Package ‘ddsPLS’

January 30, 2024

Type Package
Title Data-Driven Sparse Partial Least Squares
Version 1.2.1
Author Hadrien Lorenzo
Maintainer Hadrien Lorenzo <hadrien.lorenzo.2015@gmail.com>
Description A sparse Partial Least Squares implementation which uses soft-threshold estimation of the covariance matrices and therein introduces sparsity. Number of components and regularization coefficients are automatically set.
License MIT + file LICENSE
Encoding UTF-8
Depends foreach, R (>= 2.10)
Imports Rcpp (>= 1.0.5), doParallel, shiny, RColorBrewer
LinkingTo Rcpp, RcppEigen
Suggests knitr, rmarkdown, MASS
VignetteBuilder knitr
RoxygenNote 7.3.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-01-30 08:30:02 UTC

R topics documented:

 bootstrapWrap .. 2
 bootstrap_Rcpp 3
 ddsPLS ... 4
 ddsPLS_App ... 5
 modelddsPLSCpp_Rcpp 6
 plot.ddsPLS ... 7
 predict.ddsPLS ... 8
 print.ddsPLS .. 9
 summary.ddsPLS .. 9
bootstrapWrap

Description

The wrapper used to start the bootstrap commands. Not to be used by the user.

Usage

```r
bootstrapWrap(
  U,
  V,
  X,
  Y,
  lambdas,
  lambda_prev,
  R,
  n_B,
  doBoot = TRUE,
  n,
  p,
  q,
  n_lambdas,
  lambda0.
)
```

Arguments

- `U` matrix, weights X
- `V` matrix, weights Y
- `X` matrix
- `Y` matrix
- `lambdas` vector, the to be tested values for lambda
- `lambda_prev` vector, the previous selected values for lambda
- `R` integer, the desired number of components
- `n_B` integer, the number of bootstrap samples required
- `doBoot` boolean, whether or not perform bootstrap. Used to build the final model (FALSE)
- `n` integer, the number of observations
- `p` integer, the number of covariates
- `q` integer, the number of response variables
- `n_lambdas` integer, the number of to be tested lambdas
- `lambda0.` the vector of lambda0
Value

A list

bootstrap_Rcpp

\hspace*{0.5cm} C++ implementation of the bootstrap operations

Description

Start the bootstrap operations. Should not be used by user.

Usage

\begin{verbatim}
bootstrap_Rcpp(
 U,
 V,
 X,
 Y,
 lambdas,
 lambda_prev,
 R,
 n_B,
 doBoot,
 n,
 p,
 q,
 N_lambdas,
 lambda0
)
\end{verbatim}

Arguments

\begin{itemize}
 \item \textbf{U} \hspace{1cm} The weights for X part.
 \item \textbf{V} \hspace{1cm} The weights for Y part.
 \item \textbf{X} \hspace{1cm} The matrix of X part.
 \item \textbf{Y} \hspace{1cm} The matrix of X part.
 \item \textbf{lambdas} \hspace{1cm} The to be tested values for lambda.
 \item \textbf{lambda_prev} \hspace{1cm} The previously selected values for lambda.
 \item \textbf{R} \hspace{1cm} The number of components to build.
 \item \textbf{n_B} \hspace{1cm} The number of bootstrap samples to generate and analyse.
 \item \textbf{doBoot} \hspace{1cm} Whether do bootstrap operations.
 \item \textbf{n} \hspace{1cm} The number of observations.
 \item \textbf{p} \hspace{1cm} The number of variables of X part.
 \item \textbf{q} \hspace{1cm} The number of variables of Y part.
 \item \textbf{N_lambdas} \hspace{1cm} The number of to be tested values for lambda.
 \item \textbf{lambda0} \hspace{1cm} The vector of lambda0
\end{itemize}
ddsPLS
Data-Driven Sparse Partial Least Squares

Description

The main function of the package. It does both start the ddsPLS algorithm, using bootstrap analysis. Also it estimates automatically the number of components and the regularization coefficients. One regularization parameter per component only is needed to select both in x and in y. Build the optimal model, of the class ddsPLS. Among the different parameters, the lambda is the vector of parameters that are tested by the algorithm along each component for each bootstrap sample. The total number of bootstrap samples is fixed by the parameter n_B, for this parameter, the more the merrier, even if costs more in computation time. This gives access to 3 S3 methods (`summary.ddsPLS`, `plot.ddsPLS` and `predict.ddsPLS`).

Usage

```r
ddsPLS(
  X,
  Y,
  criterion = "diffR2Q2",
  doBoot = TRUE,
  LD = FALSE,
  lambdas = NULL,
  n_B = 50,
  n_lambdas = 100,
  lambda_roof = NULL,
  lowQ2 = 0,
  NCORES = 1,
  errorMin = 1e-09,
  verbose = FALSE
)
```

Arguments

- **X**: matrix, the covariate matrix (n,p).
- **Y**: matrix, the response matrix (n,q).
- **criterion**: character, whether diffR2Q2 to be minimized, default, or Q2 to be maximized.
- **doBoot**: logical, whether performing bootstrap operations, default to TRUE. If equal to FALSE, a model with is built on the parameters lambda and the number of components is the length of this vector. In that context, the parameter n_B is ignored. If equal to TRUE, the ddsPLS algorithm, through bootstrap validation, is started using lambda as a grid and n_B as the total number of bootstrap samples to simulate per component.
- **LD**: Boolean, whether or not consider Low-Dimensional dataset.
`lambda` vector, the to be tested values for `lambda`. Each value for `lambda` can be interpreted in terms of correlation allowed in the model. More precisely, a covariate 'x[j]' is not selected if its empirical correlation with all the response variables 'y[1..q]' is below `lambda`. A response variable 'y[k]' is not selected if its empirical correlation with all the covariates 'x[1..p]' is below `lambda`. Default to `seq(0,1,length.out = 30)`.

`n_B` integer, the number of to be simulated bootstrap samples. Default to 50.

`n_lambdas` integer, the number of `lambda` values. Taken into account only if `lambdas` is `NULL`. Default to 100.

`lambda_roof` limit value to be considered in the optimization.

`lowQ2` real, the minimum value of Q^2_B to accept the current `lambda` value. Default to 0.0.

`NCORES` integer, the number of cores used. Default to 1.

`errorMin` real, not to be used.

`verbose` boolean, whether to print current results. Default to `FALSE`.

Value

A list with different interesting output describing the built model

See Also

`summary.ddsPLS`, `plot.ddsPLS`, `predict.ddsPLS`

Examples

```r
# n <- 100 ; d <- 2 ; p <- 20 ; q <- 2
# phi <- matrix(rnorm(n*d),n,d)
# a <- rep(1,p/4) ; b <- rep(1,p/2)
# X <- phi%*%matrix(c(1*a,0*a,0*b,
# 1*a,3*b,0*a),nrow = d,byrow = TRUE) + matrix(rnorm(n*p),n,p)
# Y <- phi%*%matrix(c(1,0,
# 0,0),nrow = d,byrow = TRUE) + matrix(rnorm(n*q),n,q)
# model_ddsPLS <- ddsPLS(X,Y,verbose=TRUE)
```

Description

Applet to start ddsPLS

Usage

`ddsPLS_App(...)`
Arguments

... Same parameters as ddsPLS

Value

Mainly visual objects, also possible to save plots

Description

Build a ddsPLS model once the bootstrap operations has allowed to find a correct lambda.

Usage

modelddsPLSCpp_Rcpp(u, v, x, y, lambdas, r, n, p, q, lambda0)

Arguments

U The weights for X part.
V The weights for Y part.
X The matrix of X part.
Y The matrix of X part.
lambdas The to be tested values for lambda.
R The number of components to build.
n The number of observations.
p The number of variables of X part.
q The number of variables of Y part.
lambda0 The vector of regulation parameters.
plot.ddsPLS

Function to plot bootstrap performance results of the ddsPLS algorithm

Description

Function to plot bootstrap performance results of the ddsPLS algorithm

Usage

```r
## S3 method for class 'ddsVar'
plot(
  x,
  type = "criterion",
  digits = 1,
  legend.position = "topright",
  horiz = TRUE,
  biPlot = FALSE,
  las = 0,
  col = NULL,
  cex.names = 1,
  mar = c(5, 4, 4, 2) + 0.1,
  ...
)
```

Arguments

- **x**: A ddsPLS object
- **type**: The type of graphics. One of "criterion" (default), "total", "prop", "predict", "Q2r", "Q2", "R2", "weightX", "weightY", "loadingX" or "loadingY".
- **digits**: double. Rounding of the written explained variance.
- **legend.position**: character. Where to put the legend.
- **horiz**: boolean. Whether to plot horizontally.
- **biPlot**: boolean wether or not to plot one component versus the other.
- **las**: numeric in (0,1,2,3): the style of axis labels.
- **col**: vector. Mainly to modify bars in weight plots.
- **cex.names**: double. Size factor for variable names.
- **mar**: vector. The margins for the plot.
- **...**: Other plotting parameters to affect the plot.

See Also

ddsPLS, predict.ddsPLS, summary.ddsPLS
Function to predict from ddsPLS objects

S3 method for class 'ddsPLS'
predict(
 object,
 X_test = NULL,
 toPlot = FALSE,
 doDiagnosis = T,
 legend.position = "topright",
 cex = 1,
 cex.text = 1,
 ...
)

Arguments

- **object**: A ddsPLS object.
- **X_test**: matrix, a test data-set. If is "NULL", the default value, the predicted values for the train test are returned.
- **toPlot**: boolean, wether or not to plot the extreme value test plot. Default to ‘TRUE’.
- **doDiagnosis**: Yes or no to perform diagnosis.
- **legend.position**: character. Where to put the legend.
- **cex**: float positive. Number indicating the amount by which plotting symbols should be scaled relative to the default.
- **cex.text**: float positive. Number indicating the amount by which plotting text elements should be scaled relative to the default.
- **...**: Other parameters

See Also

`ddsPLS`, `plot.ddsPLS`, `summary.ddsPLS`
Function to sum up bootstrap performance results of the ddsPLS algorithm

Usage

S3 method for class 'ddsPLS'
print(x, ...)

Arguments

x A ddsPLS object.
...
Other parameters to be taken into account.

See Also

ddsPLS, plot.ddsPLS, predict.ddsPLS

Function to sum up bootstrap performance results of the ddsPLS algorithm

Usage

S3 method for class 'ddsPLS'
summary(
 object,
 return = FALSE,
 plotSelection = FALSE,
 las = 1,
 cex.names = 1,
 digits = 2,
 ...)

)
Arguments

object A ddsPLS object.
return Wether or not to return the printed values, default to FALSE.
plotSelection boolean. Whether plot the selection variables.
las interger. Parameter for angle of variable names.
cex.names real positive. Which factor zoom the variable names.
digits integer indicating the number of decimal places (round) to be used.
... Other parameters to be taken into account.

See Also

ddsPLS, plot.ddsPLS, predict.ddsPLS
Index

bootstrap_Rcpp, 3
bootstrapWrap, 2

ddsPLS, 4, 7–10
ddsPLS_App, 5

modelddsPLSCpp_Rcpp, 6

plot.ddsPLS, 4, 5, 7, 8–10
predict.ddsPLS, 4, 5, 7, 8, 9, 10
print.ddsPLS, 9

summary.ddsPLS, 4, 5, 7, 8, 9