Package ‘dccpp’

September 27, 2023

Type Package
Title Fast Computation of Distance Correlations
Version 0.1.0
Date 2023-09-27
Description Fast computation of the distance covariance ‘dcov’ and distance correlation ‘dcor’. The computation cost is only $O(n \log(n))$ for the distance correlation (see Chaudhuri, Hu (2019) <arXiv:1810.11332> <doi:10.1016/j.csda.2019.01.016>). The functions are written entirely in C++ to speed up the computation.
License GPL (>= 3)
BugReports https://github.com/BerriJ/dccpp/issues
Encoding UTF-8
Imports Rcpp (>= 1.0.8)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation yes
Author Jonathan Berrisch [aut, cre] (<https://orcid.org/0000-0002-4944-9074>)
Maintainer Jonathan Berrisch <Jonathan@Berrisch.biz>
Repository CRAN
Date/Publication 2023-09-27 08:30:07 UTC

R topics documented:

 dcor .. 2
dcov .. 2

Index 4
dcor

Distance Correlation

Description

Distance Correlation

Usage

dcor(x, y)

Arguments

x numeric vector

y numeric vector

Value

Returns a numeric value: the distance correlation between x and y.

Examples

```r
## Not run:
set.seed(1)
x < -rnorm(1000)
y < -x ^ 2
dcor(x, y) # dcor shows dependence between x and y
cor(x, y) # cor does not detect any dependence due to nonlinearity

## End(Not run)
```

dcov

Distance Covariance

Description

Distance Covariance

Usage

dcov(x, y)
dcov

Arguments

 x numeric vector
 y numeric vector

Details

 Implements the algorithm described in Chaudhuri, Hu (2019) doi:10.1016/j.csda.2019.01.016 which only has O(n log(n)) complexity.

Value

 Returns a numeric value: the distance covariance between x and y.

Examples

 ## Not run:

 set.seed(1)
 x <- rnorm(1000)
 y <- -x^2
 d cov(x, y)
 dv ov(x, x)
 dv ov(y, y)

 ## End(Not run)
Index

dcor, 2
dcov, 2