dSVD
)In this vignette, we consider approximating a matrix as a product of two low-rank matrices (a.k.a., factor matrices).
Test data is available from toyModel
.
library("dcTensor")
<- dcTensor::toyModel("dSVD") X
You will see that there are five blocks in the data matrix as follows.
suppressMessages(library("fields"))
image.plot(X, main="Original Data", legend.mar=8)
Here, we introduce the ternary regularization to take {-1,0,1} values in \(U\) as below:
\[
X \approx U V' \ \mathrm{s.t.}\ U \in \{-1,0,1\},
\] where \(X\) (\(N \times M\)) is a data matrix, \(U\) (\(N \times
J\)) is a ternary score matrix, and \(V\) (\(M \times
J\)) is a loading matrix. In dcTensor
package, the
object function is optimized by combining gradient-descent algorithm
(Tsuyuzaki 2020) and ternary
regularization.
In STMF, a rank parameter \(J\)
(\(\leq \min(N, M)\)) is needed to be
set in advance. Other settings such as the number of iterations
(num.iter
) are also available. For the details of arguments
of dSVD, see ?dSVD
. After the calculation, various objects
are returned by dSVD
. STMF is achieved by specifying the
ternary regularization parameter as a large value like the below:
set.seed(123456)
<- dSVD(X, Ter_U=1E+10, J=5)
out_STMF str(out_STMF, 2)
## List of 6
## $ U : num [1:100, 1:5] 0.00592 0.00582 0.00626 0.00641 0.00611 ...
## $ V : num [1:300, 1:5] 89.8 94.8 93.6 101 87.6 ...
## $ RecError : Named num [1:101] 1.00e-09 4.24e+05 3.67e+05 3.63e+05 3.65e+05 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 4.24e+05 3.67e+05 3.63e+05 3.65e+05 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 9.70e-01 1.55e-01 1.25e-02 4.53e-03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
The reconstruction error (RecError
) and relative error
(RelChange
, the amount of change from the reconstruction
error in the previous step) can be used to diagnose whether the
calculation is converged or not.
layout(t(1:2))
plot(log10(out_STMF$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_STMF$RelChange[-1]), type="b", main="Relative Change")
The product of \(U\) and \(V\) shows whether the original data is
well-recovered by dSVD
.
<- out_STMF$U %*% t(out_STMF$V)
recX layout(t(1:2))
image.plot(X, main="Original Data", legend.mar=8)
image.plot(recX, main="Reconstructed Data (STMF)", legend.mar=8)
The histograms of \(U\) and \(V\) show that \(U\) looks ternary but \(V\) does not.
layout(t(1:2))
hist(out_STMF$U, breaks=100)
hist(out_STMF$V, breaks=100)
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-conda-linux-gnu (64-bit)
## Running under: CentOS Linux 7 (Core)
##
## Matrix products: default
## BLAS/LAPACK: /home/koki/miniconda3/lib/libopenblasp-r0.3.17.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] nnTensor_1.1.12 fields_13.3 viridis_0.6.2 viridisLite_0.4.0
## [5] spam_2.8-0 dcTensor_1.0.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.8 highr_0.9 RColorBrewer_1.1-2 rTensor_1.4.8
## [5] bslib_0.3.1 compiler_3.6.3 pillar_1.7.0 jquerylib_0.1.4
## [9] tools_3.6.3 dotCall64_1.0-1 digest_0.6.29 jsonlite_1.8.0
## [13] evaluate_0.15 lifecycle_1.0.1 tibble_3.1.2 gtable_0.3.0
## [17] pkgconfig_2.0.3 rlang_0.4.11 DBI_1.1.2 yaml_2.3.5
## [21] xfun_0.29 fastmap_1.1.0 gridExtra_2.3 stringr_1.4.0
## [25] dplyr_1.0.6 knitr_1.37 generics_0.1.2 sass_0.4.0
## [29] vctrs_0.3.8 maps_3.4.0 plot3D_1.4 tidyselect_1.1.1
## [33] grid_3.6.3 glue_1.4.2 R6_2.5.1 fansi_1.0.2
## [37] tcltk_3.6.3 rmarkdown_2.11 purrr_0.3.4 ggplot2_3.3.5
## [41] magrittr_2.0.2 scales_1.1.1 htmltools_0.5.2 ellipsis_0.3.2
## [45] MASS_7.3-55 tagcloud_0.6 misc3d_0.9-1 assertthat_0.2.1
## [49] colorspace_2.0-3 utf8_1.2.2 stringi_1.7.6 munsell_0.5.0
## [53] crayon_1.5.0