Package ‘dclust’

September 5, 2019

Type Package
Title Divisive Hierarchical Clustering
Version 0.1.0
Maintainer Shaun Wilkinson <shaunpwilkinson@gmail.com>
Description Contains a single function dclust() for divisive hierarchical clustering based on recursive k-means partitioning (k = 2). Useful for clustering large datasets where computation of an x n distance matrix is not feasible (e.g. n > 10,000 records). For further information see Steinbach, Karypis and Kumar (2000) <http://glaros.dtc.umn.edu/gkhome/fetch/papers/docclusterKDDTMW00.pdf>.
License GPL-3
Encoding UTF-8
LazyData true
URL http://github.com/shaunpwilkinson/dclust
BugReports http://github.com/shaunpwilkinson/dclust/issues
Imports openssl, phylogram
RoxygenNote 6.1.1
NeedsCompilation no
Author Shaun Wilkinson [aut, cre] (<https://orcid.org/0000-0002-7332-7931>), Paolo Giordani [aut]
Repository CRAN
Date/Publication 2019-09-05 12:00:02 UTC

R topics documented:
dclust .. 2

Index 4
dclust
Divisive/bisecting heirarchical clustering

Description
This function recursively splits an \(n \times p \) matrix into smaller and smaller subsets, returning a "dendrogram" object.

Usage
dclust(x, method = "kmeans", stand = FALSE, ...)

Arguments
- **x**: a matrix
- **method**: character string giving the partitioning algorithm to be used to split the data. Currently only "kmeans" is supported (divisive/bisecting k-means; see Steinbach et al. 2000).
- **stand**: logical indicating whether the matrix should be standardised prior to the recursive partitioning procedure. Defaults to FALSE.
- **...**: further arguments to be passed to splitting methods (not including centers if method = kmeans).

Details
This function creates a dendrogram by successively splitting the dataset into smaller and smaller subsets (recursive partitioning). This is a divisive, or "top-down" approach to tree-building, as opposed to agglomerative "bottom-up" methods such as neighbor joining and UPGMA. It is particularly useful for large large datasets with many records (\(n > 10,000 \)) since the need to compute a large \(n \times n \) distance matrix is circumvented.

If a more accurate tree is required, users can increase the value of nstart passed to kmeans via the \...\ argument. While this can increase computation time, it can improve accuracy considerably.

Value
Returns an object of class "dendrogram".

Author(s)
Shaun Wilkinson

References
Examples

Cluster a subsample of the iris dataset
```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(999)
iris50 <- iris[sample(x = 1:150, size = 50, replace = FALSE),]
x <- as.matrix(iris50[, 1:4])
rownames(x) <- iris50[, 5]
dnd <- dclust(x, nstart = 20)
plot(dnd, horiz = TRUE, yaxt = "n")
```

Color labels according to species
```r
rectify_labels <- function(node, x){
  newlab <- factor(rownames(x))[unlist(node, use.names = FALSE)]
  attr(node, "label") <- newlab
  return(node)
}
dnd <- dendrapply(dnd, rectify_labels, x = x)
```

Create a color palette as a data.frame with one row for each species
```r
uniqspp <- as.character(unique(iris50$Species))
colormap <- data.frame(Species = uniqspp, color = rainbow(n = length(uniqspp)))
colormap[, 2] <- c("red", "blue", "green")
```

Color the inner dendrogram edges
```r
color_dendro <- function(node, colormap){
  if(is.leaf(node)){
    nodecol <- colormap$color[match(attr(node, "label"), colormap$Species)]
    attr(node, "nodePar") <- list(pch = NA, lab.col = nodecol)
    attr(node, "edgePar") <- list(col = nodecol)
  }else{
    spp <- attr(node, "label")
    dominantspp <- levels(spp)[which.max(tabulate(spp))]
    edgecol <- colormap$color[match(dominantspp, colormap$Species)]
    attr(node, "edgePar") <- list(col = edgecol)
  }
  return(node)
}
dnd <- dendrapply(dnd, color_dendro, colormap = colormap)
```

Plot the dendrogram
```r
plot(dnd, horiz = TRUE, yaxt = "n")
```
Index

dclust, 2