Package ‘datawizard’

June 18, 2021

Type Package
Title Easy Data Wrangling
Version 0.1.0
Maintainer Indrajeet Patil <patilindrajeet.science@gmail.com>
Description A lightweight package to easily manipulate, clean, transform, and prepare your data for analysis. It also forms the data wrangling backend for the packages in the ‘easystats’ ecosystem.
License GPL-3
URL https://easystats.github.io/datawizard/
BugReports https://github.com/easystats/datawizard/issues
Depends R (>= 3.4)
Imports insight (>= 0.14.1), methods, stats, utils
Suggests bayestestR, boot, dplyr, gamm4, ggplot2, lme4, MASS, mclust, multimode, psych, purrr, rstanarm, see, sjstats, spelling, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.1.1.9001
NeedsCompilation no
Author Dominique Makowski [aut] (https://orcid.org/0000-0001-5375-9967), @Dom_Makowski),
Daniel Lüdecke [aut] (https://orcid.org/0000-0002-8895-3206),
@strengejacke),
Indrajeet Patil [aut, cre] (https://orcid.org/0000-0003-1995-6531),
@patilindrajeets),
Mattan S. Ben-Shachar [aut] (https://orcid.org/0000-0002-4287-4801),
Brenton M. Wiernik [aut] (https://orcid.org/0000-0001-9560-6336),
@bmwiernik)
Repository CRAN
Date/Publication 2021-06-18 09:30:02 UTC
R topics documented:

- adjust .. 2
- center ... 4
- change_scale .. 6
- check_multimodal 7
- convert_data_to_numeric 8
- data_match ... 9
- data_partition 10
- data_relocate 10
- data_rename ... 11
- data_restoretype 12
- data_to_long 13
- demean .. 15
- describe_distribution 20
- format_text ... 22
- normalize ... 23
- ranktransform 25
- rescale_weights 26
- reshape_ci ... 28
- skewness .. 29
- smoothness .. 31
- standardize 32
- to_numeric ... 35
- winsorize .. 35

Index 37

adjust

Adjust data for the effect of other variable(s)

This function can be used to adjust the data for the effect of other variables present in the dataset. It is based on an underlying fitting of regressions models, allowing for quite some flexibility, such as including factors as random effects in mixed models (multilevel partialization), continuous variables as smooth terms in general additive models (non-linear partialization) and/or fitting these models under a Bayesian framework. The values returned by this function are the residuals of the regression models. Note that a regular correlation between two "adjusted" variables is equivalent to the partial correlation between them.

Usage

```r
adjust(
  data,
  effect = NULL,
  select = NULL,
  exclude = NULL,
)```
```r
multilevel = FALSE,
additive = FALSE,
bayesian = FALSE,
keep_intercept = FALSE
)

data_adjust(
 data,
effect = NULL,
select = NULL,
exclude = NULL,
multilevel = FALSE,
additive = FALSE,
bayesian = FALSE,
keep_intercept = FALSE
)

Arguments

data A dataframe.
effect Character vector of column names to be adjusted for (regressed out). If ‘NULL’ (the default), all variables will be selected.
select Character vector of column names. If ‘NULL’ (the default), all variables will be selected.
exclude Character vector of column names to be excluded from selection.
multilevel If ‘TRUE’, the factors are included as random factors. Else, if ‘FALSE’ (default), they are included as fixed effects in the simple regression model.
additive If ‘TRUE’, continuous variables as included as smooth terms in additive models. The goal is to regress-out potential non-linear effects.
bayesian If ‘TRUE’, the models are fitted under the Bayesian framework using ‘rstanarm’.
keep_intercept If ‘FALSE’ (default), the intercept of the model is re-added. This avoids the centering around 0 that happens by default when regressing out another variable (see the examples below for a visual representation of this).

Value

A data frame comparable to ‘data’, with adjusted variables.

Examples

adjusted_all <- adjust(attitude)
head(adjusted_all)
adjusted_one <- adjust(attitude, effect = "complaints", select = "rating")
head(adjusted_one)

adjust(attitude, effect = "complaints", select = "rating", bayesian = TRUE)
adjust(attitude, effect = "complaints", select = "rating", additive = TRUE)
attitude$complaints_LMH <- cut(attitude$complaints, 3)
```
adjust(attitude, effect = "complaints_LMH", select = "rating", multilevel = TRUE)

if (require("MASS") && require("bayestestR")) {
  # Generate data
  data <- simulate_correlation(n = 100, r = 0.7)
  data$V2 <- (5 * data$V2) + 20 # Add intercept

  # Adjust
  adjusted <- adjust(data, effect = "V1", select = "V2")
  adjusted_icpt <- adjust(data, effect = "V1", select = "V2", keep_intercept = TRUE)

  # Visualize
  plot(data$V1, data$V2,
       pch = 19, col = "blue",
       ylim = c(min(adjusted$V2), max(data$V2)),
       main = "Original (blue), adjusted (green), and adjusted - intercept kept (red) data"
   )
  abline(lm(V2 ~ V1, data = data), col = "blue")
  points(adjusted$V1, adjusted$V2, pch = 19, col = "green")
  abline(lm(V2 ~ V1, data = adjusted), col = "green")
  points(adjusted_icpt$V1, adjusted_icpt$V2, pch = 19, col = "red")
  abline(lm(V2 ~ V1, data = adjusted_icpt), col = "red")
}

---

center  

*Centering (Grand-Mean Centering)*

**Description**

Performs a grand-mean centering of data.

**Usage**

center(x, ...)

## S3 method for class 'numeric'
center(x, weights = NULL, robust = FALSE, verbose = TRUE, ...)

## S3 method for class 'data.frame'
center(
  x,
  select = NULL,
  exclude = NULL,
  weights = NULL,
  robust = FALSE,
  force = FALSE,
  append = FALSE,
  suffix = "_c",
)
Arguments

x  A data frame, a (numeric or character) vector or a factor.

... Currently not used.

weights  Can be NULL (for no weighting), or:
  • For data frames: a numeric vector of weights, or a character of the name of a column in the data.frame that contains the weights.
  • For numeric vectors: a numeric vector of weights.

robust  Logical, if TRUE, centering is done by subtracting the median from the variables. If FALSE, variables are centered by subtracting the mean.

verbose  Toggle warnings and messages.

select  Character vector of column names. If NULL (the default), all variables will be selected.

exclude  Character vector of column names to be excluded from selection.

force  Logical, if TRUE, forces centering of factors as well. Factors are converted to numerical values, with the lowest level being the value 1 (unless the factor has numeric levels, which are converted to the corresponding numeric value).

append  Logical, if TRUE and x is a data frame, standardized variables will be added as additional columns; if FALSE, existing variables are overwritten.

suffix  Character value, will be appended to variable (column) names of x, if x is a data frame and append = TRUE.

Value

The centered variables.

See Also

If centering within-clusters (instead of grand-mean centering) is required, see demean.

Examples

data(iris)
head(iris$Sepal.Width)
head(center(iris$Sepal.Width))
head(center(iris))
head(center(iris, force = TRUE))
change_scale

Rescale a numeric variable

Description

Rescale a numeric variable to a new range.

Usage

change_scale(x, ...)

## S3 method for class 'numeric'
change_scale(x, to = c(0, 100), range = NULL, verbose = TRUE, ...)

## S3 method for class 'grouped_df'
change_scale(
  x,
  select = NULL,
  exclude = NULL,
  to = c(0, 100),
  range = NULL,
  ...
)

## S3 method for class 'data.frame'
change_scale(
  x,
  select = NULL,
  exclude = NULL,
  to = c(0, 100),
  range = NULL,
  ...
)

Arguments

x Object.
...
Arguments passed to or from other methods.
to New range of values of the data after rescaling.
range Initial (old) range of values. If ‘NULL’, will take the range of data.
verbose Toggle warnings and messages on or off.
select Character vector of column names. If ‘NULL‘ (the default), all variables will be selected.
exclude Character vector of column names to be excluded from selection.
check_multimodal

Value
A rescaled object.

See Also
[normalize()] [standardize()] [ranktransform()]
Other transform utilities: normalize(), ranktransform(), standardize()

Examples
change_scale(c(0, 1, 5, -5, -2))
change_scale(c(0, 1, 5, -5, -2), to = c(-5, 5))
head(change_scale(trees))

Description
Check if a distribution is unimodal or multimodal

Usage
check_multimodal(x, ...)

Arguments
x A numeric vector or a data frame.
... Additional arguments passed to the methods.

Details
For univariate distributions (one-dimensional vectors), this function performs an Ameijeiras-Alonso
et al. (2018) excess mass test. For multivariate distributions (dataframes), it uses mixture modelling.
However, it seems that it always returns a significant result (suggesting that the distribution is mul-
timodal). A better method might be needed here.

Value
Prints a message describing results from test checking if a distribution is unimodal or multimodal.

References
bandwidth and excess mass. Test, 28(3), 900-919.
Examples

```r
if (require("multimode")) {
 # Univariate
 x <- rnorm(1000)
 check_multimodal(x)
}

if (require("multimode") && require("mclust")) {
 x <- c(rnorm(1000), rnorm(1000, 2))
 check_multimodal(x)

 # Multivariate
 m <- data.frame(
 x = rnorm(200),
 y = rbeta(200, 2, 1)
)
 plot(mx, my)
 check_multimodal(m)

 m <- data.frame(
 x = c(rnorm(100), rnorm(100, 4)),
 y = c(rbeta(100, 2, 1), rbeta(100, 1, 4))
)
 plot(mx, my)
 check_multimodal(m)
}
```

convert_data_to_numeric

Convert data to numeric

Description

Convert data to numeric by converting characters to factors and factors to either numeric levels or dummy variables.

Usage

```r
convert_data_to_numeric(x, dummy_factors = TRUE, ...)
```

Arguments

- `x` A data frame or a vector.
data_match

dummy_factors  Transform factors to dummy factors (all factor levels as different columns filled with a binary 0-1 value).
...
Arguments passed to or from other methods.

Value
A data frame of numeric variables.

Examples
head(convert_data_to_numeric(iris))

Data_match
Find rows of a data frame that are matching a specific subset

Description
Find row indices of a data frame that are matching a specific configuration.

Usage
data_match(x, to)

Arguments
x  A data frame.
to  The data frame of which to meet the characteristics.

Value
A dataframe containing rows that match the specified configuration.

Examples
matching_rows <- data_match(mtcars, data.frame(vs = 0, am = 1))
mtcars[matching_rows, ]

matching_rows <- data_match(mtcars, data.frame(vs = 0, am = c(0, 1)))
mtcars[matching_rows, ]
**data_partition** *Partition data into a test and a training set*

**Description**

Creates a training and a test set based on a dataframe. Can also be stratified (i.e., evenly spread a given factor) using the `group` argument.

**Usage**

```r
data_partition(x, training_proportion = 0.7, group = NULL, seed = NULL)
```

**Arguments**

- `x`: A data frame, or an object that can be coerced to a data frame.
- `training_proportion`: The proportion (between 0 and 1) of the training set. The remaining part will be used for the test set.
- `group`: A character vector indicating the name(s) of the column(s) used for stratified partitioning.
- `seed`: A random number generator seed. Enter an integer (e.g., 123) so that the random sampling will be the same each time you run the function.

**Value**

A list of two data frames, named `test` and `training`.

**Examples**

```r
df <- iris
df$Smell <- rep(c("Strong", "Light"), 75)
head(data_partition(df))
head(data_partition(df, group = "Species"))
head(data_partition(df, group = c("Species", "Smell")))
```

---

**data_relocate** *Relocate (reorder) columns of a data frame*

**Description**

Relocate (reorder) columns of a data frame.

**Usage**

```r
data_relocate(data, cols, before = NULL, after = NULL, safe = TRUE)
```

**Examples**

```r
df <- iris
data_relocate(df, c("Sepal.Length", "Sepal.Width", "Species"))
```
data_rename

Arguments

data A data frame to pivot.
cols A character vector indicating the names of the columns to move.
before, after Destination of columns. Supplying neither will move columns to the left-hand side; specifying both is an error.
safe If TRUE, will disregard non-existing columns.

Value

A data frame with reordered columns.

Examples

# Reorder columns
data_relocate(iris, cols = "Species", before = "Sepal.Length")
data_relocate(iris, cols = "Species", before = "Sepal.Width")
data_relocate(iris, cols = "Sepal.Width", after = "Species")
data_relocate(iris, cols = c("Species", "Petal.Length"), after = "Sepal.Width")

Description

Safe and intuitive functions to manipulate dataframes.

Usage

data_rename(data, pattern, replacement, safe = TRUE)
data_findcols(data, pattern = NULL, starts_with = NULL, ends_with = NULL)
data_remove(data, pattern)
data_reorder(data, cols, safe = TRUE)
data_addprefix(data, pattern)
data_addsuffix(data, pattern)

Arguments

data Dataframe.
pattern, replacement, starts_with, ends_with Character strings.
safe Do not throw error if for instance the variable to be renamed/removed doesn’t exist.
cols Vector of column names.
Value

A modified data frame.

Examples

# Rename columns
head(data_rename(iris, "Sepal.Length", "length"))
# data_rename(iris, "FakeCol", "length", safe=FALSE)  # This fails
head(data_rename(iris, "FakeCol", "length"))  # This doesn't
head(data_rename(iris, c("Sepal.Length", "Sepal.Width"), c("length", "width")))

# Find columns names by pattern
head(data_findcols(iris, starts_with = "Sepal"))
head(data_findcols(iris, ends_with = "Width"))
head(data_findcols(iris, pattern = "\.."))

# Remove columns
head(data_remove(iris, "Sepal.Length"))

# Reorder columns
head(data_reorder(iris, c("Species", "Sepal.Length")))
head(data_reorder(iris, c("Species", "dupa")))

# Add prefix / suffix
head(data_addprefix(iris, "NEW_"))
head(data_addsuffix(iris, "_OLD"))

---

**data_restoretype**

*Restore the type of columns according to a reference data frame*

Description

Restore the type of columns according to a reference data frame

Usage

`data_restoretype(data, reference = NULL)`

Arguments

- `data` A data frame to pivot.
- `reference` A reference data frame from which to find the correct column types.

Value

A dataframe with columns whose types have been restored based on the reference dataframe.
Examples

```r
data <- data.frame(
 Sepal.Length = c("1", "3", "2"),
 Species = c("setosa", "versicolor", "setosa"),
 New = c("1", "3", "4")
)

fixed <- data_restoretype(data, reference = iris)
summary(fixed)
```

**data_to_long**  
*Reshape (pivot) data from wide to long*

**Description**

This function "lengthens" data, increasing the number of rows and decreasing the number of columns. This is a dependency-free base-R equivalent of `tidyr::pivot_longer()`.

**Usage**

```r
data_to_long(
 data,
 cols = "all",
 colnames_to = "Name",
 values_to = "Value",
 rows_to = NULL,
 ...,
 names_to = colnames_to
)
```

```r
data_to_wide(
 data,
 values_from = "Value",
 colnames_from = "Name",
 rows_from = NULL,
 sep = ",",
 ...,
 names_from = colnames_from
)
```

```r
reshape_longer(
 data,
 cols = "all",
 colnames_to = "Name",
 values_to = "Value",
 rows_to = NULL,
 ...,
)```
data_to_long

```r
names_to = colnames_to
)
reshape_wider(
data,
values_from = "Value",
colnames_from = "Name",
rows_from = NULL,
sep = "_",
...,
names_from = colnames_from
)
```

Arguments

- `data` A data frame to pivot.
- `cols` A vector of column names or indices to pivot into longer format.
- `colnames_to` The name of the new column that will contain the column names.
- `values_to` The name of the new column that will contain the values of the pivoted variables.
- `rows_to` The name of the column that will contain the row-number from the original data. If `NULL`, will be removed.
- `...` Additional arguments passed on to methods.
- `names_to`, `names_from` Same as `colnames_to`, is there for compatibility with `tidyr::pivot_longer()`.
- `values_from` The name of the column that contains the values of the put in the columns.
- `colnames_from` The name of the column that contains the levels to be used as future columns.
- `rows_from` The name of the column that identifies the rows. If `NULL`, will use all the unique rows.
- `sep` The indicating a separating character in the variable names in the wide format.

Value

data.frame

Examples

```r
wide_data <- data.frame(replicate(5, rnorm(10)))

# From wide to long
# ------------------
# Default behaviour (equivalent to tidyr::pivot_longer(wide_data, cols = 1:5))
data_to_long(wide_data)

# Customizing the names
data_to_long(wide_data,
  cols = c(1, 2),
  colnames_to = "Column",
```
demean

`demean()` computes group- and de-meaned versions of a variable that can be used in regression analysis to model the between- and within-subject effect. `check_heterogeneity()` checks if model predictors or variables may cause a heterogeneity bias, i.e. if variables have a within- and/or between-effect.

degroup() is more generic in terms of the centering-operation. While demean() always uses mean-centering, degroup() can also use the mode or median for centering.
Usage

demean(
 x,
 select,
 group,
 suffix_demean = "_within",
 suffix_groupmean = "_between",
 add_attributes = TRUE,
 verbose = TRUE
)

degroup(
 x,
 select,
 group,
 center = "mean",
 suffix_demean = "_within",
 suffix_groupmean = "_between",
 add_attributes = TRUE,
 verbose = TRUE
)

detrend(
 x,
 select,
 group,
 center = "mean",
 suffix_demean = "_within",
 suffix_groupmean = "_between",
 add_attributes = TRUE,
 verbose = TRUE
)

Arguments

x A data frame. For check_heterogeneity(), may also be a mixed model object.

select Character vector (or formula) with names of variables to select that should be group- and de-meaned. For check_heterogeneity(), if x is a mixed model object, this argument be ignored.

group Character vector (or formula) with the name of the variable that indicates the group- or cluster-ID. For check_heterogeneity(), if x is a model object, this argument be ignored.

suffix_demean, suffix_groupmean String value, will be appended to the names of the group-meaned and de-meaned variables of x. By default, de-meaned variables will be suffixed with "_within" and grouped-meaned variables with "_between".
add_attributes Logical, if TRUE, the returned variables gain attributes to indicate the within- and between-effects. This is only relevant when printing model_parameters() - in such cases, the within- and between-effects are printed in separated blocks.

verbose Toggle warnings and messages.

center Method for centering. demean() always performs mean-centering, while degroup() can use center = "median" or center = "mode" for median- or mode-centering, and also "min" or "max".

Details

Heterogeneity Bias: Mixed models include different levels of sources of variability, i.e. error terms at each level. When macro-indicators (or level-2 predictors, or higher-level units, or more general: group-level predictors that vary within and across groups) are included as fixed effects (i.e. treated as covariate at level-1), the variance that is left unaccounted for this covariate will be absorbed into the error terms of level-1 and level-2 (Bafumi and Gelman 2006; Gelman and Hill 2007, Chapter 12.6): “Such covariates contain two parts: one that is specific to the higher-level entity that does not vary between occasions, and one that represents the difference between occasions, within higher-level entities” (Bell et al. 2015). Hence, the error terms will be correlated with the covariate, which violates one of the assumptions of mixed models (iid, independent and identically distributed error terms). This bias is also called the heterogeneity bias (Bell et al. 2015). To resolve this problem, level-2 predictors used as (level-1) covariates should be separated into their “within” and “between” effects by “de-meaning” and “group-meaning”: After demeaning time-varying predictors, “at the higher level, the mean term is no longer constrained by Level 1 effects, so it is free to account for all the higher-level variance associated with that variable” (Bell et al. 2015).

Panel data and correlating fixed and group effects: demean() is intended to create group- and de-meaned variables for panel regression models (fixed effects models), or for complex random-effect-within-between models (see Bell et al. 2015, 2018), where group-effects (random effects) and fixed effects correlate (see Bafumi and Gelman 2006). This can happen, for instance, when analyzing panel data, which can lead to Heterogeneity Bias. To control for correlating predictors and group effects, it is recommended to include the group-meaned and de-meaned version of time-varying covariates (and group-meaned version of time-invariant covariates that are on a higher level, e.g. level-2 predictors) in the model. By this, one can fit complex multilevel models for panel data, including time-varying predictors, time-invariant predictors and random effects.

Why mixed models are preferred over fixed effects models: A mixed models approach can model the causes of endogeneity explicitly by including the (separated) within- and between-effects of time-varying fixed effects and including time-constant fixed effects. Furthermore, mixed models also include random effects, thus a mixed models approach is superior to classic fixed-effects models, which lack information of variation in the group-effects or between-subject effects. Furthermore, fixed effects regression cannot include random slopes, which means that fixed effects regressions are neglecting “cross-cluster differences in the effects of lower-level controls (which) reduces the precision of estimated context effects, resulting in unnecessarily wide confidence intervals and low statistical power” (Heisig et al. 2017).

Terminology: The group-meaned variable is simply the mean of an independent variable within each group (or id-level or cluster) represented by group. It represents the cluster-mean of an
independent variable. The regression coefficient of a group-meaned variable is the between-subject-effect. The de-meaned variable is then the centered version of the group-meaned variable. De-meaning is sometimes also called person-mean centering or centering within clusters. The regression coefficient of a de-meaned variable represents the within-subject-effect.

De-meaning with continuous predictors: For continuous time-varying predictors, the recommendation is to include both their de-meaned and group-meaned versions as fixed effects, but not the raw (untransformed) time-varying predictors themselves. The de-meaned predictor should also be included as random effect (random slope). In regression models, the coefficient of the de-meaned predictors indicates the within-subject effect, while the coefficient of the group-meaned predictor indicates the between-subject effect.

De-meaning with binary predictors: For binary time-varying predictors, there are two recommendations. First is to include the raw (untransformed) binary predictor as fixed effect only and the de-meaned variable as random effect (random slope). The alternative would be to add the de-meaned version(s) of binary time-varying covariates as additional fixed effect as well (instead of adding it as random slope). Centering time-varying binary variables to obtain within-effects (level 1) isn’t necessary. They have a sensible interpretation when left in the typical 0/1 format (Hoffmann 2015, chapter 8-2.I). `demean()` will thus coerce categorical time-varying predictors to numeric to compute the de- and group-meaned versions for these variables, where the raw (untransformed) binary predictor and the de-meaned version should be added to the model.

De-meaning of factors with more than 2 levels: Factors with more than two levels are de-meaned in two ways: first, these are also converted to numeric and de-meaned; second, dummy variables are created (binary, with 0/1 coding for each level) and these binary dummy-variables are de-meaned in the same way (as described above). Packages like `panelr` internally convert factors to dummies before demeaning, so this behaviour can be mimicked here.

De-meaning interaction terms: There are multiple ways to deal with interaction terms of within- and between-effects. A classical approach is to simply use the product term of the de-meaned variables (i.e. introducing the de-meaned variables as interaction term in the model formula, e.g. `y ~ x_within * time_within`). This approach, however, might be subject to bias (see Gieselmann & Schmidt-Catran 2020).

Another option is to first calculate the product term and then apply the de-meaning to it. This approach produces an estimator “that reflects unit-level differences of interacted variables whose moderators vary within units”, which is desirable if no within interaction of two time-dependent variables is required.

A third option, when the interaction should result in a genuine within estimator, is to "double de-mean" the interaction terms (Gieselmann & Schmidt-Catran 2018), however, this is currently not supported by `demean()`. If this is required, the `wmb()` function from the `panelr` package should be used.

To de-mean interaction terms for within-between models, simply specify the term as interaction for the `select`-argument, e.g. `select = "a*b"` (see 'Examples').

Analysing panel data with mixed models using lme4: A description of how to translate the formulas described in Bell et al. 2018 into R using `lmer()` from `lme4` can be found in this vignette.
demean

Value

A data frame with the group-/de-meaned variables, which get the suffix ".between" (for the group-meaned variable) and ".within" (for the de-meaned variable) by default.

References

See Also

If grand-mean centering (instead of centering within-clusters) is required, see center.

Examples

data(iris)
iris$ID <- sample(1:4, nrow(iris), replace = TRUE) # fake-ID
iris$binary <- as.factor(rbinom(150, 1, .35)) # binary variable

x <- demean(iris, select = c("Sepal.Length", "Petal.Length"), group = "ID")
head(x)

x <- demean(iris, select = c("Sepal.Length", "binary", "Species"), group = "ID")
head(x)

demean interaction term x*y
dat <- data.frame(
 a = c(1, 2, 3, 4, 1, 2, 3, 4),
 x = c(4, 3, 3, 4, 1, 2, 1, 2),
 y = c(1, 2, 1, 2, 4, 3, 2, 1),
 ID = c(1, 2, 3, 1, 2, 3, 1, 2)
)
demean(dat, select = c("a", "x*y"), group = "ID")
describe_distribution

describe_distribution
Describe a distribution

Description

This function describes a distribution by a set of indices (e.g., measures of centrality, dispersion, range, skewness, kurtosis).

Usage

```r
describe_distribution(x, 
        centrality = "mean", 
        dispersion = TRUE, 
        iqr = TRUE, 
        range = TRUE, 
        quartiles = FALSE, 
        ci = NULL, 
        iterations = 100, 
        threshold = 0.1, 
        verbose = TRUE, 
        ...)
```

S3 method for class 'factor'
```r
describe_distribution(x, dispersion = TRUE, range = TRUE, verbose = TRUE, ...)
```

S3 method for class 'data.frame'
```r
describe_distribution(x, 
        centrality = "mean", 
        dispersion = TRUE, 
        iqr = TRUE, 
        range = TRUE, 
        quartiles = FALSE, 
        include_factors = FALSE, 
        ci = NULL, 
        iterations = 100, 
        threshold = 0.1, 
        verbose = TRUE, 
        ...)
```
describe_distribution

Arguments

- **x**: A numeric vector.
- **...**: Additional arguments to be passed to or from methods.
- **centrality**: The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".
- **dispersion**: Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD and MAD for mean and median, respectively).
- **iqr**: Logical, if TRUE, the interquartile range is calculated (based on IQR, using type = 6).
- **range**: Return the range (min and max).
- **quartiles**: Return the first and third quartiles (25th and 75pth percentiles).
- **ci**: Confidence Interval (CI) level. Default is NULL, i.e. no confidence intervals are computed. If not NULL, confidence intervals are based on bootstrap replicates (see iterations). If centrality = "all", the bootstrapped confidence interval refers to the first centrality index (which is typically the median).
- **iterations**: The number of bootstrap replicates for computing confidence intervals. Only applies when ci is not NULL.
- **threshold**: For centrality = "trimmed" (i.e. trimmed mean), indicates the fraction (0 to 0.5) of observations to be trimmed from each end of the vector before the mean is computed.
- **verbose**: Toggle warnings and messages.
- **include_factors**: Logical, if TRUE, factors are included in the output, however, only columns for range (first and last factor levels) as well as n and missing will contain information.

Value

A data frame with columns that describe the properties of the variables.

Note

There is also a plot()-method implemented in the see-package.

Examples

describe_distribution(rnorm(100))
data(iris)
describe_distribution(iris)
describe_distribution(iris, include_factors = TRUE, quartiles = TRUE)
Convenient text formatting functionalities

Description
Convenience functions to manipulate and format text.

Usage
format_text(text, sep = ", ", last = ", and ", width = NULL, ...)

text_fullstop(text)

text_lastchar(text, n = 1)

text_concatenate(text, sep = ", ", last = ", and ")

text_paste(text, text2 = NULL, sep = ", ", ...)

text_remove(text, pattern = "", ...)

text_wrap(text, width = NULL, ...)

Arguments
text, text2 A character string.
sep Separator.
last Last separator.
width Positive integer giving the target column width for wrapping lines in the output. Can be "auto", in which case it will select 90% of the default width.
... Other arguments to be passed to or from other functions.
n The number of characters to find.
pattern Character strings.

Value
A character string.

Examples
Add full stop if missing
text_fullstop(c("something", "something else."))

Find last characters
text_lastchar(c("ABC", "DEF"), n = 2)
Smart concatenation
text_concatenate(c("First", "Second", "Last"))

Remove parts of string
text_remove(c("one!", "two", "three!", ")

Wrap text
long_text <- paste(rep("abc ", 100), collapse = "")
cat(text_wrap(long_text, width = 50))

Paste with optional separator
text_paste(c("A", ",", "B"), c("42", "42", "42"))

normalize

Normalize numeric variable to 0-1 range

Description

Performs a normalization of data, i.e., it scales variables in the range 0 - 1. This is a special case of [change_scale()].

Usage

normalize(x, ...)

S3 method for class 'numeric'
normalize(x, include_bounds = TRUE, verbose = TRUE, ...)

S3 method for class 'grouped_df'
normalize(
 x,
 select = NULL,
 exclude = NULL,
 include_bounds = TRUE,
 verbose = TRUE,
 ...
)

S3 method for class 'data.frame'
normalize(
 x,
 select = NULL,
 exclude = NULL,
 include_bounds = TRUE,
 verbose = TRUE,
 ...
)
Arguments

x A numeric vector, data frame, or matrix. See details.

... Arguments passed to or from other methods.

include_bounds Logical, if ‘TRUE’, return value may include 0 and 1. If ‘FALSE’, the return value is compressed, using Smithson and Verkuilen’s (2006) formula `(x * (n - 1) + 0.5) / n`, to avoid zeros and ones in the normalized variables. This can be useful in case of beta-regression, where the response variable is not allowed to include zeros and ones.

verbose Toggle warnings and messages on or off.

select Character vector of column names. If ‘NULL’ (the default), all variables will be selected.

exclude Character vector of column names to be excluded from selection.

Details

- If ‘x’ is a matrix, normalization is performed across all values (not column- or row-wise). For column-wise normalization, convert the matrix to a data.frame. - If ‘x’ is a grouped data frame (‘grouped_df’), normalization is performed separately for each group.

Value

A normalized object.

References

See Also

Other transform utilities: `change_scale()`, `ranktransform()`, `standardize()`

Examples

```r
normalize(c(0, 1, 5, -5, -2))
normalize(c(0, 1, 5, -5, -2), include_bounds = FALSE)
head(normalize(trees))
```
ranktransform

(Signed) rank transformation

Description
Transform numeric values with the integers of their rank (i.e., 1st smallest, 2nd smallest, 3rd smallest, etc.). Setting the 'sign' argument to 'TRUE' will give you signed ranks, where the ranking is done according to absolute size but where the sign is preserved (i.e., 2, 1, -3, 4).

Usage
ranktransform(x, ...)

S3 method for class 'numeric'
ranktransform(x, sign = FALSE, method = "average", verbose = TRUE, ...)

S3 method for class 'grouped_df'
ranktransform(
 x,
 select = NULL,
 exclude = NULL,
 sign = FALSE,
 method = "average",
 ...
)

S3 method for class 'data.frame'
ranktransform(
 x,
 select = NULL,
 exclude = NULL,
 sign = FALSE,
 method = "average",
 ...
)

Arguments

x Object.
...
Arguments passed to or from other methods.
sign Logical, if 'TRUE', return signed ranks.
method Treatment of ties. Can be one of "average" (default), "first", "last", "random"", "max" or "min". See [rank()] for details.
verbose Toggle warnings and messages on or off.
select Character vector of column names. If 'NULL' (the default), all variables will be selected.
exclude Character vector of column names to be excluded from selection.
Value

A rank-transformed object.

See Also

Other transform utilities: `change_scale()`, `normalize()`, `standardize()`

Examples

```r
ranktransform(c(0, 1, 5, -5, -2))
ranktransform(c(0, 1, 5, -5, -2), sign = TRUE)
head(ranktransform(trees))
```

rescale_weights
Rescale design weights for multilevel analysis

Description

Most functions to fit multilevel and mixed effects models only allow to specify frequency weights, but not design (i.e. sampling or probability) weights, which should be used when analyzing complex samples and survey data. `rescale_weights()` implements an algorithm proposed by Asparouhov (2006) and Carle (2009) to rescale design weights in survey data to account for the grouping structure of multilevel models, which then can be used for multilevel modelling.

Usage

```r
rescale_weights(data, group, probability_weights, nest = FALSE)
```

Arguments

data
A data frame.

group
Variable names (as character vector, or as formula), indicating the grouping structure (strata) of the survey data (level-2-cluster variable). It is also possible to create weights for multiple group variables; in such cases, each created weighting variable will be suffixed by the name of the group variable.

probability_weights
Variable indicating the probability (design or sampling) weights of the survey data (level-1-weight).

nest
Logical, if TRUE and group indicates at least two group variables, then groups are "nested", i.e. groups are now a combination from each group level of the variables in group.
Details

Rescaling is based on two methods: For `pweights_a`, the sample weights `probability_weights` are adjusted by a factor that represents the proportion of group size divided by the sum of sampling weights within each group. The adjustment factor for `pweights_b` is the sum of sample weights within each group divided by the sum of squared sample weights within each group (see Carle (2009), Appendix B).

Regarding the choice between scaling methods A and B, Carle suggests that "analysts who wish to discuss point estimates should report results based on weighting method A. For analysts more interested in residual between-group variance, method B may generally provide the least biased estimates". In general, it is recommended to fit a non-weighted model and weighted models with both scaling methods and when comparing the models, see whether the "inferential decisions converge", to gain confidence in the results.

Though the bias of scaled weights decreases with increasing group size, method A is preferred when insufficient or low group size is a concern.

The group ID and probably PSU may be used as random effects (e.g. nested design, or group and PSU as varying intercepts), depending on the survey design that should be mimicked.

Value

data, including the new weighting variables: `pweights_a` and `pweights_b`, which represent the rescaled design weights to use in multilevel models (use these variables for the `weights` argument).

References

Examples

```r
if (require("sjstats")) {
  data(nhanes_sample, package = "sjstats")
  head(rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR"))

  # also works with multiple group-variables...
  head(rescale_weights(nhanes_sample, c("SDMVSTRA", "SDMPSU"), "WTINT2YR"))

  # or nested structures.
  x <- rescale_weights(
    data = nhanes_sample,
    group = c("SDMVSTRA", "SDMPSU"),
    probability_weights = "WTINT2YR",
    nest = TRUE
  )
  head(x)
}
```
if (require("lme4") && require("sjstats")) {
 data(nhanes_sample, package = "sjstats")
 nhanes_sample <- rescale_weights(nhanes_sample, "SDMVSTRA", "WTINT2YR")
 glmer(
 total ~ factor(RIAGENDR) * (log(age) + factor(RIDRETH1)) + (1 | SDMVPSU),
 family = poisson(),
 data = nhanes_sample,
 weights = pweights_a
)
}

reshape_ci

Reshape CI between wide/long formats

Description

Reshape CI between wide/long formats.

Usage

`reshape_ci(x)`

Arguments

- `x` A data frame containing columns named `CI_low` and `CI_high`.

Value

A dataframe with columns corresponding to confidence intervals reshaped either to wide or long format.

Examples

```r
x <- data.frame(
  Parameter = c("Term 1", "Term 2", "Term 1", "Term 2"),
  CI = c(.8, .8, .9, .9),
  CI_low = c(.2, .3, .1, .15),
  CI_high = c(.5, .6, .8, .85),
  stringsAsFactors = FALSE
)
reshape_ci(x)
reshape_ci(reshape_ci(x))
```
skewness

Compute Skewness and (Excess) Kurtosis

Description

Compute Skewness and (Excess) Kurtosis

Usage

```r
skewness(x, na.rm = TRUE, type = "2", iterations = NULL, verbose = TRUE, ...)
kurtosis(x, na.rm = TRUE, type = "2", iterations = NULL, verbose = TRUE, ...)
```

```r
## S3 method for class 'parameters_kurtosis'
print(x, digits = 3, test = FALSE, ...)

## S3 method for class 'parameters_skewness'
print(x, digits = 3, test = FALSE, ...)

## S3 method for class 'parameters_skewness'
summary(object, test = FALSE, ...)

## S3 method for class 'parameters_kurtosis'
summary(object, test = FALSE, ...)
```

Arguments

- `x` A numeric vector or data.frame.
- `na.rm` Remove missing values.
- `type` Type of algorithm for computing skewness. May be one of 1 (or "1", "I" or "classic"), 2 (or "2", "II" or "SPSS" or "SAS") or 3 (or "3", "III" or "Minitab"). See 'Details'.
- `iterations` The number of bootstrap replicates for computing standard errors. If `NULL` (default), parametric standard errors are computed. See 'Details'.
- `verbose` Toggle warnings and messages.
- `...` Arguments passed to or from other methods.
- `digits` Number of decimal places.
- `test` Logical, if `TRUE`, tests if skewness or kurtosis is significantly different from zero.
- `object` An object returned by `skewness()` or `kurtosis()`.

Details

Skewness: Symmetric distributions have a skewness around zero, while a negative skewness values indicates a "left-skewed" distribution, and a positive skewness values indicates a "right-skewed" distribution. Examples for the relationship of skewness and distributions are:
• Normal distribution (and other symmetric distribution) has a skewness of 0
• Half-normal distribution has a skewness just below 1
• Exponential distribution has a skewness of 2
• Lognormal distribution can have a skewness of any positive value, depending on its parameters

Types of Skewness: skewness() supports three different methods for estimating skewness, as discussed in Joanes and Gill (1988):

• Type "1" is the "classical" method, which is \[g_1 = \frac{\text{sum}(x - \text{mean}(x))^3}{n} / \left(\frac{\text{sum}(x - \text{mean}(x))^2}{n}\right)^{1.5} \]
• Type "2" first calculates the type-1 skewness, then adjusts the result: \[G_1 = g_1 \times \sqrt{n \times (n - 1) / (n - 2)} \]. This is what SAS and SPSS usually return
• Type "3" first calculates the type-1 skewness, then adjusts the result: \[b_1 = g_1 \times (1 - 1 / n)^{1.5} \]. This is what Minitab usually returns.

Kurtosis: The kurtosis is a measure of "tailedness" of a distribution. A distribution with a kurtosis values of about zero is called "mesokurtic". A kurtosis value larger than zero indicates a "leptokurtic" distribution with fatter tails. A kurtosis value below zero indicates a "platykurtic" distribution with thinner tails (https://en.wikipedia.org/wiki/Kurtosis).

Types of Kurtosis: kurtosis() supports three different methods for estimating kurtosis, as discussed in Joanes and Gill (1988):

• Type "1" is the "classical" method, which is \[g_2 = n \times \text{sum}(x - \text{mean}(x))^4 / \left(\frac{\text{sum}(x - \text{mean}(x))^2}{n}\right)^2 - 3 \]
• Type "2" first calculates the type-1 kurtosis, then adjusts the result: \[G_2 = \frac{(n + 1) \times g_2 + 6}{(n - 2) \times (n - 3)} \]. This is what SAS and SPSS usually return
• Type "3" first calculates the type-1 kurtosis, then adjusts the result: \[b_2 = (g_2 + 3) \times (1 - 1 / n)^2 - 3 \]. This is what Minitab usually returns.

Standard Errors: It is recommended to compute empirical (bootstrapped) standard errors (via the iterations argument) than relying on analytic standard errors (Wright & Herrington, 2011).

Value

Values of skewness or kurtosis.

References

Examples

skewness(rnorm(1000))
kurtosis(rnorm(1000))
smoothness

Quantify the smoothness of a vector

Description

Quantify the smoothness of a vector

Usage

smoothness(x, method = "cor", lag = 1, iterations = NULL, ...)

Arguments

x Numeric vector (similar to a time series).
method Can be "diff" (the standard deviation of the standardized differences) or "cor" (default, lag-one autocorrelation).
lag An integer indicating which lag to use. If less than 1, will be interpreted as expressed in percentage of the length of the vector.
iterations The number of bootstrap replicates for computing standard errors. If NULL (default), parametric standard errors are computed. See 'Details'.
... Arguments passed to or from other methods.

Value

Value of smoothness.

References

Examples

x <- (-10:10)^3 + rnorm(21, 0, 100)
plot(x)
smoothness(x, method = "cor")
smoothness(x, method = "diff")
Standardization (Z-scoring)

Description

Performs a standardization of data (z-scoring), i.e., centering and scaling, so that the data is expressed in terms of standard deviation (i.e., mean = 0, SD = 1) or Median Absolute Deviance (median = 0, MAD = 1). When applied to a statistical model, this function extracts the dataset, standardizes it, and refits the model with this standardized version of the dataset. The `normalize()` function can also be used to scale all numeric variables within the 0 - 1 range.

Usage

```r
standardize(
  x,
  robust = FALSE,
  two_sd = FALSE,
  weights = NULL,
  verbose = TRUE,
  ...
)
```

S3 method for class 'numeric'
```r
standardize(
  x,
  robust = FALSE,
  two_sd = FALSE,
  weights = NULL,
  verbose = TRUE,
  reference = NULL,
  ...
)
```

S3 method for class 'data.frame'
```r
standardize(
  x,
  robust = FALSE,
  two_sd = FALSE,
  weights = NULL,
  verbose = TRUE,
  reference = NULL,
  select = NULL,
  exclude = NULL,
  remove_na = c("none", "selected", "all"),
  force = FALSE,
  append = FALSE,
  suffix = ".z",
  ...
unstandardize(
    x,
    center = NULL,
    scale = NULL,
    reference = NULL,
    robust = FALSE,
    two_sd = FALSE,
    ...
)

Arguments

\textbf{x} \hspace{1cm} A data frame, a vector or a statistical model (for \texttt{unstandardize()} cannot be a model).

\textbf{robust} \hspace{1cm} Logical, if ‘TRUE’, centering is done by subtracting the median from the variables and dividing it by the median absolute deviation (MAD). If ‘FALSE’, variables are standardized by subtracting the mean and dividing it by the standard deviation (SD).

\textbf{two_sd} \hspace{1cm} If ‘TRUE’, the variables are scaled by two times the deviation (SD or MAD depending on ‘robust’). This method can be useful to obtain model coefficients of continuous parameters comparable to coefficients related to binary predictors, when applied to **the predictors** (not the outcome) (Gelman, 2008).

\textbf{weights} \hspace{1cm} Can be ‘NULL’ (for no weighting), or: - For model: if ‘TRUE’ (default), a weighted-standardization is carried out. - For ‘data.frame’s: a numeric vector of weights, or a character of the name of a column in the ‘data.frame’ that contains the weights. - For numeric vectors: a numeric vector of weights.

\textbf{verbose} \hspace{1cm} Toggle warnings and messages on or off.

\textbf{...} \hspace{1cm} Arguments passed to or from other methods.

\textbf{reference} \hspace{1cm} A dataframe or variable from which the centrality and deviation will be computed instead of from the input variable. Useful for standardizing a subset or new data according to another dataframe.

\textbf{select} \hspace{1cm} Character vector of column names. If ‘NULL’ (the default), all variables will be selected.

\textbf{exclude} \hspace{1cm} Character vector of column names to be excluded from selection.

\textbf{remove_na} \hspace{1cm} How should missing values (‘NA’) be treated: if “none” (default): each column’s standardization is done separately, ignoring ‘NA’s. Else, rows with ‘NA’ in the columns selected with ‘select’ / ‘exclude’ (“selected”) or in all columns (“all”) are dropped before standardization, and the resulting data frame does not include these cases.

\textbf{force} \hspace{1cm} Logical, if ‘TRUE’, forces standardization of factors and dates as well. Factors are converted to numerical values, with the lowest level being the value ‘1’ (unless the factor has numeric levels, which are converted to the corresponding numeric value).
append Logical, if ‘TRUE’ and ‘x’ is a data frame, standardized variables will be added as additional columns; if ‘FALSE’, existing variables are overwritten.

suffix Character value, will be appended to variable (column) names of ‘x’, if ‘x’ is a data frame and ‘append = TRUE’.

center, scale Used by ‘unstandardize()’; ‘center’ and ‘scale’ correspond to the center (the mean / median) and the scale (SD / MAD) of the original non-standardized data (for data frames, should be named, or have column order correspond to the numeric column). However, one can also directly provide the original data through ‘reference’, from which the center and the scale will be computed (according to ‘robust’ and ‘two_sd’. Alternatively, if the input contains the attributes ‘center’ and ‘scale’ (as does the output of ‘standardize()’), it will take it from there if the rest of the arguments are absent.

Value

The standardized object (either a standardize data frame or a statistical model fitted on standardized data).

Model Standardization

If ‘x’ is a model object, standardization is done by completely refitting the model on the standardized data. Hence, this approach is equal to standardizing the variables *before* fitting the model and will return a new model object. However, this method is particularly recommended for complex models that include interactions or transformations (e.g., polynomial or spline terms). The ‘robust’ (default to ‘FALSE’) argument enables a robust standardization of data, i.e., based on the ‘median’ and ‘MAD’ instead of the ‘mean’ and ‘SD’. See [standardize_parameters()] for other methods of standardizing model coefficients.

### Transformed Variables When the model’s formula contains transformations (e.g. ‘y ~ exp(X)’) the transformation effectively takes place after standardization (e.g., ‘exp(scale(X))’). Some transformations are undefined for negative values, such as ‘log()’ and ‘sqrt()’. To avoid dropping these values, the standardized data is shifted by ‘Z - min(Z) + 1’ or ‘Z - min(Z)’ (respectively).

Note

When ‘x’ is a vector or a data frame with ‘remove_na = "none"’; missing values are preserved, so the return value has the same length / number of rows as the original input.

See Also

Other transform utilities: change_scale(), normalize(), ranktransform()

Examples

```r
Data frames
summary(standardize(swiss))
```
to_numeric

Convert to Numeric (if possible)

**Description**

Tries to convert vector to numeric if possible (if no warnings or errors). Otherwise, leaves it as is.

**Usage**

to_numeric(x)

**Arguments**

- **x**: A vector to be converted.

**Value**

Numeric vector (if possible)

**Examples**

to_numeric(c("1", "2"))
to_numeric(c("1", "2", "A"))

winsorize

Winsorize data

**Description**

Winsorize data

**Usage**

winsorize(data, ...)

## S3 method for class 'numeric'
winsorize(data, threshold = 0.2, verbose = TRUE, ...)

**Arguments**

- **data**: Dataframe or vector.
- **...**: Currently not used.
- **threshold**: The amount of winsorization.
- **verbose**: Toggle warnings.
Details

Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. The distribution of many statistics can be heavily influenced by outliers. A typical strategy is to set all outliers (values beyond a certain threshold) to a specified percentile of the data; for example, a 90% winsorization would see all data below the 5th percentile set to the 5th percentile, and data above the 95th percentile set to the 95th percentile. Winsorized estimators are usually more robust to outliers than their more standard forms.

Value

A dataframe with winsorized columns or a winsorized vector.

Examples

winsorize(iris$Sepal.Length, threshold = 0.2)
winsorize(iris, threshold = 0.2)
Index

* standardize
  standardize, 32
* transform utilities
  change_scale, 6
  normalize, 23
  ranktransform, 25
  standardize, 32

adjust, 2

center, 4, 19
change_scale, 6, 24, 26, 34
check_multimodal, 7
convert_data_to_numeric, 8

data_addprefix (data_rename), 11
data_addsuffix (data_rename), 11
data_adjust (adjust), 2
data_findcols (data_rename), 11
data_match, 9
data_partition, 10
data_relocate, 10
data_remove (data_rename), 11
data_rename, 11
data_reorder (data_rename), 11
data_reостояte, 12
data_to_long, 13
data_to_numeric
  (convert_data_to_numeric), 8
data_to_wide (data_to_long), 13
degroup (demean), 15
demean, 5, 15
describe_distribution, 20
detrend (demean), 15

format_text, 22

IQR, 21

kurtosis (skewness), 29

normalize, 7, 23, 26, 34
print.parameters_kurtosis (skewness), 29
print.parameters_skewness (skewness), 29
ranktransform, 7, 24, 25, 34
rescale_weights, 26
reshape_ci, 28
reshape_longer (data_to_long), 13
reshape_wider (data_to_long), 13
skewness, 29
smoothness, 31
standardize, 7, 24, 26, 32
summary.parameters_kurtosis (skewness), 29
summary.parameters_skewness (skewness), 29
text_concatenate (format_text), 22
text_fullstop (format_text), 22
text_lastchar (format_text), 22
text_paste (format_text), 22
text_remove (format_text), 22
text_wrap (format_text), 22
to_numeric, 35
unstandardize (standardize), 32

winsorize, 35