Package ‘dcurves’

December 23, 2022

Title Decision Curve Analysis for Model Evaluation

Version 0.4.0

Description Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes, but often require collection of additional information may be cumbersome to apply to models that yield a continuous result. Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. See the following references for details on the methods: Vickers (2006) <doi:10.1177/0272989X06295361>, Vickers (2008) <doi:10.1186/1472-6947-8-53>, and Pfeiffer (2020) <doi:10.1002/bimj.201800240>.

License MIT + file LICENSE

BugReports https://github.com/ddsjoberg/dcurves/issues

Depends R (>= 3.5)

Imports broom (>= 0.7.10), dplyr (>= 1.0.5), ggplot2 (>= 3.3.3), glue (>= 1.4.2), purrr (>= 0.3.4), rlang (>= 0.4.10), scales (>= 1.1.1), survival, tibble (>= 3.1.0)

Suggests covr (>= 3.5.1), gtsummary (>= 1.4.0), knitr (>= 1.32), rmarkdown (>= 2.7), spelling (>= 2.2), testthat (>= 3.0.2), tidyr (>= 1.1.3)

VignetteBuilder knitr

ByteCompile true

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

Language en-US
as_tibble.dca

Convert DCA Object to tibble

Description

Convert DCA Object to tibble

Usage

```r
## S3 method for class 'dca'
as_tibble(x, ...)
```

Arguments

- `x`
 dca object created with dca()
- `...`
 not used

Value

- a tibble
Perform Decision Curve Analysis

Description

Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes but often require collection of additional information may be cumbersome to apply to models that yield a continuous result. Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. The dca function performs decision curve analysis for binary outcomes. Review the DCA Vignette for a detailed walk-through of various applications. Also, see www.decisioncurveanalysis.org for more information.

Usage

dca(
 formula,
 data,
 thresholds = seq(0, 0.99, by = 0.01),
 label = NULL,
 harm = NULL,
 as_probability = character(),
 time = NULL,
 prevalence = NULL
)

Arguments

formula a formula with the outcome on the LHS and a sum of markers covariates to test on the RHS

data a data frame containing the variables in formula=

thresholds vector of threshold probabilities between 0 and 1. Default is seq(0, 0.99, by = 0.01). Thresholds at zero are replaced with 10e-10.
dca

label

named list of variable labels, e.g. list(age = "Age, years")

harm

named list of harms associated with a test. Default is NULL

as_probability

character vector including names of variables that will be converted to a probability. Details below.

time

if outcome is survival, time= specifies the time the assessment is made

prevalence

When NULL, the prevalence is estimated from data=. If the data passed is a case-control set, the population prevalence may be set with this argument.

Value

List including net benefit of each variable

as_probability argument

While the as_probability= argument can be used to convert a marker to the probability scale, use the argument only when the consequences are fully understood. For example, when the outcome is binary, logistic regression is used to convert the marker to a probability. The logistic regression model assumes linearity on the log-odds scale and can induce miscalibration when this assumption is not true. Miscalibration in a model will adversely affect performance on decision curve analysis. Similarly, when the outcome is time-to-event, Cox Proportional Hazards regression is used to convert the marker to a probability. The Cox model also has a linearity assumption and additionally assumes proportional hazards over the follow-up period. When these assumptions are violated, important miscalibration may occur.

Instead of using the as_probability= argument, it is suggested to perform the regression modeling outside of the dca() function utilizing methods, such as non-linear modeling, as appropriate.

Author(s)

Daniel D Sjoberg

See Also

net_interventionavoided(), standardized_net_benefit(), plot.dca(), as_tibble.dca()

Examples

calculate DCA with binary endpoint

dca(cancer ~ cancerpredmarker + marker,
 data = df_binary,
 as_probability = "marker",
 label = list(cancerpredmarker = "Prediction Model", marker = "Biomarker")) %>%
 # plot DCA curves with ggplot
 plot(smooth = TRUE) +
 # add ggplot formatting
 ggplot2::labs(x = "Treatment Threshold Probability")

calculate DCA with time to event endpoint

dca(Surv(ttcancer, cancer) ~ cancerpredmarker, data = df_surv, time = 1)
df_binary

Simulated data with a binary outcome

Description

Simulated data with a binary outcome

Usage

```r
df_binary
```

Format

A data frame with 750 rows:

- **patientid** Identification Number
- **cancer** Cancer Diagnosis: 0=No, 1=Yes
- **dead** Dead (1=yes; 0=no)
- **risk_group** Patient Risk Group (Low, Intermediate, High)
- **age** Patient Age, years
- **famhistory** Family History of Cancer: 0=No, 1=Yes
- **marker** Marker
- **cancerpredmarker** Prob. of Cancer based on Age, Family History, and Marker

df_case_control

Simulated data with a case-control outcome

Description

Simulated data with a case-control outcome

Usage

```r
df_case_control
```

Format

A data frame with 750 rows:

- **patientid** Identification Number
- **casecontrol** Case-control Status: 1=Case, 0=Control
- **risk_group** Patient Risk Group (Low, Intermediate, High)
- **age** Patient Age, years
- **famhistory** Family History of Cancer: 0=No, 1=Yes
- **marker** Marker
- **cancerpredmarker** Prob. of Cancer based on Age, Family History, and Marker
df_surv

Simulated data with a survival outcome

Description
Simulated data with a survival outcome

Usage
df_surv

Format
A data frame with 750 rows:

- **patientid** Identification Number
- **cancer** Cancer Diagnosis: 0=No, 1=Yes
- **cancer_cr** Cancer Diagnosis, competing event: "censor", "dead other causes", "diagnosed with cancer"
- **ttcancer** Years to Cancer Dx/Censor
- **risk_group** Patient Risk Group (Low, Intermediate, High)
- **age** Patient Age, years
- **famhistory** Family History of Cancer: 0=No, 1=Yes
- **marker** Marker
- **cancerpredmarker** Prob. of Cancer based on Age, Family History, and Marker

net_intervention_avoided

Add Net Interventions Avoided

Description
Add the number of net interventions avoided to dca() object.

Usage
net_intervention_avoided(x, nper = 1)

Arguments
- **x** object of class 'dca' calculated with dca()
- **nper** Number to report net interventions per. Default is 1
Value
'dca' object

Author(s)
Daniel D Sjoberg

See Also
dca(), standardized_net_benefit(), plot.dca(), as_tibble.dca()

Examples

dca(
cancer ~ cancerpredmarker,
data = df_binary
)
 net_intervention_avoided()

dca(
Surv(ttcancer, cancer) ~ cancerpredmarker,
data = df_surv,
time = 1
)
 net_intervention_avoided(nper = 100)

plot.dca
Plot DCA Object with ggplot

Description
Plot DCA Object with ggplot

Usage

S3 method for class 'dca'
plot(
x,
type = NULL,
smooth = FALSE,
span = 0.2,
style = c("color", "bw"),
show_ggplot_code = FALSE,
...
)
Arguments

x
dca object created with dca()

type
indicates type of plot to produce. Must be one of c("net_benefit", "net_interventionavoided", "standardized_net_benefit"). The default is "net_benefit", unless the net intervention has been calculated when "net_interventionavoided" is used, or if "standardized_net_benefit" has been calculated.

smooth
Logical indicator whether plot will be smooth with ggplot2::stat_smooth(). Default is FALSE

span
when smooth = TRUE, Controls the amount of smoothing for loess smoother. Smaller numbers produce wigglier lines, larger numbers produce smoother lines. Default is 0.2.

style
Must be one of c("color", "bw"). Default is "color", and "bw" will print a black and white figure

show_ggplot_code
Logical indicating whether to print ggplot2 code used to create figure. Default is FALSE. Set to TRUE to perform advanced figure customization

Value

a ggplot2 object

Author(s)

Daniel D Sjoberg

See Also

dca(), net_interventionavoided(), standardized_net_benefit(), as_tibble.dca()

Examples

```r
p <-
dca(cancer ~ cancerpredmarker, data = df_binary) %>%
plot(smooth = TRUE, show_ggplot_code = TRUE)
p

# change the line colors
p + ggplot2::scale_color_manual(values = c('black', 'grey', 'purple'))
```
standardized_net_benefit

Add Standardized Net Benefit

Description

Add the standardized net benefit to \texttt{dca()} object.

Usage

\texttt{standardized_net_benefit(x)}

Arguments

\begin{itemize}
\item \texttt{x} \quad \text{object of class 'dca' calculated with \texttt{dca()}}
\end{itemize}

Value

'\texttt{dca}' object

Author(s)

Daniel D Sjoberg

See Also

\texttt{dca()}, \texttt{net_intervention_avoided()}, \texttt{plot.dca()}, \texttt{as_tibble.dca()}

Examples

\begin{verbatim}
dca(Surv(ttcancer, cancer) ~ cancerpredmarker, data = df_surv, time = 1) %>%
 standardized_net_benefit()
\end{verbatim}

test_consequences

Test Consequences

Description

Test Consequences
Usage

test_consequences(
 formula,
 data,
 statistics = c("pos_rate", "neg_rate", "test_pos_rate", "test_neg_rate", "tp_rate",
 "fp_rate", "fn_rate", "tn_rate", "ppv", "npv", "sens", "spec", "lr_pos", "lr_neg"),
 thresholds = seq(0, 1, by = 0.25),
 label = NULL,
 time = NULL,
 prevalence = NULL
)

Arguments

formula a formula with the outcome on the LHS and a sum of markers/covariates to test
 on the RHS
data a data frame containing the variables in formula=
statistics Character vector with statistics to return. See below for details
thresholds vector of threshold probabilities between 0 and 1. Default is seq(0, 0.99, by
 = 0.01). Thresholds at zero are replaced with 10e-10.
label named list of variable labels, e.g. list(age = "Age, years")
time if outcome is survival, time= specifies the time the assessment is made
prevalence When NULL, the prevalence is estimated from data=. If the data passed is a
 case-control set, the population prevalence may be set with this argument.

Value

a tibble with test consequences

statistics

The following diagnostic statistics are available to return.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome Positive Rate</td>
<td>"pos_rate"</td>
<td>(a + c) / (a + b + c + d)</td>
</tr>
<tr>
<td>Outcome Negative Rate</td>
<td>"neg_rate"</td>
<td>(b + d) / (a + b + c + d)</td>
</tr>
<tr>
<td>Test Positive Rate</td>
<td>"test_pos_rate"</td>
<td>(a + b) / (a + b + c + d)</td>
</tr>
<tr>
<td>Test Negative Rate</td>
<td>"test_neg_rate"</td>
<td>(c + d) / (a + b + c + d)</td>
</tr>
<tr>
<td>True Positive Rate</td>
<td>"tp_rate"</td>
<td>a / (a + b + c + d)</td>
</tr>
<tr>
<td>False Positive Rate</td>
<td>"fp_rate"</td>
<td>b / (a + b + c + d)</td>
</tr>
<tr>
<td>False Negative Rate</td>
<td>"fn_rate"</td>
<td>c / (a + b + c + d)</td>
</tr>
<tr>
<td>True Negative Rate</td>
<td>"tn_rate"</td>
<td>d / (a + b + c + d)</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>"ppv"</td>
<td>a / (a + b)</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>"npv"</td>
<td>d / (c + d)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>"sens"</td>
<td>a / (a + c)</td>
</tr>
<tr>
<td>Specificity</td>
<td>"spec"</td>
<td>d / (b + d)</td>
</tr>
<tr>
<td>Positive Likelihood Ratio</td>
<td>"lr_pos"</td>
<td>sens / (1 - spec)</td>
</tr>
</tbody>
</table>
Negative Likelihood Ratio "lr_neg" \((1 - \text{sens}) / \text{spec} \)

Examples

test_consequences(cancer ~ cancerpredmarker, data = df_binary)
Index

* datasets
 - df_binary, 5
 - df_case_control, 5
 - df_surv, 6

as_tibble.dca, 2
as_tibble.dca(), 4, 7–9

dca, 3
dca(), 3, 7–9
df_binary, 5
df_case_control, 5
df_surv, 6

net_intervention_avoided, 6
net_intervention_avoided(), 3, 4, 8, 9

plot.dca, 7
plot.dca(), 3, 4, 7, 9

standardized_net_benefit, 9
standardized_net_benefit(), 3, 4, 7, 8

test_consequences, 9