Package ‘ddsPLS’

March 2, 2020

Version 1.1.4
Date 2020-03-02
Title Data-Driven Sparse Partial Least Squares Robust to Missing Samples for Mono and Multi-Block Data Sets
Description Allows to build Multi-Data-Driven Sparse Partial Least Squares models. Multi-blocks with high-dimensional settings are particularly sensible to this. It comes with visualization functions and uses 'Rcpp' functions for fast computations and 'doParallel' to parallelize cross-validation.
This is based on H Lorenzo, J Saracco, R Thiebaut (2019) <arXiv:1901.04380>. Many applications have been successfully realized. See <https://hadrienlorenzo.netlify.com/> for more information, documentation and examples.
Maintainer Hadrien Lorenzo <hadrien.lorenzo.2015@gmail.com>
License MIT + file LICENSE
Encoding UTF-8
ByteCompile true
RoxygenNote 6.1.1
Imports RColorBrewer,MASS,graphics,stats,Rdpack,doParallel,foreach,parallel,corrplot,Rcpp
(>= 0.12.18)
RdMacros Rdpack
Suggests knitr,rmarkdown,htmltools
VignetteBuilder knitr
 Depends R (>= 2.10)
LinkingTo Rcpp
URL https://hadrienlorenzo.netlify.com/
NeedsCompilation yes
Author Hadrien Lorenzo [aut, cre], Misbah Razzaq [ctb], Jerome Saracco [aut], Rodolphe Thiebaut [aut]
Repository CRAN
Date/Publication 2020-03-02 11:20:03 UTC
Description

This data set contains the expression measure of 3116 genes and 10 clinical measurements for 64 subjects (rats) that were exposed to non-toxic, moderately toxic or severely toxic doses of acetaminophen in a controlled experiment.

Usage

data(liverToxicity)

Format

A list containing the following components:

- **gene** data frame with 64 rows and 3116 columns. The expression measure of 3116 genes for the 64 subjects (rats).
- **clinic** weight of the diamond, in carats.
- **treatment** data frame with 64 rows and 4 columns, containing the treatment information on the 64 subjects, such as doses of acetaminophen and times of necropsies.
- **gene.ID** data frame with 3116 rows and 2 columns, containing geneBank IDs and gene titles of the annotated genes.

Details

The data come from a liver toxicity study (Bushel *et al.*, 2007) in which 64 male rats of the inbred strain Fisher 344 were exposed to non-toxic (50 or 150 mg/kg), moderately toxic (1500 mg/kg) or severely toxic (2000 mg/kg) doses of acetaminophen (paracetamol) in a controlled experiment. Necropsies were performed at 6, 18, 24 and 48 hours after exposure and the mRNA from the liver was extracted. Ten clinical chemistry measurements of variables containing markers for liver injury are available for each subject and the serum enzymes levels are measured numerically. The data were further normalized and pre-processed by Bushel *et al.* (2007).
The liver toxicity dataset has been downloaded from the mixOmics package. http://mixomics.org/methods/pls-da/.

mddsPLS

Multi-Data-Driven sparse PLS function.

Description

This function takes a set X of K matrices defining the same n individuals and a matrix Y defining also those individuals. According to the number of components R, the user fixes the number of components the model must be built on. The coefficient lambda regularizes the quality of proximity to the data choosing to forget the least correlated bounds between X and Y data sets.

Usage

mddsPLS(Xs, Y, lambda = 0, R = 1, mode = "reg", L0 = NULL, mu = NULL, deflat = FALSE, weight = FALSE, keep_imp_mod = FALSE, NZV = 1e-09, getVariances = TRUE)

Arguments

- **Xs** A matrix, if there is only one block, or a list of matrices, if there is more than one block, of n rows each, the number of individuals. Some rows must be missing. The different matrices can have different numbers of columns. The length of Xs is denoted by K.
- **Y** A matrix of n rows of a vector of length n detailing the response matrix. No missing values are allowed in that matrix.
- **lambda** A real $[0, 1]$ where 1 means just perfect correlations will be used and 0 no regularization is used.
- **R** A strictly positive integer detailing the number of components to build in the model.
- **mode** A character chain. Possibilities are "(reg,lda,logit)", which implies regression problem, linear discriminant analysis (through the package MASS, function lda) and logistic regression (function glm). Default is reg.
- **L0** An integer non null parameter giving the largest number of X variables that can be selected.
- **mu** A real positive. The Ridge parameter changing the bias of the regression model. If is NULL, consider the classical ddsPLS. Default to NULL.
deflat Logical. If TRUE, the solution uses deflations to construct the weights.
weight Logical. If TRUE, the scores are divided by the number of selected variables of
t heir corresponding block.
keep_imp_mod Logical. Whether or not to keep imputation mddsPLS models. Initialized to
FALSE due to the potential size of those models.
NZV Float. The floating value above which the weights are set to 0.
getVariances Logical. Whether or not to compute variances. Default is TRUE.

Value
A list containing a mddsPLS object, see MddsPLS_core. The list order_values is filled with the
selected genes in each block. They are ordered according to the sum of the square values of the
Super-Weights along the R dimensions. The rownames give the names of the selected variables, if
no name is given to the columns of Xs, simply the indices are given. Plus the Weights and Super-
Weights are given for each of the selected variables in every R dimension. If getVariances is
TRUE then the Variances is filled with two types of variances corresponding to bounds between
components, or super-components and Y vrawiables, taken together or splitted. Both of the types of
variances are computed as follows:

1. Linear. Multivariate-linear regression matrix minimizing the Ordinary Least Squares problem
 is computed. Is then returned the fraction of the variance of the therefore model divide by the
 variance observed. This represents the variance of the to be predicted parts by the predictors
 under a linear model.
2. RV. That coefficient has permits to extend the correlation notion to matrices with the same
 number of rows but not necessarily with the same number of columns (see Robert and Es-
coufier 1976).

References

See Also
summary.mddsPLS, plot.mddsPLS, predict.mddsPLS, perf_mddsPLS, summary.perf_mddsPLS,
plot.perf_mddsPLS

Examples
Single-block example :
Classification example :
data("penicilliumYES")
X <- penicilliumYES$X
X <- scale(X[,which(apply(X,2,sd)>0)])
Y <- as.factor(unlist(lapply(c("Melanoconidiu","Polonicum","Venetum"),function(tt){rep(tt,12)})))
mddsPLS_model_class <- mddsPLS(Xs = X,Y = Y,R = 2,L0=3,mode = "lda")
summary(mddsPLS_model_class,plot_present_indiv = FALSE)

Regression example :
##
The core function of the Multi-Data-Driven sparse PLS function.

Description

This function should not be used directly by the user.

Usage

MddsPLS_core(Xs, Y, lambda = 0, R = 1, mode = "reg", L0 = NULL,
mu = NULL, deflat = FALSE, weight = FALSE, id_na = NULL,
NZV = 1e-09)

Arguments

Xs A matrix, if there is only one block, or a list of matrices, if there is more than one block, of \(n \) rows each, the number of individuals. Some rows must be missing.
The different matrices can have different numbers of columns. The length of \(Xs \) is denoted by \(K \).

Y A matrix of \(n \) rows of a vector of length \(n \) detailing the response matrix. No missing values are allowed in that matrix.

lambda A real \([0,1]\) where 1 means just perfect correlations will be used and 0 no regularization is used.
A strictly positive integer detailing the number of components to build in the model.

mode
A character chain. Possibilities are "(reg,lda,logit)", which implies regression problem, linear discriminant analysis (through the package MASS, function lda) and logistic regression (function glm). Default is reg.

L0
An integer non null parameter giving the largest number of X variables that can be selected.

mu
A real positive. The Ridge parameter changing the bias of the regression model. If is NULL, consider the classical ddsPLS. Default to NULL.

deflat
Logical. If TRUE, the solution uses deflations to construct the weights.

weight
Logical. If TRUE, the scores are divided by the number of selected variables in the corresponding block.

id_na
A list of na indices for each block. Initialized to NULL.

NZV
Float. The floating value above which the weights are set to 0.

Value
A list containing the following objects:

- **u** A list of length **K**. Each element is a **p_kXR** matrix : the weights per block per axis.
- **u_t_super** A list of length **K**. Each element is a **p_kXR** matrix : the weights per block per axis scaled on the super description of the data set. Denoted as scaled super-weights.
- **v** A **qXR** matrix : the weights for the Y part.
- **ts** A list of length **R**. Each element is a **nXK** matrix : the scores per axis per block.
- **(t,s)** Two **nXR** matrices, super-scores of the X and Y parts.
- **(t_ort,s_ort)** Two **nXR** matrices, final scores of the X and Y part. They correspond to PLS scores of (t,s) scores and so **t_ort^T s_ort** is diagonal, **t_ort**, respectively **s_ort**, carries the same information as **t**, respectively **s**.
- **B** A list of length **K**. Each element is a **p_kXq** matrix : the regression matrix per block.
- **(mu_x,sd_x)** Two lists of length **K**. Each element is a **p_k** vector : the mean and standard deviation variables per block.
- **(mu_y,sd_y)** Two vectors of length **q** : the mean and the standard deviation variables for Y part.
- **R** Given as an input.
- **q** A non negative integer : the number of variables of Y matrix.
- **Ms** A list of length **K**. Each element is a **qXp_k** matrix : the soft-thresholded empirical variance-covariance matrix $$Y^T X_k / (n - 1)$$.
- **lambda** Given as an input.
Data set of three species of Penicillium fungi, from sparseLDA

Description

The data set penicilliumYES has 36 rows and 3754 columns. The variables are 1st order statistics from multi-spectral images of three species of Penicillium fungi: *Melanoconidium*, *Polonicum*, and *Venetum*. These are the data used in the Clemmensen et al "Sparse Discriminant Analysis" paper.

Usage

data(penicilliumYES)

Format

This data set contains the following matrices:

X A matrix with 36 columns and 3754 rows. The training and test data. The first 12 rows are *P. Melanoconidium* species, rows 13-24 are *P. Polonicum* species, and the last 12 rows are *P. Venetum* species. The samples are ordered so that each pair of three is from the same isolate.

Y A matrix of dummy variables for the training data.

Z Z matrix of probabilities for the subcalsses of the training data.

Details

The X matrix is not normalized.

Source

References

Function to compute cross-validation performances.

Description

That function must be applied to the given dataset and the cross-validation process is made on the given set of parameters.

Usage

perf_mddsPLS(Xs, Y, lambda_min = 0, lambda_max = NULL, n.lambda = 1, lambdas = NULL, R = 1, L0s = NULL, mu = NULL, deflat = FALSE, weight = FALSE, kfolds = "loo", mode = "reg", fold_fixed = NULL, NCORES = 1, NZV = 1e-09, plot_result = T, legend_label = T)

Arguments

Xs A matrix, if there is only one block, or a list of matrices, if there is more than one block, of n rows each, the number of individuals. Some rows must be missing. The different matrices can have different numbers of columns. The length of Xs is denoted by K.

Y A matrix of n rows of a vector of length n detailing the response matrix. No missing values are allowed in that matrix.

lambda_min A real in [0, 1]. The minimum value considered. Default is 0.

lambda_max A real in [0, 1]. The maximum value considered. Default is NULL, interpreted to the largest correlation between X and Y.

n.lambda A strictly positive integer. Default to 1.

lambdas A vector of reals in [0, 1]. The values tested by the perf process. Default is NULL, when that parameter is not taken into account.

R A strictly positive integer detailing the number of components to build in the model.

L0s A vector of non null positive integers. The values tested by the perf process. Default is NULL, when that parameter is not taken into account.

mu A real positive. The Ridge parameter changing the bias of the regression model. If is NULL, consider the classical ddsPLS. Default to NULL.

deflat Logical. If TRUE, the solution uses deflations to construct the weights.

weight Logical. If TRUE, the scores are divided by the number of selected variables of their corresponding block.

kfolds character or integer. If equals to "loo" then a leave-one-out cross-validation is started. No other character is understood. Any strictly positive integer gives the number of folds to make in the cross-validation process.

mode A character chain. Possibilities are "(reg,lda,logit)", which implies regression problem, linear discriminant analysis (through the package MASS, function lda) and logistic regression (function glm). Default is reg.
fold_fixed Vector of length \(n \). Each element corresponds to the fold of the corresponding fold. If NULL then that argument is not considered. Default to NULL.

NCORES Integer. The number of cores. Default is 1.

NZV Float. The floating value above which the weights are set to 0.

plot_result Logical. Whether or not to plot the result. Initialized to TRUE. The reg_error argument of the plot.perf.mddsPLS function is left to its default value.

legend_label Logical. Whether or not to add the legend names to the plot. Initialized to TRUE.

Value

A result of the perf function

See Also

summary.perf.mddsPLS, plot.perf.mddsPLS, mddsPLS, predict.mddsPLS,

Examples

Classification example :
data("penicilliumYES")
X <- penicilliumYES$X
X <- scale(X[,which(apply(X,2,sd)>0)])
Y <- as.factor(unlist(lapply(c("Melanoconidiu","Polonicum","Venetum"),
function(tt){rep(tt,12)})))
#res_cv_class <- perf.mddsPLS(X,Y,L0s=1:5,R = 2,
#mode = "lda",NCORES = 1,fold_fixed = rep(1:12,3))

Regression example :
data("liverToxicity")
X <- scale(liverToxicity$gene)
Y <- scale(liverToxicity$clinic)
#res_cv_reg <- perf.mddsPLS(Xs = X,Y,L0s=c(1,5,10,25,50),R = 1,
#mode = "reg")

Description

That function must be applied to a mddsPLS object. Extra parameters are available to control the plot quality. Keep in mind that if a lot of covariates are selected, their names might not all fit the plot window, only the names of the most important covariates are present. To provide the names of all the covariates, the user can modify concerned parameters of the barplot function (for example the cex.names parameter).
Usage

```r
## S3 method for class 'mddsPLS'
plot(x, vizu = "weights", super = FALSE,
     addY = FALSE, block = NULL, comp = NULL, variance = "Linear",
     mar_left = 2, mar_bottom = 2, margins_heatmap = c(5, 5),
     pos_legend = "topright", legend_names = NULL, legend.cex = 1,
     values_corr = F, block_Y_name = "Y", alpha.Y_sel = 0.4,
     reorder_Y = F, ...)  
```

Arguments

- `x` The perf_mddsPLS object.
- `vizu` character. One of `weights`, `coeffs`, `heatmap`, `correlogram`. `coeffs` does not work in the case of classification (`lda` or `logit`). If `heatmap` is selected, light colors correspond to low expressions.
- `super` logical. If `TRUE` barplots are filled with **Super-Weights** in the case of `vizu=weights` of with général **X** and **Y** components else.
- `addY` logical. Whether or not to plot **Block Y**. Initialized to `FALSE`.
- `block` vector of intergers indicating which components must be plotted. If equals `NULL` then all the components are plotted. Initialized to `NULL`.
- `comp` vector of intergers indicating which blocks must be plotted. If equals `NULL` then all the blocks are plotted. Initialized to `NULL`.
- `variance` character. One of `Linear`, `RV`. Explains the type of variance shown in the graphics.
- `mar_left` positive float. Extra lines to add to the left margins, where the variable names are written.
- `mar_bottom` positive float. Extra lines to add to the bottom margins. Useful when `addY=TRUE`.
- `margins_heatmap` vector of 2 positive floats. The `margins` argument of the `heatmap` function. Margins to the bottom and to the right of the heatmap, if plotted. Useful if samples and covariates have particularly long names. Default to `c(5,5)`.
- `pos_legend` Initialized to "topright". If equals `NULL`, then no legend is given.
- `legend_names` vector of character. Indicates the names of the blocks. Initialized to `NULL` and in this case just gets positions in the Xs list.
- `legend.cex` positive float. character expansion factor relative to current par("cex") for `legend` function.
- `values_corr` logical. Wether of noth to write the correlation calues in the correlogram. Initialized to `FALSE`.
- `block_Y_name` character. Initialized to "Block Y".
- `alpha.Y_sel` positive float. factor modifying the opacity alpha; typically in `[0,1]` from `adjustcolor` function.
- `reorder_Y` logical. In case `addY=TRUE`. Order the Y variances according to proportion of variance explained on the first component.
- `...` Other plotting parameters to affect the plot.
Value

The plot visualisation

See Also

mddsPLS, summary.mddsPLS

Examples

library(doParallel)
Classification example :
data("penicilliumYES")
X <- penicilliumYES$X
X <- scale(X[,which(apply(X,2,sd)>0)])
Y <- as.factor(unlist(lapply(c("Melanoconidium","Polonicum","Venetum"),
function(tt){rep(tt,12)})))
x <- mddsPLS(Xs = X,Y = Y,R = 3, mode = "lda",L0=20)
plot(x)

Regression example :
data("liverToxicity")
X <- scale(liverToxicity$gene)
Y <- scale(liverToxicity$clinic)
mod_reg <- mddsPLS(Xs = X,Y = Y,L0=10,R = 2)
plot(mod_reg,addY = T,mar_left = 3)
plot(mod_reg,addY = T,mar_left = 3,super = T)

plot.perf_mddsPLS

Function to plot cross-validation performance results.

Description

That function must be applied to a perf_mddsPLS object. Extra parameters are available to control the plot quality.

Usage

S3 method for class 'perf_mddsPLS'
plot(x, plot_mean = FALSE, reg_error = "MSEP",
 legend_names = NULL, pos_legend = "bottomleft",
 which_sd_plot = NULL, ylim = NULL, alpha.f = 0.4,
 no_occurence = T, main = NULL, no_plot = F, ...)

Arguments

x The perf_mddsPLS object.
plot_mean logical. Whether or not to plot the mean curve.
![Image](https://i.imgur.com/0.png)

```r
# Classification example :
data("penicilliumYES")
X <- penicilliumYES$X
X <- scale(X[,which(apply(X,2,sd)>0)])
Y <- as.factor(unlist(lapply(c("Melanoconidiu","Polonicum","Venetum"),
function(tt){rep(tt,12)}))
#res_cv_class <- perf_mddsPLS(X,Y,L0s=1:5,R = 2,
#mode = "lda",NCORES = 1,fold_fixed = rep(1:12,3))
#plot(res_cv_class)

# Regression example :
data("liverToxicity")
X <- scale(liverToxicity$gene)
Y <- scale(liverToxicity$clinic)
#res_cv_reg <- perf_mddsPLS(Xs = X,Y,L0s=c(1,5,10,15,20),R = 1,
# mode = "reg")
#plot(res_cv_reg)
```
predict.mddsPLS

The predict method associated to the mddsPLS class.

Description
The predict method associated to the mddsPLS class.

Usage

S3 method for class 'mddsPLS'
predict(object, newdata, type = "y", ...)

Arguments

object A mdd-sPLS object, output from the mddsPLS function.
newdata A data-set where individuals are described by the same as for mod_0
type character. It can be y to return Y estimated value of x for the completed values of newdata. both for both y and x.
...

Value
Requested predicted values. In the case of classification, object probY gives the probability per individual and per class.

Examples

data("liverToxicity")
X <- scale(liverToxicity$gene)
Y <- scale(liverToxicity$clinic)
mod_0 <- mddsPLS(X,Y)
Y_test <- predict(mod_0,X)

summary.mddsPLS

The summary method of the mddsPLS function.

Description
This function is easy to use and gives information about the dataset and the model.

Usage

S3 method for class 'mddsPLS'
summary(object, main_plot_indiv = NULL,
 fontsize = 10, alpha = 0.7, ...)

Arguments

object The object of class mddsPLS
main_plot_indiv character. Main of the Venn diagram. Initialized to NULL.
fontsize interger. The size of the text, initialized to 10.
alpha real between 0 and 1. The transparency parameter.
...

See Also

mddsPLS

Examples

library(ddsPLS)
data("liverToxicity")
X <- scale(liverToxicity$gene)
Y <- scale(liverToxicity$clinic)
X1 <- X[, 1:10]; X1[1,] <- NA
X3 <- X[21:30]; X3[4:20,] <- NA
X4 <- X[31:40]
Xs <- list(x1=X1, x2=X2, aaaa=X3, X4)
object <- mddsPLS(Xs = Xs, Y = Y[, 1], lambda=0.1, R = 1, mode = "reg", verbose = TRUE)
summary(object)

summary.perf_mddsPLS

The summary method of the perf_mddsPLS function.

Description

This function is easy to use and gives information about the dataset and the model.

Usage

S3 method for class 'perf_mddsPLS'
summary(object, plot_res_cv = T, ...)

Arguments

object The object of class mddsPLS
plot_res_cv logical. If TRUE, plots the results of the cross-validation
...

See Also

perf_mddsPLS, plot.perf_mddsPLS
Examples

library(ddsPLS)

data("liverToxicity")
X <- scale(liverToxicity$gene)
Y <- scale(liverToxicity$clinic)
X1 <- X[,1:10]; X1[1,] <- NA
X2 <- X[,11:20]; X2[2:5,] <- NA
X3 <- X[,21:30]; X3[4:20,] <- NA
X4 <- X[,31:40]
Xs <- list(x1=X1, x2=X2, aaaa=X3, X4)
object <- perf_mddsPLS(Xs = Xs, Y = Y[,1], lambdas=c(0.1, 0.2, 0.3), R = 1,
mode = "reg", kfolds=5)
summary(object)
Index

*Topic datasets
 liverToxicity, 2
 penicilliumYES, 7

liverToxicity, 2

mddsPLS, 3, 9, 11, 14
MddsPLS_core, 4, 5

penicilliumYES, 7
perf_mddsPLS, 4, 8, 12, 14
plot.mddsPLS, 4, 9
plot.perf_mddsPLS, 4, 9, 11, 14
predict.mddsPLS, 4, 9, 13

summary.mddsPLS, 4, 11, 13
summary.perf_mddsPLS, 4, 9, 12, 14