Package ‘ddml’

August 29, 2023

Title Double/Debiased Machine Learning
Version 0.1.0
Date 2023-08-17
Description Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. 'ddml' simplifies estimation based on (short-)stacking, which leverages multiple base learners to increase robustness to the underlying data generating process.
License GPL (>= 3)
BugReports https://github.com/thomaswiemann/ddml/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Depends R (>= 3.6)
Imports methods, stats, AER, MASS, Matrix, nnls, quadprog, glmnet, ranger, xgboost
Suggests sandwich, covr, testthat (>= 3.0.0), knitr, rmarkdown
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Achim Ahrens [aut], Christian B Hansen [aut], Mark E Schaffer [aut], Thomas Wiemann [aut, cre]
Maintainer Thomas Wiemann <wiemann@uchicago.edu>
Repository CRAN
Date/Publication 2023-08-29 16:40:02 UTC
R topics documented:

AE98 ... 2
crosspred .. 3
crossval .. 6
ddml ... 7
ddml_ate .. 8
ddml_fpliv .. 11
ddml_late .. 13
ddml_pliv .. 17
ddml_plm ... 19
mdl_glmnet .. 22
mdl_ranger ... 23
mdl_xgboost .. 24
ols ... 25
shortstacking ... 26
summary.ddml_ate ... 28
summary.ddml_fpliv .. 29

Index 31

AE98

Description

Usage

AE98

Format

A data frame with 5,000 rows and 13 variables.

worked Indicator equal to 1 if the mother is employed.
weeks Number of weeks of employment.
hours Hours worked per week.
mored Indicator equal to 1 if the mother has more than 2 kids.
samesex Indicator equal to 1 if the first two children are of the same sex.
age Age in years.
agef Age in years at birth of the first child.
black Indicator equal to 1 if the mother is black.
hisp Indicator equal to 1 if the mother is Hispanic.
othr Indicator equal to 1 if the mother is neither black nor Hispanic.
crosspred

educ Years of education.

boy1st Indicator equal to 1 if the first child is male.

boy2nd Indicator equal to 1 if the second child is male.

Source

https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/11288

References

crosspred

Cross-Predictions using Stacking.

Description

Cross-predictions using stacking.

Usage

```r
crosspred(
  y,
  X,
  Z = NULL,
  learners,
  sample_folds = 2,
  ensemble_type = "average",
  cv_folds = 5,
  compute_insOLUME_predictions = FALSE,
  compute_predictions_bylearner = FALSE,
  subsamples = NULL,
  cv_subsamples_list = NULL,
  silent = FALSE,
  progress = NULL,
  auxilliary_X = NULL
)
```

Arguments

- **y** The outcome variable.
- **X** A (sparse) matrix of predictive variables.
- **Z** Optional additional (sparse) matrix of predictive variables.
- **learners** May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the predictor. If a single learner is used, learners is a list with two named elements:
• what The base learner function. The function must be such that it predicts a named input y using a named input X.
 • args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:
 • fun The base learner function. The function must be such that it predicts a named input y using a named input X.
 • args Optional arguments to be passed to fun.
 • assign_X An optional vector of column indices corresponding to predictive variables in X that are passed to the base learner.
 • assign_Z An optional vector of column indices corresponding to predictive in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

sample_folds Number of cross-fitting folds.

ensemble_type Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
 • "nnls" Non-negative least squares.
 • "nnls1" Non-negative least squares with the constraint that all weights sum to one.
 • "singlebest" Select base learner with minimum MSPE.
 • "ols" Ordinary least squares.
 • "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

cv_folds Number of folds used for cross-validation in ensemble construction.
compute_insample_predictions Indicator equal to 1 if in-sample predictions should also be computed.
compute_predictions_bylearner Indicator equal to 1 if in-sample predictions should also be computed for each learner (rather than the entire ensemble).

subsamples List of vectors with sample indices for cross-fitting.

subsamples_list List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.
silent Boolean to silence estimation updates.

progress String to print before learner and cv fold progress.

auxilliary_X An optional list of matrices of length sample_folds, each containing additional observations to calculate predictions for.
crosspred returns a list containing the following components:

- `oos_fitted` A matrix of out-of-sample predictions, each column corresponding to an ensemble type (in chronological order).
- `weights` An array, providing the weight assigned to each base learner (in chronological order) by the ensemble procedures.
- `is_fitted` When `compute_insample_predictions = T`, a list of matrices with in-sample predictions by sample fold.
- `auxilliary_fitted` When `auxilliary_X` is not NULL, a list of matrices with additional predictions.
- `oos_fitted_bylearners` When `compute_predictions_bylearners = T`, a matrix of out-of-sample predictions, each column corresponding to a base learner (in chronological order).
- `is_fitted_bylearners` When `compute_insample_predictions = T` and `compute_predictions_bylearners = T`, a list of matrices with in-sample predictions by sample fold.
- `auxilliary_fitted_bylearners` When `auxilliary_X` is not NULL and `compute_predictions_bylearners = T`, a list of matrices with additional predictions for each learner.

References

See Also

Other utilities: `crossval()`, `shortstacking()`

Examples

```r
# Construct variables from the included Angrist & Evans (1998) data
y <- AE98[, "worked"]
X <- AE98[, c("morekids", "age","agefst","black","hisp","othrace","educ")]

# Compute cross-predictions using stacking with base learners ols and lasso.
# Two stacking approaches are simultaneously computed: Equally
# weighted (ensemble_type = "average") and MSPE-minimizing with weights
# in the unit simplex (ensemble_type = "nnls1"). Predictions for each
# learner are also calculated.
crosspred_res <- crosspred(y, X,
learners = list(list(fun = ols),
               list(fun = mdl_glmnet)),
ensemble_type = c("average",
               "nnls1",
               "singlebest"),
compute_predictions_bylearners = TRUE,
sample_folds = 2,
cv_folds = 2,
```

crossval

Estimator of the Mean Squared Prediction Error using Cross-Validation.

Description

Estimator of the mean squared prediction error of different learners using cross-validation.

Usage

crossval(
 y,
 X,
 Z = NULL,
 learners,
 cv_folds = 5,
 cv_subsamples = NULL,
 silent = FALSE,
 progress = NULL
)

Arguments

y The outcome variable.
X A (sparse) matrix of predictive variables.
Z Optional additional (sparse) matrix of predictive variables.
learners learners is a list of lists, each containing four named elements:
 • fun The base learner function. The function must be such that it predicts a
 named input y using a named input X.
 • args Optional arguments to be passed to fun.
 • assign_X An optional vector of column indices corresponding to variables
 in X that are passed to the base learner.
 • assign_Z An optional vector of column indices corresponding to variables
 in Z that are passed to the base learner.

 Omission of the args element results in default arguments being used in fun.
 Omission of assign_X (and/or assign_Z) results in inclusion of all predictive
 variables in X (and/or Z).

cv_folds Number of folds used for cross-validation.
cv_subsamples List of vectors with sample indices for cross-validation.
silent Boolean to silence estimation updates.
progress String to print before learner and cv fold progress.
Value

crossval returns a list containing the following components:

- mspe A vector of MSPE estimates, each corresponding to a base learner (in chronological order).
- oos_resid A matrix of out-of-sample prediction errors, each column corresponding to a base learner (in chronological order).
- cv_subsamples Pass-through of cv_subsamples. See above.

See Also

Other utilities: crosspred(), shortstacking()

Examples

Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
X = AE98[, c("morekids", "age","agefst","black","hisp","othrace","educ")]

Compare ols, lasso, and ridge using 4-fold cross-validation
cv_res <- crossval(y, X,
 learners = list(list(fun = ols),
 list(fun = mdl_glmnet),
 list(fun = mdl_glmnet,
 args = list(alpha = 0))),
 cv_folds = 4,
 silent = TRUE)

cv_res$mspe
ddml_ate

Estimator of the Average Treatment Effect.

Description

Estimator of the average treatment effect.

Usage

```r
ddml_ate(
  y,
  D,
  X,
  learners,
  learners_DX = learners,
  sample_folds = 2,
  ensemble_type = "nnls",
  shortstack = FALSE,
  cv_folds = 5,
  subsamples_D0 = NULL,
  subsamples_D1 = NULL,
  cv_subsamples_list_D0 = NULL,
  cv_subsamples_list_D1 = NULL,
  silent = FALSE
)
```

Arguments

- **y**: The outcome variable.
- **D**: Binary endogenous variable of interest.
- **X**: A (sparse) matrix of control variables.
- **learners**: May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, `learners` is a list with two named elements:
 - **what**: The base learner function. The function must be such that it predicts a named input `y` using a named input `X`.
 - **args**: Optional arguments to be passed to `what`.

If stacking with multiple learners is used, `learners` is a list of lists, each containing four named elements:
 - **fun**: The base learner function. The function must be such that it predicts a named input `y` using a named input `X`.
 - **args**: Optional arguments to be passed to `fun`.
 - **assign_X**: An optional vector of column indices corresponding to control variables in `X` that are passed to the base learner.
Omission of the `args` element results in default arguments being used in `fun`. Omission of `assign_X` results in inclusion of all variables in `X`.

- `learners_DX` Optional argument to allow for different estimators of $E[D|X]$. Setup is identical to `learners`.
- `sample_folds` Number of cross-fitting folds.
- `ensemble_type` Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
 - "nnls" Non-negative least squares.
 - "nnls1" Non-negative least squares with the constraint that all weights sum to one.
 - "singlebest" Select base learner with minimum MSPE.
 - "ols" Ordinary least squares.
 - "average" Simple average over base learners.
 Multiple ensemble types may be passed as a vector of strings.
- `shortstack` Boolean to use short-stacking.
- `cv_folds` Number of folds used for cross-validation in ensemble construction.
- `subsamples_D0`, `subsamples_D1` List of vectors with sample indices for cross-fitting, corresponding to untreated and treated observations, respectively.
- `cv_subsamples_list_D0`, `cv_subsamples_list_D1` List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation. Arguments are separated for untreated and treated observations, respectively.
- `silent` Boolean to silence estimation updates.

Details

ddml_ate provides a double/debiased machine learning estimator for the average treatment effect in the interactive model given by

$$Y = g_0(D, X) + U,$$

where (Y, D, X, U) is a random vector such that $\text{supp} \ D = \{0, 1\}$, $E[U|D, X] = 0$, and $Pr(D = 1|X) \in (0, 1)$ with probability 1, and g_0 is an unknown nuisance function.

In this model, the average treatment effect is defined as

$$\theta_0^{ATE} \equiv E[g_0(1, X) - g_0(0, X)].$$

Value

ddml_ate returns an object of S3 class `ddml_ate`. An object of class `ddml_ate` is a list containing the following components:

- `ate` A vector with the average treatment effect estimates.
- `weights` A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.
mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

psi_a, psi_b Matrices needed for the computation of scores. Used in `summary.ddml_ate()`.

learners, learners_DX, subsamples_D0, subsamples_D1, cv_subsamples_list_D0, cv_subsamples_list_D1, ensemble_type
Pass-through of selected user-provided arguments. See above.

References

See Also
`summary.ddml_ate()`

Other ddml: `ddml_fpliv()`, `ddml_late()`, `ddml_pliv()`, `ddml_plm()`

Examples
Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]

Estimate the average treatment effect using a single base learner, ridge.
ate_fit <- ddml_ate(y, D, X,
learners = list(what = mdl_glmnet,
args = list(alpha = 0)),
sample_folds = 2,
silent = TRUE)

summary(ate_fit)

Estimate the average treatment effect using short-stacking with base learners ols, lasso, and ridge.

ate_fit <- ddml_ate(y, D, X,
learners = list(list(fun = ols),
list(fun = mdl_glmnet),
list(fun = mdl_glmnet,
args = list(alpha = 0))),
ensemble_type = 'nnls',
shortstack = TRUE,
sample_folds = 2,
silent = TRUE)

summary(ate_fit)
ddml_fpliv

Estimator for the Flexible Partially Linear IV Model.

Description
Estimator for the flexible partially linear IV model.

Usage

ddml_fpliv(
y,
D,
Z,
X,
learners,
learners_DXZ = learners,
learners_DX = learners,
sample_folds = 2,
ensemble_type = "nnls",
shortstack = FALSE,
ensemble_type = TRUE,
subsamples = NULL,
cv_subsamples_list = NULL,
silent = FALSE
)

Arguments

y The outcome variable.
D A matrix of endogenous variables.
Z A (sparse) matrix of instruments.
X A (sparse) matrix of control variables.
learners May take one of two forms, depending on whether a single learner or stacking
with multiple learners is used for estimation of the conditional expectation func-
tions. If a single learner is used, learners is a list with two named elements:
 • what The base learner function. The function must be such that it predicts
a named input y using a named input X.
 • args Optional arguments to be passed to what.
If stacking with multiple learners is used, learners is a list of lists, each con-
taining four named elements:
 • fun The base learner function. The function must be such that it predicts a
named input y using a named input X.
 • args Optional arguments to be passed to fun.
ddml_fpliv provides a double/debiased machine learning estimator for the parameter of interest θ_0 in the partially linear IV model given by

$$Y = \theta_0 D + g_0(X) + U,$$

where Y, D, X, Z, U is a random vector such that $E[U|X, Z] = 0$ and $E[\text{Var}(E[D|X, Z]|X)] \neq 0$, and g_0 is an unknown nuisance function.

Value

ddml_fpliv returns an object of S3 class ddml_fpliv. An object of class ddml_fpliv is a list containing the following components:

- **assign_X**: An optional vector of column indices corresponding to control variables in X that are passed to the base learner.
- **assign_Z**: An optional vector of column indices corresponding to instruments in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

- **learners_DXZ**: Optional argument to allow for different estimators of $E[D|X, Z]$. Setup is identical to learners.
- **learners_DX**: Optional argument to allow for different estimators of $E[D|X]$. Setup is identical to learners.
- **sample_folds**: Number of cross-fitting folds.
- **ensemble_type**: Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
 - "nnls" Non-negative least squares.
 - "nnls1" Non-negative least squares with the constraint that all weights sum to one.
 - "singlebest" Select base learner with minimum MSPE.
 - "ols" Ordinary least squares.
 - "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

- **shortstack**: Boolean to use short-stacking.
- **cv_folds**: Number of folds used for cross-validation in ensemble construction.
- **enforce_LIE**: Indicator equal to 1 if the law of iterated expectations is enforced in the first stage.
- **subsamples**: List of vectors with sample indices for cross-fitting.
- **cv_subsamples_list**: List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.
- **silent**: Boolean to silence estimation updates.

Details

ddml_fpliv provides a double/debiased machine learning estimator for the parameter of interest θ_0 in the partially linear IV model given by

$$Y = \theta_0 D + g_0(X) + U,$$

where Y, D, X, Z, U is a random vector such that $E[U|X, Z] = 0$ and $E[\text{Var}(E[D|X, Z]|X)] \neq 0$, and g_0 is an unknown nuisance function.
coef A vector with the θ_0 estimates.

weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

iv_fit Object of class ivreg from the IV regression of $Y - \hat{E}[Y|X]$ on $D - \hat{E}[D|X]$ using $\hat{E}[D|X,Z] - \hat{E}[D|X]$ as the instrument.

learners,learners_DX,learners_DXZ,subsamples,cv_subsamples_list,ensemble_type Pass-through of selected user-provided arguments. See above.

References

See Also

summary.ddml_fpliv(), AER::ivreg()

Other ddml: ddml_ate(), ddml_late(), ddml_pliv(), ddml_plm()

Examples

Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
Z = AE98[, "samesex", drop = FALSE]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]

Estimate the partially linear IV model using a single base learner: Ridge.
fpliv_fit <- ddml_fpliv(y, D, Z, X,
learners = list(what = mdl_glmnet,
args = list(alpha = 0)),
sample_folds = 2,
silent = TRUE)
summary(fpliv_fit)
Usage

ddml_late(
 y,
 D,
 Z,
 X,
 learners,
 learners_DXZ = learners,
 learners_ZX = learners,
 sample_folds = 2,
 ensemble_type = "nnls",
 shortstack = FALSE,
 cv_folds = 5,
 subsamples_Z0 = NULL,
 subsamples_Z1 = NULL,
 cv_subsamples_list_Z0 = NULL,
 cv_subsamples_list_Z1 = NULL,
 silent = FALSE
)

Arguments

y The outcome variable.
D Binary endogenous variable of interest.
Z Binary instrumental variable.
X A (sparse) matrix of control variables.
learners May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, learners is a list with two named elements:

 • what The base learner function. The function must be such that it predicts a named input y using a named input X.
 • args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:

 • fun The base learner function. The function must be such that it predicts a named input y using a named input X.
 • args Optional arguments to be passed to fun.
 • assign_X An optional vector of column indices corresponding to control variables in X that are passed to the base learner.
 • assign_Z An optional vector of column indices corresponding to instruments in Z that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).
ddml_late

- `learners_DXZ`: Optional argument to allow for different estimators of \(E[D|X,Z] \). Setup is identical to `learners`.
- `learners_ZX`: Optional argument to allow for different estimators of \(E[Z|X] \). Setup is identical to `learners`.
- `sample_folds`: Number of cross-fitting folds.
- `ensemble_type`: Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
 - "nnls": Non-negative least squares.
 - "nnls1": Non-negative least squares with the constraint that all weights sum to one.
 - "singlebest": Select base learner with minimum MSPE.
 - "ols": Ordinary least squares.
 - "average": Simple average over base learners.
 Multiple ensemble types may be passed as a vector of strings.
- `shortstack`: Boolean to use short-stacking.
- `cv_folds`: Number of folds used for cross-validation in ensemble construction.
- `subsamples_Z0`, `subsamples_Z1`: List of vectors with sample indices for cross-fitting, corresponding to observations with \(Z = 0 \) and \(Z = 1 \), respectively.
- `cv_subsamples_list_Z0`, `cv_subsamples_list_Z1`: List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation. Arguments are separated for observations with \(Z = 0 \) and \(Z = 1 \), respectively.
- `silent`: Boolean to silence estimation updates.

Details

`ddml_late` provides a double/debiased machine learning estimator for the local average treatment effect in the interactive model given by

\[
Y = g_0(D, X) + U,
\]

where \((Y, D, X, Z, U)\) is a random vector such that \(\text{supp} D = \text{supp} Z = \{0, 1\} \), \(E[U|X, Z] = 0 \), \(E[\text{Var}(E[D|X,Z]|X)] \neq 0 \), \(\Pr(Z = 1|X) \in (0, 1) \) with probability 1, \(p_0(1, X) \geq p_0(0, X) \) with probability 1 where \(p_0(Z, X) \equiv \Pr(D = 1|Z, X) \), and \(g_0 \) is an unknown nuisance function.

In this model, the local average treatment effect is defined as

\[
\theta_{0}^{\text{LATE}} \equiv E[g_0(1, X) - g_0(0, X)|p_0(1, X) > p(0, X)].
\]

Value

`ddml_late` returns an object of S3 class `ddml_late`. An object of class `ddml_late` is a list containing the following components:

- `late`: A vector with the average treatment effect estimates.
- `weights`: A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.
mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

psi_a, psi_b Matrices needed for the computation of scores. Used in `summary.ddml_late()`.

learners, learners_DXZ, learners_ZX, subsamples_Z0, subsamples_Z1, cv_subsamples_list_Z0, cv_subsamples_list_Z1 Pass-through of selected user-provided arguments. See above.

References

See Also

`summary.ddml_late()`

Other ddml: `ddml_ate()`, `ddml_fpliv()`, `ddml_pliv()`, `ddml_plm()`

Examples

```r
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
Z = AE98[, "samesex"]
X = AE98[, c("age", "agefst", "black", "hisp", "othrace", "educ")]

# Estimate the local average treatment effect using a single base learner, # ridge.
late_fit <- ddml_late(y, D, Z, X,
                      learners = list(what = mdl_glmnet,
                                      args = list(alpha = 0)),
                      sample_folds = 2,
                      silent = TRUE)
summary(late_fit)

# Estimate the local average treatment effect using short-stacking with base # learners ols, lasso, and ridge.
late_fit <- ddml_late(y, D, Z, X,
                      learners = list(fun = ols),
                      list(fun = mdl_glmnet),
                      list(fun = mdl_glmnet,
                           args = list(alpha = 0))),
                      ensemble_type = "nnls",
                      shortstack = TRUE,
                      sample_folds = 2,
```

ddml_pliv

silent = TRUE)
summary(late_fit)

ddml_pliv

Estimator for the Partially Linear IV Model.

Description

Estimator for the partially linear IV model.

Usage

ddml_pliv(
 y,
 D,
 Z,
 X,
 learners,
 learners_DX = learners,
 learners_ZX = learners,
 sample_folds = 2,
 ensemble_type = "nnls",
 shortstack = FALSE,
 cv_folds = 5,
 subsamples = NULL,
 cv_subsamples_list = NULL,
 silent = FALSE
)

Arguments

y The outcome variable.
D A matrix of endogenous variables.
Z A matrix of instruments.
X A (sparse) matrix of control variables.
learners May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the conditional expectation functions. If a single learner is used, learners is a list with two named elements:
 • what The base learner function. The function must be such that it predicts a named input \(y \) using a named input \(X \).
 • args Optional arguments to be passed to what.
If stacking with multiple learners is used, learners is a list of lists, each containing four named elements:
 • fun The base learner function. The function must be such that it predicts a named input \(y \) using a named input \(X \).
• args Optional arguments to be passed to fun.
 • assign_X An optional vector of column indices corresponding to control variables in \(X \) that are passed to the base learner.
 • assign_Z An optional vector of column indices corresponding to instruments in \(Z \) that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in \(X \) (and/or \(Z \)).

learners_DX Optional argument to allow for different estimators of \(E[D|X] \). Setup is identical to learners.

learners_ZX Optional argument to allow for different estimators of \(E[Z|X] \). Setup is identical to learners.

sample_folds Number of cross-fitting folds.

ensemble_type Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
 • "nnls" Non-negative least squares.
 • "nnls1" Non-negative least squares with the constraint that all weights sum to one.
 • "singlebest" Select base learner with minimum MSPE.
 • "ols" Ordinary least squares.
 • "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack Boolean to use short-stacking.

cv_folds Number of folds used for cross-validation in ensemble construction.

subsamples List of vectors with sample indices for cross-fitting.

cv_subsamples_list List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.

silent Boolean to silence estimation updates.

Details

\texttt{ddml_pliv} provides a double/debiased machine learning estimator for the parameter of interest \(\theta_0 \) in the partially linear IV model given by
\[
Y = \theta_0 D + g_0(X) + U,
\]
where \((Y, D, X, Z, U) \) is a random vector such that \(E[Cov(U, Z|X)] = 0 \) and \(E[Cov(D, Z|X)] \neq 0 \), and \(g_0 \) is an unknown nuisance function.

Value

\texttt{ddml_pliv} returns an object of S3 class \texttt{ddml_pliv}. An object of class \texttt{ddml_pliv} is a list containing the following components:

coef A vector with the \(\theta_0 \) estimates.
weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.

mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.

iv_fit Object of class ivreg from the IV regression of \(Y - \hat{E}[Y|X] \) on \(D - \hat{E}[D|X] \) using \(Z - \hat{E}[Z|X] \) as the instrument. See also AER::ivreg() for details.

learners,learners_DX,learners_ZX,subsamples,cv_subsamples_list,ensemble_type Pass-through of selected user-provided arguments. See above.

References

See Also

summary.ddml_pliv(), AER::ivreg()

Other ddml: ddml_ate(), ddml_fpliv(), ddml_late(), ddml_plm()

Examples

Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
Z = AE98[, "samesex"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]

Estimate the partially linear IV model using a single base learner, ridge.
pliv_fit <- ddml_pliv(y, D, Z, X,
 learners = list(what = mdl_glmnet,
 args = list(alpha = 0)),
 sample_folds = 2,
 silent = TRUE)

summary(pliv_fit)
Usage

ddml_plm(
 y,
 D,
 X,
 learners,
 learners_DX = learners,
 sample_folds = 2,
 ensemble_type = "nnls",
 shortstack = FALSE,
 cv_folds = 5,
 subsamples = NULL,
 cv_subsamples_list = NULL,
 silent = FALSE
)

Arguments

y
 The outcome variable.

D
 A matrix of endogenous variables.

X
 A (sparse) matrix of control variables.

learners
 May take one of two forms, depending on whether a single learner or stacking
 with multiple learners is used for estimation of the conditional expectation
 functions. If a single learner is used, learners is a list with two named elements:
 - what The base learner function. The function must be such that it predicts
 a named input y using a named input X.
 - args Optional arguments to be passed to what.

If stacking with multiple learners is used, learners is a list of lists, each con-
 taining four named elements:
 - fun The base learner function. The function must be such that it predicts a
 named input y using a named input X.
 - args Optional arguments to be passed to fun.
 - assign_X An optional vector of column indices corresponding to control
 variables in X that are passed to the base learner.

Omission of the args element results in default arguments being used in fun. Omission of assign_X results in inclusion of all variables in X.

learners_DX
 Optional argument to allow for different estimators of \(E[D|X] \). Setup is identical to learners.

sample_folds
 Number of cross-fitting folds.

ensemble_type
 Ensemble method to combine base learners into final estimate of the conditional
 expectation functions. Possible values are:
 - "nnls" Non-negative least squares.
 - "nnls1" Non-negative least squares with the constraint that all weights sum
 to one.
ddml_plm

- "singlebest" Select base learner with minimum MSPE.
- "ols" Ordinary least squares.
- "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

shortstack Boolean to use short-stacking.
cv_folds Number of folds used for cross-validation in ensemble construction.
subsamples List of vectors with sample indices for cross-fitting.
cv_subsamples_list List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation.
silent Boolean to silence estimation updates.

Details

ddml_plm provides a double/debiased machine learning estimator for the parameter of interest θ_0 in the partially linear model given by

$$ Y = \theta_0 D + g_0(X) + U, $$

where (Y, D, X, U) is a random vector such that $E[Cov(U, D|X)] = 0$ and $E[Var(D|X)] \neq 0$, and g_0 is an unknown nuisance function.

Value

ddml_plm returns an object of S3 class ddml_plm. An object of class ddml_plm is a list containing the following components:

- coef A vector with the θ_0 estimates.
- weights A list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.
- mspe A list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.
- ols_fit Object of class lm from the second stage regression of $Y - \hat{E}[Y|X]$ on $D - \hat{E}[D|X]$.
- learners,learners_DX,subsamples,cv_subsamples_list,ensemble_type Pass-through of selected user-provided arguments. See above.

References

See Also

summary.ddml_plm()

Other ddml: ddml_ate(), ddml_fpliv(), ddml_late(), ddml_pliv()

Examples

Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]

Estimate the partially linear model using a single base learner, ridge.
plm_fit <- ddml_plm(y, D, X,
 learners = list(what = mdl_glmnet,
 args = list(alpha = 0)),
 sample_folds = 2,
 silent = TRUE)
summary(plm_fit)

Estimate the partially linear model using short-stacking with base learners
ols, lasso, and ridge
plm_fit <- ddml_plm(y, D, X,
 learners = list(list(fun = ols),
 list(fun = mdl_glmnet),
 list(fun = mdl_glmnet,
 args = list(alpha = 0))),
 ensemble_type = 'nnls',
 shortstack = TRUE,
 sample_folds = 2,
 silent = TRUE)
summary(plm_fit)

mdl_glmnet

Wrapper for glmnet::glmnet().

Description

Simple wrapper for glmnet::glmnet() and glmnet::cv.glmnet().

Usage

mdl_glmnet(y, X, cv = TRUE, ...)

Arguments

y The outcome variable.
X The (sparse) feature matrix.
cv Boolean to indicate use of lasso with cross-validated penalty.
... Additional arguments passed to glmnet. See glmnet::glmnet() and glmnet::cv.glmnet() for a complete list of arguments.
mdl_ranger

Value

mdl_glmnet returns an object of S3 class mdl_glmnet as a simple mask of the return object of glmnet::glmnet() or glmnet::cv.glmnet().

References

See Also

glmnet::glmnet(), glmnet::cv.glmnet()
Other ml_wrapper: mdl_ranger(), mdl_xgboost(), ols()

Examples

glmnet_fit <- mdl_glmnet(rnorm(100), matrix(rnorm(1000), 100, 10))
class(glmnet_fit)

mdl_ranger

Wrapper for ranger::ranger().

Description

Simple wrapper for ranger::ranger().

Usage

mdl_ranger(y, X, ...)

Arguments

y The outcome variable.
X The feature matrix.
... Additional arguments passed to ranger. See ranger::ranger() for a complete list of arguments.

Value

mdl_ranger returns an object of S3 class ranger as a simple mask of the return object of ranger::ranger().

References

mdl_xgboost

See Also

ranger::ranger()
Other ml_wrapper: mdl_glmnet(), mdl_xgboost(), ols()

Examples

ranger_fit <- mdl_ranger(rnorm(100), matrix(rnorm(1000), 100, 10))
class(ranger_fit)

mdl_xgboost

Wrapper for xgboost::xgboost().

Description

Simple wrapper for xgboost::xgboost() with some changes to the default arguments.

Usage

mdl_xgboost(y, X, nrounds = 500, verbose = 0, ...)

Arguments

y The outcome variable.
X The (sparse) feature matrix.
nrounds max number of boosting iterations.
verbose If 0, xgboost will stay silent. If 1, it will print information about performance. If
2, some additional information will be printed out. Note that setting verbose > 0 automatically engages the cb.print.evaluation(period=1) callback function.
... Additional arguments passed to xgboost. See xgboost::xgboost() for a complete list of arguments.

Value

mdl_xgboost returns an object of S3 class mdl_xgboost as a simple mask to the return object of xgboost::xgboost().

References

See Also

xgboost::xgboost()
Other ml_wrapper: mdl_glmnet(), mdl_ranger(), ols()
Examples

```r
xgboost_fit <- mdl_xgboost(rnorm(50), matrix(rnorm(150), 50, 3),
                          nrounds = 1)
class(xgboost_fit)
```

ols

Ordinary least squares.

Description

Simple implementation of ordinary least squares that computes with sparse feature matrices.

Usage

```r
ols(y, X, const = FALSE, w = NULL)
```

Arguments

- `y` The outcome variable.
- `X` The feature matrix.
- `const` Boolean equal to `TRUE` if a constant should be included. The default is `FALSE`.
- `w` A vector of weights for weighted least squares.

Value

`ols` returns an object of S3 class `ols`. An object of class `ols` is a list containing the following components:

- `coef` A vector with the regression coefficients.
- `y, X, const, w` Pass-through of the user-provided arguments. See above.

See Also

Other `ml_wrapper`: `mdl_glmnet()`, `mdl_ranger()`, `mdl_xgboost()`

Examples

```r
ols_fit <- ols(rnorm(100), cbind(rnorm(100), rnorm(100)), const = TRUE)
ols_fit$coef
```
shortstacking

Predictions using Short-Stacking.

Description

Predictions using short-stacking.

Usage

```r
shortstacking(
y, 
X, 
Z = NULL, 
learners, 
sample_folds = 2, 
ensemble_type, 
compute_insample_predictions = FALSE, 
subsamples = NULL, 
silent = FALSE, 
progress = NULL, 
auxilliary_X = NULL, 
shortstack_y = y
)
```

Arguments

- **y**
The outcome variable.
- **X**
A (sparse) matrix of predictive variables.
- **Z**
Optional additional (sparse) matrix of predictive variables.
- **learners**
May take one of two forms, depending on whether a single learner or stacking with multiple learners is used for estimation of the predictor. If a single learner is used, `learners` is a list with two named elements:
 - **what**
The base learner function. The function must be such that it predicts a named input `y` using a named input `X`.
 - **args**
Optional arguments to be passed to `what`.

If stacking with multiple learners is used, `learners` is a list of lists, each containing four named elements:
 - **fun**
The base learner function. The function must be such that it predicts a named input `y` using a named input `X`.
 - **args**
Optional arguments to be passed to `fun`.
 - **assign_X**
An optional vector of column indices corresponding to predictive variables in `X` that are passed to the base learner.
 - **assign_Z**
An optional vector of column indices corresponding to predictive in `Z` that are passed to the base learner.
Omission of the args element results in default arguments being used in fun. Omission of assign_X (and/or assign_Z) results in inclusion of all variables in X (and/or Z).

- **sample_folds**: Number of cross-fitting folds.
- **ensemble_type**: Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
 - "nnls" Non-negative least squares.
 - "nnls1" Non-negative least squares with the constraint that all weights sum to one.
 - "singlebest" Select base learner with minimum MSPE.
 - "ols" Ordinary least squares.
 - "average" Simple average over base learners.

Multiple ensemble types may be passed as a vector of strings.

- **compute_insample_predictions**: Indicator equal to 1 if in-sample predictions should also be computed.
- **subsamples**: List of vectors with sample indices for cross-fitting.
- **silent**: Boolean to silence estimation updates.
- **progress**: String to print before learner and cv fold progress.
- **auxilliary_X**: An optional list of matrices of length sample_folds, each containing additional observations to calculate predictions for.
- **shortstack_y**: Optional vector of the outcome variable to form short-stacking predictions for. Base learners are always trained on y.

Value

shortstack returns a list containing the following components:

- **oos_fitted**: A matrix of out-of-sample predictions, each column corresponding to an ensemble type (in chronological order).
- **weights**: An array, providing the weight assigned to each base learner (in chronological order) by the ensemble procedures.
- **is_fitted**: When `compute_insample_predictions = T`, a list of matrices with in-sample predictions by sample fold.
- **auxilliary_fitted**: When `auxilliary_X` is not NULL, a list of matrices with additional predictions.
- **oos_fitted_bylearner**: A matrix of out-of-sample predictions, each column corresponding to a base learner (in chronological order).
- **is_fitted_bylearner**: When `compute_insample_predictions = T`, a list of matrices with in-sample predictions by sample fold.
- **auxilliary_fitted_bylearner**: When `auxilliary_X` is not NULL, a list of matrices with additional predictions for each learner.

Note that unlike crosspred, shortstack always computes out-of-sample predictions for each base learner (at no additional computational cost).
References

See Also

Other utilities: crosspred(), crossval()

Examples

```r
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
X = AE98[, c("morekids", "age", "agefst", "black", "hisp", "othrace", "educ")]

# Compute predictions using shortstacking with base learners ols and lasso.
# Two stacking approaches are simultaneously computed: Equally
# weighted (ensemble_type = "average") and MSPE-minimizing with weights
# in the unit simplex (ensemble_type = "nnls1"). Predictions for each
# learner are also calculated.
shortstack_res <- shortstacking(y, X,
  learners = list(list(fun = ols),
                 list(fun = mdl_glmnet)),
  ensemble_type = c("average",
                   "nnls1",
                   "singlebest"),
  sample_folds = 2,
  silent = TRUE)
dim(shortstack_res$oos_fitted) # = length(y) by length(ensemble_type)
dim(shortstack_res$oos_fitted_bylearner) # = length(y) by length(learners)
```
Arguments

- **object**: An object of class `ddml_ate` and `ddml_late`, as fitted by `ddml_ate()` and `ddml_late()`, respectively.

... Currently unused.

Value

A matrix with inference results.

Examples

```r
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]

# Estimate the average treatment effect using a single base learner, ridge.
ate_fit <- ddml_ate(y, D, X,
                    learners = list(what = mdl_glmnet,
                                    args = list(alpha = 0)),
                    sample_folds = 2,
                    silent = TRUE)

summary(ate_fit)
```

Description

Inference methods for partially linear estimators. Simple wrapper for `sandwich::vcovHC()`.

Usage

```r
## S3 method for class 'ddml_fpliv'
summary(object, ...)

## S3 method for class 'ddml_pliv'
summary(object, ...)

## S3 method for class 'ddml_plm'
summary(object, ...)
```

Arguments

- **object**: An object of class `ddml_plm`, `ddml_pliv`, or `ddml_fpliv` as fitted by `ddml_plm()`, `ddml_pliv()`, and `ddml_fpliv()`, respectively.

... Additional arguments passed to `vcovHC`. See `sandwich::vcovHC()` for a complete list of arguments.
Value

An array with inference results for each ensemble_type.

References

See Also

sandwich::vcovHC()

Examples

Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]

Estimate the partially linear model using a single base learner, ridge.
plm_fit <- ddml_plm(y, D, X,
 learners = list(what = mdl_glmnet,
 args = list(alpha = 0)),
 sample_folds = 2,
 silent = TRUE)

summary(plm_fit)
Index

* datasets
 AE98, 2
* ddml
 ddml_ate, 8
 ddml_fpliv, 11
 ddml_late, 13
 ddml_pliv, 17
 ddml_plm, 19
* ml_wrapper
 mdl_glmnet, 22
 mdl_ranger, 23
 mdl_xgboost, 24
 ols, 25
* utilities
 crosspred, 3
 crossval, 6
 shortstacking, 26

AE98, 2
AER::ivreg(), 13, 19
crosspred, 3, 7, 28
crossval, 5, 6, 28
ddml, 7
ddml_ate, 8, 13, 16, 19, 22
ddml_ate(), 29
ddml_fpliv, 10, 11, 16, 19, 22
ddml_fpliv(), 29
ddml_late, 10, 13, 13, 19, 22
ddml_late(), 29
ddml_pliv, 10, 13, 16, 17, 22
ddml_pliv(), 29
ddml_plm, 10, 13, 16, 19, 19
ddml_plm(), 29

glmnet::cv.glmnet(), 22, 23
glmnet::glmnet(), 22, 23
mdl_glmnet, 22, 24, 25
mdl_ranger, 23, 23, 24, 25

mdl_xgboost, 23, 24, 24, 25
ols, 23, 24, 25
ranger::ranger(), 23, 24
sandwich::vcovHC(), 29, 30
shortstacking, 5, 7, 26
summary.ddml_ate, 28
summary.ddml_ate(), 10
summary.ddml_fpliv, 29
summary.ddml_fpliv(), 13
summary.ddml_late(summary.ddml_ate), 28
summary.ddml_late(), 16
summary.ddml_pliv(summary.ddml_fpliv), 29
summary.ddml_pliv(), 19
summary.ddml_plm(summary.ddml_fpliv), 29
summary.ddml_plm(), 22
xgboost::xgboost(), 24