Package ‘dcm2’

March 21, 2023

Type Package

Title Calculating the M2 Model Fit Statistic for Diagnostic Classification Models

Version 1.0.2

Description A collection of functions for calculating the M2 model fit statistic for diagnostic classification models as described by Liu et al. (2016) <DOI:10.3102/1076998615621293>. These functions provide multiple sources of information for model fit according to the M2 statistic, including the M2 statistic, the *p* value for that M2 statistic, and the Root Mean Square Error of Approximation based on the M2 statistic.

License GPL-3

URL https://github.com/atlas-aai/dcm2

BugReports https://github.com/atlas-aai/dcm2/issues

Depends R (>= 3.6)

Imports dplyr (>= 0.8.4), glue (>= 1.4.2), magrittr (>= 1.5), methods (>= 4.1.0), modelr (>= 0.1.8), purrr (>= 0.3.3), Rcpp, rlang (>= 0.4.11), stringr (>= 1.4.0), tibble (>= 2.1.3), tidyr (>= 1.1.4)

Suggests covr, GDINA, roxygen2, spelling, testthat (>= 2.1.0)

LinkingTo Rcpp, RcppArmadillo (>= 0.9.800.1.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Language en-US

NeedsCompilation yes

Author Jeffrey Hoover [aut, cre, cph]
 (<https://orcid.org/0000-0002-0276-0308>),
W. Jake Thompson [aut] (<https://orcid.org/0000-0001-7339-0300>),
Wenchao Ma [ctb] (Author of Mord.cpp)
Maintainer Jeffrey Hoover <jeffrey.c.hoover@gmail.com>

Repository CRAN

Date/Publication 2023-03-21 19:50:02 UTC

R topics documented:

- `as_binary` 2
- `calc_m2` 3
- `data_att1` 4
- `fit_m2` 5
- `log_odds` 6
- `sample_data` 7

Index

- `as_binary` 8

as_binary

Make Binary Profiles

Description

Given a number of attributes, `as_binary` will create all possible binary mastery profiles.

Usage

```
as_binary(x)
```

Arguments

- `x`
The number of attributes

Value

A 2^x by x matrix

Examples

```
as_binary(3)
as_binary(4)
```
calc_m2

Calculate the M^2

Description

Calculate the M^2

Usage

```r
calc_m2(
  data,
  struc_params,
  pi_matrix,
  qmatrix,
  ci = 0.9,
  link = "logit",
  model_type = c("LCDM", "GDINA", "ACDM", "LLM", "RRUM", "DINO", "DINA", "BUGDINO")
)
```

Arguments

- **data**
 A data frame containing the raw data, where there is one row per respondent and one column per item

- **struc_params**
 A vector containing the structural parameters of the estimated model

- **pi_matrix**
 An item-by-class matrix containing the probability of a correct response by members of each latent class

- **qmatrix**
 A data frame containing the Q-matrix

- **ci**
 The confidence interval for the RMSEA, computed from the M^2

- **link**
 A character containing the link function.

- **model_type**
 A character containing the model type (e.g., LCDM) that was estimated.

Value

A data frame containing:

- **m2**: The M^2 statistic
- **df**: Degrees of freedom for the M^2 statistic
- **pval**: p-value for the M^2 statistic
- **rmsea**: Root mean square error of approximation
- **ci_lower**: Lower end of ci interval for RMSEA
- **ci_upper**: Upper end of ci interval for RMSEA
- **srmsr**: Standardized root mean square residual
Examples

```r
possible_prof <- dcm2::as_binary(ncol(sample_data$q_matrix))

fit_dat <- sample_data$data %>%
  tidyr::pivot_wider(names_from = "item_id",
               values_from = "score") %>%
  dplyr::select(-"resp_id") %>%
  as.matrix() %>%
  unname()

gdina_mod <- GDINA::GDINA(dat = fit_dat,
                           Q = data.frame(sample_data$q_matrix),
                           model = "logitGDINA",
                           control = list(conv.type = "neg2LL"))

struc_params <- gdina_mod$struc.parm
pi_matrix <- gdina_mod$LC.prob %>%
  as.matrix() %>%
  unname()

calc_m2(data = fit_dat, struc_params, pi_matrix,
         qmatrix = data.frame(sample_data$q_matrix),
         ci = 0.9, link = "logit",
         model_type = "LCDM")
```

data_att1
Simulated Data for a Single Attribute Assessment

Description

A list containing data from a randomly simulated single-attribute assessment.

Usage

data_att1

Format

A list frame containing 4 tibble objects:

- `resp_profiles`: A tibble with 1000 rows and 2 columns. The first column indicates `resp_id` (i.e., the respondent identification number) and the second column indicates `att_1` (i.e., a binary indicator for whether the respondent mastered the first attribute).

- `q_matrix`: A tibble with 2 rows and 1 column. Each row corresponds to an assessment item, and the column entries provide a binary indicator for whether the item assessed the attribute.

- `item_params`: A tibble with 2 rows and 3 columns. Each row corresponds to an item. The first column indicates `item_id` (i.e., the item identification number). The second column indicates `intercept` (i.e., the true item intercept parameter for the item). The third column indicates `att_1` (i.e., the true item main effect parameter for the item).
• data: A tibble with 2000 rows and 3 columns. The first column indicates resp_id (i.e., the respondent identification number). The second column indicates item_id (i.e., the item identification number). The third column indicates score (i.e., the dichotomously scored item response).

Model Fit M2 Calculations

Description

Estimate the M2 statistic as described by Liu et al. (2016).

Usage

`fit_m2(model, ci = 0.9, ...)`

Arguments

- `model`: An estimated diagnostic classification model.
- `ci`: The confidence interval for the RMSEA.
- `...`: Unused, for extensibility.

Value

A data frame containing:

- `m2`: The M2 statistic
- `df`: Degrees of freedom for the M2 statistic
- `pval`: p-value for the M2 statistic
- `rmsea`: Root mean square error of approximation
- `ci_lower`: Lower end of ci interval for RMSEA
- `ci_upper`: Upper end of ci interval for RMSEA
- `srmsr`: Standardized root mean square residual

References

Examples

```r
possible_prof <- dcm2::as_binary(ncol(sample_data$q_matrix))

fit_dat <- sample_data$data %>%
  tidyr::pivot_wider(names_from = "item_id",
                    values_from = "score") %>%
  dplyr::select(-"resp_id") %>%
  as.matrix() %>%
  unname()

gdina_mod <- GDINA::GDINA(dat = fit_dat,
                          Q = data.frame(sample_data$q_matrix),
                          model = "logitGDINA",
                          control = list(conv.type = "neg2LL"))

fit_m2(gdina_mod, ci = 0.9)
```

log_odds

Log-odds Transformation

Description

These functions implement the log-odds (or logit) transformation. This is a common transformation for psychometric models that is used to put probabilities on a continuous scale.

Usage

- `logit(x)`
- `inv_logit(x)`

Arguments

- `x` A number to be transformed

Value

A transformed double

Examples

- `logit(0.6)`
- `logit(0.5)`
- `inv_logit(3.5)`
- `inv_logit(0)`
Simulated Data for Testing Functions

Description

A matrix with randomly simulated data to test the package functions.

Usage

sample_data

Format

A list frame containing 4 tibble objects:

- **resp_profiles**: A tibble with 1000 rows and 3 columns. The first column indicates resp_id (i.e., the respondent identification number). The second column indicates att_1 (i.e., a binary indicator for whether the respondent mastered the first attribute). The third column indicates att_2 (i.e., a binary indicator for whether the respondent mastered the second attribute).

- **q_matrix**: A tibble with 8 rows and 2 columns. Each row corresponds to an assessment item, and the column entries provide a binary indicator for whether the item assessed each of the attribute.

- **item_params**: A tibble with 8 rows and 5 columns. Each row corresponds to an item. The first column indicates item_id (i.e., the item identification number). The second column indicates intercept (i.e., the true item intercept parameter for the item). The third column indicates att_1 (i.e., the true item main effect parameter for the first attribute for the item). The fourth column indicates att_2 (i.e., the true item main effect parameter for the second attribute for the item). The fifth column indicates att_1__att_2 (i.e., the true item interaction effect parameter for the first and second attributes).

- **data**: A tibble with 8000 rows and 3 columns. The first column indicates resp_id (i.e., the respondent identification number). The second column indicates item_id (i.e., the item identification number). The third column indicates score (i.e., the dichotomously scored item response).
Index

* datasets
 data_att1, 4
 sample_data, 7

as_binary, 2

calc_m2, 3

data_att1, 4

fit_m2, 5

inv_logit(log_odds), 6

log_odds, 6

logit(log_odds), 6

sample_data, 7