raw (untransformed) time-varying predictors themselves. The de-meaned predictor should also be included as random effect (random slope). In regression models, the coefficient of the de-meaned predictors indicates the within-subject effect, while the coefficient of the group-meaned predictor indicates the between-subject effect.

De-meaning with binary predictors: For binary time-varying predictors, there are two recommendations. First is to include the raw (untransformed) binary predictor as fixed effect only and the **de-meaned** variable as random effect (random slope). The alternative would be to add the de-meaned version(s) of binary time-varying covariates as additional fixed effect as well (instead of adding it as random slope). Centering time-varying binary variables to obtain within-effects (level 1) isn’t necessary. They have a sensible interpretation when left in the typical 0/1 format (Hoffmann 2015, chapter 8-2.1). `demean()` will thus coerce categorical time-varying predictors to numeric to compute the de- and group-meaned versions for these variables, where the raw (untransformed) binary predictor and the de-meaned version should be added to the model.

De-meaning of factors with more than 2 levels: Factors with more than two levels are de-meaned in two ways: first, these are also converted to numeric and de-meaned; second, dummy
variables are created (binary, with 0/1 coding for each level) and these binary dummy-variables are de-meaned in the same way (as described above). Packages like `panelr` internally convert factors to dummies before demeaning, so this behaviour can be mimicked here.

De-meaning interaction terms: There are multiple ways to deal with interaction terms of within- and between-effects. A classical approach is to simply use the product term of the de-meaned variables (i.e. introducing the de-meaned variables as interaction term in the model formula, e.g. \(y \sim x_{\text{within}} \ast \text{time}_{\text{within}} \)). This approach, however, might be subject to bias (see Giesselmann & Schmidt-Catran 2020).

Another option is to first calculate the product term and then apply the de-meaning to it. This approach produces an estimator “that reflects unit-level differences of interacted variables whose moderators vary within units”, which is desirable if no within interaction of two time-dependent variables is required.

A third option, when the interaction should result in a genuine within estimator, is to "double de-mean" the interaction terms (Giesselmann & Schmidt-Catran 2018), however, this is currently not supported by `demean()`. If this is required, the `wmb()` function from the panelr package should be used.

To de-mean interaction terms for within-between models, simply specify the term as interaction for the select-argument, e.g. `select = "a*b"` (see 'Examples').

Analysing panel data with mixed models using lme4: A description of how to translate the formulas described in Bell et al. 2018 into R using `lmer()` from lme4 can be found in this vignette.

Value

A data frame with the group-/de-meaned variables, which get the suffix "._between" (for the group-meaned variable) and "._within" (for the de-meaned variable) by default.

References

describe_distribution

Describe a distribution

Description

This function describes a distribution by a set of indices (e.g., measures of centrality, dispersion, range, skewness, kurtosis).

Usage

describe_distribution(x, ...)

S3 method for class 'numeric'
describe_distribution(
 x,
 ...)

See Also

If grand-mean centering (instead of centering within-clusters) is required, see `center()`.

Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
iris$binary <- as.factor(rbinom(150, 1, .35)) # binary variable

x <- demean(iris, select = c("Sepal.Length", "Petal.Length"), group = "ID")
head(x)

x <- demean(iris, select = c("Sepal.Length", "binary", "Species"), group = "ID")
head(x)

demean interaction term x*y
dat <- data.frame(
 a = c(1, 2, 3, 4, 1, 2, 3, 4),
 x = c(4, 3, 3, 4, 1, 2, 1, 2),
 y = c(1, 2, 1, 2, 4, 3, 2, 1),
 ID = c(1, 2, 3, 1, 2, 3, 1, 2)
)
demean(dat, select = c("a", "x*y"), group = "ID")

or in formula-notation
demean(dat, select = ~ a + x * y, group = ~ID)
describe_distribution

 centrality = "mean",
 dispersion = TRUE,
 iqr = TRUE,
 range = TRUE,
 quartiles = FALSE,
 ci = NULL,
 iterations = 100,
 threshold = 0.1,
 verbose = TRUE,
 ...
)

S3 method for class 'factor'
describe_distribution(x, dispersion = TRUE, range = TRUE, verbose = TRUE, ...)

S3 method for class 'data.frame'
describe_distribution(
 x,
 select = NULL,
 exclude = NULL,
 centrality = "mean",
 dispersion = TRUE,
 iqr = TRUE,
 range = TRUE,
 quartiles = FALSE,
 include_factors = FALSE,
 ci = NULL,
 iterations = 100,
 threshold = 0.1,
 ignore_case = FALSE,
 regex = FALSE,
 verbose = TRUE,
 ...
)

Arguments

x A numeric vector, a character vector, a data frame, or a list. See Details.
...	Additional arguments to be passed to or from methods.
centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" or "all".
dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).
iqr Logical, if TRUE, the interquartile range is calculated (based on stats::IQR(),
using type = 6).
range Return the range (min and max).
quartiles Return the first and third quartiles (25th and 75th percentiles).
describe_distribution

ci Confidence Interval (CI) level. Default is NULL, i.e. no confidence intervals are computed. If not NULL, confidence intervals are based on bootstrap replicates (see iterations). If centrality = "all", the bootstrapped confidence interval refers to the first centrality index (which is typically the median).

iterations The number of bootstrap replicates for computing confidence intervals. Only applies when ci is not NULL.

threshold For centrality = "trimmed" (i.e. trimmed mean), indicates the fraction (0 to 0.5) of observations to be trimmed from each end of the vector before the mean is computed.

verbose Toggle warnings and messages.

select Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., column_name),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -c(1, -3)),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a - e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

include_factors Logical, if TRUE, factors are included in the output, however, only columns for range (first and last factor levels) as well as n and missing will contain information.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.
describe_distribution

regex
Logical, if TRUE, the search pattern from `select` will be treated as regular expression. When `regex = TRUE`, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. `regex = TRUE` is comparable to using one of the two select-helpers, `select = contains("")` or `select = regex("")`, however, since the select-helpers may not work when called from inside other functions (see ‘Details’), this argument may be used as workaround.

Details
If `x` is a data frame, only numeric variables are kept and will be displayed in the summary.

If `x` is a list, the behavior is different whether `x` is a stored list. If `x` is stored (for example, `describe_distribution(mylist)` where `mylist` was created before), artificial variable names are used in the summary (Var_1, Var_2, etc.). If `x` is an unstored list (for example, `describe_distribution(list(mtcars$mpg))`), then “mtcars$mpg” is used as variable name.

Value
A data frame with columns that describe the properties of the variables.

Selection of variables - the select argument
For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

Note
There is also a `plot()`-method implemented in the `see-package`.

Examples

```r
describe_distribution(rnorm(100))

data(iris)
describe_distribution(iris)
describe_distribution(iris, include_factors = TRUE, quartiles = TRUE)
describe_distribution(list(mtcars$mpg, mtcars$cyl))
```
distribution_mode

Compute mode for a statistical distribution

Description

Compute mode for a statistical distribution

Usage

distribution_mode(x)

Arguments

x
An atomic vector, a list, or a data frame.

Value

The value that appears most frequently in the provided data. The returned data structure will be the same as the entered one.

See Also

For continuous variables, the **Highest Maximum a Posteriori probability estimate** (MAP) may be a more useful way to estimate the most commonly-observed value than the mode. See `bayestestR::map_estimate()`.

Examples

distribution_mode(c(1, 2, 3, 3, 4, 5))
distribution_mode(c(1.5, 2.3, 3.7, 3.7, 4.0, 5))

efc

Sample dataset from the EFC Survey

Description

Selected variables from the EUROFAMCARE survey. Useful when testing on "real-life" data sets, including random missing values. This data set also has value and variable label attributes.
find_columns | Find or get columns in a data frame based on search patterns

Description

`find_columns()` returns column names from a data set that match a certain search pattern, while `get_columns()` returns the found data. `data_select()` is an alias for `get_columns()`, and `data_find()` is an alias for `find_columns()`.

Usage

```r
find_columns(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)
```

```r
data_find(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)
```

```r
get_columns(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)
```

```r
data_select(
  data,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  ...


verbose = TRUE,
...
)

Arguments

data  A data frame.
select  Variables that will be included when performing the required tasks. Can be
• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector
  of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
  1 or c(1, 3, 5)),
• a vector of negative integers, giving the positions counting from the right
  (e.g., -1 or -1:-3),
• one of the following select-helpers: starts_with(), ends_with(), contains(),
  a range using : or regex(""). starts_with(), ends_with(), and contains()
  accept several patterns, e.g starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
  or any user-defined function that selects the variables for which the function
  returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex())
  and (user-defined) functions can be negated, i.e. return non-matching el-
  ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
  -Sepal.Width:Petal.Length. Note: Negation means that matches are
  excluded, and thus, the exclude argument can be used alternatively. For in-
  stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
  (no -). In case negation should not work as expected, use the exclude ar-
  gument instead.
If NULL, selects all columns. Patterns that found no matches are silently ignored,
  e.g. find_columns(iris, select = c("Species", "Test")) will just return
  "Species".
exclude  See select, however, column names matched by the pattern from exclude will
  be excluded instead of selected. If NULL (the default), excludes no columns.
ignore_case  Logical, if TRUE and when one of the select-helpers or a regular expression is
  used in select, ignores lower/upper case in the search pattern when matching
  against variable names.
regex  Logical, if TRUE, the search pattern from select will be treated as regular ex-
  pression. When regex = TRUE, select must be a character string (or a variable
  containing a character string) and is not allowed to be one of the supported
  select-helpers or a character vector of length > 1. regex = TRUE is com-
  parable to using one of the two select-helpers, select = contains("") or select
  = regex(""), however, since the select-helpers may not work when called from
  inside other functions (see 'Details'), this argument may be used as workaround.
find_columns

verbose  Toggle warnings.

Arguments passed down to other functions. Mostly not used yet.

Details

Note that it is possible to either pass an entire select helper or only the pattern inside a select helper as a function argument:

```r
foo <- function(data, pattern) {
 find_columns(data, select = starts_with(pattern))
}
foo(iris, pattern = "Sep")
```

```r
foo2 <- function(data, pattern) {
 find_columns(data, select = pattern)
}
foo2(iris, pattern = starts_with("Sep"))
```

This means that it is also possible to use loop values as arguments or patterns:

```r
for (i in c("Sepal", "Sp")) {
 head(iris) |>
 find_columns(select = starts_with(i)) |>
 print()
}
```

However, this behavior is limited to a "single-level function". It will not work in nested functions, like below:

```r
inner <- function(data, arg) {
 find_columns(data, select = arg)
}
outer <- function(data, arg) {
 inner(data, starts_with(arg))
}
outer(iris, "Sep")
```

In this case, it is better to pass the whole select helper as the argument of `outer()`:

```r
outer <- function(data, arg) {
 inner(data, arg)
}
outer(iris, starts_with("Sep"))
```

Value

`find_columns()` returns a character vector with column names that matched the pattern in `select` and `exclude`, or `NULL` if no matching column name was found. `get_columns()` returns a data frame with matching columns.
See Also

- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

```r
Find columns names by pattern
find_columns(iris, starts_with("Sepal"))
find_columns(iris, ends_with("Width"))
find_columns(iris, regex("\."))
find_columns(iris, c("Petal.Width", "Sepal.Length"))

starts with "Sepal", but not allowed to end with "width"
find_columns(iris, starts_with("Sepal"), exclude = contains("Width"))

find numeric with mean > 3.5
numeric_mean_35 <- function(x) is.numeric(x) & mean(x, na.rm = TRUE) > 3.5
find_columns(iris, numeric_mean_35)
```

---

**nhanes_sample**  
Sample dataset from the National Health and Nutrition Examination Survey

Description

Selected variables from the National Health and Nutrition Examination Survey that are used in the example from Lumley (2010), Appendix E.

References

normalize

Normalize numeric variable to 0-1 range

Description

Performs a normalization of data, i.e., it scales variables in the range 0 - 1. This is a special case of `rescale()`. `unnormalize()` is the counterpart, but only works for variables that have been normalized with `normalize()`.

Usage

```r
normalize(x, ...)
S3 method for class 'numeric'
normalize(x, include_bounds = TRUE, verbose = TRUE, ...)
S3 method for class 'data.frame'
normalize(
 x,
 select = NULL,
 exclude = NULL,
 include_bounds = TRUE,
 ignore_case = FALSE,
 regex = FALSE,
 verbose = TRUE,
 ...
)

unnormalize(x, ...)
S3 method for class 'numeric'
unnormalize(x, verbose = TRUE, ...)
S3 method for class 'data.frame'
unnormalize(
 x,
 select = NULL,
 exclude = NULL,
 ignore_case = FALSE,
 regex = FALSE,
 verbose = TRUE,
 ...
)
```

Arguments

- `x` A numeric vector, (grouped) data frame, or matrix. See 'Details'.
Arguments passed to or from other methods.

**include_bounds** Logical, if TRUE, return value may include 0 and 1. If FALSE, the return value is compressed, using Smithson and Verkuilen's (2006) formula \((x \times (n - 1) + 0.5) / n\), to avoid zeros and ones in the normalized variables. This can be useful in case of beta-regression, where the response variable is not allowed to include zeros and ones.

**verbose** Toggle warnings and messages on or off.

**select** Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., `column_name`),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., `c("col1", "col2", "col3")`),
- a formula with variable names (e.g., `~column_1 + column_2`),
- a vector of positive integers, giving the positions counting from the left (e.g., `1` or `c(1, 3, 5)`),
- a vector of negative integers, giving the positions counting from the right (e.g., `-1` or `-1:-3`),
- one of the following select-helpers: `starts_with()`, `ends_with()`, `contains()`, a range using `:` or `regex("\"\")`. `starts_with()`, `ends_with()`, and `contains()` accept several patterns, e.g. `starts_with("Sep", "Petal")`.
- or a function testing for logical conditions, e.g. `is.numeric()` or `is.numeric`, or any user-defined function that selects the variables for which the function returns TRUE (like: `foo <- function(x) mean(x) > 3`),
- ranges specified via literal variable names, select-helpers (except `regex()`) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a `-`, e.g. `-ends_with("\"\")`, `-is.numeric` or `-Sepal.Width:Petal.Length`. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, `select=-ends_with("Length")` (with `-`) is equivalent to `exclude=ends_with("Length")` (no `-`). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. `find_columns(iris, select = c("Species", "Test"))` will just return "Species".

**exclude** See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

**ignore_case** Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

**regex** Logical, if TRUE, the search pattern from select will be treated as regular expression. When `regex = TRUE`, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. `regex = TRUE` is comparable to using one of the two select-helpers, `select = contains("\")` or `select = regex("\")`, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.
Details

- If x is a matrix, normalization is performed across all values (not column- or row-wise). For column-wise normalization, convert the matrix to a data.frame.
- If x is a grouped data frame (grouped_df), normalization is performed separately for each group.

Value

A normalized object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

References


See Also

Other transform utilities: `ranktransform()`, `rescale()`, `reverse()`, `standardize()`

Examples

```r
normalize(c(0, 1, 5, -5, -2))
normalize(c(0, 1, 5, -5, -2), include_bounds = FALSE)
head(normalize(trees))
```

---

**ranktransform**

*(Signed) rank transformation*

Description

Transform numeric values with the integers of their rank (i.e., 1st smallest, 2nd smallest, 3rd smallest, etc.). Setting the sign argument to TRUE will give you signed ranks, where the ranking is done according to absolute size but where the sign is preserved (i.e., 2, 1, -3, 4).
Usage

ranktransform(x, ...)

## S3 method for class 'numeric'
ranktransform(x, sign = FALSE, method = "average", verbose = TRUE, ...)

## S3 method for class 'data.frame'
ranktransform(
  x,
  select = NULL,
  exclude = NULL,
  sign = FALSE,
  method = "average",
  ignore.case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

Arguments

x
Arguments passed to or from other methods.

... Logical, if TRUE, return signed ranks.

sign Treatment of ties. Can be one of "average" (default), "first", "last", "random", "max" or "min". See rank() for details.

method Toggle warnings.

select Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., column_name),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g. 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. ~ends_with(""), ~is.numeric or
- Sepal.Width: Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select = `ends_with("Length")` (with `-`) is equivalent to exclude = `ends_with("Length")` (no `-`). In case negation should not work as expected, use the exclude argument instead.

If `NULL`, selects all columns. Patterns that found no matches are silently ignored, e.g. `find_columns(iris, select = c("Species", "Test"))` will just return "Species".

**exclude**

See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If `NULL` (the default), excludes no columns.

**ignore_case**

Logical, if `TRUE` and when one of the select-helpers or a regular expression is used in `select`, ignores lower/upper case in the search pattern when matching against variable names.

**regex**

Logical, if `TRUE`, the search pattern from `select` will be treated as regular expression. When `regex = TRUE`, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. `regex = TRUE` is comparable to using one of the two select-helpers, `select = contains("")` or `select = regex("")`, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

**Value**

A rank-transformed object.

**Selection of variables - the select argument**

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

**See Also**

Other transform utilities: `normalize()`, `rescale()`, `reverse()`, `standardize()`

**Examples**

```r
ranktransform(c(0, 1, 5, -5, -2))
ranktransform(c(0, 1, 5, -5, -2), sign = TRUE)
head(ranktransform(trees))
```
recode_values  

Recode old values of variables into new values

Description
This function recodes old values into new values and can be used to recode numeric or character vectors, or factors.

Usage
recode_values(x, ...)

## S3 method for class 'numeric'
recode_values(
x, recode = NULL, default = NULL, preserve_na = TRUE, verbose = TRUE, ...
)

## S3 method for class 'data.frame'
recode_values(
x, select = NULL, exclude = NULL, recode = NULL, default = NULL, preserve_na = TRUE, append = FALSE, ignore_case = FALSE, regex = FALSE, verbose = TRUE, ...
)

change_code(x, ...)

Arguments

x  
A data frame, numeric or character vector, or factor.

...  
not used.

recode  
A list of named vectors, which indicate the recode pairs. The names of the list-elements (i.e. the left-hand side) represent the new values, while the values of the list-elements indicate the original (old) values that should be replaced. When recoding numeric vectors, element names have to be surrounded in backticks. For
example, recode=list('0'=1) would recode all 1 into 0 in a numeric vector. See also 'Examples' and 'Details'.

default
Defines the default value for all values that have no match in the recode-pairs. Note that, if preserve_na=FALSE, missing values (NA) are also captured by the default argument, and thus will also be recoded into the specified value. See 'Examples' and 'Details'.

preserve_na
Logical, if TRUE, NA (missing values) are preserved. This overrides any other arguments, including default. Hence, if preserve_na=TRUE, default will no longer convert NA into the specified default value.

verbose
Toggle warnings.

select
Variables that will be included when performing the required tasks. Can be either
• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
• a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
• one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex('"'). starts_with(), ends_with(), and contains() accept several patterns, e.g. starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a - , e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. Note: Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

append
Logical or string. If TRUE, recoded or converted variables get new column names and are appended (column bind) to x, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function: "_r" for recode functions, "_n" for to_numeric(). "_f" for to_factor() or "_s" for slide(). If append=FALSE, original variables in x will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.
ignore_case  Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex  Logical, if TRUE, the search pattern from select will be treated as regular expression. When \( \text{regex} = \text{TRUE} \), select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. \( \text{regex} = \text{TRUE} \) is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

Details

This section describes the pattern of the recode arguments, which also provides some shortcuts, in particular when recoding numeric values.

- Single values
  Single values either need to be wrapped in backticks (in case of numeric values) or "as is" (for character or factor levels). Example: `recode=list(`\0\'=1,`\1\'=2)` would recode 1 into 0, and 2 into 1. For factors or character vectors, an example is: `recode=list(x="a",y="b")` (recode "a" into "x" and "b" into "y").

- Multiple values
  Multiple values that should be recoded into a new value can be separated with comma. Example: `recode=list(`\1\'=c(1,4),`\2\'=c(2,3))` would recode the values 1 and 4 into 1, and 2 and 3 into 2. It is also possible to define the old values as a character string, like: `recode=list(`\1\"="1,4\",`\2\"="2,3\")`. For factors or character vectors, an example is: `recode=list(x=c("a","b"),y=c("c","d"))`.

- Value range
  Numeric value ranges can be defined using the `::`. Example: `recode=list(`\1\"=1:3,`\2\"=4:6)` would recode all values from 1 to 3 into 1, and 4 to 6 into 2.

- min and max
  placeholder to use the minimum or maximum value of the (numeric) variable. Useful, e.g., when recoding ranges of values. Example: `recode=list(`\1\"="min:10\",`\2\"="11:max\")`.

- default values
  The default argument defines the default value for all values that have no match in the recode-pairs. For example, `recode=list(`\1\"=c(1,2),`\2\"=c(3,4)), default=9` would recode values 1 and 2 into 1, 3 and 4 into 2, and all other values into 9. If preserve_na is set to FALSE, NA (missing values) will also be recoded into the specified default value.

- Reversing and rescaling
  See reverse() and rescale().

Value

\( x \), where old values are replaced by new values.
**recode_values**

Selection of variables - the **select** argument

For most functions that have a **select** argument (including this function), the complete input data frame is returned, even when **select** only selects a range of variables. That is, the function is only applied to those variables that have a match in **select**, while all other variables remain unchanged. In other words: for this function, **select** will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

Note

You can use `options(data_recode_pattern = "old=new")` to switch the behaviour of the **recode**-argument, i.e. **recode**-pairs are now following the pattern old values = new values, e.g. if `getOption("data_recode_pattern")` is set to "old=new", then `recode(\'1\'=0)` would recode all 1 into 0. The default for `recode(\'1\'=0)` is to recode all 0 into 1.

See Also

- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

```r
numeric ------------
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")

out <- recode_values(x, list("0" = 1, "1" = 2:3, "2" = 4))
table(out, useNA = "always")

to recode NA values, set preserve_na to FALSE
out <- recode_values(x, list("0" = 1, "1" = 2:3, "2" = 4, "9" = NA),
 preserve_na = FALSE)
table(out, useNA = "always")

preserve na --------
out <- recode_values(x, list("0" = 1, "1" = 2:3), default = 77)
```
```r
out
table(out, useNA = "always")

recode na into default ----------
out <- recode_values(x,
 list(\'0\' = 1, \'1\' = 2:3),
 default = 77,
 preserve_na = FALSE
)
out
table(out, useNA = "always")

factors (character vectors are similar) ----------
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)
out <- recode_values(x, list(x = "a", y = c("b", "c")))
out
table(out)
out <- recode_values(x, list(x = "a", y = "b", z = "c"))
out
table(out)
out <- recode_values(x, list(y = "b,c"), default = 77)
 # same as
 # recode_values(x, list(y = c("b", "c")), default = 77)
out
table(out)

data frames ----------
set.seed(123)
d <- data.frame(
 x = sample(c(1:4, NA), 12, TRUE),
 y = as.factor(sample(c("a", "b", "c"), 12, TRUE)),
 stringsAsFactors = FALSE)
recode_values(
 d,
 recode = list(\'0\' = 1, \'1\' = 2:3, \'2\' = 4, x = "a", y = c("b", "c")),
 append = TRUE)
)

switch recode pattern to "old=new" ----------
options(data_recode_pattern = "old=new")

numeric
```
remove_empty

Return or remove variables or observations that are completely missing

Description

These functions check which rows or columns of a data frame completely contain missing values, i.e. which observations or variables completely have missing values, and either (1) returns their indices; or (2) removes them from the data frame.

Usage

empty_columns(x)
empty_rows(x)
remove_empty_columns(x)
remove_empty_rows(x)
remove_empty(x)

Arguments

x A data frame.

Details

For character vectors, empty string values (i.e. "") are also considered as missing value. Thus, if a character vector only contains NA and ""``, it is considered as empty variable and will be removed. Same applies
Value

- For `empty_columns()` and `empty_rows()`, a numeric (named) vector with row or column indices of those variables that completely have missing values.
- For `remove_empty_columns()` and `remove_empty_rows()`, a data frame with "empty" columns or rows removed, respectively.
- For `remove_empty()`, both empty rows and columns will be removed.

Examples

tmp <- data.frame(
  a = c(1, 2, 3, NA, 5),
  b = c(1, NA, 3, NA, 5),
  c = c(NA, NA, NA, NA, NA),
  d = c(1, NA, 3, NA, 5)
)

tmp

# indices of empty columns or rows
empty_columns(tmp)
empty_rows(tmp)

# remove empty columns or rows
remove_empty_columns(tmp)
remove_empty_rows(tmp)

# remove empty columns and rows
remove_empty(tmp)

# also remove "empty" character vectors
tmp <- data.frame(
  a = c(1, 2, 3, NA, 5),
  b = c(1, NA, 3, NA, 5),
  c = c("", ",", ",", ",", ",") stringAsFactors = FALSE
)
empty_columns(tmp)

---

`replace_nan_inf`  
*Convert infinite or NaN values into NA*

Description

Replaces all infinite (Inf and -Inf) or NaN values with NA.

Usage

`replace_nan_inf(data)`
Arguments

data A vector or a data frame.

Value

Data with Inf, -Inf, and NaN converted to NA.

Examples

# a vector
x <- c(1, 2, NA, 3, NaN, 4, NA, 5, -Inf, 6, 7)
replace_nan_inf(x)

# a data frame
df <- data.frame(
  x = c(1, NA, 5, Inf, 2, NA),
  y = c(3, NaN, 4, -Inf, 6, 7),
  stringsAsFactors = FALSE
)
replace_nan_inf(df)

Rescale Variables to a New Range

Description

Rescale variables to a new range. Can also be used to reverse-score variables (change the keying/scoring direction).

Usage

rescale(x, ...)

change_scale(x, ...)

## S3 method for class 'numeric'
rescale(x, to = c(0, 100), range = NULL, verbose = TRUE, ...)

## S3 method for class 'data.frame'
rescale(
  x,
  select = NULL,
  exclude = NULL,
  to = c(0, 100),
  range = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = FALSE,
  ...
...}

Arguments

x A (grouped) data frame, numeric vector or factor.

Arguments passed to or from other methods.
to Numeric vector of length 2 giving the new range that the variable will have after rescaling. To reverse-score a variable, the range should be given with the maximum value first. See examples.

range Initial (old) range of values. If NULL, will take the range of the input vector (range(x)).

verbose Toggle warnings.

select Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., column_name),
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g. starts_with("Sep", "Petal").
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
- or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.
rescale

regex Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see ‘Details’), this argument may be used as workaround.

Value

A rescaled object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), ranktransform(), reverse(), standardize()

Examples

rescale(c(0, 1, 5, -5, -2))
rescale(c(0, 1, 5, -5, -2), to = c(-5, 5))
rescale(c(1, 2, 3, 4, 5), to = c(-2, 2))

# Specify the "theoretical" range of the input vector
rescale(c(1, 3, 4), to = c(0, 4), range = c(0, 4))

# Reverse-score a variable
rescale(c(1, 2, 3, 4, 5), to = c(5, 1))
rescale(c(1, 2, 3, 4, 5), to = c(2, -2))

# Data frames
head(rescale(iris, to = c(0, 1)))
head(rescale(iris, to = c(0, 1), select = "Sepal.Length"))

# One can specify a list of ranges
head(rescale(iris, to = list("Sepal.Length" = c(0, 1),
                          "Petal.Length" = c(-1, 0)))))
rescale_weights  

Rescale design weights for multilevel analysis

Description

Most functions to fit multilevel and mixed effects models only allow to specify frequency weights, but not design (i.e. sampling or probability) weights, which should be used when analyzing complex samples and survey data. rescale_weights() implements an algorithm proposed by Asparouhov (2006) and Carle (2009) to rescale design weights in survey data to account for the grouping structure of multilevel models, which then can be used for multilevel modelling.

Usage

rescale_weights(data, group, probability_weights, nest = FALSE)

Arguments

data  A data frame.
group  Variable names (as character vector, or as formula), indicating the grouping structure (strata) of the survey data (level-2-cluster variable). It is also possible to create weights for multiple group variables; in such cases, each created weighting variable will be suffixed by the name of the group variable.
probability_weights  Variable indicating the probability (design or sampling) weights of the survey data (level-1-weight).
nest  Logical, if TRUE and group indicates at least two group variables, then groups are "nested", i.e. groups are now a combination from each group level of the variables in group.

Details

Rescaling is based on two methods: For pweights_a, the sample weights probability_weights are adjusted by a factor that represents the proportion of group size divided by the sum of sampling weights within each group. The adjustment factor for pweights_b is the sum of sample weights within each group divided by the sum of squared sample weights within each group (see Carle (2009), Appendix B). In other words, pweights_a "scales the weights so that the new weights sum to the cluster sample size" while pweights_b "scales the weights so that the new weights sum to the effective cluster size".

Regarding the choice between scaling methods A and B, Carle suggests that "analysts who wish to discuss point estimates should report results based on weighting method A. For analysts more interested in residual between-group variance, method B may generally provide the least biased estimates". In general, it is recommended to fit a non-weighted model and weighted models with both scaling methods and when comparing the models, see whether the "inferential decisions converge", to gain confidence in the results.

Though the bias of scaled weights decreases with increasing group size, method A is preferred when insufficient or low group size is a concern.
The group ID and probably PSU may be used as random effects (e.g. nested design, or group and PSU as varying intercepts), depending on the survey design that should be mimicked.

Value
data, including the new weighting variables: pweights_a and pweights_b, which represent the rescaled design weights to use in multilevel models (use these variables for the weights argument).

References


Examples

```r
if (require("lme4")) {
 data(nhanes_sample)
 head(rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR"))

 # also works with multiple group-variables
 head(rescale_weights(nhanes_sample, c("SDMVSTRA", "SDMVPSU"), "WTINT2YR"))

 # or nested structures.
 x <- rescale_weights(
 data = nhanes_sample,
 group = c("SDMVSTRA", "SDMVPSU"),
 probability_weights = "WTINT2YR",
 nest = TRUE
)
 head(x)

 nhanes_sample <- rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR")

 glmer(
 total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)) + (1 | SDMVPSU),
 family = poisson(),
 data = nhanes_sample,
 weights = pweights_a
)
}
```

reshape_ci

Reshape CI between wide/long formats

Description

Reshape CI between wide/long formats.
Usage

reshape_ci(x, ci_type = "CI")

Arguments

x
A data frame containing columns named CI_low and CI_high (or similar, see ci_type).

ci_type
String indicating the "type" (i.e. prefix) of the interval columns. Per easystats convention, confidence or credible intervals are named CI_low and CI_high, and the related ci_type would be "CI". If column names for other intervals differ, ci_type can be used to indicate the name, e.g. ci_type = "SI" can be used for support intervals, where the column names in the data frame would be SI_low and SI_high.

Value

A data frame with columns corresponding to confidence intervals reshaped either to wide or long format.

Examples

x <- data.frame(Parameter = c("Term 1", "Term 2", "Term 1", "Term 2"),
                 CI = c(.8, .8, .9, .9),
                 CI_low = c(.2, .3, .1, .15),
                 CI_high = c(.5, .6, .8, .85),
                 stringsAsFactors = FALSE)
reshape_ci(x)
reshape_ci(reshape_ci(x))

reverse

Reverse-Score Variables

Description

Reverse-score variables (change the keying/scoring direction).

Usage

reverse(x, ...)

reverse_scale(x, ...)

## S3 method for class 'numeric'
reverse(x, range = NULL, verbose = TRUE, ...)
reverse

## S3 method for class 'data.frame'
reverse(
  x,
  select = NULL,
  exclude = NULL,
  range = NULL,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = FALSE,
  ...
)

Arguments

x  
A (grouped) data frame, numeric vector or factor.

...  
Arguments passed to or from other methods.

range  
Initial (old) range of values. If NULL, will take the range of the input vector (range(x)).

verbose  
Toggle warnings.

select  
Variables that will be included when performing the required tasks. Can be either
• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
• a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
• one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. Note: Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".
reverse

exclude  See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

Value

A reverse-scored object.

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

See Also

Other transform utilities: normalize(), ranktransform(), rescale(), standardize()

Examples

reverse(c(1, 2, 3, 4, 5))
reverse(c(-2, -1, 0, 2, 1))

# Specify the "theoretical" range of the input vector
reverse(c(1, 3, 4), range = c(0, 4))

# Factor variables
reverse(factor(c(1, 2, 3, 4, 5)))
reverse(factor(c(1, 2, 3, 4, 5)), range = 0:10)

# Data frames
head(reverse(iris))
head(reverse(iris, select = "Sepal.Length"))
rownames_as_column  Tools for working with row names

Description
Tools for working with row names

Usage
rownames_as_column(x, var = "rowname")
column_as_rownames(x, var = "rowname")

Arguments
x A data frame.
var Name of column to use for rownames. For column_as_rownames(), this argument can be the variable name or the column number.

Value
rownames_as_column() and column_as_rownames() both return a data frame.

Examples
# Convert between row names and column
#---------------------------------
test <- rownames_as_column(mtcars, var = "car")
test
head(column_as_rownames(test, var = "car"))

row_to_colnames  Tools for working with column names

Description
Tools for working with column names

Usage
row_to_colnames(x, row = 1, na_prefix = "x", verbose = TRUE)
colnames_to_row(x, prefix = "x")
Arguments

- **x**: A data frame.
- **row**: Row to use as column names.
- **na_prefix**: Prefix to give to the column name if the row has an NA. Default is `x`, and it will be incremented at each NA (x1, x2, etc.).
- **verbose**: Toggle warnings.
- **prefix**: Prefix to give to the column name. Default is `x`, and it will be incremented at each column (x1, x2, etc.).

Value

`row_to_colnames()` and `colnames_to_row()` both return a data frame.

Examples

```r
Convert a row to column names --------------------------------
test <- data.frame(
 a = c("iso", 2, 5),
 b = c("year", 3, 6),
 c = c(NA, 5, 7)
)
test
row_to_colnames(test)
Convert column names to row --------------------------------
test <- data.frame(
 ARG = c("BRA", "FRA"),
 `1960` = c(1960, 1960),
)
test
colnames_to_row(test)
```

skewness

Compute Skewness and (Excess) Kurtosis

**Description**

Compute Skewness and (Excess) Kurtosis

**Usage**

```r
skewness(x, na.rm = TRUE, type = "2", iterations = NULL, verbose = TRUE, ...)
kurtosis(x, na.rm = TRUE, type = "2", iterations = NULL, verbose = TRUE, ...)
```
## S3 method for class 'parameters_kurtosis'
print(x, digits = 3, test = FALSE, ...)

## S3 method for class 'parameters_skewness'
print(x, digits = 3, test = FALSE, ...)

## S3 method for class 'parameters_skewness'
summary(object, test = FALSE, ...)

## S3 method for class 'parameters_kurtosis'
summary(object, test = FALSE, ...)

### Arguments

- **x**: A numeric vector or data.frame.
- **na.rm**: Remove missing values.
- **type**: Type of algorithm for computing skewness. May be one of 1 ("1", "I" or "classic"), 2 ("2", "II" or "SPSS" or "SAS") or 3 ("3", "III" or "Minitab"). See 'Details'.
- **iterations**: The number of bootstrap replicates for computing standard errors. If NULL (default), parametric standard errors are computed.
- **verbose**: Toggle warnings and messages.
- **...**: Arguments passed to or from other methods.
- **digits**: Number of decimal places.
- **test**: Logical, if TRUE, tests if skewness or kurtosis is significantly different from zero.
- **object**: An object returned by skewness() or kurtosis().

### Details

**Skewness**: Symmetric distributions have a skewness around zero, while a negative skewness values indicates a "left-skewed" distribution, and a positive skewness values indicates a "right-skewed" distribution. Examples for the relationship of skewness and distributions are:

- Normal distribution (and other symmetric distribution) has a skewness of 0
- Half-normal distribution has a skewness just below 1
- Exponential distribution has a skewness of 2
- Lognormal distribution can have a skewness of any positive value, depending on its parameters


**Types of Skewness**: skewness() supports three different methods for estimating skewness, as discussed in Joanes and Gill (1988):

- Type "1" is the "classical" method, which is \( g_1 = \frac{\text{sum}((x - \text{mean}(x))^3) / n}{(\text{sum}((x - \text{mean}(x))^2) / n)^{1.5}} \)
- Type "2" first calculates the type-1 skewness, then adjusts the result: \( G_1 = g_1 \times \sqrt{n \times (n - 1) / (n - 2)} \). This is what SAS and SPSS usually return
• Type "3" first calculates the type-1 skewness, then adjusts the result: $b_1 = g_1 \times ((1 - 1 / n))^{1.5}$. This is what Minitab usually returns.

Kurtosis: The kurtosis is a measure of "tailedness" of a distribution. A distribution with a kurtosis values of about zero is called "mesokurtic". A kurtosis value larger than zero indicates a "leptokurtic" distribution with fatter tails. A kurtosis value below zero indicates a "platykurtic" distribution with thinner tails (https://en.wikipedia.org/wiki/Kurtosis).

Types of Kurtosis: kurtosis() supports three different methods for estimating kurtosis, as discussed in Joanes and Gill (1998):

• Type "1" is the "classical" method, which is $g_2 = n \times \sum ((x - \text{mean}(x))^4) / (\sum((x - \text{mean}(x))^2)^2) - 3$.

• Type "2" first calculates the type-1 kurtosis, than adjusts the result: $G_2 = ((n + 1) \times g_2 + 6) \times (n - 1)/(n - 2) \times (n - 3)$. This is what SAS and SPSS usually return

• Type "3" first calculates the type-1 kurtosis, than adjusts the result: $b_2 = (g_2 + 3) \times (1 - 1 / n)^2 - 3$. This is what Minitab usually returns.

Standard Errors: It is recommended to compute empirical (bootstrapped) standard errors (via the iterations argument) than relying on analytic standard errors (Wright & Herrington, 2011).

Value

Values of skewness or kurtosis.

References


Examples

```r
skewness(rnorm(1000))
kurtosis(rnorm(1000))
```

slide Shift numeric value range

Description

This functions shifts the value range of a numeric variable, so that the new range starts at a given value.
Usage

slide(x, ...)

## S3 method for class 'numeric'
slide(x, lowest = 0, ...)

## S3 method for class 'data.frame'
slide(
  x,
  select = NULL,
  exclude = NULL,
  lowest = 0,
  append = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

Arguments

x A data frame or numeric vector.

... not used.

lowest Numeric, indicating the lowest (minimum) value when converting factors or character vectors to numeric values.

select Variables that will be included when performing the required tasks. Can be either

- a variable specified as a literal variable name (e.g., column_name).
- a string with the variable name (e.g., "column_name"), or a character vector of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column_1 + column_2),
- a vector of positive integers, giving the positions counting from the left (e.g., 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(), a range using : or regex(""), starts_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
- or a function testing for logical conditions, e.g. is.numeric() (or is.numeric), or any user-defined function that selects the variables for which the function returns TRUE (like: foo <- function(x) mean(x) > 3),
- ranges specified via literal variable names, select-helpers (except regex()) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or -Sepal.Width:Petal.Length. **Note:** Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For instance, select=ends_with("Length") (with -) is equivalent to exclude=ends_with("Length") (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. find_columns(iris, select = c("Species", "Test")) will just return "Species".

exclude  
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

append  
Logical or string. If TRUE, recoded or converted variables get new column names and are appended (column bind) to x, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function: ".r" for recode functions, ".n" for to_numeric(), ".f" for to_factor(), or ".s" for slide(). If append=FALSE, original variables in x will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.

ignore_case  
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex  
Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains(""), or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

verbose  
Toggle warnings.

Value  
x, where the range of numeric variables starts at a new value.

Selection of variables - the select argument  
For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

See Also  
- Functions to rename stuff: data_rename(), data_rename_rows(), data_addprefix(), data_addsuffix()  
- Functions to reorder or remove columns: data_reorder(), data_relocate(), data_remove()  
- Functions to reshape, pivot or rotate data frames: data_to_long(), data_to_wide(), data_rotate()  
- Functions to recode data: rescale(), reverse(), categorize(), recode_values(), slide()
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

```r
numeric
head(mtcars$gear)
head(slide(mtcars$gear))
head(slide(mtcars$gear, lowest = 1))

data frame
sapply(slide(mtcars, lowest = 1), min)
sapply(mtcars, min)
```

---

**smoothness**  
*Quantify the smoothness of a vector*

**Description**

Quantify the smoothness of a vector

**Usage**

```r
smoothness(x, method = "cor", lag = 1, iterations = NULL, ...)
```

**Arguments**

- `x` Numeric vector (similar to a time series).
- `method` Can be "diff" (the standard deviation of the standardized differences) or "cor" (default, lag-one autocorrelation).
- `lag` An integer indicating which lag to use. If less than 1, will be interpreted as expressed in percentage of the length of the vector.
- `iterations` The number of bootstrap replicates for computing standard errors. If NULL (default), parametric standard errors are computed.
- `...` Arguments passed to or from other methods.

**Value**

Value of smoothness.

**References**

Examples

```r
x <- (-10:10)^3 + rnorm(21, 0, 100)
plot(x)
smoothness(x, method = "cor")
smoothness(x, method = "diff")
```

---

**standardize**  
*Standardization (Z-scoring)*

**Description**

Performs a standardization of data (z-scoring), i.e., centering and scaling, so that the data is expressed in terms of standard deviation (i.e., mean = 0, SD = 1) or Median Absolute Deviance (median = 0, MAD = 1). When applied to a statistical model, this function extracts the dataset, standardizes it, and refits the model with this standardized version of the dataset. The `normalize()` function can also be used to scale all numeric variables within the 0 - 1 range.

For model standardization, see `standardize.default()`.

**Usage**

```r
standardize(x, ...)
```

### S3 method for class 'numeric'

```r
standardize(
 x,
 robust = FALSE,
 two_sd = FALSE,
 weights = NULL,
 reference = NULL,
 center = NULL,
 scale = NULL,
 verbose = TRUE,
 ...
)
```

### S3 method for class 'factor'

```r
standardize(
 x,
 robust = FALSE,
 two_sd = FALSE,
 weights = NULL,
 force = FALSE,
 verbose = TRUE,
 ...
)
```
standardize

## S3 method for class 'data.frame'
standardize(
  x,
  select = NULL,
  exclude = NULL,
  robust = FALSE,
  two_sd = FALSE,
  weights = NULL,
  reference = NULL,
  center = NULL,
  scale = NULL,
  remove_na = c("none", "selected", "all"),
  force = FALSE,
  append = FALSE,
  ignore_case = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

unstandardize(x, ...)

unstandardise(x, ...)

## S3 method for class 'numeric'
unstandardize(
  x,
  center = NULL,
  scale = NULL,
  reference = NULL,
  robust = FALSE,
  two_sd = FALSE,
  ...
)

## S3 method for class 'data.frame'
unstandardize(
  x,
  center = NULL,
  scale = NULL,
  reference = NULL,
  robust = FALSE,
  two_sd = FALSE,
  select = NULL,
  exclude = NULL,
  ...
)
Arguments

x A (grouped) data frame, a vector or a statistical model (for unstandardize() cannot be a model).

... Arguments passed to or from other methods.

robust Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).

two_sd If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).

weights Can be NULL (for no weighting), or:

• For model: if TRUE (default), a weighted-standardization is carried out.
• For data.frames: a numeric vector of weights, or a character of the name of a column in the data.frame that contains the weights.
• For numeric vectors: a numeric vector of weights.

reference A data frame or variable from which the centrality and deviation will be computed instead of from the input variable. Useful for standardizing a subset or new data according to another data frame.

center, scale • For standardize(): Numeric values, which can be used as alternative to reference to define a reference centrality and deviation. If scale and center are of length 1, they will be recycled to match the length of selected variables for standardization. Else, center and scale must be of same length as the number of selected variables. Values in center and scale will be matched to selected variables in the provided order, unless a named vector is given. In this case, names are matched against the names of the selected variables.

• For unstandardize(): center and scale correspond to the center (the mean / median) and the scale (SD / MAD) of the original non-standardized data (for data frames, should be named, or have column order correspond to the numeric column). However, one can also directly provide the original data through reference, from which the center and the scale will be computed (according to robust and two_sd). Alternatively, if the input contains the attributes center and scale (as does the output of standardize()), it will take it from there if the rest of the arguments are absent.

verbose Toggle warnings and messages on or off.

force Logical, if TRUE, forces recoding of factors and character vectors as well.

select Variables that will be included when performing the required tasks. Can be either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector
of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
1 or c(1, 3, 5)),
• a vector of negative integers, giving the positions counting from the right
(e.g., -1 or -1:-3),
• one of the following select-helpers: starts_with(), ends_with(), contains(),
a range using : or regex(""). starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
or any user-defined function that selects the variables for which the function
returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex())
and (user-defined) functions can be negated, i.e. return non-matching el-
ements, when prefixed with a -, e.g. -ends_with(""), -is.numeric or
-Sepal.Width:Petal.Length. Note: Negation means that matches are
excluded, and thus, the exclude argument can be used alternatively. For in-
stance, select=-ends_with("Length") (with -) is equivalent to exclude=ends_with("Length")
(no -). In case negation should not work as expected, use the exclude argu-
ment instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
e.g. find_columns(iris, select = c("Species", "Test")) will just return
"Species".

exclude
See select, however, column names matched by the pattern from exclude will
be excluded instead of selected. If NULL (the default), excludes no columns.

remove_na
How should missing values (NA) be treated: if "none" (default): each col-
umn’s standardization is done separately, ignoring NAs. Else, rows with NA in
the columns selected with select / exclude ("selected") or in all columns
("all") are dropped before standardization, and the resulting data frame does
not include these cases.

append
Logical or string. If TRUE, standardized variables get new column names (with
the suffix "_z") and are appended (column bind) to x, thus returning both the
original and the standardized variables. If FALSE, original variables in x will
be overwritten by their standardized versions. If a character value, standardized
variables are appended with new column names (using the defined suffix) to the
original data frame.

ignore_case
Logical, if TRUE and when one of the select-helpers or a regular expression is
used in select, ignores lower/upper case in the search pattern when matching
against variable names.

regex
Logical, if TRUE, the search pattern from select will be treated as regular ex-
pression. When regex = TRUE, select must be a character string (or a variable
containing a character string) and is not allowed to be one of the supported
select-helpers or a character vector of length > 1. regex = TRUE is com-
parable to using one of the two select-helpers, select = contains(""") or select
= regex(""), however, since the select-helpers may not work when called from
inside other functions (see ‘Details’), this argument may be used as workaround.
Value

The standardized object (either a standardize data frame or a statistical model fitted on standardized data).

Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

Note

When x is a vector or a data frame with remove_na = "none", missing values are preserved, so the return value has the same length / number of rows as the original input.

See Also

See center() for grand-mean centering of variables.
Other transform utilities: normalize(), ranktransform(), rescale(), reverse()
Other standardize: standardize.default()

Examples

```r
d <- iris[1:4,]

vectors
standardise(d$Petal.Length)

Data frames
overwrite
standardise(d, select = c("Sepal.Length", "Sepal.Width"))

append
standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = TRUE)

append, suffix
standardise(d, select = c("Sepal.Length", "Sepal.Width"), append = "_std")

standardizing with reference center and scale
d <- data.frame(
 a = c(-2, -1, 0, 1, 2),
 b = c(3, 4, 5, 6, 7)
)

default standardization, based on mean and sd of each variable
standardize(d) # means are 0 and sd = 1.581139

standardization, based on mean and sd set to the same values
```
standardize.default

standardize(d, center = c(0, 5), scale = c(1.581, 1.581))

# standardization, mean and sd for each variable newly defined
standardize(d, center = c(3, 4), scale = c(2, 4))

# standardization, taking same mean and sd for each variable
standardize(d, center = 1, scale = 3)

standardize.default  Re-fit a model with standardized data

Description

Performs a standardization of data (z-scoring) using standardize() and then re-fits the model to the standardized data.

Standardization is done by completely refitting the model on the standardized data. Hence, this approach is equal to standardizing the variables before fitting the model and will return a new model object. This method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The robust (default to FALSE) argument enables a robust standardization of data, based on the median and the MAD instead of the mean and the SD.

Usage

```r
Default S3 method: standardize(
 x,
 robust = FALSE,
 two_sd = FALSE,
 weights = TRUE,
 verbose = TRUE,
 include_response = TRUE,
 ...
)
```

Arguments

- **x** A statistical model.
- **robust** Logical, if TRUE, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If FALSE, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).
- **two_sd** If TRUE, the variables are scaled by two times the deviation (SD or MAD depending on robust). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to the predictors (not the outcome) (Gelman, 2008).
- **weights** If TRUE (default), a weighted-standardization is carried out.
verbose
   Toggle warnings and messages on or off.
include_response
   If TRUE (default), the response value will also be standardized. If FALSE, only the predictors will be standardized.
   • Note that for GLMs and models with non-linear link functions, the response value will not be standardized, to make re-fitting the model work.
   • If the model contains an stats::offset(), the offset variable(s) will be standardized only if the response is standardized. If two_sd = TRUE, offsets are standardized by one-sd (similar to the response).
   • (For mediate models, the include_response refers to the outcome in the y model; m model’s response will always be standardized when possible).

Value
   A statistical model fitted on standardized data

Generalized Linear Models
   Standardization for generalized linear models (GLM, GLMM, etc) is done only with respect to the predictors (while the outcome remains as-is, unstandardized) - maintaining the interpretability of the coefficients (e.g., in a binomial model: the exponent of the standardized parameter is the OR of a change of 1 SD in the predictor, etc.)

Dealing with Factors
   standardize(model) or standardize_parameters(model, method = "refit") do not standardize categorical predictors (i.e. factors) / their dummy-variables, which may be a different behaviour compared to other R packages (such as lm.beta) or other software packages (like SPSS). To mimic such behaviours, either use standardize_parameters(model, method = "basic") to obtain post-hoc standardized parameters, or standardize the data with standardize(data, force = TRUE) before fitting the model.

Transformed Variables
   When the model’s formula contains transformations (e.g. y ~ exp(X)) the transformation effectively takes place after standardization (e.g., exp(scale(X))). Since some transformations are undefined for none positive values, such as log() and sqrt(), the relevel variables are shifted (post standardization) by Z - min(Z) + 1 or Z - min(Z) (respectively).

See Also
   Other standardize: standardize()

Examples
   model <- lm(Infant.Mortality ~ Education * Fertility, data = swiss)
   coef(standardize(model))
text_format

Convenient text formatting functionalities

Description

Convenience functions to manipulate and format text.

Usage

text_format(
    text,
    sep = "", ",",
    last = " and ",
    width = NULL,
    enclose = NULL,
    ...
)

format_text(
    text,
    sep = "", ",",
    last = " and ",
    width = NULL,
    enclose = NULL,
    ...
)

text_fullstop(text)

text_lastchar(text, n = 1)

text_concatenate(text, sep = "", ",", last = " and ", enclose = NULL)

text_paste(text, text2 = NULL, sep = ",", enclose = NULL, ...)

text_remove(text, pattern = ",", ...)

text_wrap(text, width = NULL, ...)

Arguments

text, text2 A character string.
sep Separator.
last Last separator.
width Positive integer giving the target column width for wrapping lines in the output. Can be "auto", in which case it will select 90\ default width.
enclose Character that will be used to wrap elements of text, so these can be, e.g., enclosed with quotes or backticks. If NULL (default), text elements will not be enclosed.

... Other arguments to be passed to or from other functions.

n The number of characters to find.

pattern Character vector. For data_rename(), indicates columns that should be selected for renaming. Can be NULL (in which case all columns are selected). For data_addprefix() or data_addsuffix(), a character string, which will be added as prefix or suffix to the column names.

Value

A character string.

Examples

# Add full stop if missing
text_fullstop(c("something", "something else."))

# Find last characters
text_lastchar(c("ABC", "DEF"), n = 2)

# Smart concatenation
text_concatenate(c("First", "Second", "Last"))
text_concatenate(c("First", "Second", "Last"), last = " or ", enclose = "\")

# Remove parts of string
text_remove(c("one!", "two", "three!"), "!")

# Wrap text
long_text <- paste(rep("abc ", 100), collapse = "")
cat(text_wrap(long_text, width = 50))

# Paste with optional separator
text_paste(c("A", "", "B"), c("42", "42", "42"))

---

to_factor Convert data to factors

Description

Convert data to factors

Usage

to_factor(x, ...)

## S3 method for class 'data.frame'
to_factor(
  x,
  select = NULL,
  exclude = NULL,
  ignore_case = FALSE,
  append = FALSE,
  regex = FALSE,
  verbose = TRUE,
  ...
)

Arguments

x               A data frame or vector.
...
Arguments passed to or from other methods.
select          Variables that will be included when performing the required tasks. Can be either

• a variable specified as a literal variable name (e.g., column_name),
• a string with the variable name (e.g., "column_name"), or a character vector
  of variable names (e.g., c("col1", "col2", "col3")),
• a formula with variable names (e.g., ~column_1 + column_2),
• a vector of positive integers, giving the positions counting from the left (e.g.
  1 or c(1, 3, 5)),
• a vector of negative integers, giving the positions counting from the right
  (e.g., -1 or -1:-3),
• one of the following select-helpers: starts_with(), ends_with(), contains(),
  a range using : or regex(""), starts_with(), ends_with(), and contains() accept
  several patterns, e.g starts_with("Sep", "Petal").
• or a function testing for logical conditions, e.g. is.numeric() (or is.numeric),
  or any user-defined function that selects the variables for which the function
  returns TRUE (like: foo <- function(x) mean(x) > 3),
• ranges specified via literal variable names, select-helpers (except regex())
  and (user-defined) functions can be negated, i.e. return non-matching
  elements, when prefixed with a -, e.g. ~ends_with(""), ~is.numeric or
  ~Sepal.Width:Petal.Length. Note: Negation means that matches are
  excluded, and thus, the exclude argument can be used alternatively. For in-
  stance, select=~ends_with("Length") (with ~) is equivalent to exclude=ends_with("Length")
  (no ~). In case negation should not work as expected, use the exclude argu-
  ment instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored,
  e.g. find_columns(iris, select = c("Species", "Test")) will just return
  "Species".

exclude         See select, however, column names matched by the pattern from exclude will
                be excluded instead of selected. If NULL (the default), excludes no columns.

ignore_case     Logical, if TRUE and when one of the select-helpers or a regular expression is
                used in select, ignores lower/upper case in the search pattern when matching
                against variable names.
**append**  Logical or string. If TRUE, recoded or converted variables get new column names and are appended (column bind) to x, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function: "_r" for recode functions, "_n" for to_numeric(), "_f" for to_factor(), or "_s" for slide(). If append=FALSE, original variables in x will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.

**regex**  Logical, if TRUE, the search pattern from select will be treated as regular expression. When regex = TRUE, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. regex = TRUE is comparable to using one of the two select-helpers, select = contains("") or select = regex(""), however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

**verbose**  Toggle warnings.

### Details

Convert data to numeric by converting characters to factors and factors to either numeric levels or dummy variables. The "counterpart" to convert variables into numeric is to_numeric().

### Value

A factor, or a data frame of factors.

### Selection of variables - the select argument

For most functions that have a select argument (including this function), the complete input data frame is returned, even when select only selects a range of variables. That is, the function is only applied to those variables that have a match in select, while all other variables remain unchanged. In other words: for this function, select will not omit any non-included variables, so that the returned data frame will include all variables from the input data frame.

### Examples

```r
str(to_factor(iris))

use labels as levels
data(efc)
str(efc$c172code)
head(to_factor(efc$c172code))```
Convert data to numeric by converting characters to factors and factors to either numeric levels or dummy variables. The "counterpart" to convert variables into factors is to_factor().

Usage

to_numeric(x, ...)

S3 method for class 'data.frame'
to_numeric(
 x,
 select = NULL,
 exclude = NULL,
 dummy_factors = TRUE,
 preserve_levels = FALSE,
 lowest = NULL,
 append = FALSE,
 ignore_case = FALSE,
 regex = FALSE,
 verbose = TRUE,
 ...
)

Arguments

x A data frame, factor or vector.

... Arguments passed to or from other methods.

select Variables that will be included when performing the required tasks. Can be either
- a variable specified as a literal variable name (e.g., column.name),
- a string with the variable name (e.g., "column.name"), or a character vector
 of variable names (e.g., c("col1", "col2", "col3")),
- a formula with variable names (e.g., ~column.1 + column.2),
- a vector of positive integers, giving the positions counting from the left (e.g. 1 or c(1, 3, 5)),
- a vector of negative integers, giving the positions counting from the right
 (e.g., -1 or -1:-3),
- one of the following select-helpers: starts_with(), ends_with(), contains(),
 a range using : or regex(""). starts_with(), ends_with(), and contains() accept several patterns, e.g starts_with("Sep", "Petal").
to_numeric

- or a function testing for logical conditions, e.g. `is.numeric()` (or `is.numeric`), or any user-defined function that selects the variables for which the function returns TRUE (like: `foo <- function(x) mean(x) > 3`),
- ranges specified via literal variable names, select-helpers (except `regex()`) and (user-defined) functions can be negated, i.e. return non-matching elements, when prefixed with a `-`, e.g. `-ends_with("")`, `-is.numeric` or `-Sepal.Width:Petal.Length`. **Note:** Negation means that matches are excluded, and thus, the exclude argument can be used alternatively. For instance, `select=-ends_with("Length")` (with -) is equivalent to `exclude=ends_with("Length")` (no -). In case negation should not work as expected, use the exclude argument instead.

If NULL, selects all columns. Patterns that found no matches are silently ignored, e.g. `find_columns(iris, select = c("Species", "Test"))` will just return "Species".

exclude
See select, however, column names matched by the pattern from exclude will be excluded instead of selected. If NULL (the default), excludes no columns.

dummy_factors
Transform factors to dummy factors (all factor levels as different columns filled with a binary 0-1 value).

preserve_levels
Logical, only applies if `x` is a factor. If TRUE, and `x` has numeric factor levels, these will be converted into the related numeric values. If this is not possible, the converted numeric values will start from 1 to number of levels.

lowest
Numeric, indicating the lowest (minimum) value when converting factors or character vectors to numeric values.

append
Logical or string. If TRUE, recoded or converted variables get new column names and are appended (column bind) to `x`, thus returning both the original and the recoded variables. The new columns get a suffix, based on the calling function: "_r" for recode functions, "_n" for `to_numeric()", "f" for `to_factor()", or "s" for `slide()`. If `append=FALSE`, original variables in `x` will be overwritten by their recoded versions. If a character value, recoded variables are appended with new column names (using the defined suffix) to the original data frame.

ignore_case
Logical, if TRUE and when one of the select-helpers or a regular expression is used in select, ignores lower/upper case in the search pattern when matching against variable names.

regex
Logical, if TRUE, the search pattern from select will be treated as regular expression. When `regex = TRUE`, select must be a character string (or a variable containing a character string) and is not allowed to be one of the supported select-helpers or a character vector of length > 1. `regex = TRUE` is comparable to using one of the two select-helpers, `select = contains("")` or `select = regex("")`, however, since the select-helpers may not work when called from inside other functions (see 'Details'), this argument may be used as workaround.

verbose
Toggle warnings.

Value
A data frame of numeric variables.
Selection of variables - select argument

For most functions that have a select argument the complete input data frame is returned, even when select only selects a range of variables. However, for `to_numeric()`, factors might be converted into dummies, thus, the number of variables of the returned data frame no longer match the input data frame. Hence, when select is used, only those variables (or their dummies) specified in select will be returned. Use `append=TRUE` to also include the original variables in the returned data frame.

Examples

to_numeric(head(ToothGrowth))
to_numeric(head(ToothGrowth), dummy_factors = FALSE)

factors
x <- as.factor(mtcars$gear)
to_numeric(x, dummy_factors = FALSE)
to_numeric(x, dummy_factors = FALSE, preserve_levels = TRUE)

visualisation_recipe Prepare objects for visualisation

Description

This function prepares objects for visualisation by returning a list of layers with data and geoms that can be easily plotted using for instance `ggplot2`.

If the see package is installed, the call to `visualization_recipe()` can be replaced by `plot()`, which will internally call the former and then plot it using `ggplot`. The resulting plot can be customized ad-hoc (by adding `ggplot`'s geoms, theme or specifications), or via some of the arguments of `visualization_recipe()` that control the aesthetic parameters.

See the specific documentation page for your object’s class:

Usage

`visualisation_recipe(x, ...)`

Arguments

- `x` An easystats object.
- `...` Other arguments passed to other functions.
weighted_mean

Description
Weighted Mean, Median, SD, and MAD

Usage
weighted_mean(x, weights = NULL, verbose = TRUE, ...)
weighted_median(x, weights = NULL, verbose = TRUE, ...)
weighted_sd(x, weights = NULL, verbose = TRUE, ...)
weighted_mad(x, weights = NULL, constant = 1.4826, verbose = TRUE, ...)

Arguments
x an object containing the values whose weighted mean is to be computed.
weights A numerical vector of weights the same length as x giving the weights to use for elements of x.
verbose Show warning when weights are negative?
If weights = NULL, x is passed to the non-weighted function.
... arguments to be passed to or from methods.
constant scale factor.

Examples
GPA from Siegel 1994
x <- c(3.7, 3.3, 3.5, 2.8)
wt <- c(5, 5, 4, 1) / 15
weighted_mean(x, wt)
weighted_median(x, wt)
weighted_sd(x, wt)
weighted_mad(x, wt)
Description

Winsorize data

Usage

winsorize(data, ...)

S3 method for class 'numeric'

winsorize(
 data,
 threshold = 0.2,
 method = "percentile",
 robust = FALSE,
 verbose = TRUE,
 ...
)

Arguments

data data frame or vector.

... Currently not used.

threshold The amount of winsorization, depends on the value of method:

- For method = "percentile": the amount to Winsorize from each tail.
- For method = "zscore": the number of SD/MAD-deviations from the mean/median (see robust)
- For method = "raw": a vector of length 2 with the lower and upper bound for Winsorization.

method One of "percentile" (default), "zscore", or "raw".

robust Logical, if TRUE, Winsorizing through the "zscore" method is done via the median and the median absolute deviation (MAD); if FALSE, via the mean and the standard deviation.

verbose Toggle warnings.

Details

Winsorizing or Winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. The distribution of many statistics can be heavily influenced by outliers. A typical strategy is to set all outliers (values beyond a certain threshold) to a specified percentile of the data; for example, a 90% Winsorization would see all data below the 5th percentile set to the 5th percentile, and data above the 95th percentile set to the 95th percentile. Winsorized estimators are usually more robust to outliers than their more standard forms.
Value
A data frame with winsorized columns or a winsorized vector.

See Also
- Functions to rename stuff: `data_rename()`, `data_rename_rows()`, `data_addprefix()`, `data_addsuffix()`
- Functions to reorder or remove columns: `data_reorder()`, `data_relocate()`, `data_remove()`
- Functions to reshape, pivot or rotate data frames: `data_to_long()`, `data_to_wide()`, `data_rotate()`
- Functions to recode data: `rescale()`, `reverse()`, `categorize()`, `recode_values()`, `slide()`
- Functions to standardize, normalize, rank-transform: `center()`, `standardize()`, `normalize()`, `ranktransform()`, `winsorize()`
- Split and merge data frames: `data_partition()`, `data_merge()`
- Functions to find or select columns: `data_select()`, `data_find()`
- Functions to filter rows: `data_match()`, `data_filter()`

Examples

```r
hist(iris$Sepal.Length, main = "Original data")

hist(winsorize(iris$Sepal.Length, threshold = 0.2),
     xlim = c(4, 8), main = "Percentile Winsorization")

hist(winsorize(iris$Sepal.Length, threshold = 1.5, method = "zscore"),
     xlim = c(4, 8), main = "Mean (+/- SD) Winsorization")

hist(winsorize(iris$Sepal.Length, threshold = 1.5, method = "zscore", robust = TRUE),
     xlim = c(4, 8), main = "Median (+/- MAD) Winsorization")

hist(winsorize(iris$Sepal.Length, threshold = c(5, 7.5), method = "raw"),
     xlim = c(4, 8), main = "Raw Thresholds")

# Also works on a data frame:
winsorize(iris, threshold = 0.2)
```
Index

* data
efc, 62
nhanes_sample, 66
* standardize
standardize, 94
standardize.default, 99
* transform utilities
normalize, 67
ranktransform, 69
rescale, 79
reverse, 84
standardize, 94
adjust, 3
bayestestR::map_estimate(), 62
categorize, 6
categorize(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
center, 10
center(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 58, 66, 73, 93, 98, 110
centre (center), 10
change_code (recode_values), 72
change_scale (rescale), 79
coev, 14
coev_to_numeric, 16
colnames_to_row (row_to_colnames), 87
column_as_rownames
 (rownames_as_column), 87
convert_na_to, 16
convert_to_na, 19
data_addprefix, 21
data_addprefix(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_addsuffix (data_addprefix), 21
data_addsuffix(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_adjust (adjust), 3
data_arrange, 24
data_extract, 25
data_filter (data_match), 30
data_filter(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
data_find (find_columns), 63
data_find(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
data_group, 28
data_join (data_merge), 32
data_match, 30
data_match(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
data_merge, 32
data_merge(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
data_partition, 35
data_partition(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
data_peak, 37
data_read, 39
data_relocate, 41
data_relocate(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_remove (data_relocate), 41
data_remove(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_rename (data_addprefix), 21
data_rename(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_rename_rows (data_addprefix), 21
data_rename_rows(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_reorder (data_relocate), 41
data_reorder(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_rotate, 43
data_rotate(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
remove_empty_columns (remove_empty), 77
remove_empty_rows (remove_empty), 77
replace_nan_inf, 78
rescale, 69, 71, 79, 86, 98
rescale(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 67, 74, 75, 92, 110
rescale_weights, 82
reshape_ci, 83
reshape_longer (data_to_long), 48
reshape_wider (data_to_wide), 51
reverse, 69, 71, 81, 84, 98
reverse(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 74, 75, 92, 110
reverse_scale (reverse), 84
row_to_colnames, 87
rownames_as_column, 87
skewness, 88
slide, 90
slide(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
smoothness, 93
standardise (standardize), 94
standardize, 69, 71, 81, 86, 94, 100
standardize(), 9, 13, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 99, 110
standardize.default, 98, 99
standardize.default(), 94
standardize_models
 (standardize.default), 99
stats::IQR(), 59
stats::mad(), 14
stats::offset(), 100
summary.parameters_kurtosis (skewness), 88
summary.parameters_skewness (skewness), 88
text_concatenate (text_format), 101
text_format, 101
text_fullstop (text_format), 101
text_lastchar (text_format), 101
text_paste (text_format), 101
text_remove (text_format), 101
text_wrap (text_format), 101
to_factor, 102
to_numeric, 105
unnormalize (normalize), 67

data_select (find_columns), 63
data_select(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
data_tabulate, 45
data_to_long, 48
data_to_long(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
data_to_wide, 51
data_to_wide(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110

data_transpose (data_rotate), 44
data_ungroup (data_group), 28
degroup (demean), 54
demean, 54
demean(), 13
describe_distribution, 58
detrend (demean), 54
distribution_coef_var (coef_var), 14
distribution_cv (coef_var), 14
distribution_mode, 62
efc, 62
empty_columns (remove_empty), 77
empty_rows (remove_empty), 77
find_columns, 63
format_text (text_format), 101
get_columns (find_columns), 63
kurtosis (skewness), 88
nhanes_sample, 66
normalize, 67, 71, 81, 86, 98
normalize(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 94, 110
print.parameters_kurtosis (skewness), 88
print.parameters_skewness (skewness), 88
rank(), 70
ranktransform, 69, 69, 81, 86, 98
ranktransform(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110
recode_values, 72
recode_values(), 9, 24, 31, 34, 36, 43, 45, 50, 53, 66, 75, 92, 110
remove_empty, 77
unstandardise (standardize), 94
unstandardize (standardize), 94

visualisation_recipe, 107

weighted_mad (weighted_mean), 108
weighted_mean, 108
weighted_median (weighted_mean), 108
weighted_sd (weighted_mean), 108

winsorize, 109
winsorize(), 9, 24, 31, 34, 37, 43, 45, 50, 53, 66, 75, 93, 110