Package ‘deSolve’

October 22, 2022

Version 1.34

Title Solvers for Initial Value Problems of Differential Equations
(‘ODE’, ‘DAE’, ‘DDE’)

Author Karline Soetaert [aut] (<https://orcid.org/0000-0003-4603-7100>),
Thomas Petzoldt [aut, cre] (<https://orcid.org/0000-0002-4951-6468>),
R. Woodrow Setzer [aut] (<https://orcid.org/0000-0002-6709-9186>),
Peter N. Brown [ctb] (files ddaspk.f, dvode.f, zvode.f),
George D. Byrne [ctb] (files dvode.f, zvode.f),
Ernst Hairer [ctb] (files radau5.f, radau5a),
Alan C. Hindmarsh [ctb] (files ddaspk.f, dlsode.f, dvode.f, zvode.f,
opdmain.f, opdka1.f),
Cleve Moler [ctb] (file dlinpck.f),
Linda R. Petzold [ctb] (files ddaspk.f, dlsoda.f),
Youcef Saad [ctb] (file dsparsk.f),
Clement W. Ulrich [ctb] (file ddaspk.f)

Maintainer Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

Depends R (>= 3.3.0)

Imports methods, graphics, grDevices, stats

Suggests scatterplot3d, FME

Description Functions that solve initial value problems of a system
of first-order ordinary differential equations (‘ODE’), of
partial differential equations (‘PDE’), of differential
algebraic equations (‘DAE’), and of delay differential
equations. The functions provide an interface to the FORTRAN
functions 'lsoda', 'lsodar', 'lsode', 'lsodes' of the 'ODEPACK'
collection, to the FORTRAN functions 'dvode', 'zvode' and 'daspk'
and a C-implementation of solvers of the 'Runge-Kutta' family with
fixed or variable time steps. The package contains routines
designed for solving 'ODEs' resulting from 1-D, 2-D and 3-D
partial differential equations (‘PDE’) that have been converted
to 'ODEs' by numerical differencing.

License GPL (>= 2)

URL http://desolve.r-forge.r-project.org/
LazyData: yes
NeedsCompilation: yes
Repository: CRAN
Date/Publication: 2022-10-22 18:15:07 UTC

R topics documented:

deSolve-package ... 3
aquaphy ... 5
ccl4data ... 8
ccl4model ... 9
cleanEventTimes .. 12
daspk ... 13
dede ... 23
diagnostics .. 27
diagnostics.deSolve .. 28
DLLfunc .. 29
DLLres ... 31
events ... 33
forcings ... 39
lsoda ... 42
lsodar ... 49
lsode ... 55
lsodes ... 63
ode ... 71
ode.1D ... 77
ode.2D ... 83
ode.3D ... 89
ode.band .. 92
plot.deSolve .. 95
radau ... 102
rk ... 109
rk4 ... 115
rkMethod .. 118
SCOC .. 123
timelags ... 125
vode ... 128
zvode ... 135

Index 141
Description

Functions that solve initial value problems of a system of first-order ordinary differential equations (ODE), of partial differential equations (PDE), of differential algebraic equations (DAE) and delay differential equations.

The functions provide an interface to the FORTRAN functions lsoda, lsodar, lsode, lsodes of the ODEPACK collection, to the FORTRAN functions dvode, zvode and daspk and a C-implementation of solvers of the Runge-Kutta family with fixed or variable time steps.

The package contains routines designed for solving ODEs resulting from 1-D, 2-D and 3-D partial differential equations (PDE) that have been converted to ODEs by numerical differencing. It includes root-finding (or event location) and provides access to lagged variables and derivatives.

The system of differential equations is written as an \(\mathbb{R} \) function or defined in compiled code that has been dynamically loaded, see package vignette compiledCode for details. The solvers may be used as part of a modeling package for differential equations, or for parameter estimation using any appropriate modeling tool for non-linear models in \(\mathbb{R} \) such as optim, nls, nlm or nlme, or FME.

Package Vignettes, Examples, Online Resources

- Solving Initial Value Differential Equations in \(\mathbb{R} \) (pdf, R code)
- Writing Code in Compiled Languages (pdf, R code)
- Examples in R (.doc/examples), and in Fortran or C (.doc/dynload, .doc/dynload-dede)
- deSolve homepage: https://desolve.r-forge.r-project.org (Papers, Books, PDFs)
- Mailing list: mailto:r-sig-dynamic-models@r-project.org

Author(s)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer

References

See also the references given on the specific help pages of the different methods.

See Also

- **ode** for a general interface to most of the ODE solvers,
- **ode.band** for solving models with a banded Jacobian,
- **ode.1D, ode.2D, ode.3D**, for integrating 1-D, 2-D and 3-D models,
- **dede** for a general interface to the delay differential equation solvers,
- **lsoda, lsode, lsodes, lsodar, vode**, for ODE solvers of the Livermore family,
- **daspk**, for a DAE solver up to index 1, of the Livermore family,
- **radau** for integrating DAEs up to index 3 using an implicit Runge-Kutta,
- **rk, rkMethod, rk4, euler** for Runge-Kutta solvers,
- **DLLfunc, DLLres**, for testing model implementations in compiled code,
- **forcings, events**, for how to implement forcing functions (external variables) and events (sudden changes in state variables),
- **lagvalue, lagderiv**, for how to get access to lagged values of state variables and derivatives.

Examples

```r
library(deSolve)

## Chaos in the atmosphere
Lorenz <- function(t, state, parameters) {
  with(as.list(c(state, parameters)), {
    dX <- a * X + Y * Z
    dY <- b * (Y - Z)
    dZ <- -X * Y + c * Y - Z
    list(c(dX, dY, dZ))
  })
}

parameters <- c(a = -8/3, b = -10, c = 28)
state <- c(X = 1, Y = 1, Z = 1)
times <- seq(0, 100, by = 0.01)
out <- ode(y = state, times = times, func = Lorenz, parms = parameters)
plot(out)

## add a 3D figure if package scatterplot3D is available
if (require(scatterplot3D))
  scatterplot3d(out[,-1], type = "l")
```
Description

A phytoplankton model with uncoupled carbon and nitrogen assimilation as a function of light and Dissolved Inorganic Nitrogen (DIN) concentration.

Algal biomass is described via 3 different state variables:

- low molecular weight carbohydrates (LMW), the product of photosynthesis,
- storage molecules (RESERVE) and
- the biosynthetic and photosynthetic apparatus (PROTEINS).

All algal state variables are expressed in \(\text{mmol C m}^{-3} \). Only proteins contain nitrogen and chlorophyll, with a fixed stoichiometric ratio. As the relative amount of proteins changes in the algae, so does the N:C and the Chl:C ratio.

An additional state variable, dissolved inorganic nitrogen (DIN) has units of \(\text{mmol N m}^{-3} \).

The algae grow in a dilution culture (chemostat): there is constant inflow of DIN and outflow of culture water, including DIN and algae, at the same rate.

Two versions of the model are included.

- In the default model, there is a day-night illumination regime, i.e. the light is switched on and off at fixed times (where the sum of illuminated + dark period = 24 hours).
- In another version, the light is imposed as a forcing function data set.

This model is written in FORTRAN.

Usage

\[\text{aquaphy(times, y, parms, PAR = NULL, ...)} \]

Arguments

- **times**: time sequence for which output is wanted; the first value of times must be the initial time,
- **y**: the initial (state) values ("DIN", "PROTEIN", "RESERVE", "LMW"), in that order,
- **parms**: vector or list with the aquaphy model parameters; see the example for the order in which these have to be defined.
- **PAR**: a data set of the photosynthetically active radiation (light intensity), if NULL, on-off PAR is used,
- **...**: any other parameters passed to the integrator ode (which solves the model).
Details

The model is implemented primarily to demonstrate the linking of FORTRAN with R-code. The source can be found in the ‘doc/examples/dynload’ subdirectory of the package.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

See Also

ccl4model, the CC14 inhalation model.

Examples

```r
## ======================================================
## Example 1. PAR an on-off function
## ======================================================
## -----------------------------
## the model parameters:
## -----------------------------
parameters <- c(maxPhotoSynt = 0.125, # mol C/mol C/hr
       rMortPHY = 0.001, # /hr
       alpha = -0.125/150, # uEin\text{st}/m^2/s/hr
       pExudation = 0.0, # -
       maxProteinSynt = 0.136, # mol C/mol C/hr
       ksDIN = 1.0, # mmol N/m^3
       minpLMW = 0.05, # mol C/mol C
       maxpLMW = 0.15, # mol C/mol C
       minQuotum = 0.075, # mol C/mol C
       maxStorage = 0.23, # /h
       respirationRate= 0.0001, # /h
       pResp = 0.4, # -
       catabolismRate = 0.06, # /h
       dilutionRate = 0.01, # /h
       rNCProtein = 0.2, # mol N/mol C
       inputDIN = 10.0, # mmol N/m^3
       rChlN = 1, # g Chl/mol N
       parMean = 250., # umol Phot/m^2/s
```
dayLength = 15. # hours

The initial conditions
state <- c(DIN = 6., # mmol N/m3
 PROTEIN = 20.0, # mmol C/m3
 RESERVE = 5.0, # mmol C/m3
 LMW = 1.0) # mmol C/m3

Running the model

out <- as.data.frame(aquaphy(times, state, parameters))

Plotting model output

par(mfrow = c(2, 2), oma = c(0, 0, 3, 0))
col <- grey(0.9)
ii <- 1:length(out$PAR)
plot(times[ii], out$Chlorophyll[ii], type = "l",
 main = "Chlorophyll", xlab = "time, hours", ylab = "ug/l")
polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$Chlorophyll[ii], lwd = 2)

plot(times[ii], out$DIN[ii], type = "l",
 main = "DIN",
 xlab = "time, hours", ylab = "mmolN/m3")
polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$DIN[ii], lwd = 2)

plot(times[ii], out$NCratio[ii], type = "n",
 main = "NCratio",
 xlab = "time, hours", ylab = "molN/molC")
polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$NCratio[ii], lwd = 2)

plot(times[ii], out$PhotoSynthesis[ii], type = "l",
 main = "PhotoSynthesis",
 xlab = "time, hours", ylab = "mmolC/m3/hr")
polygon(times[ii], out$PAR[ii]-10, col = col, border = NA); box()
lines(times[ii], out$PhotoSynthesis[ii], lwd = 2)

mtext(outer = TRUE, side = 3, "AQUAPHY, PAR= on-off", cex = 1.5)
Summary model output

```r
t(summary(out))
```

Example 2. PAR a forcing function data set

```r
times <- seq(0, 24*20, 1)
ftime <- seq(0,500,by=0.5)
parval <- pmax(0,250 + 350*sin(ftime*2*pi/24)+
               (runif(length(ftime))-0.5)*250)
Par <- matrix(nc=2,c(ftime,parval))

state <- c(DIN = 6., PROTEIN = 20.0, RESERVE = 5.0, LMW = 1.0)
out <- aquaphy(times, state, parameters, Par)
plot(out, which = c("PAR", "Chlorophyll", "DIN", "NCratio"),
     xlab = "time, hours",
     ylab = c("uEinst/m2/s", "ug/l", "mmolN/m3", "molN/molC"))

mtext(outer = TRUE, side = 3, "AQUAPHY, PAR=forcing", cex = 1.5)

# Now all variables plotted in one figure...
plot(out, which = 1:9, type = "l")
par(mfrow = c(1, 1))
```

ccl4data

Closed Chamber Study of CCl4 Metabolism by Rats.

Description

The results of a closed chamber experiment to determine metabolic parameters for CCl4 (carbon tetrachloride) in rats.
ccl4model

Usage

data(ccl4data)

Format

This data frame contains the following columns:

- **time**: the time (in hours after starting the experiment).
- **initconc**: initial chamber concentration (ppm).
- **animal**: this is a repeated measures design; this variable indicates which animal the observation pertains to.
- **ChamberConc**: chamber concentration at time, in ppm.

Source

Examples

```r
plot(ChamberConc ~ time, data = ccl4data, xlab = "Time (hours)",
     xlim = range(c(0, ccl4data$time)),
     ylab = "Chamber Concentration (ppm)", log = "y")
ccl4data.avg <- aggregate(ccl4data$ChamberConc,
                          by = ccl4data[c("time", "initconc")], mean)
points(x ~ time, data = ccl4data.avg, pch = 16)
```

ccl4model

The CCl4 Inhalation Model

Description

The CCl4 inhalation model implemented in Fortran

Usage

ccl4model(times, y, parms, ...)

Arguments

- **times**: time sequence for which the model has to be integrated.
- **y**: the initial values for the state variables ("AI", "AAM", "AT", "AF", "AL", "CLT" and "AM"), in that order.
- **parms**: vector or list holding the ccl4 model parameters; see the example for the order in which these have to be defined.
- **...**: any other parameters passed to the integrator ode (which solves the model).
Details

The model is implemented primarily to demonstrate the linking of FORTRAN with R-code. The source can be found in the ‘/doc/examples/dynload’ subdirectory of the package.

Author(s)

R. Woodrow Setzer <setzer.woodrow@epa.gov>

See Also

Try demo(CCL4model) for how this model has been fitted to the dataset ccl4data, aquaphy, another FORTRAN model, describing growth in aquatic phytoplankton.

Examples

```r
## Parameter values
Pm <- c(
  BW = 0.182, # Body weight (kg)
  QP = 4.0, # Alveolar ventilation rate (hr^-1)
  QC = 4.0, # Cardiac output (hr^-1)
  VFC = 0.08, # Fraction fat tissue (kg/(kg/BW))
  VLC = 0.04, # Fraction liver tissue (kg/(kg/BW))
  VMC = 0.74, # Fraction of muscle tissue (kg/(kg/BW))
  QFC = 0.05, # Fractional blood flow to fat ((hr^-1)/QC)
  QLC = 0.15, # Fractional blood flow to liver ((hr^-1)/QC)
  QMC = 0.32, # Fractional blood flow to muscle ((hr^-1)/QC)
  PLA = 16.17, # Liver/air partition coefficient
  PFA = 281.48, # Fat/air partition coefficient
  PMA = 13.3, # Muscle/air partition coefficient
  PTA = 16.17, # Viscera/air partition coefficient
  PB = 5.487, # Blood/air partition coefficient
  MW = 153.8, # Molecular weight (g/mol)
  VMAX = 0.04321671, # Max. velocity of metabolism (mg/hr) -calibrated
  KM = 0.4027255, # Michaelis-Menten constant (mg/l) -calibrated
  CONC = 1000, # Inhaled concentration
  KL = 0.02, # Loss rate from empty chamber /hr
  RATS = 1.0, # Number of rats enclosed in chamber
  VCHC = 3.8 # Volume of closed chamber (l)
)
```

State variables
```r
## State variables
```
y <- c(
 AI = 21, # total mass, mg
 AAM = 0,
 AT = 0,
 AF = 0,
 AL = 0,
 CLT = 0, # area under the conc.-time curve in the liver
 AM = 0 # the amount metabolized (AM)
)

Model application

initial inhaled concentration-calibrated
concentration <- c(26.496, 90.197, 245.15, 951.46)

plot(ChamberConc ~ time, data = ccl4data, xlab = "Time (hours)",
 xlim = range(c(0, ccl4data$time)),
 ylab = "Chamber Concentration (ppm)",
 log = "y", main = "ccl4model")

for (cc in concentration) {
 Pm["CONC"] <- cc
 VCH <- Pm["VCHC"] - Pm["RATS"] * Pm["BW"]
 AI0 <- VCH * Pm["CONC"] * Pm["MW"]/24450
 y["AI"] <- AI0

 # run the model:
 out <- as.data.frame(ccl4model(times, y, Pm))
 lines(out$time, out$CP, lwd = 2)
}

legend("topright", lty = c(NA, 1), pch = c(1, NA), lwd = c(NA, 2),
 legend = c("data", "model"))

An example with tracer injection

every day, a conc of 2 is added to AI.
1. implemented as a data.frame

every day, a conc of 2 is added to AI.
1. implemented as a data.frame

An example with tracer injection

every day, a conc of 2 is added to AI.
1. implemented as a data.frame

eventdat <- data.frame(var = rep("AI", 6), time = 1:6,
 value = rep(1, 6), method = rep("add", 6))

print(system.time(
 out <- ccl4model(times, y, Pm, events = list(data = eventdat))
))
plot(out, mfrow = c(3, 4), type = "l", lwd = 2)

2. implemented as a function in a DLL!
print(system.time(
out2 <- ccl4model(times, y, Pm, events = list(func = "eventfun", time = 1:6))
))

plot(out2, mfrow=c(3, 4), type = "l", lwd = 2)

cleanEventTimes

Find Nearest Event for Each Time Step and Clean Time Steps to Avoid Doubles

Description

These functions can be used for checking time steps and events used by ode solver functions. They are normally called internally within the solvers.

Usage

nearestEvent(times, eventtimes)
cleanEventTimes(times, eventtimes, eps = .Machine$double.eps * 10)

Arguments

- **times**: the vector of output times,
- **eventtimes**: a vector with the event times,
- **eps**: relative tolerance value below which two numbers are assumed to be numerically equal.

Details

In floating point arithmetics, problems can occur if values have to be compared for 'equality' but are only close to each other and not exactly the same.

The utility functions can be used to add all eventtimes to the output times vector, but without including times that are very close to an event.

This means that all values of eventtimes are contained but only the subset of times that have no close neighbors in eventtimes.

These checks are normally performed internally by the integration solvers.

Value

nearestEvent returns a vector with the closest events for each time step and

cleanEventTimes returns a vector with the output times without all those that are 'very close' to an event.
Author(s)

Thomas Petzoldt

See Also

events

Examples

```r
events <- sort(c(0, 2, 3, 4 + 1e-10, 5, 7 - 1e-10,
                 7 + 6e-15, 7.5, 9, 24.9999, 25, 80, 1001, 1e300))
times <- sort(c(0, 1:7, 4.5, 6.75, 7.5, 9.2, 9.0001, 25, 879, 1e3, 1e300+5))

nearest <- nearestEvent(times, events)
data.frame(times=times, nearest = nearest)
```

typical usage: include all events in times after removing values that
are numerically close together, events have priority

times
unique_times <- cleanEventTimes(times, events)
newtimes <- sort(c(unique_times, events))
newtimes

daspk

Solver for Differential Algebraic Equations (DAE)

Description

Solves either:

- a system of ordinary differential equations (ODE) of the form
 \[y' = f(t, y, ...) \]
 or
- a system of differential algebraic equations (DAE) of the form
 \[F(t, y, y') = 0 \]
 or
- a system of linearly implicit DAES in the form
 \[My' = f(t, y) \]

using a combination of backward differentiation formula (BDF) and a direct linear system solution
method (dense or banded).

The \texttt{R} function \texttt{daspk} provides an interface to the FORTRAN DAE solver of the same name, written

The system of DE's is written as a \texttt{R} function (which may, of course, use \texttt{.C}, \texttt{.Fortran}, \texttt{.Call},
etc., to call foreign code) or be defined in compiled code that has been dynamically loaded.
Usage

daspk(y, times, func = NULL, parms, nind = c(length(y), 0, 0),
 dy = NULL, res = NULL, nalg = 0,
 rtol = 1e-6, atol = 1e-6, jacfunc = NULL,
 jacres = NULL, jactype = "fullint", mass = NULL, estini = NULL,
 verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL,
 hini = 0, ynames = TRUE, maxord = 5, bandup = NULL,
 banddown = NULL, maxsteps = 5000, dllname = NULL,
 initfunc = dllname, initpar = parms, rpar = NULL,
 ipar = NULL, nout = 0, outnames = NULL,
 forcings=NULL, initforc = NULL, fcontrol=NULL,
 events = NULL, lags = NULL, ...)

Arguments

y the initial (state) values for the DE system. If y has a name attribute, the names
will be used to label the output matrix.
times time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.
func to be used if the model is an ODE, or a DAE written in linearly implicit form
(M y' = f(t, y)). func should be an R-function that computes the values of the
derivatives in the ODE system (the model definition) at time t.
 func <- function(t, y, parms,...).
t is the current time point in the integration, y is the current estimate of the vari-
ables in the ODE system. If the initial values y has a names attribute, the names
will be available inside func, unless ynames is FALSE. parms is a vector or list
of parameters. ... (optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives should be
specified in the same order as the specification of the state variables y.
Note that it is not possible to define func as a compiled function in a dynamically
loaded shared library. Use res instead.

parms vector or list of parameters used in func, jacfunc, or res

nind if a DAE system: a three-valued vector with the number of variables of index 1,
 2, 3 respectively. The equations must be defined such that the index 1 variables
precede the index 2 variables which in turn precede the index 3 variables. The
sum of the variables of different index should equal N, the total number of vari-
ables. Note that this has been added for consistency with radau. If used, then
the variables are weighed differently than in the original daspk code, i.e. index
2 variables are scaled with 1/h, index 3 variables are scaled with 1/h^2. In some
cases this allows daspk to solve index 2 or index 3 problems.

dy the initial derivatives of the state variables of the DE system. Ignored if an ODE.

res if a DAE system: either an R-function that computes the residual function
 F(t, y, y') of the DAE system (the model definition) at time t, or a character
string giving the name of a compiled function in a dynamically loaded shared library.

If res is a user-supplied R-function, it must be defined as: `res <- function(t, y, dy, parms, ...)`. Here t is the current time point in the integration, y is the current estimate of the variables in the ODE system, dy are the corresponding derivatives. If the initial y or dy have a names attribute, the names will be available inside res, unless ynames is FALSE. parms is a vector of parameters.

The return value of res should be a list, whose first element is a vector containing the residuals of the DAE system, i.e. $\delta = F(t, y, y')$, and whose next elements contain output variables that are required at each point in times.

If res is a string, then dllname must give the name of the shared library (without extension) which must be loaded before daspk() is called (see package vignette "compiledCode" for more information).

nalg

if a DAE system: the number of algebraic equations (equations not involving derivatives). Algebraic equations should always be the last, i.e. preceded by the differential equations.

Only used if estini = 1.

rtol

relative error tolerance, either a scalar or a vector, one value for each y,

atol

absolute error tolerance, either a scalar or a vector, one value for each y.

jacfunc

if not NULL, an R function that computes the Jacobian of the system of differential equations. Only used in case the system is an ODE ($y' = f(t, y)$), specified by func. The R calling sequence for jacfunc is identical to that of func.

If the Jacobian is a full matrix, jacfunc should return a matrix $\partial y'/\partial y$, where the ith row contains the derivative of dy_i/dt with respect to y_j, or a vector containing the matrix elements by columns (the way R and FORTRAN store matrices).

If the Jacobian is banded, jacfunc should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

jacres

jacres and not jacfunc should be used if the system is specified by the residual function $F(t, y, y')$, i.e. jacres is used in conjunction with res.

If jacres is an R-function, the calling sequence for jacres is identical to that of res, but with extra parameter cj. Thus it should be called as: `jacres = func(t, y, dy, parms, cj, ...)`. Here t is the current time point in the integration, y is the current estimate of the variables in the ODE system, y' are the corresponding derivatives and cj is a scalar, which is normally proportional to the inverse of the stepsize. If the initial y or dy have a names attribute, the names will be available inside jacres, unless ynames is FALSE. parms is a vector of parameters (which may have a names attribute).

If the Jacobian is a full matrix, jacres should return the matrix $dG/dy + cj \cdot dG/dy'$, where the ith row is the sum of the derivatives of G_i with respect to y_j and the scaled derivatives of G_i with respect to y'_j.

If the Jacobian is banded, jacres should return only the nonzero bands of the Jacobian, rotated rowwise. See details for the calling sequence when jacres is a string.

jactype

the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by the user.
the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined as $M \frac{dy}{dt} = f(t, y)$. The mass-matrix M should be of dimension $n \times n$ where n is the number of y-values.

If mass=NULL then the model is either an ODE or a DAE, specified with res

estini
only if a DAE system, and if initial values of y and dy are not consistent (i.e. $F(t, y, dy) \neq 0$), setting estini = 1 or 2, will solve for them. If estini = 1: dy and the algebraic variables are estimated from y; in this case, the number of algebraic equations must be given (nalg). If estini = 2: y will be estimated from dy.

verbose
if TRUE: full output to the screen, e.g. will print the diagnostics of the integration - see details.

tcrit
the FORTRAN routine daspk overshoots its targets (times points in the vector times), and interpolates values for the desired time points. If there is a time beyond which integration should not proceed (perhaps because of a singularity), that should be provided in tcrit.

hmin
an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use hmin if you don’t know why!

hmax
an optional maximum value of the integration stepsize. If not specified, hmax is set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.

hini
initial step size to be attempted; if 0, the initial step size is determined by the solver

ynames
logical, if FALSE, names of state variables are not passed to function func; this may speed up the simulation especially for large models.

maxord
the maximum order to be allowed. Reduce maxord to save storage space (<= 5)

bandup
number of non-zero bands above the diagonal, in case the Jacobian is banded (and jactype one of "bandint", "bandusr")

banddown
number of non-zero bands below the diagonal, in case the Jacobian is banded (and jactype one of "bandint", "bandusr")

maxsteps
maximal number of steps per output interval taken by the solver; will be recalculated to be at least 500 and a multiple of 500; if verbose is TRUE the solver will give a warning if more than 500 steps are taken, but it will continue till maxsteps steps. (Note this warning was always given in deSolve versions < 1.10.3).

dllname
a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions referred to in res and jacres. See package vignette "compiledCode".

initfunc
if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar
only when ‘dllname’ is specified and an initialisation function initfunc is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).
rpar only when 'dllname’ is specified: a vector with double precision values passed to the dll-functions whose names are specified by res and jacres.

ipar only when 'dllname’ is specified: a vector with integer values passed to the dll-functions whose names are specified by res and jacres.

nout only used if 'dllname’ is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function res, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the dll - you have to perform this check in the code - See package vignette "compiledCode".

outnames only used if 'dllname’ is specified and nout > 0: the names of output variables calculated in the compiled function res, present in the shared library. These names will be used to label the output matrix.

forcings only used if 'dllname’ is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time,value); interpolation outside the interval \([\min(times), \max(times)]\) is done by taking the value at the closest data extreme. See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided in 'dllname’. It MUST be present if forcings has been given a value. See forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state variable is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func, jacfunc, res and jacres, allowing this to be a generic function.

Details

The daspk solver uses the backward differentiation formulas of orders one through five (specified with maxord) to solve either:

- an ODE system of the form
 \[
y' = f(t, y, ...)\]
 or

- a DAE system of the form
 \[
y' = Mf(t, y, ...)
 \]
 or

- a DAE system of the form
 \[
 F(t, y, y') = 0
 \]
 . The index of the DAE should be preferable <= 1.
ODEs are specified using argument \texttt{func}, DAEs are specified using argument \texttt{res}.

If a DAE system, Values for \(y\) and \(y'\) (argument \texttt{dy}) at the initial time must be given as input. Ideally, these values should be consistent, that is, if \(t, y, y'\) are the given initial values, they should satisfy \(F(t,y,y') = 0\).

However, if consistent values are not known, in many cases daspk can solve for them: when \texttt{estini} = 1, \(y'\) and algebraic variables (their number specified with \texttt{nalg}) will be estimated, when \texttt{estini} = 2, \(y\) will be estimated.

The form of the \textbf{Jacobian} can be specified by \texttt{jactype}. This is one of:

- \texttt{jactype = "fullint"}: a full Jacobian, calculated internally by daspk, the default,
- \texttt{jactype = "fullusr"}: a full Jacobian, specified by user function \texttt{jacfunc} or \texttt{jacres},
- \texttt{jactype = "bandusr"}: a banded Jacobian, specified by user function \texttt{jacfunc} or \texttt{jacres}; the size of the bands specified by \texttt{bandup} and \texttt{banddown},
- \texttt{jactype = "bandint"}: a banded Jacobian, calculated by daspk; the size of the bands specified by \texttt{bandup} and \texttt{banddown}.

If \texttt{jactype} = "fullusr" or "bandusr" then the user must supply a subroutine \texttt{jacfunc}.

The input parameters \texttt{rtol} and \texttt{atol} determine the \textbf{error control} performed by the solver. If the request for precision exceeds the capabilities of the machine, daspk will return an error code. See \texttt{lsoda} for details.

When the index of the variables is specified (argument \texttt{nind}), and higher index variables are present, then the equations are scaled such that equations corresponding to index 2 variables are multiplied with \(1/h\), for index 3 they are multiplied with \(1/h^2\), where \(h\) is the time step. This is not in the standard DASPK code, but has been added for consistency with solver \texttt{radau}. Because of this, daspk can solve certain index 2 or index 3 problems.

\texttt{res} and \texttt{jacres} may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" for details. Examples in FORTRAN are in the ‘dynload’ subdirectory of the deSolve package directory.

The diagnostics of the integration can be printed to screen by calling \texttt{diagnostics}. If \texttt{verbose} = \texttt{TRUE}, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

\textbf{Models} may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-Code"); information about linking forcing functions to compiled code is in \texttt{forcings}.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package directory.

\textbf{Value}

A matrix of class \texttt{deSolve} with up to as many rows as elements in \texttt{times} and as many columns as elements in \texttt{y} plus the number of “global” values returned in the next elements of the return from \texttt{func} or \texttt{res}, plus an additional column (the first) for the time value. There will be one row for each
element in times unless the FORTRAN routine ‘daspk’ returns with an unrecoverable error. If y
has a names attribute, it will be used to label the columns of the output value.

Note
In this version, the Krylov method is not (yet) supported.

From deSolve version 1.10.4 and above, the following changes were made

1. the argument list to daspk now also includes nind, the index of each variable. This is used to
 scale the variables, such that daspk in R can also solve certain index 2 or index 3 problems,
 which the original Fortran version may not be able to solve.
2. the default of atol was changed from 1e-8 to 1e-6, to be consistent with the other solvers.
3. the multiple warnings from daspk when the number of steps exceed 500 were toggled off
 unless verbose is TRUE

Author(s)
Karline Soetaert <karline.soetaert@nioz.nl>

References
L. R. Petzold, A Description of DASSL: A Differential/Algebraic System Solver, in Scientific Com-
puting, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pp. 65-68.
K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in
P. N. Brown and A. C. Hindmarsh, Reduced Storage Matrix Methods in Stiff ODE Systems, J.
P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Using Krylov Methods in the Solution of
doi:10.1137/0915088
P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, Consistent Initial Condition Calculation for
J. Sci. Comp.
Netlib: https://netlib.org

See Also
* radau for integrating DAEs up to index 3,
* rk,
* rk4 and euler for Runge-Kutta integrators.
* lsoda, lsode, lsodes, lsodar, vode, for other solvers of the Livermore family,
* ode for a general interface to most of the ODE solvers,
* ode.band for solving models with a banded Jacobian,
* ode.1D for integrating 1-D models,
* ode.2D for integrating 2-D models,
* ode.3D for integrating 3-D models,
* diagnostics to print diagnostic messages.
Examples

```
##Coupled chemical reactions including an equilibrium
##modeled as (1) an ODE and (2) as a DAE
##The model describes three chemical species A,B,D:
##subjected to equilibrium reaction D <-> A + B
##D is produced at a constant rate, prod
##B is consumed at 1st order rate, r
##Chemical problem formulation 1: ODE
##======================================================================

##Dissociation constant
K <- 1

##parameters
pars <- c(
  ka = 1e6, # forward rate
  r = 1,
  prod = 0.1)

Fun_ODE <- function(t, y, pars)
{
  with (as.list(c(y, pars)), {
    ra <- ka*D # forward rate
    rb <- ka/K*A*B # backward rate
    ## rates of changes
    dD <- -ra + rb + prod
    dA <- ra - rb
    dB <- ra - rb - r*B
    return(list(dy = c(dA, dB, dD),
                  CONC = A+B+D))
  })
}

##======================================================================

##Chemical problem formulation 2: DAE
##1. get rid of the fast reactions ra and rb by taking linear combinations:
##dD+dA = prod (res1) and dB-dA = -r*B (res2)
##2. In addition, the equilibrium condition (eq) reads:
##as ra = rb : ka*D = ka/K*A*B => K*D = A*B
##======================================================================

Res_DAE <- function(t, y, yprime, pars)
{
  with (as.list(c(y, yprime, pars)), {
    ## residuals of lumped rates of changes
    res1 <- -dD - dA + prod
  })
```
res2 <- -dB + dA - r*B

and the equilibrium equation
eq <- K*D - A*B

return(list(c(res1, res2, eq),
 CONC = A+B+D))
})

Chemical problem formulation 3: Mass * Func
Based on the DAE formulation
==

Mass_FUN <- function (t, y, pars) {
 with (as.list(c(y, pars)), {

 ## as above, but without the
 f1 <- prod
 f2 <- - r*B

 ## and the equilibrium equation
 f3 <- K*D - A*B

 return(list(c(f1, f2, f3),
 CONC = A+B+D))
 })
}

Mass <- matrix(nrow = 3, ncol = 3, byrow = TRUE,
data=c(1, 0, 1, # dA + 0 + dB
 -1, 1, 0, # -dA + dB +0
 0, 0, 0)) # algebraic

times <- seq(0, 100, by = 2)

Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2*3/K)

ODE model solved with daspk
ODE <- daspk(y = y, times = times, func = Fun_ODE,
 parms = pars, atol = 1e-10, rtol = 1e-10)

Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)

DAE model solved with daspk
DAE <- daspk(y = y, dy = dy, times = times,
 res = Res_DAE, parms = pars, atol = 1e-10, rtol = 1e-10)

MASS<- daspk(y=y, times=times, func = Mass_FUN, parms = pars, mass = Mass)

===============
plotting output

```r
plot(ODE, DAE, xlab = "time", ylab = "conc", type = c("l", "p"),
     pch = c(NA, 1))
legend("bottomright", lty = c(1, NA), pch = c(NA, 1),
       col = c("black", "red"), legend = c("ODE", "DAE"))
```

difference between both implementations:
```
max(abs(ODE-DAE))
```

same DAE model, now with the Jacobian

```r
jacres_DAE <- function (t, y, yprime, pars, cj) {
  with (as.list(c(y, yprime, pars)), {
    PD[1, 1] <- -1*cj # d(res1)/d(A)-cj*d(res1)/d(dA)
    PD[1, 2] <- 0 # d(res1)/d(B)-cj*d(res1)/d(dB)
    PD[1, 3] <- -1*cj # d(res1)/d(D)-cj*d(res1)/d(dD)
    PD[2, 1] <- 1*cj
    PD[2, 2] <- -r -1*cj
    PD[2, 3] <- 0
    PD[3, 1] <- -B
    PD[3, 2] <- -A
    PD[3, 3] <- K
    return(PD)
  })
}
```

```r
PD <- matrix(ncol = 3, nrow = 3, 0)
```

```r
DAE2 <- daspk(y = y, dy = dy, times = times,
               res = Res_DAE, jacres = jacres_DAE, jactype = "fullusr",
               parms = pars, atol = 1e-10, rtol = 1e-10)
```

```r
max(abs(DAE-DAE2))
```

The chemical model as a DLL, with production a forcing function

```r
times <- seq(0, 100, by = 2)
pars <- c(K = 1, ka = 1e6, r = 1)
```

```r
y <- c(A = 2, B = 3, D = as.double(2*3/pars["K"]))
```
Initial rate of change
\[
dy <- c(dA = 0, dB = 0, dD = 0)
\]

production increases with time
\[
prod <- matrix(ncol = 2,
data = c(seq(0, 100, by = 10), 0.1*(1+runif(11)*1)))
\]
\[
ODE_dll <- daspk(y = y, dy = dy, times = times, res = "chemres",
dllname = "deSolve", initfunc = "initparms",
initforc = "initforcs", pars = pars, forcings = prod,
atol = 1e-10, rtol = 1e-10, nout = 2,
outnames = c("CONC","Prod"))
\]
\[
plot(ODE_dll, which = c("Prod", "D"), xlab = "time",
ylab = c("/day", "conc"), main = c("production rate","D"))
\]

dede

General Solver for Delay Differential Equations.

Description

Function `dede` is a general solver for delay differential equations, i.e. equations where the derivative depends on past values of the state variables or their derivatives.

Usage

\[
dede(y, times, func=NULL, parms,
method = c("lsoda", "lsode", "lsodes", "lsodar", "vode",
"daspk", "bdf", "adams", "impAdams", "radau"), control = NULL, ...)
\]

Arguments

- **y**
 the initial (state) values for the DE system, a vector. If y has a name attribute, the names will be used to label the output matrix.

- **times**
 time sequence for which output is wanted; the first value of times must be the initial time.

- **func**
 an R-function that computes the values of the derivatives in the ODE system (the model definition) at time \(t \).

func must be defined as: `func <- function(t, y, pars, ...)`. \(t \) is the current time point in the integration, \(y \) is the current estimate of the variables in the DE system. If the initial values \(y \) has a names attribute, the names will be available inside func. \(\text{pars} \) is a vector or list of parameters; \(...\) (optional) are any other arguments passed to the function.

The return value of func should be a list, whose first element is a vector containing the derivatives of \(y \) with respect to time, and whose next elements are
global values that are required at each point in \(\text{times} \). The derivatives must be specified in the same order as the state variables \(y \).

If method "daspk" is used, then \(\text{func} \) can be \text{NULL}, in which case \(\text{res} \) should be used.

parms

parameters passed to \(\text{func} \).

method

the integrator to use, either a string ("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk", "bdf", "adams", "impAdams", "radau") or a function that performs the integration. The default integrator used is \text{lsoda}.

control

a list that can supply (1) the size of the history array, as \text{control}$\text{mxhist} \); the default is \(1e4 \) and (2) how to interpolate, as \text{control}$\text{interpol} \), where 1 is hermitian interpolation, 2 is variable order interpolation, using the Nordsieck history array. Only for the two Adams methods is the second option recommended.

... additional arguments passed to the integrator.

Details

Functions \text{lagvalue} and \text{lagderiv} are to be used with \text{dede} as they provide access to past (lagged) values of state variables and derivatives. The number of past values that are to be stored in a history matrix, can be specified in \text{control}$\text{mxhist} \). The default value (if unspecified) is \(1e4 \).

Cubic Hermite interpolation is used by default to obtain an accurate interpolant at the requested lagged time. For methods \text{adams}, \text{impAdams}, a more accurate interpolation method can be triggered by setting \text{control}$\text{interpol} = 2 \).

\text{dede} does not deal explicitly with propagated derivative discontinuities, but relies on the integrator to control the stepsize in the region of a discontinuity.

\text{dede} does not include methods to deal with delays that are smaller than the stepsize, although in some cases it may be possible to solve such models.

For these reasons, it can only solve rather simple delay differential equations.

When used together with integrator \text{lsodar}, or \text{lsode}, \text{dde} can simultaneously locate a root, and trigger an event. See last example.

Value

A matrix of class \text{deSolve} with up to as many rows as elements in \text{times} and as many columns as elements in \(y \) plus the number of "global" values returned in the second element of the return from \(\text{func} \), plus an additional column (the first) for the time value. There will be one row for each element in \text{times} unless the integrator returns with an unrecoverable error. If \(y \) has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

\text{lagvalue}, \text{lagderiv}, for how to specify lagged variables and derivatives.
Examples

```r
# A simple delay differential equation
# dy(t) = -y(t-1) ; y(t<0)=1
#
# the derivative function

derivs <- function(t, y, parms) {
  if (t < 1)
    dy <- -1
  else
    dy <- - lagvalue(t - 1)
  list(c(dy))
}

# initial values and times
yinit <- 1
times <- seq(0, 30, 0.1)

# solve the model
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)

# display, plot results
plot(yout, type = "l", lwd = 2, main = "dy/dt = -y(t-1)")
```

The infectious disease model of Hairer; two lags.
example 4 from Shampine and Thompson, 2000
solving delay differential equations with dde23

```r
# the derivative function

derivs <- function(t,y,parms) {
  if (t < 1)
    lag1 <- 0.1
  else
    lag1 <- lagvalue(t - 1,2)
  if (t < 10)
    lag10 <- 0.1
  else
    lag10 <- lagvalue(t - 10,2)
```
dy1 <- -y[1] * lag1 + lag10
dy3 <- y[2] - lag10
list(c(dy1, dy2, dy3))
}

initial values and times
yinit <- c(5, 0.1, 1)
times <- seq(0, 40, by = 0.1)

solve the model
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)

display, plot results
matplot(yout[,1], yout[,-1], type = "l", lwd = 2, lty = 1,
main = "Infectuous disease - Hairer")

the derivative function
derivs <- function(t, y, parms) {
 if (t < tau)
 lag <- 0
 else
 lag <- lagvalue(t - tau)

dy1 <- y[2]
dy2 <- -sign(y[1]) * gam * cos(y[1]) +
 sin(y[1]) - bet * lag[1] + A * sin(omega * t + mu)
list(c(dy1, dy2))
}

root and event function
root <- function(t,y,parms) ifelse(t>0, return(y), return(1))
event <- function(t,y,parms) return(c(y[1], y[2]*0.931))

gam = 0.248; bet = 1; tau = 0.1; A = 0.75
omega = 1.37; mu = asin(gam/A)
initial values and times
yinit <- c(y = 0, dy = 0)
times <- seq(0, 12, len = 1000)

solve the model
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL,
method = "lsodar", rootfun = root, events = list(func = event, root = TRUE))

display, plot results
plot(yout[,1], type = "l", lwd = 2, main = "suitcase model")
plot(yout[,2], yout[,3], xlab = "y", ylab = "dy", type = "l", lwd = 2)

diagnostics

Print Diagnostic Characteristics of Solvers

Description

Prints several diagnostics of the simulation to the screen, e.g. number of steps taken, the last step size, ...

Usage

diagnostics(obj, ...)
Default S3 method:
diagnostics(obj, ...)

Arguments

obj is an output data structure produced by one of the solver routines.
...

optional arguments allowing to extend diagnostics as a generic function.

Details

Detailed information about the success of a simulation is printed, if a diagnostics function exists for a specific solver routine. A warning is printed, if no class-specific diagnostics exists.

Please consult the class-specific help page for details.
See Also

diagnostics.deSolve for diagnostics of differential equation solvers.

diagnostics.deSolve \hspace{2em} Print Diagnostic Characteristics of ODE and DAE Solvers

Description

Prints several diagnostics of the simulation to the screen, e.g. number of steps taken, the last step size, ...

Usage

```r
## S3 method for class 'deSolve'
diagnostics(obj, Full = FALSE, ...)
```

Arguments

- `obj` is the output matrix as produced by one of the integration routines.
- `Full` when `TRUE` then all messages will be printed, including the ones that are not relevant for the solver. If `FALSE`, then only the relevant messages will be printed.
- `...` optional arguments allowing to extend `diagnostics` as a generic function.

Details

When the integration output is saved as a `data.frame`, then the required attributes are lost and method `diagnostics` will not work anymore.

Value

The integer and real vector with diagnostic values; for function `lsodar` also the root information.
See tables 2 and 3 in vignette("deSolve") for what these vectors contain.

Note: the number of function evaluations are *without* the extra calls performed to generate the ordinary output variables (if present).

Examples

```r
## The famous Lorenz equations: chaos in the earth's atmosphere
chaos <- function(t, state, parameters) {
  with(as.list(c(state)), {
    dx <- -8/3 * x + y * z
    dy <- -10 * (y - z)
    dz <- -x * y + 28 * y - z
  })
}
list(c(dx, dy, dz))
})
}

state <- c(x = 1, y = 1, z = 1)
times <- seq(0, 50, 0.01)
out <- vode(state, times, chaos, 0)
pairs(out, pch = ".")
diagnostics(out)

---

**DLLfunc**

Evaluates a Derivative Function Represented in a DLL

**Description**

Calls a function, defined in a compiled language as a DLL.

**Usage**

```r
DLLfunc(func, times, y, parms, dllname,
 initfunc = dllname, rpar = NULL, ipar = NULL, nout = 0,
 outnames = NULL, forcings = NULL, initforc = NULL,
 fcontrol = NULL)
```

**Arguments**

- **func**: the name of the function in the dynamically loaded shared library,
- **times**: first value = the time at which the function needs to be evaluated,
- **y**: the values of the dependent variables for which the function needs to be evaluated,
- **parms**: the parameters that are passed to the initialiser function,
- **dllname**: a string giving the name of the shared library (without extension) that contains the compiled function or subroutine definitions referred to in `func`,
- **initfunc**: if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in `dllname`. See details.
- **rpar**: a vector with double precision values passed to the DLL-function `func` and `jacfunc` present in the DLL, via argument `rpar`,
- **ipar**: a vector with integer values passed to the dll-function `func` and `jacfunc` present in the DLL, via function argument `ipar`,
- **nout**: the number of output variables.
- **outnames**: only used if `dllname` is specified and nout > 0: the names of output variables calculated in the compiled function `func`, present in the shared library.
forcings only used if ‘dllname’ is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval \([\text{min(times)}, \text{max(times)}]\) is done by taking the value at the closest data extreme. See package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided in ‘dllname’. It MUST be present if forcings has been given a value. See package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See package vignette "compiledCode".

Details

This function is meant to help developing FORTRAN or C models that are to be used to solve ordinary differential equations (ODE) in packages deSolve and/or rootSolve.

Value

a list containing:

- dy the rate of change estimated by the function,
- var the ordinary output variables of the function.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

ode for a general interface to most of the ODE solvers

Examples

```r
ex. 1
ccl4model
Parameter values and initial conditions
see example(ccl4model) for a more comprehensive implementation
Parms <- c(0.182, 4.0, 4.0, 0.08, 0.04, 0.15, 0.32, 16.17, 281.48, 13.3, 16.17, 5.487, 153.8, 0.04321671, 0.4027255, 1000, 0.02, 1.0, 3.8)
yini <- c(AI = 21, AAM = 0, AT = 0, AF = 0, AL = 0, CLT = 0, AM = 0)

the rate of change
DLLfunc(y = yini, dllname = "deSolve", func = "derivccl4", initfunc = "initccl4", parms = Parms, times = 1, nout = 3, outnames = c("DOSE", "MASS", "CP"))
```
## ex. 2
## SCOC model

## Forcing function "data"

```r
Flux <- matrix(ncol = 2, byrow = TRUE, data = c(1, 0.654, 2, 0.167))
parms <- c(k = 0.01)
Yini <- 60

DLLfunc(y=Yini, times=1, func = "scocder",
 parms = parms, dllname = "deSolve",
 initforc = "scocforc", forcings = Flux,
 initfunc = "scocpar", nout = 2,
 outnames = c("Mineralisation","Depo"))

correct value = dy = flux - k * y = 0.654 - 0.01 * 60

DLLfunc(y = Yini, times = 2, func = "scocder",
 parms = parms, dllname = "deSolve",
 initforc = "scocforc", forcings = Flux,
 initfunc = "scocpar", nout = 2,
 outnames = c("Mineralisation", "Depo"))
```

---

### DLLres

**Evaluates a Residual Derivative Function Represented in a DLL**

**Description**

Calls a residual function, \( F(t, y, y') \) of a DAE system (differential algebraic equations) defined in a compiled language as a DLL.

To be used for testing the implementation of DAE problems in compiled code

**Usage**

```r
DLLres(res, times, y, dy, parms, dllname,
 initfunc = dllname, rpar = NULL, ipar = NULL, nout = 0,
 outnames = NULL, forcings = NULL, initforc = NULL,
 fcontrol = NULL)
```

**Arguments**

- `res` the name of the function in the dynamically loaded shared library.
- `times` first value = the time at which the function needs to be evaluated,
- `y` the values of the dependent variables for which the function needs to be evaluated,
- `dy` the derivative of the values of the dependent variables for which the function needs to be evaluated,
**dllres**

The parameters that are passed to the initialiser function,

dllname

A string giving the name of the shared library (without extension) that contains the compiled function or subroutine definitions referred to in func.

initfunc

If not NULL, the name of the initialisation function (which initialises values of parameters), as provided in `dllname`. See details.

rpar

A vector with double precision values passed to the DLL-function `func` and `jacfunc` present in the DLL, via argument `rpar`.

ipar

A vector with integer values passed to the DLL-function `func` and `jacfunc` present in the DLL, via function argument `ipar`.

nout

The number of output variables.

outnames

Only used if `dllname` is specified and `nout` > 0: the names of output variables calculated in the compiled function `func`, present in the shared library.

forcings

Only used if `dllname` is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme. See package vignette "compiledCode".

initforc

If not NULL, the name of the forcing function initialisation function, as provided in `dllname`. It MUST be present if forcings has been given a value. See package vignette "compiledCode".

fcontrol

A list of control parameters for the forcing functions. See package vignette "compiledCode".

**Details**

This function is meant to help developing FORTRAN or C models that are to be used to solve differential algebraic equations (DAE) in package deSolve.

**Value**

A list containing:

- `res` the residual of derivative estimated by the function
- `var` the ordinary output variables of the function

**Author(s)**

Karline Soetaert <karline.soetaert@nioz.nl>

**See Also**

daspk to solve DAE problems
## =========================================================================
## Residuals from the daspk chemical model, production a forcing function
## =========================================================================
## Parameter values and initial conditions
## see example(daspk) for a more comprehensive implementation
pars <- c(K = 1, ka = 1e6, r = 1)

## Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2 * 3/pars["K"])

## Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)

## production increases with time
prod <- matrix(ncol = 2,
data = c(seq(0, 100, by = 10), seq(0.1, 0.5, len = 11)))

DLLres(y = y, dy = dy, times = 5, res = "chemres",
dllname = "deSolve", initfunc = "initparms",
initforc = "initforcs", pars = pars, forcings = prod,
nout = 2, outnames = c("CONC", "Prod"))

### Implementing Events and Roots in Differential Equation Models.

**Description**

An event occurs when the value of a state variable is suddenly changed, e.g. because a value is added, subtracted, or multiplied. The integration routines cannot deal easily with such state variable changes. Typically these events occur only at specific times. In deSolve, events can be imposed by means of an input data.frame, that specifies at which time and how a certain state variable is altered, or via an event function.

Roots occur when a root function becomes zero. By default when a root is found, the simulation either stops (no event), or triggers an event.

**Details**

The events are specified by means of argument events passed to the integration routines. events should be a list that contains one of the following:

1. **func**: an R-function or the name of a function in compiled code that specifies the event,
2. **data**: a data.frame that specifies the state variables, times, values and types of the events. Note that the event times must also be part of the integration output times, else the event will not take place. As from version 1.9.1, this is checked by the solver, and a warning message is produced if event times are missing in times; see also `cleanEventTimes` for utility functions to check and solve such issues.
3. time: when events are specified by an event function: the times at which the events take place. Note that these event times must also be part of the integration output times exactly, else the event would not take place. As from version 1.9.1 this is checked by the solver, and an error message produced if event times are missing in times; see also cleanEventTimes for utility functions to check and solve such issues.

4. root: when events are specified by a function and triggered by a root, this logical should be set equal to TRUE

5. terminalroot when events are triggered by a root, the default is that the simulation continues after the event is executed. In terminalroot, we can specify which roots should terminate the simulation.

6. maxroot: when root = TRUE, the maximal number of times at with a root is found and that are kept; defaults to 100. If the number of roots > maxroot, then only the first maxroot will be outputted.

7. ties: if events, as specified by a data.frame are "ordered", set to "ordered", the default is "notordered". This will save some computational time.

In case the events are specified by means of an R function (argument events$func), it must be defined as: function(t, y, parms, ...). t is the current time point in the integration, y is the current estimate of the variables in the ODE system. If the initial values y has a names attribute, the names will be available inside events$func. parms is a vector or list of parameters; ... (optional) are any other arguments passed to the function via the call to the integration method. The event function should return the y-values (some of which modified), as a vector.

If events$func is a string, this indicates that the events are specified by a function in compiled code. This function has as arguments, the number of state variables, the time, and the state variable vector. See package vignette "compiledCode" for more details.

In case events are specified by an R-function, this requires either: input of the time of the events, a vector as defined in events$time OR the specification of a root function. In the latter case, the model must be solved with an integration routine with root-finding capability.

The root function itself should be specified with argument rootfunc. In this case, the integrator is informed that the simulation it to be continued after a root is found by setting events$root equal to TRUE.

If the events are specified by a data frame (argument events$data), this should contain the following columns (and in that order):

1. var the state variable name or number that is affected by the event
2. time the time at which the event is to take place; the solvers will check if the time is embraced by the simulation time
3. value the value, magnitude of the event
4. method which event is to take place; should be one of ("replace", "add", "multiply"); also allowed is to specify the number (1 = replace, 2 = add, 3 = multiply)

For instance, the following line

"v1" 10 2 "add"

will cause the value 2 to be added to a state variable, called "v1" at time = 10.

From deSolve version 1.9.1 the following routines have root-finding capability: lsoda, lsode, lsodes, and radau. For the first 3 integration methods, the root finding algorithm is based on the
algorithm in solver LSODAR, and is implemented in FORTRAN. For radau, the root solving algorithm is written in C-code, and it works slightly different. Thus, some problems involving roots may be more efficiently solved with either lsoda, lsode, or lsodes, while other problems are more efficiently solved with radau.

If a root function is defined, but not an event function, then by default the solver will stop at a root. If this is not desirable, e.g. because we want to record the position of many roots, then a dummy "event" function can be defined which returns the values of the state variables - unaltered.

If roots and events are combined, and roots are found, then the output will have attribute troot which will contain the times at which a root was found (and the event triggerred). There will be at most events$maxroot such values. The default is 100.

See two last examples; also see example of ccl4model.

Author(s)

Karline Soetaert

See Also

forcings, for how to implement forcing functions.

lsodar, for more examples of roots

Examples

```r
1. EVENTS in a data.frame
##
derivative function: derivatives set to 0
dervs <- function(t, var, parms) {
 list(dvar = rep(0, 2))
}

yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)

eventdat <- data.frame(var = c("v1", "v2", "v2", "v1"),
 time = c(1, 1, 5, 9),
 value = c(1, 2, 3, 4),
 method = c("add", "mult", "rep", "add"))

out <- vode(func = derivs, y = yini, times = times, parms = NULL,
 events = list(data = eventdat))

plot(out)
```

```r
2. EVENTS in a list
#
derivative function: derivatives set to 0
dervs <- function(t, var, parms) {
 list(dvar = rep(0, 2))
}

yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)

eventdat <- data.frame(var = c(rep("v1", 10), rep("v2", 10)),
 time = c(1:10, 1:10),
 value = runif(20),
 method = rep("add", 20))

out <- vode(func = derivs, y = yini, times = times, parms = NULL,
 events = list(data = eventdat))

plot(out)
```
eventdat

out <- ode(func = derivs, y = yini, times = times, parms = NULL,
    events = list(data = eventdat))

plot(out)

## 2. EVENTS in a function

## derivative function: rate of change v1 = 0, v2 reduced at first-order rate
derivs <- function(t, var, parms) {
  list(c(0, -0.5 * var[2]))
}

# events: add 1 to v1, multiply v2 with random number
eventfun <- function(t, y, parms){
  with (as.list(y),{
    v1 <- v1 + 1
    v2 <- 5 * runif(1)
    return(c(v1, v2))
  })
}

yini <- c(v1 = 1, v2 = 2)
times <- seq(0, 10, by = 0.1)

out <- ode(func = derivs, y = yini, times = times, parms = NULL,
    events = list(func = eventfun, time = c(1:9, 2.2, 2.4)) )
plot(out, type = "l")

## 3. EVENTS triggered by a root function

## derivative: simple first-order decay
derivs <- function(t, y, pars) {
  return(list(-0.1 * y))
}

## event triggered if state variable = 0.5
rootfun <- function (t, y, pars) {
  return(y - 0.5)
}

## sets state variable = 1
eventfun <- function(t, y, pars) {
  return(y = 1)
}

yini <- 2
times <- seq(0, 100, 0.1)

## uses ode to solve; root = TRUE specifies that the event is
## triggered by a root.
out <- ode(times = times, y = yini, func = derivs, parms = NULL,
          events = list(func = eventfun, root = TRUE),
          rootfun = rootfun)

plot(out, type = "l")

## time of the root:
troot <- attributes(out)$troot
points(troot, rep(0.5, length(troot)));

#### 4. More ROOT examples: Rotation function

Rotate <- function(t, x, p)
  list(c( x[2],
        -x[1] ))

## Root = when second state variable = 0
rootfun <- function(t, x, p) x[2]

## "event" returns state variables unchanged
eventfun <- function(t, x, p) x

times <- seq(from = 0, to = 15, by = 0.1)

## 1. No event: stops at first root
out1 <- ode(func = Rotate, y = c(5, 5), parms = 0,
            times = times, rootfun = rootfun)
tail(out1)

## 2. Continues till end of times and records the roots
out <- ode(func = Rotate, y = c(5, 5), parms = 0,
            times = times, rootfun = rootfun,
            events = list(func = eventfun, root = TRUE) )
plot(out)
troot <- attributes(out)$troot # time of roots
points(troot, rep(0, length(troot)))

## Multiple roots: either one of the state variables = 0
root2 <- function(t, x, p) x

out2 <- ode(func = Rotate, y = c(5, 5), parms = 0,
            times = times, rootfun = root2,
            events = list(func = eventfun, root = TRUE) )
plot(out2, which = 2)
troot <- attributes(out2)$troot # which root was found
```r
points(troot, rep(0, length(troot)), col = indroot, pch = 18, cex = 2)

Multiple roots and stop at first time root 1.
out3 <- ode(func = Rotate, y = c(5, 5), parms = 0,
times = times, rootfun = root2,
 events = list(func = eventfun, root = TRUE, terminalroot = 1))

5. Stop at 5th root - only works with radau.
Rotate <- function(t, x, p)
 list(c(x[2],
 -x[1],
 0))

Root = when second state variable = 0
root3 <- function(t, x, p) c(x[2], x[3] - 5)

event3 <- function(t, x, p) c(x[1:2], x[3]+1)
times <- seq(0, 15, 0.1)
out3 <- ode(func = Rotate, y = c(x1 = 5, x2 = 5, nroot = 0),
 parms = 0, method = "radau",
times = times, rootfun = root3,
 events = list(func = event3, root = TRUE, terminalroot = 2))
plot(out3)
attributes(out3)[c("troot", "nroot", "indroot")]

6 Event in R-code, model function in compiled code - based on vode example
Flux <- cbind(times, sin(pi*times/365)^2) # forcing function

run without events
out <- ode(y = c(C = 1), times, func = "scocder", parms = c(k=0.01),
 dllname = "deSolve", initforc = "scocforc", forcings = Flux,
 initfunc = "scocpar", nout = 2, outnames = c("Mineralisation", "Depo"))

Event halves the concentration
EventMin <- function(t, y , p) y/2

out2 <- ode(y = c(C = 1), times, func = "scocder", parms = c(k=0.01),
 dllname = "deSolve", initforc = "scocforc", forcings = Flux,
 initfunc = "scocpar", nout = 2, outnames = c("Mineralisation", "Depo"),
 events = list(func = EventMin, time = c(50.1, 200, 210.5)))

plot(out, out2)
```

forcings

Passing Forcing Functions to Models Written in R or Compiled Code.

Description

A forcing function is an external variable that is essential to the model, but not explicitly modeled. Rather, it is imposed as a time-series. Thus, if a model uses forcing variables, their value at each time point needs to be estimated by interpolation of a data series.

Details

The forcing functions are imposed as a data series, that contains the values of the forcings at specified times.

Models may be defined in compiled C or FORTRAN code, as well as in R.

If the model is defined in R code, it is most efficient to:

1. define a function that performs the linear interpolation, using R’s approxfun. It is generally recommended to use rule = 2, such as to allow extrapolation outside of the time interval, especially when using the Livermore solvers, as these may exceed the last time point.
2. call this function within the model’s derivative function, to interpolate at the current timestep.

See first example.

If the models are defined in compiled C or FORTRAN code, it is possible to use deSolves forcing function update algorithm. This is the compiled-code equivalent of approxfun or approx.

In this case:
1. the forcing function data series is provided by means of argument forcings,
2. initforc is the name of the forcing function initialisation function, as provided in ‘dllname’, while
3. fcontrol is a list used to finetune how the forcing update should be performed.

The fcontrol argument is a list that can supply any of the following components (conform the definitions in the approxfun function):

**method** specifies the interpolation method to be used. Choices are "linear" or "constant",

**rule** an integer describing how interpolation is to take place outside the interval [min(times), max(times)]. If rule is 1 then an error will be triggered and the calculation will stop if times extends the interval of the forcing function data set. If it is 2, the default, the value at the closest data extreme is used, a warning will be printed if verbose is TRUE.

Note that the default differs from the approx default.

**f** For method = "constant" a number between 0 and 1 inclusive, indicating a compromise between left- and right-continuous step functions. If y0 and y1 are the values to the left and right of the point then the value is y0 * (1 - f) + y1 * f so that f = 0 is right-continuous and f = 1 is left-continuous,
ties Handling of tied times values. Either a function with a single vector argument returning a single number result or the string "ordered". Note that the default is "ordered", hence the existence of ties will NOT be investigated; in the C code this will mean that -if ties exist, the first value will be used; if the dataset is not ordered, then nonsense will be produced. Alternative values for ties are mean, min etc

The defaults are:
fcontrol = list(method = "linear", rule = 2, f = 0, ties = "ordered")

Note that only ONE specification is allowed, even if there is more than one forcing function data set.

More information about models defined in compiled code is in the package vignette ("compiled-Code").

Note

How to write compiled code is described in package vignette "compiledCode", which should be referred to for details.

This vignette also contains examples on how to pass forcing functions.

Author(s)
Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer

See Also
approx or approxfun, the R function, events for how to implement events.

Examples

## FORCING FUNCTION: The sediment oxygen consumption example - R-code:

```r
Flux <- matrix(ncol=2,byrow=TRUE,data=c(1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73, 0.277, 83, 0.186, 93, 0.140, 103, 0.255, 113, 0.231, 123, 0.309, 133, 1.127, 143, 0.923, 153, 1.091, 163, 1.001, 173, 1.691, 183, 1.404, 194, 1.226, 204, 0.767, 214, 0.893, 224, 0.737, 234, 0.772, 244, 0.726, 254, 0.624, 264, 0.439, 274, 0.168, 284, 0.280, 294, 0.202, 304, 0.193, 315, 0.315, 325, 0.286, 335, 1.135)))
parms <- c(k=0.01)
```
times <- 1:365

## the model
sediment <- function(t, O2, k)
  list(c(Depo(t) - k * O2), depo = Depo(t))

# the forcing functions; rule = 2 avoids NaNs in interpolation
Depo <- approxfun(x = Flux[,1], y = Flux[,2], method = "linear", rule = 2)

Out <- ode(times = times, func = sediment, y = c(O2 = 63), parms = parms)

## same forcing functions, now constant interpolation
Depo <- approxfun(x = Flux[,1], y = Flux[,2], method = "constant",
  f = 0.5, rule = 2)

Out2 <- ode(times = times, func = sediment, y = c(O2 = 63), parms = parms)

mf <- par(mfrow = c(2, 1))
plot(Out, which = "depo", type = "l", lwd = 2, mfrow = NULL)
lines(Out2[,"time"], Out2[,"depo"], col = "red", lwd = 2)

plot(Out, which = "O2", type = "l", lwd = 2, mfrow = NULL)
lines(Out2[,"time"], Out2[,"O2"], col = "red", lwd = 2)

# SCOC is the same model, as implemented in FORTRAN
out<- SCOC(times, parms = parms, Flux = Flux)
plot(out[,"time"], out[,"Depo"], type = "l", col = "red")
lines(out[,"time"], out[,"Mineralisation"], col = "blue")

# Constant interpolation of forcing function - left side of interval
fcontrol <- list(method = "constant")
out2 <- SCOC(times, parms = parms, Flux = Flux, fcontrol = fcontrol)
plot(out2[,"time"], out2[,"Depo"], type = "l", col = "red")
lines(out2[,"time"], out2[,"Mineralisation"], col = "blue")

# Not run:
# show examples (see respective help pages for details)
example(aquaphy)
example(scoc)

# show package vignette with tutorial about how to use compiled models
# + source code of the vignette
# + directory with C and FORTRAN sources
vignette("compiledCode")
Solving initial value problems for stiff or non-stiff systems of first-order ordinary differential equations (ODEs).

The R function `lsoda` provides an interface to the FORTRAN ODE solver of the same name, written by Linda R. Petzold and Alan C. Hindmarsh.

The system of ODE's is written as an R function (which may, of course, use `.C`, `.Fortran`, `.Call`, etc., to call foreign code) or be defined in compiled code that has been dynamically loaded. A vector of parameters is passed to the ODEs, so the solver may be used as part of a modeling package for ODEs, or for parameter estimation using any appropriate modeling tool for non-linear models in R such as `optim`, `nls`, `nlm` or `nlme`.

`lsoda` differs from the other integrators (except `lsodar`) in that it switches automatically between stiff and nonstiff methods. This means that the user does not have to determine whether the problem is stiff or not, and the solver will automatically choose the appropriate method. It always starts with the nonstiff method.

### Usage

```r
lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
 jacfunc = NULL, jactype = "fullint", rootfunc = NULL,
 verbose = FALSE, nroot = 0, tcrit = NULL,
 hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
 maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,
 maxsteps = 5000, dllname = NULL, initfunc = dllname,
 initpar = parms, rpar = NULL, ipar = NULL, nout = 0,
 outnames = NULL, forcings = NULL, initforc = NULL,
 fcontrol = NULL, events = NULL, lags = NULL,...)
```

### Arguments

- **y**: the initial (state) values for the ODE system. If `y` has a name attribute, the names will be used to label the output matrix.
- **times**: times at which explicit estimates for `y` are desired. The first value in `times` must be the initial time.
either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or a character string giving the name of a compiled function in a dynamically loaded shared library.

If func is an R-function, it must be defined as: `func <- function(t, y, parms, ...)

- `t` is the current time point in the integration, `y` is the current estimate of the variables in the ODE system. If the initial values `y` has a names attribute, the names will be available inside func. `parms` is a vector or list of parameters; `...` (optional) are any other arguments passed to the function.

- The return value of func should be a list, whose first element is a vector containing the derivatives of `y` with respect to time, and whose next elements are global values that are required at each point in `times`. The derivatives must be specified in the same order as the state variables `y`.

If func is a string, then `dllname` must give the name of the shared library (without extension) which must be loaded before lsoda() is called. See package vignette "compiledCode" for more details.

- `parms` vector or list of parameters used in func or jacfunc.
- `rtol` relative error tolerance, either a scalar or an array as long as `y`. See details.
- `atol` absolute error tolerance, either a scalar or an array as long as `y`. See details.
- `jacfunc` if not NULL, an R function, that computes the Jacobian of the system of differential equations \( \frac{\partial \dot{y}_i}{\partial y_j} \), or a string giving the name of a function or subroutine in ‘dllname’ that computes the Jacobian (see vignette "compiledCode" for more about this option).

- In some circumstances, supplying jacfunc can speed up the computations, if the system is stiff. The R calling sequence for jacfunc is identical to that of func.

- If the Jacobian is a full matrix, jacfunc should return a matrix \( \frac{\partial \dot{y}}{\partial y} \), where the ith row contains the derivative of \( d\dot{y}_i/dt \) with respect to \( y_j \), or a vector containing the matrix elements by columns (the way R and FORTRAN store matrices).

- If the Jacobian is banded, jacfunc should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See first example of lsode.

- `jactype` the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by user.

- `rootfunc` if not NULL, an R function that computes the function whose root has to be estimated or a string giving the name of a function or subroutine in ‘dllname’ that computes the root function. The R calling sequence for rootfunc is identical to that of func. rootfunc should return a vector with the function values whose root is sought. When rootfunc is provided, then lsodar will be called.

- `verbose` if TRUE: full output to the screen, e.g. will print the diagnostics of the integration - see details.

- `nroot` only used if ‘dllname’ is specified: the number of constraint functions whose roots are desired during the integration; if rootfunc is an R-function, the solver estimates the number of roots.

- `tcrit` if not NULL, then lsoda cannot integrate past tcrit. The FORTRAN routine lsoda overshoots its targets (times points in the vector `times`), and interpolates values for the desired time points. If there is a time beyond which integration
should not proceed (perhaps because of a singularity), that should be provided in `tcrit`.

**hmin**

an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use `hmin` if you don’t know why!

**hmax**

an optional maximum value of the integration stepsize. If not specified, `hmax` is set to the largest difference in `times`, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.

**hini**

initial step size to be attempted; if 0, the initial step size is determined by the solver.

**ynames**

logical, if `FALSE`: names of state variables are not passed to function `func`; this may speed up the simulation especially for large models.

**maxordn**

the maximum order to be allowed in case the method is non-stiff. Should be <= 12. Reduce `maxord` to save storage space.

**maxords**

the maximum order to be allowed in case the method is stiff. Should be <= 5. Reduce `maxord` to save storage space.

**bandup**

number of non-zero bands above the diagonal, in case the Jacobian is banded.

**banddown**

number of non-zero bands below the diagonal, in case the Jacobian is banded.

**maxsteps**

maximal number of steps per output interval taken by the solver.

**dllname**

a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions referred to in `func` and `jacfunc`. See package vignette "compiledCode".

**initfunc**

if not `NULL`, the name of the initialisation function (which initialises values of parameters), as provided in `dllname`. See package vignette "compiledCode".

**initpar**

only when `dllname` is specified and an initialisation function `initfunc` is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).

**rpar**

only when `dllname` is specified: a vector with double precision values passed to the dll-functions whose names are specified by `func` and `jacfunc`.

**ipar**

only when `dllname` is specified: a vector with integer values passed to the dll-functions whose names are specified by `func` and `jacfunc`.

**nout**

only used if `dllname` is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function `func`, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the dll - you have to perform this check in the code. See package vignette "compiledCode".

**outnames**

only used if `dllname` is specified and `nout` > 0: the names of output variables calculated in the compiled function `func`, present in the shared library. These names will be used to label the output matrix.

**forcings**

only used if `dllname` is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme.

See `forcings` or package vignette "compiledCode".
initforc if not NULL, the name of the forcing function initialisation function, as provided in ‘dllname’. It MUST be present if forcings has been given a value. See forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state variable is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic function.

Details

All the hard work is done by the FORTRAN subroutine lsoda, whose documentation should be consulted for details (it is included as comments in the source file ‘src/opkdmain.f’). The implementation is based on the 12 November 2003 version of lsoda, from Netlib.

lsoda switches automatically between stiff and nonstiff methods. This means that the user does not have to determine whether the problem is stiff or not, and the solver will automatically choose the appropriate method. It always starts with the nonstiff method.

The form of the Jacobian can be specified by jactype which can take the following values:

"fullint" a full Jacobian, calculated internally by lsoda, the default,

"fullusr" a full Jacobian, specified by user function jacfunc,

"bandusr" a banded Jacobian, specified by user function jacfunc the size of the bands specified by bandup and banddown,

"bandint" banded Jacobian, calculated by lsoda; the size of the bands specified by bandup and banddown.

If jactype = "fullusr" or "bandusr" then the user must supply a subroutine jacfunc.

The following description of error control is adapted from the documentation of the lsoda source code (input arguments rtol and atol, above):

The input parameters rtol, and atol determine the error control performed by the solver. The solver will control the vector e of estimated local errors in y, according to an inequality of the form max-norm of ( e/ewt ) ≤ 1, where ewt is a vector of positive error weights. The values of rtol and atol should all be non-negative. The form of ewt is:

\[ rtol \times \text{abs}(y) + atol \]

where multiplication of two vectors is element-by-element.

If the request for precision exceeds the capabilities of the machine, the FORTRAN subroutine lsoda will return an error code; under some circumstances, the R function lsoda will attempt a reasonable reduction of precision in order to get an answer. It will write a warning if it does so.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose = TRUE, the diagnostics will written to the screen at the end of the integration.
See vignette(“deSolve”) for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette “compiledCode” for details.

More information about models defined in compiled code is in the package vignette (“compiled-Code”); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package directory.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of “global” values returned in the next elements of the return from func, plus and additional column for the time value. There will be a row for each element in times unless the FORTRAN routine ‘Isoda’ returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

Note

The ‘demo’ directory contains some examples of using gnls to estimate parameters in a dynamic model.

Author(s)

R. Woodrow Setzer <setzer.woodrow@epa.gov>

References


Netlib: https://netlib.org

See Also

- rk, rkMethod, rk4 and euler for Runge-Kutta integrators.
- lsode, which can also find a root
- lsodes, lsodar, vode, daspk for other solvers of the Livermore family,
- ode for a general interface to most of the ODE solvers,
- ode.band for solving models with a banded Jacobian,
- ode.1D for integrating 1-D models,
- ode.2D for integrating 2-D models,
- ode.3D for integrating 3-D models,
- diagnostics to print diagnostic messages.
Examples

```r
SPCmod <- function(t, x, parms) {
 with(as.list(c(parms, x)), {
 import <- sigimp(t)
 dS <- import - b*S*P + g*C # substrate
 dP <- c*S*P - d*C*P # producer
 dC <- e*P*C - f*C # consumer
 res <- c(dS, dP, dC)
 list(res)
 })
}

Parameters
parms <- c(b = 0.0, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

vector of timesteps
times <- seq(0, 100, length = 101)

external signal with rectangle impulse
signal <- as.data.frame(list(times = times,
 import = rep(0, length(times))))
signal$import[signal$times >= 10 & signal$times <= 11] <- 0.2
sigimp <- approxfun(signal$times, signal$import, rule = 2)

Start values for steady state
y <- xstart <- c(S = 1, P = 1, C = 1)

Solving
out <- lsoda(xstart, times, SPCmod, parms)

Plotting
mf <- par("mfrow")
plot(out, main = c("substrate", "producer", "consumer"))
plot(out[,"P"], out[,"C"], type = "l", xlab = "producer", ylab = "consumer")
par(mfrow = mf)
```

## Example 2:
## from lsoda source code
## ==============================================================

## names makes this easier to read, but may slow down execution.
parms <- c(k1 = 0.04, k2 = 1e4, k3 = 3e7)
my.atol <- c(1e-6, 1e-10, 1e-6)
times <- c(0, 4 * 10^(-1:10))

lsexamp <- function(t, y, p) {
    yd1 <- -p['k1'] * y[1] + p['k2'] * y[2]*y[3]
    yd3 <- p['k3'] * y[2]^2
    list(c(yd1, -yd1-yd3, yd3), c(massbalance = sum(y)))
}
exampjac <- function(t, y, p) {
    matrix(c(-p['k1'], p['k1'], 0,
             p['k2']*y[3], -p['k2']*y[3] - 2*p['k3']*y[2],
             2*p['k3']*y[2], p['k2']*y[2], -p['k2']*y[2], 0
             ), 3, 3)
}

## measure speed (here and below)
system.time(
    out <- lsoda(c(1, 0, 0), times, lsexamp, parms, rtol = 1e-4,
                 atol = my.atol, hmax = Inf)
)
out

## This is what the authors of lsoda got for the example:

## the output of this program (on a cdc-7600 in single precision)
## is as follows..
##
## at t = 4.0000e-01 y = 9.851712e-01 3.386380e-05 1.479493e-02
## at t = 4.0000e+00 y = 9.055333e-01 2.240655e-05 9.444430e-02
## at t = 4.0000e+01 y = 7.158403e-01 9.186334e-06 2.841505e-01
## at t = 4.0000e+02 y = 4.505250e-01 3.222964e-06 5.494717e-01
## at t = 4.0000e+03 y = 1.831975e-01 8.941774e-07 8.168016e-01
## at t = 4.0000e+04 y = 3.898730e-02 1.621940e-07 9.610125e-01
## at t = 4.0000e+05 y = 4.936363e-03 1.984221e-08 9.950636e-01
## at t = 4.0000e+06 y = 5.161831e-04 2.065786e-09 9.994838e-01
## at t = 4.0000e+07 y = 5.179817e-05 2.072032e-10 9.999482e-01
## at t = 4.0000e+08 y = 5.283401e-06 2.113371e-11 9.999947e-01
## at t = 4.0000e+09 y = 4.659031e-07 1.863613e-12 9.999995e-01
## at t = 4.0000e+10 y = 1.404280e-08 5.617126e-14 1.000000e+00

## Using the analytic Jacobian speeds up execution a little :
lsodar

Solver for Ordinary Differential Equations (ODE), Switching Automatically Between Stiff and Non-stiff Methods and With Root Finding

Description

Solving initial value problems for stiff or non-stiff systems of first-order ordinary differential equations (ODEs) and including root-finding.

The R function lsodar provides an interface to the FORTRAN ODE solver of the same name, written by Alan C. Hindmarsh and Linda R. Petzold.

The system of ODE’s is written as an R function or be defined in compiled code that has been dynamically loaded. - see description of lsoda for details.

lsodar differs from lsode in two respects.

- It switches automatically between stiff and nonstiff methods (similar as lsoda).
- It finds the root of at least one of a set of constraint functions g(i) of the independent and dependent variables.

Two uses of lsodar are:

- To stop the simulation when a certain condition is met
- To trigger events, i.e. sudden changes in one of the state variables when a certain condition is met.

when a particular condition is met.

Usage

lsodar(y, times, func, parms, rtol = 1e-6, atol = 1e-6, jacfunc = NULL, jactype = "fullint", rootfunc = NULL, verbose = FALSE, nroot = 0, tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE, maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL, maxsteps = 5000, dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings=NULL, initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL, ...)
Arguments

\textbf{y} \hspace{1cm} the initial (state) values for the ODE system. If \text{y} has a name attribute, the names will be used to label the output matrix.

\textbf{times} \hspace{1cm} times at which explicit estimates for \text{y} are desired. The first value in \text{times} must be the initial time.

\textbf{func} \hspace{1cm} either an \texttt{R}-function that computes the values of the derivatives in the ODE system (the \textit{model definition}) at time \texttt{t}, or a character string giving the name of a compiled function in a dynamically loaded shared library.

If \text{func} is an \texttt{R}-function, it must be defined as: \texttt{func <- function(t, y, params,...)}.

\texttt{t} is the current time point in the integration, \text{y} is the current estimate of the variables in the ODE system. If the initial values \text{y} has a names attribute, the names will be available inside \text{func}. \texttt{params} is a vector or list of parameters; \texttt{...} (optional) are any other arguments passed to the function.

The return value of \text{func} should be a list, whose first element is a vector containing the derivatives of \text{y} with respect to time, and whose next elements are global values that are required at each point in \text{times}. The derivatives must be specified in the \textbf{same order} as the state variables \text{y}.

If \text{func} is a string, then \texttt{dllname} must give the name of the shared library (without extension) which must be loaded before \texttt{lsodar()} is called. See package vignette "compiledCode" for more details.

\textbf{parms} \hspace{1cm} vector or list of parameters used in \text{func} or \text{jacfunc}.

\textbf{rtol} \hspace{1cm} relative error tolerance, either a scalar or an array as long as \text{y}. See details.

\textbf{atol} \hspace{1cm} absolute error tolerance, either a scalar or an array as long as \text{y}. See details.

\textbf{jacfunc} \hspace{1cm} if not \texttt{NULL}, an \texttt{R} function, that computes the Jacobian of the system of differential equations \(\frac{\partial y_i}{\partial y_j}\), or a string giving the name of a function or subroutine in '<\texttt{dllname}>' that computes the Jacobian (see vignette "compiledCode" for more about this option).

In some circumstances, supplying \text{jacfunc} can speed up the computations, if the system is stiff. The \texttt{R} calling sequence for \text{jacfunc} is identical to that of \text{func}.

If the Jacobian is a full matrix, \text{jacfunc} should return a matrix \(\frac{\partial y_i}{\partial y_j}\), where the \text{ith} row contains the derivative of \(dy_i/dt\) with respect to \(y_j\), or a vector containing the matrix elements by columns (the way \texttt{R} and FORTRAN store matrices).

If the Jacobian is banded, \text{jacfunc} should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See first example of \texttt{lsode}.

\textbf{jactype} \hspace{1cm} the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by user.

\textbf{rootfunc} \hspace{1cm} if not \texttt{NULL}, an \texttt{R} function that computes the function whose root has to be estimated or a string giving the name of a function or subroutine in '<\texttt{dllname}>' that computes the root function. The \texttt{R} calling sequence for \text{rootfunc} is identical to that of \text{func}. \text{rootfunc} should return a vector with the function values whose root is sought.

\textbf{verbose} \hspace{1cm} a logical value that, when \texttt{TRUE}, will print the diagnostics of the integration - see details.
**Isodar**

- `nroot`: only used if `dllname` is specified: the number of constraint functions whose roots are desired during the integration; if `rootfunc` is an R-function, the solver estimates the number of roots.

- `tcrit`: if not NULL, then `lsodar` cannot integrate past `tcrit`. The FORTRAN routine `lsodar` overshoots its targets (times points in the vector `times`), and interpolates values for the desired time points. If there is a time beyond which integration should not proceed (perhaps because of a singularity), that should be provided in `tcrit`.

- `hmin`: an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use `hmin` if you don’t know why!

- `hmax`: an optional maximum value of the integration stepsize. If not specified, `hmax` is set to the largest difference in `times`, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.

- `hini`: initial step size to be attempted; if 0, the initial step size is determined by the solver.

- `ynames`: logical, if FALSE: names of state variables are not passed to function `func`; this may speed up the simulation especially for large models.

- `maxordn`: the maximum order to be allowed in case the method is non-stiff. Should be <= 12. Reduce `maxord` to save storage space.

- `maxords`: the maximum order to be allowed in case the method is stiff. Should be <= 5. Reduce `maxord` to save storage space.

- `bandup`: number of non-zero bands above the diagonal, in case the Jacobian is banded.

- `banddown`: number of non-zero bands below the diagonal, in case the Jacobian is banded.

- `maxsteps`: maximal number of steps per output interval taken by the solver.

- `dllname`: a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions refered to in `func` and `jacfunc`. See package vignette "compiledCode".

- `initfunc`: if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in `dllname`. See package vignette "compiledCode".

- `initpar`: only when `dllname` is specified and an initialisation function `initfunc` is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).

- `rpar`: only when `dllname` is specified: a vector with double precision values passed to the dll-functions whose names are specified by `func` and `jacfunc`.

- `ipar`: only when `dllname` is specified: a vector with integer values passed to the dll-functions whose names are specified by `func` and `jacfunc`.

- `nout`: only used if `dllname` is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function `func`, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the dll - you have to perform this check in the code - See package vignette "compiledCode".
outnames only used if `dllname` is specified and nout > 0: the names of output variables calculated in the compiled function `func`, present in the shared library. These names will be used to label the output matrix.

forcings only used if `dllname` is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme.

See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided in `dllname`. It MUST be present if forcings has been given a value. See forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state variable is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to `func` and `jacfunc` allowing this to be a generic function.

Details

The work is done by the FORTRAN subroutine `lsodar`, whose documentation should be consulted for details (it is included as comments in the source file `src/opkdmain.f`). The implementation is based on the November, 2003 version of lsodar, from Netlib.

`lsodar` switches automatically between stiff and nonstiff methods (similar as `lsoda`). This means that the user does not have to determine whether the problem is stiff or not, and the solver will automatically choose the appropriate method. It always starts with the nonstiff method.

`lsodar` can find the root of at least one of a set of constraint functions `rootfunc` of the independent and dependent variables. It then returns the solution at the root if that occurs sooner than the specified stop condition, and otherwise returns the solution according the specified stop condition.

Caution: Because of numerical errors in the function `rootfun` due to roundoff and integration error, `lsodar` may return false roots, or return the same root at two or more nearly equal values of time.

The form of the Jacobian can be specified by `jactype` which can take the following values:

- `jactype = "fullint"`: a full Jacobian, calculated internally by lsodar, the default,
- `jactype = "fullusr"`: a full Jacobian, specified by user function `jacfunc`.
- `jactype = "bandusr"`: a banded Jacobian, specified by user function `jacfunc`; the size of the bands specified by `bandup` and `banddown`.
- `jactype = "bandint"`: banded Jacobian, calculated by lsodar; the size of the bands specified by `bandup` and `banddown`.

If `jactype = "fullusr"` or `"bandusr"` then the user must supply a subroutine `jacfunc`.

The input parameters `rtol`, and `atol` determine the error control performed by the solver. See `lsoda` for details.
The output will have the attribute iroot, if a root was found iroot is a vector, its length equal to the number of constraint functions it will have a value of 1 for the constraint function whose root that has been found and 0 otherwise.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose = TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

**Models** may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiledCode"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package directory.

**Value**

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the next elements of the return from func, plus and additional column for the time value. There will be a row for each element in times unless the FORTRAN routine ‘lsodar’ returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

If a root has been found, the output will have the attribute iroot, an integer indicating which root has been found.

**Author(s)**

Karline Soetaert <karline.soetaert@nioz.nl>

**References**


Netlib: https://netlib.org

**See Also**

- roots for more examples on roots and events
- rk, rkMethod, rk4 and euler for Runge-Kutta integrators.
- lsoda, lsode, lsodes, vode, daspk for other solvers of the Livermore family,
- ode for a general interface to most of the ODE solvers,
• **ode.band** for solving models with a banded Jacobian,
• **ode.1D** for integrating 1-D models,
• **ode.2D** for integrating 2-D models,
• **ode.3D** for integrating 3-D models,

**diagnostics** to print diagnostic messages.

## Examples

```r
Example 1:
from lsodar source code

Fun <- function (t, y, parms) {
 ydot <- vector(len = 3)
 return(list(ydot, ytot = sum(y)))
}

rootFun <- function (t, y, parms) {
 yroot <- vector(len = 2)
 return(yroot)
}

y <- c(1, 0, 0)
times <- c(0, 0.4*10^(0:8))
out <- lsodar(y = y, times = times, fun = Fun, rootfun = rootFun,
 rtol = 1e-4, atol = c(1e-6, 1e-10, 1e-6), parms = NULL)
print(paste("root is found for eqn", which(attributes(out)$iroot == 1))
print(out[nrow(out),])
diagnostics(out)
```

## Example 2:

```r
using lsodar to estimate steady-state conditions

Bacteria (Bac) are growing on a substrate (Sub)
model <- function(t, state, pars) {
 with (as.list(c(state, pars)), {
 ## substrate uptake death respiration
 dBact <- gmax*eff*Sub/(Sub+ks)*Bact - dB*Bact - rB*Bact
 dSub <- -gmax *Sub/(Sub+ks)*Bact + dB*Bact + input
 return(list(c(dBact,dSub)))
 })
}
```

```r
y <- c(1, 0, 0)
times <- c(0, 0.4*10^(0:8))
out <- lsodar(y = y, times = times, fun = Fun, rootfun = rootFun,
 rtol = 1e-4, atol = c(1e-6, 1e-10, 1e-6), parms = NULL)
print(paste("root is found for eqn", which(attributes(out)$iroot == 1)))
print(out[nrow(out),])
diagnostics(out)
```
## root is the condition where sum of |rates of change| is very small

rootfun <- function (t, state, pars) {
    dstate <- unlist(model(t, state, pars)) # rate of change vector
    return(sum(abs(dstate)) - 1e-10)
}

pars <- list(Bini = 0.1, Sini = 100, gmax = 0.5, eff = 0.5, ks = 0.5, rB = 0.01, dB = 0.01, input = 0.1)

tout <- c(0, 1e10)
state <- c(Bact = pars$Bini, Sub = pars$Sini)
out <- lsodar(state, tout, model, pars, rootfun = rootfun)
print(out)

## Example 3:
## using lsodar to trigger an event

# a state variable is decaying at a first-order rate.
# when it reaches the value 0.1, a random amount is added.

derivfun <- function (t,y,parms)
    list (-0.05 * y)

rootfun <- function (t,y,parms)
    return(y - 0.1)

eventfun <- function(t,y,parms)
    return(y + runif(1))

yini <- 0.8
times <- 0:200
out <- lsodar(func=derivfun, y = yini, times=times,
    rootfunc = rootfun, events = list(func=eventfun, root = TRUE))

plot(out, type = "l", lwd = 2, main = "lsodar with event")
Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE) in the form:

\[ \frac{dy}{dt} = f(t, y) \]

The \texttt{R} function \texttt{lsode} provides an interface to the FORTRAN ODE solver of the same name, written by Alan C. Hindmarsh and Andrew H. Sherman.

It combines parts of the code \texttt{lsodar} and can thus find the root of at least one of a set of constraint functions \( g(i) \) of the independent and dependent variables. This can be used to stop the simulation or to trigger events, i.e. a sudden change in one of the state variables.

The system of ODE’s is written as an \texttt{R} function or be defined in compiled code that has been dynamically loaded.

In contrast to \texttt{lsoda}, the user has to specify whether or not the problem is stiff and choose the appropriate solution method.

\texttt{lsode} is very similar to \texttt{vode}, but uses a fixed-step-interpolate method rather than the variable-coefficient method in \texttt{vode}. In addition, in \texttt{vode} it is possible to choose whether or not a copy of the Jacobian is saved for reuse in the corrector iteration algorithm; In \texttt{lsode}, a copy is not kept.

Usage

\[ \texttt{lsode(y, times, func, parms, rtol = 1e-6, atol = 1e-6, jacfunc = NULL, jactype = "fullint", \ldots)} \]

Arguments

- \texttt{y}: the initial (state) values for the ODE system. If \texttt{y} has a name attribute, the names will be used to label the output matrix.
- \texttt{times}: time sequence for which output is wanted; the first value of \texttt{times} must be the initial time; if only one step is to be taken; set \texttt{times = NULL}.
- \texttt{func}: either an \texttt{R}-function that computes the values of the derivatives in the ODE system (the model definition) at time \( t \), or a character string giving the name of a compiled function in a dynamically loaded shared library.

If \texttt{func} is an \texttt{R}-function, it must be defined as: \texttt{func <- function(t, y, parms, \ldots)}. \( t \) is the current time point in the integration, \( y \) is the current estimate of the variables in the ODE system. If the initial values \( y \) has a names attribute, the names will be available inside \texttt{func}. \texttt{parms} is a vector or list of parameters; \( \ldots \) (optional) are any other arguments passed to the function.

The return value of \texttt{func} should be a list, whose first element is a vector containing the derivatives of \( y \) with respect to \( t \), and whose next elements are
global values that are required at each point in `times`. The derivatives must be specified in the **same order** as the state variables \( y \).

If `func` is a string, then `dllname` must give the name of the shared library (without extension) which must be loaded before \( \text{lsode()} \) is called. See package vignette "compiledCode" for more details.

**parms**

vector or list of parameters used in `func` or `jacfunc`.

**rtol**

relative error tolerance, either a scalar or an array as long as \( y \). See details.

**atol**

absolute error tolerance, either a scalar or an array as long as \( y \). See details.

**jacfunc**

if not NULL, an \( \mathbb{R} \) function that computes the Jacobian of the system of differential equations \( \partial \dot{y}_i/\partial y_j \), or a string giving the name of a function or subroutine in `dllname` that computes the Jacobian (see vignette "compiledCode" for more about this option).

In some circumstances, supplying `jacfunc` can speed up the computations, if the system is stiff. The \( \mathbb{R} \) calling sequence for `jacfunc` is identical to that of `func`.

If the Jacobian is a full matrix, `jacfunc` should return a matrix \( \partial \dot{y}_i/\partial y_j \), where the \( i \)th row contains the derivative of \( \dot{y}_i/dt \) with respect to \( y_j \), or a vector containing the matrix elements by columns (the way \( \mathbb{R} \) and FORTRAN store matrices). If the Jacobian is banded, `jacfunc` should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See first example of `lsode`.

**jactype**

the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by user; overruled if `mf` is not NULL.

**mf**

the "method flag" passed to function \( \text{lsode} \) - overrides `jactype` - provides more options than `jactype` - see details.

**rootfunc**

if not NULL, an \( \mathbb{R} \) function that computes the function whose root has to be estimated or a string giving the name of a function or subroutine in `dllname` that computes the root function. The \( \mathbb{R} \) calling sequence for `rootfunc` is identical to that of `func`. `rootfunc` should return a vector with the function values whose root is sought.

**verbose**

if TRUE: full output to the screen, e.g. will print the diagnosiscs of the integration - see details.

**nroot**

only used if `dllname` is specified: the number of constraint functions whose roots are desired during the integration; if `rootfunc` is an \( \mathbb{R} \)-function, the solver estimates the number of roots.

**tcrit**

if not NULL, then \( \text{lsode} \) cannot integrate past `tcrit`. The FORTRAN routine \( \text{lsode} \) overshoots its targets (times points in the vector \( \text{times} \)), and interpolates values for the desired time points. If there is a time beyond which integration should not proceed (perhaps because of a singularity), that should be provided in `tcrit`.

**hmin**

an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use `hmin` if you don’t know why!

**hmax**

an optional maximum value of the integration stepsize. If not specified, `hmax` is set to the largest difference in \( \text{times} \), to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.
hini: initial step size to be attempted; if 0, the initial step size is determined by the solver.

ynames: logical, if FALSE names of state variables are not passed to function func; this may speed up the simulation especially for multi-D models.

maxord: the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord to save storage space.

bandup: number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown: number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps: maximal number of steps per output interval taken by the solver.

dllname: a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions referred to in func and jacfunc. See package vignette "compiledCode".

initfunc: if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar: only when ‘dllname’ is specified and an initialisation function initfunc is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).

rpar: only when ‘dllname’ is specified: a vector with double precision values passed to the dll-functions whose names are specified by func and jacfunc.

ipar: only when ‘dllname’ is specified: a vector with integer values passed to the dll-functions whose names are specified by func and jacfunc.

nout: only used if dllname is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function func, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the dll - you have to perform this check in the code - See package vignette "compiledCode".

outnames: only used if ‘dllname’ is specified and nout > 0: the names of output variables calculated in the compiled function func, present in the shared library. These names will be used to label the output matrix.

forcings: only used if ‘dllname’ is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time,value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme.

See forcings or package vignette "compiledCode".

initforc: if not NULL, the name of the forcing function initialisation function, as provided in ‘dllname’. It MUST be present if forcings has been given a value. See forcings or package vignette "compiledCode".

fcontrol: A list of control parameters for the forcing functions. See forcings or vignette compiledCode.

events: A matrix or data frame that specifies events, i.e. when the value of a state variable is suddenly changed. See events for more information.

lags: A list that specifies timelags, i.e. the number of steps that has to be kept. To be used for delay differential equations. See timelags, dede for more information.
additional arguments passed to `func` and `jacfunc` allowing this to be a generic function.

Details

The work is done by the FORTRAN subroutine `lsode`, whose documentation should be consulted for details (it is included as comments in the source file `src/opkdmain.f`). The implementation is based on the November, 2003 version of `lsode`, from Netlib.

Before using the integrator `lsode`, the user has to decide whether or not the problem is stiff.

If the problem is nonstiff, use method flag `mf` = 10, which selects a nonstiff (Adams) method, no Jacobian used.

If the problem is stiff, there are four standard choices which can be specified with `jactype` or `mf`.

The options for `jactype` are

- `jactype = "fullint"` a full Jacobian, calculated internally by `lsode`, corresponds to `mf` = 22,
- `jactype = "fullusr"` a full Jacobian, specified by user function `jacfunc`, corresponds to `mf` = 21,
- `jactype = "bandusr"` a banded Jacobian, specified by user function `jacfunc`; the size of the bands specified by `bandup` and `banddown`, corresponds to `mf` = 24,
- `jactype = "bandint"` a banded Jacobian, calculated by `lsode`; the size of the bands specified by `bandup` and `banddown`, corresponds to `mf` = 25.

More options are available when specifying `mf` directly.

The legal values of `mf` are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25.

`mf` is a positive two-digit integer, `mf` = (10*METH + MITER), where

- **METH** indicates the basic linear multistep method: METH = 1 means the implicit Adams method.
- METH = 2 means the method based on backward differentiation formulas (BDF-s).

- **MITER** indicates the corrector iteration method: MITER = 0 means functional iteration (no Jacobian matrix is involved). MITER = 1 means chord iteration with a user-supplied full (NEQ by NEQ) Jacobian. MITER = 2 means chord iteration with an internally generated (difference quotient) full Jacobian (using NEQ extra calls to `func` per df/dy value). MITER = 3 means chord iteration with an internally generated diagonal Jacobian approximation (using 1 extra call to `func` per df/dy evaluation). MITER = 4 means chord iteration with a user-supplied banded Jacobian. MITER = 5 means chord iteration with an internally generated banded Jacobian (using ML+MU+1 extra calls to `func` per df/dy evaluation).

If MITER = 1 or 4, the user must supply a subroutine `jacfunc`.

Inspection of the example below shows how to specify both a banded and full Jacobian.

The input parameters `rtol`, and `atol` determine the **error control** performed by the solver. See `lsoda` for details.

The diagnostics of the integration can be printed to screen by calling `diagnostics`. If `verbose = TRUE`, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

**Models** may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" for details.
More information about models defined in compiled code is in the package vignette ("compiled-
Code"); information about linking forcing functions to compiled code is in forcings.
Examples in both C and FORTRAN are in the ‘dynload’ subdirectory of the deSolve package
directory.
lsoode can find the root of at least one of a set of constraint functions rootfunc of the independent
and dependent variables. It then returns the solution at the root if that occurs sooner than the
specified stop condition, and otherwise returns the solution according the specified stop condition.
Caution: Because of numerical errors in the function rootfun due to roundoff and integration error,
lsoode may return false roots, or return the same root at two or more nearly equal values of time.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as
elements in y plus the number of ”global” values returned in the next elements of the return from
func, plus and additional column for the time value. There will be a row for each element in times
unless the FORTRAN routine ‘lsode’ returns with an unrecoverable error. If y has a names attribute,
it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

Alan C. Hindmarsh, ”ODEPACK, A Systematized Collection of ODE Solvers,” in Scientific Com-

See Also

• rk,
• rk4 and euler for Runge-Kutta integrators.
• lsoda, lsodes, lsodar, vode, daspk for other solvers of the Livermore family,
• ode for a general interface to most of the ODE solvers,
• ode.band for solving models with a banded Jacobian,
• ode.1D for integrating 1-D models,
• ode.2D for integrating 2-D models,
• ode.3D for integrating 3-D models,
• diagnostics to print diagnostic messages.

Examples

## Example 1:
## Various ways to solve the same model.

## the model, 5 state variables
```r
f1 <- function (t, y, parms) {
 ydot <- vector(len = 5)
 return(list(ydot))
}

the Jacobian, written as a full matrix
fulljac <- function (t, y, parms) {
 jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
 data = c(0.1, -0.2, 0 , 0 , 0 ,
 -0.3, 0.1, -0.2, 0 , 0 ,
 0 , -0.3, 0.1, -0.2, 0 ,
 0 , 0 , -0.3, 0.1, -0.2,
 0 , 0 , 0 , -0.3, 0.1))
 return(jac)
}

the Jacobian, written in banded form
bandjac <- function (t, y, parms) {
 jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
 data = c(0 , -0.2, -0.2, -0.2, -0.2,
 0.1, 0.1, 0.1, 0.1, 0.1,
 -0.3, -0.3, -0.3, -0.3, 0))
 return(jac)
}

initial conditions and output times
yini <- 1:5
times <- 1:20

default: stiff method, internally generated, full Jacobian
out <- lsode(yini, times, f1, parms = 0, jactype = "fullint")

stiff method, user-generated full Jacobian
out2 <- lsode(yini, times, f1, parms = 0, jactype = "fullusr",
 jacfunc = fulljac)

stiff method, internally-generated banded Jacobian
one nonzero band above (up) and below(down) the diagonal
out3 <- lsode(yini, times, f1, parms = 0, jactype = "bandint",
 bandup = 1, banddown = 1)

stiff method, user-generated banded Jacobian
out4 <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",
 jacfunc = bandjac, bandup = 1, banddown = 1)

non-stiff method
```
out5 <- lsode(yini, times, f1, parms = 0, mf = 10)

## Example 2:
## diffusion on a 2-D grid
## partially specified Jacobian

diffusion2D <- function(t, Y, par) {
  y <- matrix(nrow = n, ncol = n, data = Y)
  dy <- r*y # production

  ## diffusion in X-direction; boundaries = 0-concentration
  Flux <- -Dx * rbind(y[1,], (y[2:n,] - y[1:(n-1),]), -y[n,]) / dx
  dy <- dy - (Flux[2:(n+1),] - Flux[1:n,]) / dx

  ## diffusion in Y-direction
  Flux <- -Dy * cbind(y[,1], (y[,2:n] - y[,1:(n-1)]), -y[,n]) / dy
  dy <- dy - (Flux[,2:(n+1)] - Flux[,1:n]) / dy

  return(list(as.vector(dy)))
}

## parameters
dy <- dx <- 1 # grid size
Dx <- Dy <- 1 # diffusion coeff, X- and Y-direction
r <- 0.025 # production rate
times <- c(0, 1)
n <- 50
y <- matrix(nrow = n, ncol = n, 0)

pa <- par(ask = FALSE)

## initial condition
for (i in 1:n) {
  for (j in 1:n) {
    dst <- (i - n/2)^2 + (j - n/2)^2
    y[i, j] <- max(0, 1 - 1/(n*n) * (dst - n)^2)
  }
}

filled.contour(y, color.palette = terrain.colors)

## jacfunc need not be estimated exactly
## a crude approximation, with a smaller bandwidth will do.
## Here the half-bandwidth 1 is used, whereas the true
## half-bandwidths are equal to n.
## This corresponds to ignoring the y-direction coupling in the ODEs.

print(system.time(
  for (i in 1:20) {

})
lsodes

63

out <- lsode(func = diffusion2D, y = as.vector(y), times = times,
               parms = NULL, jactype = "bandint", bandup = 1, banddown = 1)

filled.contour(matrix(nrow = n, ncol = n, out[2,-1]), zlim = c(0,1),
               color.palette = terrain.colors, main = i)

y <- out[2, -1]
}
)
par(ask = pa)

---

lsodes

Solver for Ordinary Differential Equations (ODE) With Sparse Jacobian

Description

Solves the initial value problem for stiff systems of ordinary differential equations (ODE) in the form:

\[
\frac{dy}{dt} = f(t, y)
\]

and where the Jacobian matrix \( df/dy \) has an arbitrary sparse structure.

The R function lsodes provides an interface to the FORTRAN ODE solver of the same name, written by Alan C. Hindmarsh and Andrew H. Sherman.

The system of ODE’s is written as an R function or be defined in compiled code that has been dynamically loaded.

Usage

lsodes(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
       jacvec = NULL, sparsetype = "sparseint", nnz = NULL,
       inz = NULL, rootfunc = NULL,
       verbose = FALSE, nroot = 0, tcrit = NULL, hmin = 0,
       hmax = NULL, hini = 0, ynames = TRUE, maxord = NULL,
       maxsteps = 5000, lrw = NULL, liw = NULL, dllname = NULL,
       initfunc = dllname, initpar = parms, rpar = NULL,
       ipar = NULL, nout = 0, outnames = NULL, forcings= NULL,
       initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL,
       ...)

Arguments

y

the initial (state) values for the ODE system. If y has a name attribute, the names will be used to label the output matrix.

times

time sequence for which output is wanted; the first value of times must be the initial time; if only one step is to be taken; set times = NULL.
func either an R-function that computes the values of the derivatives in the ODE system (the *model definition*) at time \( t \), or a character string giving the name of a compiled function in a dynamically loaded shared library.

If `func` is an R-function, it must be defined as: `func <- function(t, y, parms, ...)`. \( t \) is the current time point in the integration, \( y \) is the current estimate of the variables in the ODE system. If the initial values \( y \) has a `names` attribute, the names will be available inside `func`. `parms` is a vector or list of parameters; `...` (optional) are any other arguments passed to the function.

The return value of `func` should be a list, whose first element is a vector containing the derivatives of \( y \) with respect to \( t \), and whose next elements are global values that are required at each point in `times`. The derivatives must be specified in the same order as the state variables \( y \).

If `func` is a string, then `dllname` must give the name of the shared library (without extension) which must be loaded before `lsodes()` is called. See package vignette "compiledCode" for more details.

`parms` vector or list of parameters used in `func` or `jacfunc`.

`rtol` relative error tolerance, either a scalar or an array as long as \( y \). See details.

`atol` absolute error tolerance, either a scalar or an array as long as \( y \). See details.

`jacvec` if not NULL, an R function that computes a column of the Jacobian of the system of differential equations \( \partial \dot{y}_i / \partial y_j \), or a string giving the name of a function or subroutine in `dllname` that computes the column of the Jacobian (see vignette "compiledCode" for more about this option).

The R calling sequence for `jacvec` is identical to that of `func`, but with extra parameter \( j \), denoting the column number. Thus, `jacvec` should be called as: `jacvec = func(t, y, j, parms)` and `jacvec` should return a vector containing column \( j \) of the Jacobian, i.e. its i-th value is \( \partial \dot{y}_i / \partial y_j \). If this function is absent, `lsodes` will generate the Jacobian by differences.

`sparsetype` the sparsity structure of the Jacobian, one of "sparseint" or "sparseusr", "sparsejan".... The sparsity can be estimated internally by `lsodes` (first option) or given by the user (last two). See details.

`nnz` the number of nonzero elements in the sparse Jacobian (if this is unknown, use an estimate).

`inz` if `sparsetype` equal to "sparseusr", a two-columned matrix with the (row, column) indices to the nonzero elements in the sparse Jacobian. If `sparsetype` = "sparsejan", a vector with the elements ian followed by he elements jan as used in the lsodes code. In all other cases, ignored.

`rootfunc` if not NULL, an R function that computes the function whose root has to be estimated or a string giving the name of a function or subroutine in ‘dllname’ that computes the root function. The R calling sequence for `rootfunc` is identical to that of `func`. `rootfunc` should return a vector with the function values whose root is sought.

`verbose` if TRUE: full output to the screen, e.g. will print the diagnostics of the integration - see details.

`nroot` only used if ‘dllname’ is specified: the number of constraint functions whose roots are desired during the integration; if `rootfunc` is an R-function, the solver estimates the number of roots.
if not NULL, then lsodes cannot integrate past tcrit. The FORTRAN routine lsodes overshoots its targets (times points in the vector times), and interpolates values for the desired time points. If there is a time beyond which integration should not proceed (perhaps because of a singularity), that should be provided in tcrit.

an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use hmin if you don’t know why!

an optional maximum value of the integration stepsize. If not specified, hmax is set to the largest difference in times, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.

initial step size to be attempted; if 0, the initial step size is determined by the solver.

logical, if FALSE names of state variables are not passed to function func; this may speed up the simulation especially for multi-D models.

the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord to save storage space.

maximal number of steps per output interval taken by the solver.

the length of the real work array rwork; due to the sparsity, this cannot be readily predicted. If NULL, a guess will be made, and if not sufficient, lsodes will return with a message indicating the size of rwork actually required. Therefore, some experimentation may be necessary to estimate the value of lrw.

For instance, if you get the error:

DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627  I2 = 25932

set lrw equal to 27627 or a higher value

the length of the integer work array iwork; due to the sparsity, this cannot be readily predicted. If NULL, a guess will be made, and if not sufficient, lsodes will return with a message indicating the size of iwork actually required. Therefore, some experimentation may be necessary to estimate the value of liw.

a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions refered to in func and jacfunc. See package vignette "compiledCode".

if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in 'dllname'. See package vignette "compiledCode".

only when 'dllname' is specified and an initialisation function initfunc is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).

only when 'dllname' is specified: a vector with double precision values passed to the dll-functions whose names are specified by func and jacfunc.

only when 'dllname' is specified: a vector with integer values passed to the dll-functions whose names are specified by func and jacfunc.
nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code. See package vignette "compiledCode".

outnames only used if 'dllname' is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if 'dllname' is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.

See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in 'dllname'. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. See forcings or vignette
compiledCode.

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details

The work is done by the FORTRAN subroutine lsodes, whose documentation should be consulted
for details (it is included as comments in the source file 'src/opkdmain.f'). The implementation
is based on the November, 2003 version of lsodes, from Netlib.

lsodes is applied for stiff problems, where the Jacobian has a sparse structure.

There are several choices depending on whether jacvec is specified and depending on the setting
of sparsetype.

If function jacvec is present, then it should return the j-th column of the Jacobian matrix.

There are also several choices for the sparsity specification, selected by argument sparsetype.

- sparsetype = "sparseint". The sparsity is estimated by the solver, based on numerical
differences. In this case, it is advisable to provide an estimate of the number of non-zero
elements in the Jacobian (nnz). This value can be approximate; upon return the number of
nonzero elements actually required will be known (1st element of attribute dims). In this case,
inz need not be specified.
- sparsetype = "sparseusr". The sparsity is determined by the user. In this case, inz should
be a matrix, containing indices (row, column) to the nonzero elements in the Jacobian matrix.
The number of nonzeros nnz will be set equal to the number of rows in inz.
lsodes

- **sparsetype = "sparsejan"**. The sparsity is also determined by the user. In this case, inz should be a vector, containing the ian and jan elements of the sparse storage format, as used in the sparse solver. Elements of ian should be the first n+1 elements of this vector, and contain the starting locations in jan of columns 1.. n. jan contains the row indices of the nonzero locations of the Jacobian, reading in columnwise order. The number of nonzeros nnz will be set equal to the length of inz - (n+1).

- **sparsetype = "1D", "2D", "3D"**. The sparsity is estimated by the solver, based on numerical differences. Assumes finite differences in a 1D, 2D or 3D regular grid - used by functions ode.1D, ode.2D, ode.3D. Similar are "2Dmap", and "3Dmap", which also include a mapping variable (passed in nnz).

The input parameters rtol, and atol determine the **error control** performed by the solver. See **lsoda** for details.

The diagnostics of the integration can be printed to screen by calling **diagnostics**. If verbose = TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

**Models** may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiledCode"); information about linking forcing functions to compiled code is in **forcings**.

Examples in both C and FORTRAN are in the ‘doc/examples/dynload’ subdirectory of the deSolve package directory.

lsodes can find the root of at least one of a set of constraint functions rootfunc of the independent and dependent variables. It then returns the solution at the root if that occurs sooner than the specified stop condition, and otherwise returns the solution according the specified stop condition.

Caution: Because of numerical errors in the function rootfun due to roundoff and integration error, lsodes may return false roots, or return the same root at two or more nearly equal values of time.

**Value**

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the next elements of the return from func, plus and additional column for the time value. There will be a row for each element in times unless the FORTRAN routine 'lsodes' returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

**Author(s)**

Karline Soetaert <karline.soetaert@nioz.nl>

**References**


See Also

- `rk`
- `rk4` and `euler` for Runge-Kutta integrators.
- `lsoda`, `lsode`, `lsodar`, `vode`, `daspk` for other solvers of the Livermore family.
- `ode` for a general interface to most of the ODE solvers,
- `ode.band` for solving models with a banded Jacobian,
- `ode.1D` for integrating 1-D models,
- `ode.2D` for integrating 2-D models,
- `ode.3D` for integrating 3-D models,

diagnostics to print diagnostic messages.

Examples

```r
Various ways to solve the same model.
===
The example from lsodes source code
A chemical model
===

n <- 12
y <- rep(1, n)
dy <- rep(0, n)
times <- c(0, 0.1*(10^((0:4))))
rtol <- 1.0e-4
atol <- 1.0e-6
parms <- c(rk1 = 0.1, rk2 = 10.0, rk3 = 50.0, rk4 = 2.5, rk5 = 0.1,
rk6 = 10.0, rk7 = 50.0, rk8 = 2.5, rk9 = 50.0, rk10 = 5.0,
rk11 = 50.0, rk12 = 50.0, rk13 = 50.0, rk14 = 30.0,
rk15 = 100.0, rk16 = 2.5, rk17 = 100.0, rk18 = 2.5,
rk19 = 50.0, rk20 = 50.0)

chemistry <- function (time, Y, pars) {
 with (as.list(pars), {
 dy[1] <- -rk1 *Y[1]
 })
}
```

lsodes

```r
library(lsodes)

Define the chemical reactions

return(list(dy))
```

## Application 1. lsodes estimates the structure of the Jacobian and calculates the Jacobian by differences

```r
out <- lsodes(func = chemistry, y = y, parms = parms, times = times,
 atol = atol, rtol = rtol, verbose = TRUE)
```

## Application 2. The structure of the Jacobian is input
lsodes calculates the Jacobian by differences this is not so efficient...

## Application 3. lsodes estimates the structure of the Jacobian

```r
nonzero <- matrix(nc = 2, byrow = TRUE, data = c(1, 1, 2, 1, # influence of sp1 on rate of change of others
 2, 2, 3, 2, 4, 2, 5, 2, 12, 2,
 2, 3, 3, 3, 4, 3, 6, 3, 10, 3,
 2, 4, 3, 4, 4, 4, 9, 4, # d (dyi)/dy4
 2, 5, 5, 5, 9, 5, 12, 5,
 3, 6, 6, 6, 9, 6, 10, 6,
 7, 7, 9, 7, 10, 7, 12, 7,
 8, 8, 10, 8, 11, 8,
 3, 10, 6, 10, 7, 10, 8, 10, 10, 12, 10,
 2, 12, 5, 12, 7, 12, 10, 12, 12, 12))

when run, the default length of rwork is too small
lsodes will tell the length actually needed
out2 <- lsodes(func = chemistry, y = y, parms = parms, times = times,
inz = nonzero, atol = atol, rtol = rtol) # gives warning
out2 <- lsodes(func = chemistry, y = y, parms = parms, times = times,
 sparsetype = "sparseusr", inz = nonzero,
 atol = atol, rtol = rtol, verbose = TRUE, lrw = 353)
```

## Application 3. lsodes estimates the structure of the Jacobian

---

*Note: The code provided is for illustration purposes and may not run as expected in a current R environment due to dependencies and library versions.*
## the Jacobian (vector) function is input

### chemjac <- function (time, Y, j, pars) {
  with (as.list(pars), {
    PDJ <- rep(0,n)
    if (j == 1) {
      PDJ[1] <- -rk1
      PDJ[2] <- rk1
    } else if (j == 2) {
      PDJ[12] <- -rk15*Y[12]
    } else if (j == 3) {
      PDJ[10] <- rk5 - rk7*Y[10]
    } else if (j == 4) {
      PDJ[2] <- rk11*rk14
      PDJ[4] <- -rk11*rk14 - rk4
      PDJ[9] <- rk4
    } else if (j == 5) {
      PDJ[2] <- rk19*rk14
      PDJ[5] <- -rk19*rk14 - rk16
      PDJ[9] <- rk16
      PDJ[12] <- -rk19*rk14
    } else if (j == 6) {
      PDJ[3] <- rk12*rk14
      PDJ[6] <- -rk12*rk14 - rk8
      PDJ[9] <- rk8
      PDJ[10] <- rk12*rk14
    } else if (j == 7) {
      PDJ[7] <- -rk20*rk14 - rk18
      PDJ[9] <- rk18
      PDJ[10] <- -rk20*rk14
      PDJ[12] <- -rk20*rk14
    } else if (j == 8) {
      PDJ[8] <- -rk13*rk14 - rk10
      PDJ[10] <- rk13*rk14
    } else if (j == 10) {
      PDJ[8] <- rk9
      PDJ[12] <- rk6 - rk17*Y[12]
    } else if (j == 12) {
out3 <- lsodes(func = chemistry, y = y, parms = parms, times = times, 
               jacvec = chemjac, atol = atol, rtol = rtol)

## application 4. The structure of the Jacobian (nonzero elements) AND 
## the Jacobian (vector) function is input
##
## application 4. The structure of the Jacobian (nonzero elements) AND 
## the Jacobian (vector) function is input
out4 <- lsodes(func = chemistry, y = y, parms = parms, times = times, 
               lrw = 351, sparsetype = "sparseusr", inz = nonzero, 
               jacvec = chemjac, atol = atol, rtol = rtol, 
               verbose = TRUE)

# The sparsejan variant
# note: errors in inz may cause R to break, so this is not without danger...
# out5 <- lsodes(func = chemistry, y = y, parms = parms, times = times, 
#               jacvec = chemjac, atol = atol, rtol = rtol, sparsetype = "sparsejan", 
#               inz = c(1,3,8,13,17,21,25,29,32,38,38,43, 
#                  1,2, 2,3,4,5,12, 2,3,4,9, 2,5,9,12, 3,6,9,10, 
#                  7,9,10,12, 8,10,11, 3,6,7,8,10,12, 2,5,7,10,12), lrw = 343)
Arguments

**y**
the initial (state) values for the ODE system, a vector. If y has a name attribute, the names will be used to label the output matrix.

**times**
time sequence for which output is wanted; the first value of times must be the initial time.

**func**
either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or a character string giving the name of a compiled function in a dynamically loaded shared library.
If func is an R-function, it must be defined as: \( \text{func <- function}(t, y, \text{parms}, ...) \).
\( t \) is the current time point in the integration, \( y \) is the current estimate of the variables in the ODE system. If the initial values \( y \) has a names attribute, the names will be available inside func. \( \text{parms} \) is a vector or list of parameters; \( ... \) (optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector containing the derivatives of \( y \) with respect to time, and whose next elements are global values that are required at each point in times. The derivatives must be specified in the same order as the state variables \( y \).
If func is a string, then dllname must give the name of the shared library (without extension) which must be loaded before ode is called. See package vignette “compiledCode” for more details.

**parms**
parameters passed to func.

**method**
the integrator to use, either a function that performs integration, or a list of class \( \text{rkMethod} \), or a string ("lsoda", "lsode", "lsodes", "lsodaR", "vode", "daspk", "euler", "rk4", "ode23", "ode45", "radua", "bdf", "bdf_d", "adams", "impAdams" or "impAdams_d", "iteration"). Options "bdf", "bdf_d", "adams", "impAdams" or "impAdams_d" are the backward differentiation formula, the BDF with diagonal representation of the Jacobian, the (explicit) Adams and the implicit Adams method, and the implicit Adams method with diagonal representation of the Jacobian respectively (see details). The default integrator used is \( \text{lsoda} \).
Method "iteration" is special in that here the function func should return the new value of the state variables rather than the rate of change. This can be used for individual based models, for difference equations, or in those cases where the integration is performed within func). See last example.

**x**
an object of class deSolve, as returned by the integrators, and to be printed or to be subsetted.

**object**
an object of class deSolve, as returned by the integrators, and whose summary is to be calculated. In contrast to R’s default, this returns a data.frame. It returns one summary column for a multi-dimensional variable.

**which**
the name(s) or the index to the variables whose summary should be estimated. Default = all variables.

**select**
which variable/columns to be selected.

**subset**
logical expression indicating elements or rows to keep when calculating a summary: missing values are taken as FALSE

... additional arguments passed to the integrator or to the methods.
Details

This is simply a wrapper around the various ode solvers.
See package vignette for information about specifying the model in compiled code.
See the selected integrator for the additional options.
The default integrator used is lsoda.
The option method = "bdf" provides a handle to the backward differentiation formula (it is equal to using method = "lsode"). It is best suited to solve stiff (systems of) equations.
The option method = "bdf_d" selects the backward differentiation formula that uses Jacobi-Newton iteration (neglecting the off-diagonal elements of the Jacobian (it is equal to using method = "lsode", mf = 23). It is best suited to solve stiff (systems of) equations.
method = "adams" triggers the Adams method that uses functional iteration (no Jacobian used); (equal to method = "lsode", mf = 10. It is often the best choice for solving non-stiff (systems of) equations. Note: when functional iteration is used, the method is often said to be explicit, although it is in fact implicit.
method = "impAdams" selects the implicit Adams method that uses Newton- Raphson iteration (equal to method = "lsode", mf = 12.
method = "impAdams_d" selects the implicit Adams method that uses Jacobi- Newton iteration, i.e. neglecting all off-diagonal elements (equal to method = "lsode", mf = 13.
For very stiff systems, method = "daspk" may outperform method = "bdf".

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the second element of the return from func, plus an additional column (the first) for the time value. There will be one row for each element in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

- plot.deSolve for plotting the outputs,
- dede general solver for delay differential equations
- ode.band for solving models with a banded Jacobian,
- ode.1D for integrating 1-D models,
- ode.2D for integrating 2-D models,
- ode.3D for integrating 3-D models,
- aquaphy, ccl4model, where ode is used,
- lsoda, lsode, lsodes, lsodar, vode, daspk, radau,
- rk, rkMethod for additional Runge-Kutta methods,
- forcings and events,
- diagnostics to print diagnostic messages.
Examples

```r
Example 1: Predator-Prey Lotka-Volterra model (with logistic prey)
LVmod <- function(Time, State, Pars) {
 with(as.list(c(State, Pars)), {
 Ingestion <- rIng * Prey * Predator
 GrowthPrey <- rGrow * Prey * (1 - Prey/K)
 MortPredator <- rMort * Predator

 dPrey <- GrowthPrey - Ingestion
 dPredator <- Ingestion * assEff - MortPredator

 return(list(c(dPrey, dPredator)))
 })
}

pars <- c(rIng = 0.2, # /day, rate of ingestion
 rGrow = 1.0, # /day, growth rate of prey
 rMort = 0.2, # /day, mortality rate of predator
 assEff = 0.5, # -, assimilation efficiency
 K = 10) # mmol/m3, carrying capacity

yini <- c(Prey = 1, Predator = 2)
times <- seq(0, 200, by = 1)
out <- ode(yini, times, LVmod, pars)
summary(out)
```

```r
Example 2: Substrate-Producer-Consumer Lotka-Volterra model
SPCmod <- function(t, x, parms, input) {
 with(as.list(c(parms, x)), {
 import <- input(t)
 dS <- import - b*S*P + g*C # substrate
 dP <- c*S*P - d*C*P # producer
 dC <- e*P*C - f*C # consumer

 return(list(c(dS, dP, dC)))
 })
}
```

```
```
ode

```r
res <- c(dS, dP, dC)
list(res)
}
}
The parameters
parms <- c(b = 0.001, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

vector of timesteps
times <- seq(0, 200, length = 101)

external signal with rectangle impulse
signal <- data.frame(times = times,
 import = rep(0, length(times)))

signal$import[signal$times >= 10 & signal$times <= 11] <- 0.2

sigimp <- approxfun(signal$times, signal$import, rule = 2)

Start values for steady state
xstart <- c(S = 1, P = 1, C = 1)

Solve model
out <- ode(y = xstart, times = times,
 func = SPCmod, parms = parms, input = sigimp)

Default plot method
plot(out)

User specified plotting
mf <- par(mfrow = c(1, 2))
matplot(out[,1], out[,2:4], type = "l", xlab = "time", ylab = "state")
legend("topright", col = 1:3, lty = 1:3, legend = c("S", "P", "C"))
plot(out[,"P"], out[,"C"], type = "l", lwd = 2, xlab = "producer",
 ylab = "consumer")
par(mfrow = mf)

Example3: Discrete time model - using method = "iteration"
The host-parasitoid model from Soetaert and Herman, 2009,
Springer - p. 284.
Parasite <- function(t, y, ks) {
 P <- y[1]
 H <- y[2]
 f <- A * P / (ks + H)
 Pnew <- H * (1 - exp(-f))
 Hnew <- H * exp(rH * (1 - H) - f)

 list(c(Pnew, Hnew))
}
rH <- 2.82 # rate of increase
```
A <- 100  # attack rate
ks <- 15  # half-saturation density

out <- ode(func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50, parms = ks,  
method = "iteration")

out2<- ode(func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50, parms = 25,  
method = "iteration")

out3<- ode(func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50, parms = 35,  
method = "iteration")

## Plot all 3 scenarios in one figure
plot(out, out2, out3, lty = 1, lwd = 2)

## Same like "out", but *output* every two steps
## hini = 1 ensures that the same *internal* timestep of 1 is used
outb <- ode(func = Parasite, y = c(P = 0.5, H = 0.5),  
times = seq(0, 50, 2), hini = 1, parms = ks,  
method = "iteration")
plot(out, outb, type = c("l", "p"))

## Not run:
## =======================================================================
## Example4: Playing with the Jacobian options - see e.g. lsoda help page
## IMPORTANT: The following example is temporarily broken because of
## incompatibility with R 3.0 on some systems.
## A fix is on the way.
## =======================================================================

## a stiff equation, exponential decay, run 500 times
stiff <- function(t, y, p) {  # y and r are a 500-valued vector
  list(- r * y)
}

N <- 500
r <- runif(N, 15, 20)
yini <- runif(N, 1, 40)
times <- 0:10

## Using the default
print(system.time(  
  out <- ode(y = yini, parms = NULL, times = times, func = stiff)
))
# diagnostics(out) shows that the method used = bdf (2), so it it stiff

## Specify that the Jacobian is banded, with nonzero values on the
## diagonal, i.e. the bandwidth up and down = 0
print(system.time(  
  out2 <- ode(y = yini, parms = NULL, times = times, func = stiff,
ode.1D

```r
jactype = "bandint", bandup = 0, banddown = 0)
```

## Now we also specify the Jacobian function

```r
jacob <- function(t, y, p) -r
```

```r
print(system.time(
 out3 <- ode(y = yini, parms = NULL, times = times, func = stiff,
 jacfunc = jacob, jactype = "bandusr",
 bandup = 0, banddown = 0)
))
```

## The larger the value of N, the larger the time gain...

## End(Not run)

---

**ode.1D**  
Solver For Multicomponent 1-D Ordinary Differential Equations

---

**Description**

Solves a system of ordinary differential equations resulting from 1-Dimensional partial differential equations that have been converted to ODEs by numerical differencing.

**Usage**

```r
ode.1D(y, times, func, parms, nspec = NULL, dimens = NULL,
 method = c("lsoda", "lsode", "lsodes", "lsodar", "vode", "daspk",
 "euler", "rk4", "ode23", "ode45", "radua", "bdf", "adams", "impAdams",
 "iteration"),
 names = NULL, bandwidth = 1, restructure = FALSE, ...)
```

**Arguments**

- **y**: the initial (state) values for the ODE system, a vector. If y has a name attribute, the names will be used to label the output matrix.
- **times**: time sequence for which output is wanted; the first value of times must be the initial time.
- **func**: either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or a character string giving the name of a compiled function in a dynamically loaded shared library. If func is an R-function, it must be defined as:  
  ```r
 func <- function(t, y, parms, ...)
  ```  
  t is the current time point in the integration, y is the current estimate of the variables in the ODE system. If the initial values y has a names attribute, the names will be available inside func. parms is a vector or list of parameters; ... (optional) are any other arguments passed to the function. The return value of func should be a list, whose first element is a vector containing the derivatives of y with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be specified in the same order as the state variables \( y \). If \( \text{func} \) is a character string then integrator \( \text{lsodes} \) will be used. See details.

\textbf{parms} \hspace{1cm} \text{parameters passed to} \ \text{func}.

\textbf{nspec} \hspace{1cm} \text{the number of} \ \text{species} \ (\text{components}) \ \text{in the model}. \ \text{If} \ \text{NULL}, \ \text{then} \ \text{dimens} \ \text{should be specified}.

\textbf{dimens} \hspace{1cm} \text{the number of} \ \text{boxes} \ \text{in the model}. \ \text{If} \ \text{NULL}, \ \text{then} \ \text{nspec} \ \text{should be specified}.

\textbf{method} \hspace{1cm} \text{the integrator}. \ \text{Use} \ "\text{vode}" , \ "\text{lsode}" , \ "\text{lsoda}" , \ "\text{daspk}" , or \ "\text{lsodes}" \ \text{if the model is very stiff}; \ "\text{impAdams}" or \ "\text{radau}" may be best suited for mildly stiff problems; \ "\text{euler}" , \ "\text{rk4}" , \ "\text{ode23}" , \ "\text{ode45}" , \ "\text{adams}" \ \text{are most efficient for non-stiff problems}. \ \text{Also allowed is to pass an integrator function}. \ \text{Use one of the other Runge-Kutta methods via} \ \text{rkMethod} . \ \text{For instance,} \ \text{method} \ = \ \text{rkMethod}("\text{ode45ck}"") \ \text{will trigger the Cash-Karp method of order 4(5)}.

\text{Method} \ "\text{iteration}" \ \text{is special in that here the function} \ \text{func} \ \text{should return the new value of the state variables rather than the rate of change}. \ \text{This can be used for individual based models, for difference equations, or in those cases where the integration is performed within} \ \text{func} \).

\textbf{names} \hspace{1cm} \text{the names of the components}; \text{used for plotting}.

\textbf{bandwidth} \hspace{1cm} \text{the number of adjacent boxes over which transport occurs}. \ \text{Normally equal to} \ 1 \ \text{(box} \ i \ \text{only interacts with box} \ i-1, \ \text{and} \ i+1). \ \text{Values larger than} \ 1 \ \text{will not work with} \ \text{method} = \ "\text{lsodes}" . \ \text{Ignored if the method is explicit}.

\textbf{restructure} \hspace{1cm} \text{whether or not the Jacobian should be restructured}. \ \text{Only used if the method is an integrator function}. \ \text{Should be} \ \text{TRUE} \ \text{if the method is implicit}, \ \text{FALSE} \ \text{if explicit}.

\ldots \hspace{1cm} \text{additional arguments passed to the integrator}.

\textbf{Details}

This is the method of choice for multi-species 1-dimensional models, that are only subjected to transport between adjacent layers.

More specifically, this method is to be used if the state variables are arranged per species:

\[ A[1], A[2], A[3], \ldots, B[1], B[2], B[3], \ldots \] \ (for species \( A, B \))

Two methods are implemented.

- The default method rearranges the state variables as \( A[1], B[1], A[2], B[2], \ldots, A[3], B[3], \ldots \). This reformulation leads to a banded Jacobian with (upper and lower) half bandwidth = number of species. Then the selected integrator solves the banded problem.

- The second method uses \( \text{lsodes} \). Based on the dimension of the problem, the method first calculates the sparsity pattern of the Jacobian, under the assumption that transport is only occurring between adjacent layers. Then \( \text{lsodes} \) is called to solve the problem. As \( \text{lsodes} \) is used to integrate, it may be necessary to specify the length of the real work array, \( \text{lrw} \).
Although a reasonable guess of lrw is made, it is possible that this will be too low. In this case, ode.1D will return with an error message telling the size of the work array actually needed. In the second try then, set lrw equal to this number.

For instance, if you get the error:

```
DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932
```

set lrw equal to 27627 or a higher value

If the model is specified in compiled code (in a DLL), then option 2, based on lsodes is the only solution method.

For single-species 1-D models, you may also use ode.band.

See the selected integrator for the additional options.

**Value**

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the second element of the return from func, plus an additional column (the first) for the time value. There will be one row for each element in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

The output will have the attributes istate, and rstate, two vectors with several useful elements. The first element of istate returns the conditions under which the last call to the integrator returned. Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the screen. See the help for the selected integrator for details.

**Note**

It is advisable though not mandatory to specify both nspec and dimens. In this case, the solver can check whether the input makes sense (i.e. if nspec * dimens == length(y)).

**Author(s)**

Karline Soetaert <karline.soetaert@nioz.nl>

**See Also**

- `ode` for a general interface to most of the ODE solvers,
- `ode.band` for integrating models with a banded Jacobian
- `ode.2D` for integrating 2-D models
- `ode.3D` for integrating 3-D models
- `lsodes,lsode,lsoda,lsodar,vode` for the integration options.
- `diagnostics` to print diagnostic messages.
Examples

```r
example 1
a predator and its prey diffusing on a flat surface
in concentric circles
1-D model with using cylindrical coordinates
Lotka-Volterra type biology
#
lvmod <- function (time, state, parms, N, rr, ri, dr, dri) {
 with (as.list(parms), {
 PREY <- state[1:N]
 PRED <- state[(N+1):(2*N)]

 FluxPrey <- -Da * diff(c(PREY[1], PREY, PREY[N]))/dri
 FluxPred <- -Da * diff(c(PRED[1], PRED, PRED[N]))/dri

 Ingestion <- rIng * PREY * PRED
 GrowthPrey <- rGrow * PREY * (1-PREY/cap)
 MortPredator <- rMort * PRED

 dPREY <- -diff(ri * FluxPrey)/rr/dr + GrowthPrey - Ingestion
 dPRED <- -diff(ri * FluxPred)/rr/dr + Ingestion * assEff - MortPredator

 return (list(c(dPREY, dPRED)))
 })
}
```

## Model parameters:

- `R` - total radius of surface, m
- `N` - 100 concentric circles
- `dr` - thickness of each layer
- `r` - distance of center to mid-layer
- `ri` - distance to layer interface
- `dri` - dispersion distances
parms <- c(Da = 0.05, # m2/d, dispersion coefficient
          rIng = 0.2, # /day, rate of ingestion
          rGrow = 1.0, # /day, growth rate of prey
          rMort = 0.2, # /day, mortality rate of predator
          assEff = 0.5, # -, assimilation efficiency
          cap = 10) # density, carrying capacity

## Initial conditions: both present in central circle (box 1) only
state <- rep(0, 2 * N)

## RUNNING the model:
times <- seq(0, 200, by = 1) # output wanted at these time intervals

## the model is solved by the two implemented methods:
## 1. Default: banded reformulation
print(system.time(
  out <- ode.1D(y = state, times = times, func = lvmod, parms = parms,
                 nspec = 2, names = c("PREY", "PRED"),
                 N = N, rr = r, ri = r, dr = dr, dri = dri)
))

## 2. Using sparse method
print(system.time(
  out2 <- ode.1D(y = state, times = times, func = lvmod, parms = parms,
                 nspec = 2, names = c("PREY", "PRED"),
                 N = N, rr = r, ri = r, dr = dr, dri = dri,
                 method = "lsodes")
))

### Plotting output

# the data in `out` consist of: 1st col times, 2-N+1: the prey
# N+2:2*N+1: predators
PREY <- out[, 2:(N + 1)]

time <- times

filled.contour(x = time, y = r, PREY, color = topo.colors,
               xlab = "time, days", ylab = "Distance, m",
               main = "Prey density")

image(out, which = "PREY", grid = r, xlab = "time, days",
      legend = TRUE, ylab = "Distance, m", main = "Prey density")

image(out2, grid = r)

# summaries of 1-D variables
summary(out)

# 1-D plots:
matplot.1D(out, type = "l", subset = time == 10)
matplot.1D(out, type = "l", subset = time > 10 & time < 20)
Example 2.

Biochemical Oxygen Demand (BOD) and oxygen (O2) dynamics in a river

---

Model equations

```r
O2BOD <- function(t, state, pars) {
 BOD <- state[1:N]
 O2 <- state[(N+1):2*N]

 # BOD dynamics
 FluxBOD <- v * c(BOD_0, BOD) # fluxes due to water transport
 FluxO2 <- v * c(O2_0, O2)

 BODrate <- r * BOD # 1-st order consumption

 dBOD <- -diff(FluxBOD)/dx - BODrate
 dO2 <- -diff(FluxO2)/dx - BODrate + p * (O2sat-O2)

 return(list(c(dBOD = dBOD, dO2 = dO2)))
}
```

---

Model application

```r
parameters
dx <- 25 # grid size of 25 meters
v <- 1e3 # velocity, m/day
x <- seq(dx/2, 5000, by = dx) # m, distance from river
N <- length(x)
r <- 0.05 # /day, first-order decay of BOD
p <- 0.5 # /day, air-sea exchange rate
O2sat <- 300 # mmol/m3 saturated oxygen conc
O2_0 <- 200 # mmol/m3 riverine oxygen conc
BOD_0 <- 1000 # mmol/m3 riverine BOD concentration

initial conditions:
state <- c(rep(200, N), rep(200, N))
times <- seq(0, 20, by = 0.1)

running the model
out <- ode.1D(y = state, times, O2BOD, parms = NULL,
 nspec = 2, names = c("BOD", "O2"))
```

---

Plotting output
## ================
## select oxygen (first column of out:time, then BOD, then O2
O2 <- out[, (N + 2):(2 * N + 1)]
color = topo.colors

filled.contour(x = times, y = x, O2, color = color, nlevels = 50,
              xlab = "time, days", ylab = "Distance from river, m",
              main = "Oxygen")

## or quicker plotting:
image(out, grid = x, xlab = "time, days", ylab = "Distance from river, m")

---

**ode.2D**

*Solver for 2-Dimensional Ordinary Differential Equations*

**Description**

Solves a system of ordinary differential equations resulting from 2-Dimensional partial differential equations that have been converted to ODEs by numerical differencing.

**Usage**

```r
ode.2D(y, times, func, parms, nspec = NULL, dimens,
 method = c("lsodes", "euler", "rk4", "ode23", "ode45", "adams", "iteration"),
 names = NULL, cyclicBnd = NULL, ...)
```

**Arguments**

- `y`  
  the initial (state) values for the ODE system, a vector. If `y` has a name attribute, the names will be used to label the output matrix.

- `times`  
  time sequence for which output is wanted; the first value of `times` must be the initial time.

- `func`  
  either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time `t`, or a character string giving the name of a compiled function in a dynamically loaded shared library.

  If `func` is an R-function, it must be defined as: `func <- function(t, y, parms, ...). t` is the current time point in the integration, `y` is the current estimate of the variables in the ODE system. If the initial values `y` has a names attribute, the names will be available inside `func`. `parms` is a vector or list of parameters; ... (optional) are any other arguments passed to the function.

  The return value of `func` should be a list, whose first element is a vector containing the derivatives of `y` with respect to time, and whose next elements are global values that are required at each point in `times`. The derivatives must be specified in the same order as the state variables `y`.

- `parms`  
  parameters passed to `func`.

- `nspec`  
  the number of species (components) in the model.
dimens 2-valued vector with the number of boxes in two dimensions in the model.
cyclicBnd if not NULL then a number or a 2-valued vector with the dimensions where a cyclic boundary is used - 1: x-dimension, 2: y-dimension; see details.
names the names of the components; used for plotting.
method the integrator. Use "lsodes" if the model is very stiff; "impAdams" may be best suited for mildly stiff problems; "euler", "rk4", "ode23", "ode45", "adams" are most efficient for non-stiff problems. Also allowed is to pass an integrator function. Use one of the other Runge-Kutta methods via rkMethod. For instance, method = rkMethod("ode45ck") will trigger the Cash-Karp method of order 4(5).

If "lsodes" is used, then also the size of the work array should be specified (lrw) (see lsodes).
Method "iteration" is special in that here the function func should return the new value of the state variables rather than the rate of change. This can be used for individual based models, for difference equations, or in those cases where the integration is performed within func)
... additional arguments passed to lsodes.

Details

This is the method of choice for 2-dimensional models, that are only subjected to transport between adjacent layers.

Based on the dimension of the problem, and if lsodes is used as the integrator, the method first calculates the sparsity pattern of the Jacobian, under the assumption that transport is only occurring between adjacent layers. Then lsodes is called to solve the problem.

If the model is not stiff, then it is more efficient to use one of the explicit integration routines

In some cases, a cyclic boundary condition exists. This is when the first boxes in x-or y-direction interact with the last boxes. In this case, there will be extra non-zero fringes in the Jacobian which need to be taken into account. The occurrence of cyclic boundaries can be toggled on by specifying argument cyclicBnd. For instance, cyclicBnd = 1 indicates that a cyclic boundary is required only for the x-direction, whereas cyclicBnd = c(1,2) imposes a cyclic boundary for both x- and y-direction. The default is no cyclic boundaries.

If lsodes is used to integrate, it will probably be necessary to specify the length of the real work array, lrw.

Although a reasonable guess of lrw is made, it is likely that this will be too low. In this case, ode.2D will return with an error message telling the size of the work array actually needed. In the second try then, set lrw equal to this number.

For instance, if you get the error:

DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. LENRW (=I1), exceeds LRW (=I2)
In above message, I1 = 27627 I2 = 25932

set lrw equal to 27627 or a higher value.
See lsodes for the additional options.
Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the second element of the return from func, plus an additional column (the first) for the time value. There will be one row for each element in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

The output will have the attributes istate, and rstate, two vectors with several useful elements. The first element of istate returns the conditions under which the last call to the integrator returned. Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the screen. See the help for the selected integrator for details.

Note

It is advisable though not mandatory to specify both nspec and dimens. In this case, the solver can check whether the input makes sense (as nspec * dimens[1] * dimens[2] == length(y)).

Do not use this method for problems that are not 2D!

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• ode for a general interface to most of the ODE solvers,
• ode.band for integrating models with a banded Jacobian
• ode.1D for integrating 1-D models
• ode.3D for integrating 3-D models
• lsodes for the integration options.
diagnostics to print diagnostic messages.

Examples

```r
===
A Lotka-Volterra predator-prey model with predator and prey
dispersing in 2 dimensions
===

Model definitions

lvmod2D <- function (time, state, pars, N, Da, dx) {
 NN <- N*N
 Prey <- matrix(nrow = N, ncol = N, state[1:NN])
 Pred <- matrix(nrow = N, ncol = N, state[(NN+1):(2*NN)])

 with (as.list(pars), {
 # Biology
```
ode.2D

```r
ode.2D <- function(t, y, parms) {
 rGrow <- parms$rGrow
 rIng <- parms$rIng
 rMort <- parms$rMort
 assEff <- parms$assEff
 K <- parms$K

 # 1. Fluxes in x-direction; zero fluxes near boundaries
 FluxPrey <- -Da * rbind(zero, (Prey[2:N,] - Prey[1:(N-1),]), zero)/dx
 FluxPred <- -Da * rbind(zero, (Pred[2:N,] - Pred[1:(N-1),]), zero)/dx

 # Add flux gradient to rate of change
 dPrey <- dPrey - (FluxPrey[2:(N+1),] - FluxPrey[1:N,])/dx
 dPred <- dPred - (FluxPred[2:(N+1),] - FluxPred[1:N,])/dx

 # 2. Fluxes in y-direction; zero fluxes near boundaries
 FluxPrey <- -Da * cbind(zero, (Prey[,2:N] - Prey[,1:(N-1)]), zero)/dx
 FluxPred <- -Da * cbind(zero, (Pred[,2:N] - Pred[,1:(N-1)]), zero)/dx

 # Add flux gradient to rate of change
 dPrey <- dPrey - (FluxPrey[,2:(N+1)] - FluxPrey[,1:N])/dx
 dPred <- dPred - (FluxPred[,2:(N+1)] - FluxPred[,1:N])/dx

 return(list(c(as.vector(dPrey), as.vector(dPred))))
}
```

## Model applications

```r
initial conditions
yini <- rep(0, 2*N*N)
c <- c((NN/2):(NN/2+1)+N/2, (NN/2):(NN/2+1)-N/2)
yini[c] <- yini[NN+c] <- 1

solve model (5000 state variables... use Cash-Karp Runge-Kutta method
out <- ode.2D(y = yini, times = times, func = lvmod2D, parms = pars,
 dimens = c(N, N), names = c("Prey", "Pred"),
 N = N, dx = dx, Da = Da, method = rkMethod("rk45ck"))
```
diagnostics(out)
summary(out)

# Mean of prey concentration at each time step
Prey <- subset(out, select = "Prey", arr = TRUE)
dim(Prey)
MeanPrey <- apply(Prey, MARGIN = 3, FUN = mean)
plot(times, MeanPrey)

## Not run:
## plot results
Col <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#F00000"))
for (i in seq(1, length(times), by = 1))
  image(Prey[, ,i],
    col = Col(100), xlab = , zlim = range(out[,2:(NN+1)]))

## similar, plotting both and adding a margin text with times:
image(out, xlab = "x", ylab = "y", mtext = paste("time = ", times))

## End(Not run)

select <- c(1, 40)
image(out, xlab = "x", ylab = "y", mtext = "Lotka-Volterra in 2-D",
  subset = select, mfrow = c(2,2), legend = TRUE)

# plot prey and pred at t = 10; first use subset to select data
prey10 <- matrix(nrow = N, ncol = N,
data = subset(out, select = "Prey", subset = (time == 10)))
pred10 <- matrix(nrow = N, ncol = N,
data = subset(out, select = "Pred", subset = (time == 10)))

mf <- par(mfrow = c(1, 2))
image(prey10)
image(pred10)
par(mfrow = mf)

# same, using deSolve's image:
image(out, subset = (time == 10))

# An example with a cyclic boundary condition.
# Diffusion in 2-D; extra flux on 2 boundaries,
# cyclic boundary in y

diffusion2D <- function(t, Y, par) {
y <- matrix(nrow = nx, ncol = ny, data = Y) # vector to 2-D matrix
dY <- -r * y # consumption
ode.2D

BNDx <- rep(1, nx)  # boundary concentration
BNDy <- rep(1, ny)  # boundary concentration

## diffusion in X-direction; boundaries=imposed concentration
Flux <- -Dx * rbind(y[1,] - BNDy, (y[2:nx,] - y[1:(nx-1),]), BNDy - y[nx,])/dx
dY <- dY - (Flux[2:(nx+1),] - Flux[1:nx,])/dx

## diffusion in Y-direction
Flux <- -Dy * cbind(y[,1] - BNDx, (y[,2:ny]-y[,1:(ny-1)]), BNDx - y[,ny])/dy
dY <- dY - (Flux[,2:(ny+1)] - Flux[,1:ny])/dy

## extra flux on two sides
dY[,1] <- dY[,1] + 10

## and exchange between sides on y-direction
return(list(as.vector(dY)))

## parameters
dy <- dx <- 1  # grid size
Dy <- Dx <- 1  # diffusion coeff, X- and Y-direction
r <- 0.05  # consumption rate
nx <- 50
ny <- 100
y <- matrix(nrow = nx, ncol = ny, 1)

## model most efficiently solved with lsodes - need to specify lrw
print(system.time(
  ST3 <- ode.2D(y, times = 1:100, func = diffusion2D, parms = NULL,
               dimens = c(nx, ny), verbose = TRUE, names = "Y",
               lrw = 400000, atol = 1e-10, rtol = 1e-10, cyclicBnd = 2)
))

# summary of 2-D variable
summary(ST3)

# plot output at t = 10

## Not run:
zlim <- range(ST3[, -1])
for (i in 2:nrow(ST3)) {
  y <- matrix(nrow = nx, ncol = ny, data = ST3[i, -1])
  filled.contour(y, zlim = zlim, main = i)
}

# same
image(ST3, method = "filled.contour")

## End(Not run)

ode.3D

Solver for 3-Dimensional Ordinary Differential Equations

Description

Solves a system of ordinary differential equations resulting from 3-Dimensional partial differential equations that have been converted to ODEs by numerical differencing.

Usage

ode.3D(y, times, func, parms, nspec = NULL, dimens, 
method = c("lsodes", "euler", "rk4", "ode23", "ode45", "adams", "iteration"), 
names = NULL, cyclicBnd = NULL, ...)

Arguments

y the initial (state) values for the ODE system, a vector. If y has a name attribute, 
the names will be used to label the output matrix.
times time sequence for which output is wanted; the first value of times must be the 
initial time.
func either an R-function that computes the values of the derivatives in the ODE 
system (the model definition) at time t, or a character string giving the name of 
a compiled function in a dynamically loaded shared library. 
If func is an R-function, it must be defined as: func <- function(t, y, parms, 
...). t is the current time point in the integration, y is the current estimate of 
the variables in the ODE system. If the initial values y has a names attribute, the 
names will be available inside func. parms is a vector or list of parameters: ... 
(optional) are any other arguments passed to the function. 
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of y with respect to time, and whose next elements are 
global values that are required at each point in times. The derivatives must be 
specified in the same order as the state variables y.
parms parameters passed to func.
nspec the number of species (components) in the model.
dimens 3-valued vector with the number of boxes in three dimensions in the model.

names the names of the components; used for plotting.

cyclicBnd if not NULL then a number or a 3-valued vector with the dimensions where a cyclic boundary is used - 1: x-dimension, 2: y-dimension; 3: z-dimension.

method the integrator. Use "lsodes" if the model is very stiff; "impAdams" may be best suited for mildly stiff problems; "euler", "rk4", "ode23", "ode45", "adams" are most efficient for non-stiff problems. Also allowed is to pass an integrator function. Use one of the other Runge-Kutta methods via rkMethod. For instance, method = rkMethod("ode45ck") will trigger the Cash-Karp method of order 4(5).

Method "iteration" is special in that here the function func should return the new value of the state variables rather than the rate of change. This can be used for individual based models, for difference equations, or in those cases where the integration is performed within func.

... additional arguments passed to lsodes.

Details

This is the method of choice for 3-dimensional models, that are only subjected to transport between adjacent layers.

Based on the dimension of the problem, the method first calculates the sparsity pattern of the Jacobian, under the assumption that transport is only occurring between adjacent layers. Then lsodes is called to solve the problem.

As lsodes is used to integrate, it will probably be necessary to specify the length of the real work array, lrw.

Although a reasonable guess of lrw is made, it is likely that this will be too low.

In this case, ode.2D will return with an error message telling the size of the work array actually needed. In the second try then, set lrw equal to this number.

For instance, if you get the error:

DLSODES- RWORK length is insufficient to proceed.
Length needed is .ge. I1, exceeds LRW (=I2)
In above message, I1 = 27627  I2 = 25932

set lrw equal to 27627 or a higher value.

See lsodes for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the second element of the return from func, plus an additional column (the first) for the time value. There will be one row for each element in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

The output will have the attributes istate, and rstate, two vectors with several useful elements.

The first element of istate returns the conditions under which the last call to the integrator returned.
Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the screen. See the help for the selected integrator for details.

Note

It is advisable though not mandatory to specify both nspec and dimens. In this case, the solver can check whether the input makes sense (as nspec*dimens[1]*dimens[2]*dimens[3] == length(y)). Do not use this method for problems that are not 3D!

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

- `ode` for a general interface to most of the ODE solvers,
- `ode.band` for integrating models with a banded Jacobian
- `ode.1D` for integrating 1-D models
- `ode.2D` for integrating 2-D models
- `lsodes` for the integration options.
- `diagnostics` to print diagnostic messages.

Examples

```r
Diffusion in 3-D; imposed boundary conditions

diffusion3D <- function(t, Y, par) {

 ## function to bind two matrices to an array
 mbind <- function (Mat1, Array, Mat2, along = 1) {
 dimens <- dim(Array) + c(0, 0, 2)
 if (along == 3)
 array(dim = dimens, data = c(Mat1, Array, Mat2))
 else if (along == 1)
 aperm(array(dim = dimens,
 data=c(Mat1, aperm(Array, c(3, 2, 1)), Mat2)), c(3, 2, 1))
 else if (along == 2)
 aperm(array(dim = dimens,
 data = c(Mat1, aperm(Array, c(1, 3, 2)), Mat2)), c(1, 3, 2))
 }

 yy <- array(dim=c(n, n, n), data = Y) # vector to 3-D array
dY <- -r*yy # consumption
 BND <- matrix(nrow = n, ncol = n, data = 1) # boundary concentration

 ## diffusion in x-direction
 ## new array including boundary concentrations in X-direction
 BNX <- mbind(BND, yy, BND, along = 1)
 ## diffusive Flux
```
Flux <- -Dx * (BNDx[2:(n+2),,,] - BNDx[1:(n+1),,,])/dx
## rate of change = - flux gradient
dY[] <- dY[] - (Flux[2:(n+1),,,] - Flux[1:n,,]) / dx

## diffusion in y-direction
BNDy <- mbind(BND, yy, BND, along = 2)
Flux <- -Dy * (BNDy[,2:(n+2),] - BNDy[,1:(n+1),])/dy
dY[] <- dY[] - (Flux[,2:(n+1),] - Flux[,1:n,]) / dy

## diffusion in z-direction
BNDz <- mbind(BND, yy, BND, along = 3)
Flux <- -Dz * (BNDz[,2:(n+2)] - BNDz[,1:(n+1)]) / dz
dY[] <- dY[] - (Flux[,2:(n+1)] - Flux[,1:n]) / dz

return(list(as.vector(dY)))

## parameters
dy <- dx <- dz <- 1  # grid size
dy <- Dy <- Dz <- 1  # diffusion coeff, X- and Y-direction
r <- 0.025  # consumption rate
n <- 10
y <- array(dim=c(n,n,n),data=10.)

## use lsodes, the default (for n>20, Runge-Kutta more efficient)
print(system.time(
  RES <- ode.3D(y, func = diffusion3D, parms = NULL, dimens = c(n, n, n),
                 times = 1:20, lrw = 120000, atol = 1e-10,
                 rtol = 1e-10, verbose = TRUE)
))

y <- array(dim = c(n, n, n), data = RES[nrow(RES), -1])
filled.contour(y[,,n/2], color.palette = terrain.colors)
summary(RES)

## Not run:
for (i in 2:nrow(RES)) {
  y <- array(dim=c(n,n,n),data=RES[i,-1])
  filled.contour(y[,,n/2],main=i,color.palette=terrain.colors)
}

## End(Not run)
ode.band

93

Description

Solves a system of ordinary differential equations.

Assumes a banded Jacobian matrix, but does not rearrange the state variables (in contrast to ode.1D).
Suitable for 1-D models that include transport only between adjacent layers and that model only one
species.

Usage

ode.band(y, times, func, parms, nspec = NULL, dimens = NULL,
    bandup = nspec, banddown = nspec, method = "lsode", names = NULL,
    ...)
function will have the species arranged as A[1], A[2], A[3], ... B[1], B[2], B[3], ... in this case, use ode.1D. See the selected integrator for the additional options.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the second element of the return from func, plus an additional column (the first) for the time value. There will be one row for each element in times unless the integrator returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

The output will have the attributes istate and rstate, two vectors with several elements. See the help for the selected integrator for details. the first element of istate returns the conditions under which the last call to the integrator returned. Normal is istate = 2. If verbose = TRUE, the settings of istate and rstate will be written to the screen.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

See Also

• ode for a general interface to most of the ODE solvers,
• ode.1D for integrating 1-D models
• ode.2D for integrating 2-D models
• ode.3D for integrating 3-D models
• lsode, lsoda, lsodar, vode for the integration options.
diagnostics to print diagnostic messages.

Examples

```r
The Aphid model from Soetaert and Herman, 2009.
A practical guide to ecological modelling.
Using R as a simulation platform. Springer.

1-D diffusion model

Aphid <- function(t, APHIDS, parameters) {
deltax <- c(0.5*delx, rep(delx, numboxes-1), 0.5*delx)
Flux <- -D*diff(c(0, APHIDS, 0))/deltax
dAPHIDS <- -diff(Flux)/delx + APHIDS*r
list(dAPHIDS) # the output
```
## Model application

## the model parameters:
\[
D \leftarrow 0.3 \quad \text{# m}^2\text{/day diffusion rate} \\
\mathbf{r} \leftarrow 0.01 \quad \text{# /day net growth rate} \\
delx \leftarrow 1 \quad \text{# m thickness of boxes} \\
\text{numboxes} \leftarrow 60
\]

## distance of boxes on plant, m, 1 m intervals
\[
\text{Distance} \leftarrow \text{seq(from = 0.5, by = delx, length.out = numboxes)}
\]

## Initial conditions, ind/m2
## aphids present only on two central boxes
\[
\text{APHIDS} \leftarrow \text{rep}(0, \text{times = numboxes)} \\
\text{APHIDS}[30:31] \leftarrow 1
\]

## initialise state variables
\[
\text{state} \leftarrow c(\text{APHIDS} = \text{APHIDS})
\]

## RUNNING the model:
\[
\text{times} \leftarrow \text{seq}(0, 200, \text{by = 1}) \quad \text{# output wanted at these time intervals} \\
\text{out} \leftarrow \text{ode.band(state, times, Aphid, parms = 0,} \\
\hspace{1cm} \text{nspec = 1, names = “Aphid”)}
\]

## Plotting output

## image(out, grid = Distance, method = “filled.contour”, 
\hspace{1cm} xlab = “time, days”, ylab = “Distance on plant, m”, 
\hspace{1cm} main = “Aphid density on a row of plants”) 

## matplot.1D(out, grid = Distance, type = “l”, 
\hspace{1cm} subset = time %in% seq(0, 200, by = 10))

## add an observed dataset to 1-D plot (make sure to use correct name):
\[
\text{data} \leftarrow \text{cbind(dist = c(0,10, 20, 30, 40, 50, 60),} \\
\hspace{1cm} \text{Aphid = c}(0,0.1,0.25,0.5,0.25,0.1,0))
\]

## matplot.1D(out, grid = Distance, type = “l”, 
\hspace{1cm} subset = time %in% seq(0, 200, by = 10), 
\hspace{1cm} obs = data, obspar = list(pch = 18, cex = 2, col=”red”))

## Not run:
\[
\text{plot.1D(out, grid = Distance, type = “l”)}
\]

## End(Not run)
**Description**

Plot the output of numeric integration routines.

**Usage**

```r
S3 method for class 'deSolve'
plot(x, ..., select = NULL, which = select, ask = NULL,
 obs = NULL, obspar = list(), subset = NULL)

S3 method for class 'deSolve'
hist(x, select = 1:(ncol(x)-1), which = select, ask = NULL,
 subset = NULL, ...)

S3 method for class 'deSolve'
image(x, select = NULL, which = select, ask = NULL,
 add.contour = FALSE, grid = NULL,
 method = "image", legend = FALSE, subset = NULL, ...)

S3 method for class 'deSolve'
subset(x, subset = NULL, select = NULL,
 which = select, arr = FALSE, ...)

S3 method for class 'deSolve'
plot.1D (x, ..., select = NULL, which = select, ask = NULL,
 obs = NULL, obspar = list(), grid = NULL,
 xyswap = FALSE, delay = 0, vertical = FALSE, subset = NULL)

S3 method for class 'deSolve'
matplot.0D(x, ..., select = NULL, which = select,
 obs = NULL, obspar = list(), subset = NULL,
 legend = list(x = "topright"))

S3 method for class 'deSolve'
matplot.1D(x, select = NULL, which = select, ask = NULL,
 obs = NULL, obspar = list(), grid = NULL,
 xyswap = FALSE, vertical = FALSE, subset = NULL, ...)
```

**Arguments**

- `x`: an object of class `deSolve`, as returned by the integrators, and to be plotted. For `plot.deSolve`, it is allowed to pass several objects of class `deSolve` after `x` (unnamed) - see second example.
- `which`: the name(s) or the index to the variables that should be plotted or selected. Default = all variables, except time. For use with `matplot.0D` and `matplot.1D`, `which` or `select` can be a list, with vectors, each referring to a separate y-axis.
- `select`: which variable/columns to be selected. This is added for consistency with the R-function `subset`.
- `subset`: either a logical expression indicating elements or rows to keep in `select`, or a vector of integers denoting the indices of the elements over which to loop. Missing values are taken as `FALSE`
plot.deSolve

ask logical; if TRUE, the user is asked before each plot, if NULL the user is only asked if more than one page of plots is necessary and the current graphics device is set interactive, see par(ask) and dev.interactive.

add.contour if TRUE, will add contours to the image plot.

method the name of the plotting method to use, one of "image", "filled.contour", "persp", "contour".

grid only for image plots and for plot.1D: the 1-D grid as a vector (for output generated with ode.1D), or the x- and y-grid, as a list (for output generated with ode.2D).

xyswap if TRUE, then x- and y-values are swapped and the y-axis is from top to bottom. Useful for drawing vertical profiles.

vertical if TRUE, then 1. x- and y-values are swapped, the y-axis is from top to bottom, the x-axis is on top, margin 3 and the main title gets the value of the x-axis. Useful for drawing vertical profiles; see example 2.

delay adds a delay (in milliseconds) between consecutive plots of plot.1D to enable animations.

obs a data.frame or matrix with "observed data" that will be added as points to the plots. obs can also be a list with multiple data.frames and/or matrices containing observed data.

By default the first column of an observed data set should contain the time-variable. The other columns contain the observed values and they should have names that are known in x.

If the first column of obs consists of factors or characters (strings), then it is assumed that the data are presented in long (database) format, where the first three columns contain (name, time, value).

If obs is not NULL and which is NULL, then the variables, common to both obs and x will be plotted.

obspar additional graphics arguments passed to points, for plotting the observed data. If obs is a list containing multiple observed data sets, then the graphics arguments can be a vector or a list (e.g. for xlim, ylim), specifying each data set separately.

legend if TRUE, a color legend will be drawn on the right of each image. For use with matplot.0D and matplot.1D: a list with arguments passed to R-function legend.

arr if TRUE, and the output is from a 2-D or 3-D model, an array will be returned with dimension = c(dimension of selected variable, nrow(x)). When arr=TRUE then only one variable can be selected. When the output is from a 0-D or 1-D model, then this argument is ignored.

... additional arguments.

The graphical arguments are passed to plot.default, image or hist
For plot.deSolve, and plot.1D, the dots may contain other objects of class deSolve, as returned by the integrators, and to be plotted on the same graphs as x - see second example. In this case, x and these other objects should be compatible, i.e. the column names should be the same.
For plot.deSolve, the arguments after ... must be matched exactly.
Details

The number of panels per page is automatically determined up to 3 x 3 (par(mfrow = c(3, 3))). This default can be overwritten by specifying user-defined settings for mfrow or mfcol. Set mfrow equal to NULL to avoid the plotting function to change user-defined mfrow or mfcol settings.

Other graphical parameters can be passed as well. Parameters are vectorized, either according to the number of plots (xlab, ylab, main, sub, xlim, ylim, log, asp, ann, axes, frame.plot, panel.first, panel.last, cex.lab, cex.axis, cex.main) or according to the number of lines within one plot (other parameters e.g. col, lty, lwd etc.) so it is possible to assign specific axis labels to individual plots, resp. different plotting style. Plotting parameter ylim, or xlim can also be a list to assign different axis limits to individual plots.

Similarly, the graphical parameters for observed data, as passed by obspar can be vectorized, according to the number of observed data sets.

Image plots will only work for 1-D and 2-D variables, as solved with ode.1D and ode.2D. In the first case, an image with times as x- and the grid as y-axis will be created. In the second case, an x-y plot will be created, for all times. Unless ask = FALSE, the user will be asked to confirm page changes. Via argument mtext, it is possible to label each page in case of 2D output.

For images, it is possible to pass an argument method which can take the values "image" (default), "filled.contour", "contour" or "persp", in order to use the respective plotting method.

plot and matplot.0D will always have times on the x-axis. For problems solved with ode.1D, it may be more useful to use plot.1D or matplot.1D which will plot how spatial variables change with time. These plots will have the grid on the x-axis.

Value

Function subset called with arr = FALSE will return a matrix with up to as many rows as selected by subset and as many columns as selected variables.

When arr = TRUE then an array will be outputted with dimensions equal to the dimension of the selected variable, augmented with the number of rows selected by subset. This means that the last dimension points to times.

Function subset also has an attribute that contains the times selected.

See Also

deSolve, ode, print.deSolve,
hist image matplot, plot.default for the underlying functions from package graphics,
ode.2D, for an example of using subset with arr = TRUE.

Examples

```r
LVmatrix <- function(t, n, parms) {
 with(parms, {
 dn <- r * n + n * (A %*% n)
 })
}
```r
return(list(c(dn)))
}

parms <- list(
  r = c(r1 = 0.1, r2 = 0.1, r3 = -0.1, r4 = -0.1),
  A = matrix(c(0.0, 0.0, -0.2, 0.01, # prey 1
               0.0, 0.0, 0.02, -0.1, # prey 2
               0.2, 0.02, 0.0, 0.0, # predator 1; prefers prey 1
               0.01, 0.1, 0.0, 0.0), # predator 2; prefers prey 2
             nrow = 4, ncol = 4, byrow=TRUE)
)

times <- seq(from = 0, to = 500, by = 0.1)
y <- c(prey1 = 1, prey2 = 1, pred1 = 2, pred2 = 2)

out <- ode(y, times, LVmatrix, parms)

## Basic line plot
plot(out, type = "l")

## User-specified axis labels
plot(out, type = "l", ylab = c("Prey 1", "Prey 2", "Pred 1", "Pred 2"),
     xlab = "Time (d)", main = "Time Series")

## Set user-defined mfrow
pm <- par(mfrow = c(2, 2))

## "mfrow=NULL" keeps user-defined mfrow
plot(out, which = c("prey1", "pred2"), mfrow = NULL, type = "l", lwd = 2)

## Split y-variables in two groups
matplot.0D(out, which = list(c(1,3), c(2,4)),
           lty = c(1,2,1,2), col=c(4,4,5,5),
           ylab = c("prey1,pred1", "prey2,pred2"))

# New runs with different parameter settings
parms2 <- parms
parms2$r[1] <- 0.2
out2 <- ode(y, times, LVmatrix, parms2)
```
New runs with different parameter settings

```r
parms3 <- parms
parms3$r[1] <- 0.05
out3 <- ode(y, times, LVmatrix, parms3)
```

plot all three outputs

```r
plot(out, out2, out3, type = "l",
ylab = c("Prey 1", "Prey 2", "Pred 1", "Pred 2"),
xlab = "Time (d)", main = c("Prey 1", "Prey 2", "Pred 1", "Pred 2"),
col = c("red", "blue", "darkred"))
```

'observed' data

```r
obs <- as.data.frame(out[out[,1] %in% seq(10, 500, by = 30), ])
```

```r
plot(out, which = "prey1", type = "l", obs = obs,
obspar = list(pch = 18, cex = 2))
```

```r
plot(out, type = "l", obs = obs, col = "red")
```

```r
matplot.0D(out, which = c("prey1", "pred1"), type = "l", obs = obs)
```

second set of 'observed' data and two outputs

```r
obs2 <- as.data.frame(out2[out2[,1] %in% seq(10, 500, by = 50), ])
```

```r
## manual xlim, log
plot(out, out2, type = "l", obs = list(obs, obs2), col = c("red", "blue"),
obspar = list(pch = 18:19, cex = 2, col = c("red", "blue")),
log = c("y", ""), which = c("prey1", "pred1"),
xlim = list(c(100, 500), c(0, 400)))
```

data in 'long' format

```r
OBS <- data.frame(name = c(rep("prey1", 3), rep("prey2", 2)),
time = c(10, 100, 250, 10, 400),
value = c(0.05, 0.04, 0.7, 0.5, 1))
```

```r
plot(out, obs = OBS, obspar = c(pch = 18, cex = 2))
```

a subset only:

```r
plot(out, subset = prey1 < 0.5, type = "p")
```

Simple histogram

```r
hist(out, col = "darkblue", breaks = 50)
```

```r
hist(out, col = "darkblue", breaks = 50, subset = prey1<1 & prey2 < 1)
```

different parameters per plot

```r
hist(out, col = c("darkblue", "red", "orange", "black"),
breaks = c(10,50))
```

```r
## The Aphid model from Soetaert and Herman, 2009.
```
A practical guide to ecological modelling.
Using R as a simulation platform. Springer.
===
1-D diffusion model
==================
Model equations
================
Aphid <- function(t, APHIDS, parameters) {
 deltax <- c(0.5*delx, rep(delx, numboxes - 1), 0.5*delx)
 Flux <- -D * diff(c(0, APHIDS, 0))/deltax
 dAPHIDS <- -diff(Flux)/delx + APHIDS * r
 list(dAPHIDS, Flux = Flux)
}

Model application
==================
the model parameters:
D <- 0.3 # m^2/day diffusion rate
r <- 0.01 # /day net growth rate
delx <- 1 # m thickness of boxes
numboxes <- 60

distance of boxes on plant, m, 1 m intervals
Distance <- seq(from = 0.5, by = delx, length.out = numboxes)

Initial conditions, ind/m2
aphids present only on two central boxes
APHIDS <- rep(0, times = numboxes)
APHIDS[30:31] <- 1
state <- c(APHIDS = APHIDS) # initialise state variables

RUNNING the model:
times <- seq(0, 200, by = 1) # output wanted at these time intervals
out <- ode.1D(state, times, Aphid, parms = 0, nspec = 1, names = "Aphid")

image(out, grid = Distance, main = "Aphid model", ylab = "distance, m", legend = TRUE)

restricting time
image(out, grid = Distance, main = "Aphid model", ylab = "distance, m", legend = TRUE, subset = time < 100)
image(out, grid = Distance, main = "Aphid model", ylab = "distance, m", method = "persp", border = NA, theta = 30)

FluxAphid <- subset(out, select = "Flux", subset = time < 50)
matplot.1D(out, type = "l", lwd = 2, xyswap = TRUE, lty = 1)
```r
matplot.1D(out, type = "l", lwd = 2, xyswap = TRUE, lty = 1,
            subset = time < 50)

matplot.1D(out, type = "l", lwd = 2, xyswap = TRUE, lty = 1,
            subset = time %in% seq(0, 200, by = 10), col = "grey")

## Not run:
plot(out, ask = FALSE, mfrow = c(1, 1))
plot.1D(out, ask = FALSE, type = "l", lwd = 2, xyswap = TRUE)
## End(Not run)

## see help file for ode.2D for images of 2D variables
```

radau

Implicit Runge-Kutta RADAU IIA

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE) in the form:

\[
\frac{dy}{dt} = f(t, y)
\]

or linearly implicit differential algebraic equations in the form:

\[
M\frac{dy}{dt} = f(t, y)
\]

The R function `radau` provides an interface to the Fortran solver RADAU5, written by Ernst Hairer and G. Wanner, which implements the 3-stage RADAU IIA method. It implements the implicit Runge-Kutta method of order 5 with step size control and continuous output. The system of ODEs or DAEs is written as an R function or can be defined in compiled code that has been dynamically loaded.

Usage

```r
radau(y, times, func, parms, nind = c(length(y), 0, 0),
       rtol = 1e-6, atol = 1e-6, jacfunc = NULL, jactype = "fullint",
       mass = NULL, massup = NULL, massdown = NULL, rootfunc = NULL,
       verbose = FALSE, nroot = 0, hmax = NULL, hini = 0, ynames = TRUE,
       bandup = NULL, banddown = NULL, maxsteps = 5000,
       dllname = NULL, initfunc = dllname, initpar = parms,
       rpar = NULL, ipar = NULL, nout = 0, outnames = NULL,
       forcings = NULL, initforc = NULL, fcontrol = NULL,
       events = NULL, lags = NULL, ...)```
Arguments

- **y**: the initial (state) values for the ODE system. If y has a name attribute, the names will be used to label the output matrix.

- **times**: time sequence for which output is wanted; the first value of times must be the initial time; if only one step is to be taken; set times = NULL.

- **func**: either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or the right-hand side of the equation

  \[ M \frac{dy}{dt} = f(t, y) \]

  if a DAE. (if mass is supplied then the problem is assumed a DAE).

  func can also be a character string giving the name of a compiled function in a dynamically loaded shared library.

  If func is an R-function, it must be defined as:

  ```r
 func <- function(t, y, parms, ...).
  ```

  t is the current time point in the integration, y is the current estimate of the variables in the ODE system. If the initial values y has a names attribute, the names will be available inside func. parms is a vector or list of parameters; ... (optional) are any other arguments passed to the function.

  The return value of func should be a list, whose first element is a vector containing the derivatives of y with respect to time, and whose next elements are global values that are required at each point in times. The derivatives must be specified in the same order as the state variables y.

  If func is a string, then dllname must give the name of the shared library (without extension) which must be loaded before radau() is called. See deSolve package vignette "compiledCode" for more details.

- **parms**: vector or list of parameters used in func or jacfunc.

- **nind**: if a DAE system: a three-valued vector with the number of variables of index 1, 2, 3 respectively. The equations must be defined such that the index 1 variables precede the index 2 variables which in turn precede the index 3 variables. The sum of the variables of different index should equal N, the total number of variables. This has implications on the scaling of the variables, i.e. index 2 variables are scaled by 1/h, index 3 variables are scaled by 1/h^2.

- **rtol**: relative error tolerance, either a scalar or an array as long as y. See details.

- **atol**: absolute error tolerance, either a scalar or an array as long as y. See details.

- **jacfunc**: if not NULL, an R function that computes the Jacobian of the system of differential equations \( \frac{\partial y_i}{\partial y_j} \), or a string giving the name of a function or subroutine in 'dllname' that computes the Jacobian (see vignette "compiledCode" from package deSolve, for more about this option).

  In some circumstances, supplying jacfunc can speed up the computations, if the system is stiff. The R calling sequence for jacfunc is identical to that of func.

  If the Jacobian is a full matrix, jacfunc should return a matrix \( \frac{\partial y_i}{\partial y_j} \), where the ith row contains the derivative of \( dy_i/dt \) with respect to \( y_j \), or a vector containing the matrix elements by columns (the way R and FORTRAN store matrices).

  If the Jacobian is banded, jacfunc should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See example.
jactype
the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or
"bandint" - either full or banded and estimated internally or by user.

mass
the mass matrix. If not NULL, the problem is a linearly implicit DAE and defined
as $M \frac{dy}{dt} = f(t, y)$. If the mass-matrix $M$ is full, it should be of dimension
$n^2$ where $n$ is the number of $y$-values; if banded the number of rows should
be less than $n$, and the mass-matrix is stored diagonal-wise with element $(i, j)$
stored in mass($i - j + mumas + 1, j$).
If mass = NULL then the model is an ODE (default)

massup
number of non-zero bands above the diagonal of the mass matrix, in case it is
banded.

massdown
number of non-zero bands below the diagonal of the mass matrix, in case it is
banded.

rootfunc
if not NULL, an R function that computes the function whose root has to be esti-
mated or a string giving the name of a function or subroutine in ‘dllname’ that
computes the root function. The R calling sequence for rootfunc is identical to
that of func. rootfunc should return a vector with the function values whose
root is sought.

verbose
if TRUE: full output to the screen, e.g. will print the diagnostics of the inte-
gration - see details.

nroot
only used if ‘dllname’ is specified: the number of constraint functions whose
roots are desired during the integration; if rootfunc is an R-function, the solver
estimates the number of roots.

hmax
an optional maximum value of the integration stepsize. If not specified, hmax
is set to the largest difference in times, to avoid that the simulation possibly
ignores short-term events. If 0, no maximal size is specified.

hini
initial step size to be attempted; if 0, the initial step size is set equal to 1e-6.
Usually 1e-3 to 1e-5 is good for stiff equations

ynames
logical, if FALSE names of state variables are not passed to function func; this
may speed up the simulation especially for multi-D models.

bandup
number of non-zero bands above the diagonal, in case the Jacobian is banded.

banddown
number of non-zero bands below the diagonal, in case the Jacobian is banded.

maxsteps
average maximal number of steps per output interval taken by the solver. This
argument is defined such as to ensure compatibility with the Livermore-solvers.
RADAU only accepts the maximal number of steps for the entire integration,
and this is calculated as length(times) * maxsteps.

dllname
a string giving the name of the shared library (without extension) that con-
tains all the compiled function or subroutine definitions referred to in func and
jacfunc. See vignette "compiledCode" from package deSolve.

initfunc
if not NULL, the name of the initialisation function (which initialises values of pa-
rameters), as provided in ‘dllname’. See vignette "compiledCode" from pack-
age deSolve.

initpar
only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).
**rpar** only when 'dllname' is specified: a vector with double precision values passed to the dll-functions whose names are specified by func and jacfunc.

**ipar** only when 'dllname' is specified: a vector with integer values passed to the dll-functions whose names are specified by func and jacfunc.

**nout** only used if dllname is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function func, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the DLL - you have to perform this check in the code - See vignette "compiledCode" from package deSolve.

**outnames** only used if 'dllname' is specified and nout > 0: the names of output variables calculated in the compiled function func, present in the shared library. These names will be used to label the output matrix.

**forcings** only used if 'dllname' is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme.

See forcings or package vignette "compiledCode".

**initforc** if not NULL, the name of the forcing function initialisation function, as provided in 'dllname'. It MUST be present if forcings has been given a value. See forcings or package vignette "compiledCode".

**fcontrol** A list of control parameters for the forcing functions. See forcings or vignette compiledCode.

**events** A matrix or data frame that specifies events, i.e. when the value of a state variable is suddenly changed. See events for more information.

**lags** A list that specifies timelags, i.e. the number of steps that has to be kept. To be used for delay differential equations. See timelags, dede for more information.

Additional arguments passed to func and jacfunc allowing this to be a generic function.

**Details**

The work is done by the FORTRAN subroutine RADAU5, whose documentation should be consulted for details. The implementation is based on the Fortran 77 version from January 18, 2002.

There are four standard choices for the Jacobian which can be specified with jactype.

The options for jactype are

- **jactype = "fullint"** a full Jacobian, calculated internally by the solver.
- **jactype = "fullusr"** a full Jacobian, specified by user function jacfunc.
- **jactype = "bandusr"** a banded Jacobian, specified by user function jacfunc; the size of the bands specified by bandup and banddown.
- **jactype = "bandint"** a banded Jacobian, calculated by radau; the size of the bands specified by bandup and banddown.
Inspection of the example below shows how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the **error control** performed by the solver, which roughly keeps the local error of \( y(i) \) below \( rtol(i) \times abs(y(i)) + atol(i) \).

The diagnostics of the integration can be printed to screen by calling `diagnostics`. If `verbose = TRUE`, the diagnostics will be written to the screen at the end of the integration.

See vignette("deSolve") from the `deSolve` package for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

**Models** may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" from package deSolve for details.

Information about linking forcing functions to compiled code is in `forcings` (from package deSolve).

`radau` can find the root of at least one of a set of constraint functions `rootfunc` of the independent and dependent variables. It then returns the solution at the root if that occurs sooner than the specified stop condition, and otherwise returns the solution according the specified stop condition.

Caution: Because of numerical errors in the function `rootfun` due to roundoff and integration error, `radau` may return false roots, or return the same root at two or more nearly equal values of `time`.

**Value**

A matrix of class `deSolve` with up to as many rows as elements in `times` and as many columns as elements in `y` plus the number of "global" values returned in the next elements of the return from `func`, plus and additional column for the time value. There will be a row for each element in `times` unless the FORTRAN routine returns with an unrecoverable error. If `y` has a names attribute, it will be used to label the columns of the output value.

**Author(s)**

Karline Soetaert

**References**


**See Also**

- `ode` for a general interface to most of the ODE solvers ,
- `ode.1D` for integrating 1-D models,
- `ode.2D` for integrating 2-D models,
- `ode.3D` for integrating 3-D models,
- `daspk` for integrating DAE models up to index 1
- `diagnostics` to print diagnostic messages.
Examples

```r
Example 1: ODE
Various ways to solve the same model.
##
the model, 5 state variables
f1 <- function (t, y, parms) {
 ydot <- vector(len = 5)
 return(list(ydot))
}

the Jacobian, written as a full matrix
fulljac <- function (t, y, parms) {
 jac <- matrix(nrow = 5, ncol = 5, byrow = TRUE,
 data = c(0.1, -0.2, 0, 0, 0,
 -0.3, 0.1, -0.2, 0, 0,
 0, -0.3, 0.1, -0.2, 0,
 0, 0, -0.3, 0.1, -0.2,
 0, 0, 0, -0.3, 0.1))
 return(jac)
}

the Jacobian, written in banded form
bandjac <- function (t, y, parms) {
 jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
 data = c(0, -0.2, -0.2, -0.2, -0.2,
 0.1, 0.1, 0.1, 0.1, 0.1,
 -0.3, -0.3, -0.3, -0.3, 0))
 return(jac)
}

initial conditions and output times
yini <- 1:5
times <- 1:20

default: stiff method, internally generated, full Jacobian
out <- radau(yini, times, f1, parms = 0)
plot(out)

stiff method, user-generated full Jacobian
out2 <- radau(yini, times, f1, parms = 0, jactype = "fullusr",
jacfunc = fulljac)

stiff method, internally-generated banded Jacobian
```
## one nonzero band above (up) and below(down) the diagonal
out3 <- radau(yini, times, f1, parms = 0, jactype = "bandint",
    bandup = 1, banddown = 1)

## stiff method, user-generated banded Jacobian
out4 <- radau(yini, times, f1, parms = 0, jactype = "bandusr",
    jacfunc = bandjac, bandup = 1, banddown = 1)

# Example 2: ODE
# stiff problem from chemical kinetics
Chemistry <- function (t, y, p) {
    dy3 <- 3.e7*y[2]^2
    list(c(dy1, dy2, dy3))
}
times <- 10^(seq(0, 10, by = 0.1))
yini <- c(y1 = 1.0, y2 = 0, y3 = 0)
out <- radau(func = Chemistry, times = times, y = yini, parms = NULL)
plot(out, log = "x", type = "l", lwd = 2)

# Example 3: DAE
# Car axis problem, index 3 DAE, 8 differential, 2 algebraic equations
# from
# F. Mazzia and C. Magherini. Test Set for Initial Value Problem Solvers,
# release 2.4. Department
# of Mathematics, University of Bari and INdAM, Research Unit of Bari,
# February 2008.
# Available at http://www.dm.uniba.it/~testset.
# Problem is written as M*y' = f(t,y,p).
# caraxisfun implements the right-hand side:

caraxisfun <- function(t, y, parms) {
    with(as.list(y), {
        yb <- r * sin(w * t)
        xb <- sqrt(L * L - yb * yb)
        L1 <- sqrt(xl^2 + yl^2)
        Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)
        dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr
        dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
        dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g
    })
}


```r
rk <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L

list(c(dx, dy, dxr, dyr, dul, dvl, dur, dvr, c1, c2))
}
}

eps <- 0.01; M <- 10; k <- M * eps^2/2;
L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 1

yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)

the mass matrix
Mass <- diag(nrow = 10, 1)
Mass

index of the variables: 4 of index 1, 4 of index 2, 2 of index 3
index <- c(4, 4, 2)

times <- seq(0, 3, by = 0.01)
out <- radau(y = yini, mass = Mass, times = times, func = caraxisfun,
parms = NULL, nind = index)

plot(out, which = 1:4, type = "l", lwd = 2)
```

---

**rk**

*Explicit One-Step Solvers for Ordinary Differential Equations (ODE)*

---

**Description**

Solving initial value problems for non-stiff systems of first-order ordinary differential equations (ODEs).

The **R** function `rk` is a top-level function that provides interfaces to a collection of common explicit one-step solvers of the Runge-Kutta family with fixed or variable time steps.

The system of ODE’s is written as an **R** function (which may, of course, use `.C`, `.Fortran`, `.Call`, etc., to call foreign code) or be defined in compiled code that has been dynamically loaded. A vector of parameters is passed to the ODEs, so the solver may be used as part of a modeling package for ODEs, or for parameter estimation using any appropriate modeling tool for non-linear models in **R** such as `optim`, `nls`, `nlm` or `nlme`
Usage

```r
rk(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
 verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL,
 hini = hmax, ynames = TRUE, method = rkMethod("rk45dp7", ...),
 maxsteps = 5000, dllname = NULL, initfunc = dllname,
 initpar = parms, rpar = NULL, ipar = NULL,
 nout = 0, outnames = NULL, forcings = NULL,
 initforc = NULL, fcontrol = NULL, events = NULL, ...)```

Arguments

- **y**: the initial (state) values for the ODE system. If `y` has a name attribute, the names will be used to label the output matrix.
- **times**: times at which explicit estimates for `y` are desired. The first value in `times` must be the initial time.
- **func**: either an R-function that computes the values of the derivatives in the ODE system (the **model definition**) at time `t`, or a character string giving the name of a compiled function in a dynamically loaded shared library.
 If `func` is an R-function, it must be defined as: `func <- function(t, y, parms, ...)`. `t` is the current time point in the integration, `y` is the current estimate of the variables in the ODE system. If the initial values `y` has a names attribute, the names will be available inside `func`. `parms` is a vector or list of parameters; ... (optional) are any other arguments passed to the function.
 The return value of `func` should be a list, whose first element is a vector containing the derivatives of `y` with respect to time, and whose next elements are global values that are required at each point in `times`. The derivatives must be specified in the **same order** as the state variables `y`.
 If `func` is a string, then `dllname` must give the name of the shared library (without extension) which must be loaded before `rk` is called. See package vignette "compiledCode" for more details.
- **parms**: vector or list of parameters used in `func`.
- **rtol**: relative error tolerance, either a scalar or an array as long as `y`. Only applicable to methods with variable time step, see details.
- **atol**: absolute error tolerance, either a scalar or an array as long as `y`. Only applicable to methods with variable time step, see details.
- **tcrit**: if not `NULL`, then `rk` cannot integrate past `tcrit`. This parameter is for compatibility with other solvers.
- **verbose**: a logical value that, when `TRUE`, triggers more verbose output from the ODE solver.
- **hmin**: an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use `hmin` if you don’t know why!
- **hmax**: an optional maximum value of the integration stepsize. If not specified, `hmax` is set to the maximum of `hini` and the largest difference in `times`, to avoid that the simulation possibly ignores short-term events. If `0`, no maximal size is
specified. Note that hmin and hmax are ignored by fixed step methods like "rk4" or "euler".

hini
initial step size to be attempted; if 0, the initial step size is determined automatically by solvers with flexible time step. For fixed step methods, setting hini = 0 forces internal time steps identically to external time steps provided by times. Similarly, internal time steps of non-interpolating solvers cannot be bigger than external time steps specified in times.

ynames
if FALSE: names of state variables are not passed to function func; this may speed up the simulation especially for large models.

method
the integrator to use. This can either be a string constant naming one of the pre-defined methods or a call to function rkMethod specifying a user-defined method. The most common methods are the fixed-step methods "euler", second and fourth-order Runge Kutta ("rk2", "rk4"), or the variable step methods Bogacki-Shampine "rk23bs", Runge-Kutta-Fehlberg "rk34f", the fifth-order Cash-Karp method "rk45ck" or the fifth-order Dormand-Prince method with seven stages "rk45dp7". As a suggestion, one may use "rk23bs" (alias "ode23") for simple problems and "rk45dp7" (alias "ode45") for rough problems.

maxsteps
average maximal number of steps per output interval taken by the solver. This argument is defined such as to ensure compatibility with the Livermore-solvers. rk only accepts the maximal number of steps for the entire integration. It is calculated as max(length(times) * maxsteps, max(diff(times)/hini + 1).

dllname
a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions refered to in func and jacfunc. See package vignette "compiledCode".

initfunc
if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in 'dllname'. See package vignette "compiledCode".

initpar
only when 'dllname' is specified and an initialisation function initfunc is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).

rpar
only when 'dllname' is specified: a vector with double precision values passed to the dll-functions whose names are specified by func and jacfunc.

ipar
only when 'dllname' is specified: a vector with integer values passed to the dll-functions whose names are specified by func and jacfunc.

nout
only used if dllname is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function func, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the dll - you have to perform this check in the code. See package vignette "compiledCode".

outnames
only used if 'dllname' is specified and nout > 0: the names of output variables calculated in the compiled function func, present in the shared library.

forcings
only used if 'dllname' is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme.

See forcings or package vignette "compiledCode".
if not NULL, the name of the forcing function initialisation function, as provided in 'dllname'. It MUST be present if forcings has been given a value. See forcings or package vignette "compiledCode".

fcontrol

A list of control parameters for the forcing functions. See forcings or vignette compiledCode.

events

A matrix or data frame that specifies events, i.e. when the value of a state variable is suddenly changed. See events for more information. Not also that if events are specified, then polynomial interpolation is switched off and integration takes place from one external time step to the next, with an internal step size less than or equal the difference of two adjacent points of times.

... additional arguments passed to func allowing this to be a generic function.

Details

Function rk is a generalized implementation that can be used to evaluate different solvers of the Runge-Kutta family of explicit ODE solvers. A pre-defined set of common method parameters is in function rkMethod which also allows to supply user-defined Butcher tables.

The input parameters rtol, and atol determine the error control performed by the solver. The solver will control the vector of estimated local errors in y, according to an inequality of the form max-norm of (e/ewt) ≤ 1, where ewt is a vector of positive error weights. The values of rtol and atol should all be non-negative. The form of ewt is:

\[rtol \times \text{abs}(y) + \text{atol} \]

where multiplication of two vectors is element-by-element.

Models can be defined in R as a user-supplied R-function, that must be called as: yprime = func(t, y, parms). t is the current time point in the integration, y is the current estimate of the variables in the ODE system.

The return value of func should be a list, whose first element is a vector containing the derivatives of y with respect to time, and whose second element contains output variables that are required at each point in time. Examples are given below.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the next elements of the return from func, plus and additional column for the time value. There will be a row for each element in times unless the integration routine returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

Note

Arguments rpar and ipar are provided for compatibility with lsoda.

Starting with version 1.8 implicit Runge-Kutta methods are also supported by this general rk interface, however their implementation is still experimental. Instead of this you may consider radau for a specific full implementation of an implicit Runge-Kutta method.
Author(s)

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

References

See Also

For most practical cases, solvers of the Livermore family (i.e. the ODEPACK solvers, see below) are superior. Some of them are also suitable for stiff ODEs, differential algebraic equations (DAEs), or partial differential equations (PDEs).

- `rkMethod` for a list of available Runge-Kutta parameter sets,
- `rk4` and `euler` for special versions without interpolation (and less overhead),
- `lsoda, lsode, lsodes, lsodar, vode, daspk` for solvers of the Livermore family,
- `ode` for a general interface to most of the ODE solvers,
- `ode.band` for solving models with a banded Jacobian,
- `ode.1D` for integrating 1-D models,
- `ode.2D` for integrating 2-D models,
- `ode.3D` for integrating 3-D models,
- `diagnostics` to print diagnostic messages.

Examples

```r
## Example: Resource-producer-consumer Lotka-Volterra model

SPCmod <- function(t, x, parms, input) {
  with(as.list(c(parms, x)), {
    import <- input(t)
    dS <- import - b*S*P + g*C  # substrate
    dP <- c*S*P - d*C*P  # producer
    dC <- e*P*C - f*C  # consumer
  })
}
```

res <- c(dS, dP, dC)
list(res)
}
}
}

The parameters
parms <- c(b = 0.001, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)

vector of timesteps
times <- seq(0, 200, length = 101)

external signal with rectangle impulse
signal <- data.frame(times = times,
 import = rep(0, length(times)))

signal$import[sigImport >= 10 & signal$times <= 11] <- 0.2

sigimp <- approxfun(signal$times, signal$import, rule = 2)

Start values for steady state
xstart <- c(S = 1, P = 1, C = 1)

Euler method
out1 <- rk(xstart, times, SPCmod, parms, hini = 0.1,
 input = sigimp, method = "euler")

classical Runge-Kutta 4th order
out2 <- rk(xstart, times, SPCmod, parms, hini = 1,
 input = sigimp, method = "rk4")

Dormand-Prince method of order 5(4)
out3 <- rk(xstart, times, SPCmod, parms, hmax = 1,
 input = sigimp, method = "rk45dp7")

mf <- par("mfrow")

deSolve plot method for comparing scenarios
plot(out1, out2, out3, which = c("S", "P", "C"),
 main = c("Substrate", "Producer", "Consumer"),
 col = c("black", "red", "green"),
 lty = c("solid", "dotted", "dotted"), lwd = c(1, 2, 1))

user-specified plot function
plot(out1[, "P"], out1[, "C"], type = "l", xlab = "Producer", ylab = "Consumer")
lines(out2[, "P"], out2[, "C"], col = "red", lty = "dotted", lwd = 2)
lines(out3[, "P"], out3[, "C"], col = "green", lty = "dotted")

legend("center", legend = c("euler", "rk4", "rk45dp7"),
 lty = c(1, 3, 3), lwd = c(1, 2, 1),
 col = c("black", "red", "green"))

par(mfrow = mf)
Solve System of ODE (Ordinary Differential Equation)s by Euler’s Method or Classical Runge-Kutta 4th Order Integration.

Description

Solving initial value problems for systems of first-order ordinary differential equations (ODEs) using Euler’s method or the classical Runge-Kutta 4th order integration.

Usage

euler(y, times, func, parms, verbose = FALSE, ynames = TRUE, dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

rk4(y, times, func, parms, verbose = FALSE, ynames = TRUE, dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

euler.1D(y, times, func, parms, nspec = NULL, dimens = NULL, names = NULL, verbose = FALSE, ynames = TRUE, dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL, ipar = NULL, nout = 0, outnames = NULL, forcings = NULL, initforc = NULL, fcontrol = NULL, ...)

Arguments

y

the initial (state) values for the ODE system. If y has a name attribute, the names will be used to label the output matrix.

times

times at which explicit estimates for y are desired. The first value in times must be the initial time.

func

either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or a character string giving the name of a compiled function in a dynamically loaded shared library.

If func is an R-function, it must be defined as: `func <- function(t, y, parms,...)`. t is the current time point in the integration, y is the current estimate of the variables in the ODE system. If the initial values y has a names attribute, the names will be available inside func. parms is a vector or list of parameters; ... (optional) are any other arguments passed to the function.

The return value of func should be a list, whose first element is a vector containing the derivatives of y with respect to time, and whose next elements are global values that are required at each point in times. The derivatives must be specified in the same order as the state variables y.
If `func` is a string, then `dllname` must give the name of the shared library (without extension) which must be loaded before `rk4` is called. See package vignette “compiledCode” for more details.

- **parms**: vector or list of parameters used in `func`.
- **nspec**: for 1D models only: the number of species (components) in the model. If NULL, then `dimens` should be specified.
- **dimens**: for 1D models only: the number of boxes in the model. If NULL, then `nspec` should be specified.
- **names**: for 1D models only: the names of the components; used for plotting.
- **verbose**: a logical value that, when TRUE, triggers more verbose output from the ODE solver.
- **ynames**: if FALSE: names of state variables are not passed to function `func`; this may speed up the simulation especially for large models.
- **dllname**: a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions referred to in `func`. See package vignette “compiledCode”.
- **initfunc**: if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in ‘dllname’. See package vignette “compiledCode”.
- **initpar**: only when ‘dllname’ is specified and an initialisation function `initfunc` is in the DLL: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).
- **rpar**: only when ‘dllname’ is specified: a vector with double precision values passed to the DLL-functions whose names are specified by `func` and `jacfunc`.
- **ipar**: only when ‘dllname’ is specified: a vector with integer values passed to the DLL-functions whose names are specified by `func` and `jacfunc`.
- **nout**: only used if `dllname` is specified and the model is defined in compiled code: the number of output variables calculated in the compiled function `func`, present in the shared library. Note: it is not automatically checked whether this is indeed the number of output variables calculated in the DLL - you have to perform this check in the code. See package vignette “compiledCode”.
- **outnames**: only used if ‘dllname’ is specified and `nout` > 0: the names of output variables calculated in the compiled function `func`, present in the shared library.
- **forcings**: only used if ‘dllname’ is specified: a list with the forcing function data sets, each present as a two-columned matrix, with (time, value); interpolation outside the interval [min(times), max(times)] is done by taking the value at the closest data extreme. See forcings or package vignette “compiledCode”.
- **initforc**: if not NULL, the name of the forcing function initialisation function, as provided in ‘dllname’. It MUST be present if forcings has been given a value. See forcings or package vignette “compiledCode”.
- **fcontrol**: A list of control parameters for the forcing functions. See forcings or vignette compiledCode.
- **...**: additional arguments passed to `func` allowing this to be a generic function.
Details

rk4 and euler are special versions of the two fixed step solvers with less overhead and less functionality (e.g. no interpolation and no events) compared to the generic Runge-Kutta codes called by ode resp. rk.

If you need different internal and external time steps or want to use events, please use: rk(y, times, func, parms, method = "rk4") or rk(y, times, func, parms, method = "euler").

See help pages of rk and rkMethod for details.

Function euler.1D essentially calls function euler but contains additional code to support plotting of 1D models, see ode.1D and plot.1D for details.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns as elements in y plus the number of "global" values returned in the next elements of the return from func, plus and additional column for the time value. There will be a row for each element in times unless the integration routine returns with an unrecoverable error. If y has a names attribute, it will be used to label the columns of the output value.

Note

For most practical cases, solvers with flexible timestep (e.g. rk(method = "ode45") and especially solvers of the Livermore family (ODEPACK, e.g. lsoda) are superior.

Author(s)

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

See Also

- rkMethod for a list of available Runge-Kutta parameter sets,
- rk for the more general Runge-Code,
- lsoda, lsode, lsodes, lsodar, vode, daspk for solvers of the Livermore family,
- ode for a general interface to most of the ODE solvers,
- ode.band for solving models with a banded Jacobian,
- ode.1D for integrating 1-D models,
- ode.2D for integrating 2-D models,
- ode.3D for integrating 3-D models,
- dede for integrating models with delay differential equations,

diagnostics to print diagnostic messages.
Examples

```r
## Example: Analytical and numerical solutions of logistic growth

## the derivative of the logistic
logist <- function(t, x, parms) {
  with(as.list(parms), {
    dx <- r * x[1] * (1 - x[1]/K)
    list(dx)
  })
}

time <- 0:100
N0 <- 0.1; r <- 0.5; K <- 100
parms <- c(r = r, K = K)
x <- c(N = N0)

## analytical solution
plot(time, K/(1 + (K/N0-1) * exp(-r*time)), ylim = c(0, 120),
     type = "l", col = "red", lwd = 2)

## reasonable numerical solution with rk4
out <- as.data.frame(rk4(x, time, logist, parms))
points(out$time, out$N, pch = 16, col = "blue", cex = 0.5)

## same time step with euler, systematic under-estimation
out <- as.data.frame(euler(x, time, logist, parms))
points(out$time, out$N, pch = 1)

## unstable result
out <- as.data.frame(euler(x, time, logist, parms))
points(out$time, out$N, pch = 8, cex = 0.5)

## method with automatic time step
out <- as.data.frame(lsoda(x, time, logist, parms))
points(out$time, out$N, pch = 1, col = "green")
```

legend("bottomright",
 c("analytical","rk4, h=2", "euler, h=2",
 "euler, h=4", "lsoda"),
 lty = c(1, NA, NA, NA, NA), lwd = c(2, 1, 1, 1, 1),
 pch = c(NA, 16, 1, 8, 1),
 col = c("red", "blue", "black", "black", "green")
)

rkMethod

Collection of Parameter Sets (Butcher Arrays) for the Runge-Kutta Family of ODE Solvers
Description

This function returns a list specifying coefficients and properties of ODE solver methods from the Runge-Kutta family.

Usage

```
rkMethod(method = NULL, ...)  
```

Arguments

- `method` a string constant naming one of the pre-defined methods of the Runge-Kutta family of solvers. The most common methods are the fixed-step methods "euler", "rk2", "rk4" or the variable step methods "rk23bs" (alias "ode23"), "rk45dp7" (alias "ode45") or "rk78f".

- `...` specification of a user-defined solver, see Value and example below.

Details

This function supplies method settings for `rk` or `ode`. If called without arguments, the names of all currently implemented solvers of the Runge-Kutta family are returned.

The following comparison gives an idea how the algorithms of deSolve are related to similar algorithms of other simulation languages:

<table>
<thead>
<tr>
<th>rkMethod</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"euler"</td>
<td>Euler’s Method</td>
</tr>
<tr>
<td>"rk2"</td>
<td>2nd order Runge-Kutta, fixed time step (Heun’s method)</td>
</tr>
<tr>
<td>"rk4"</td>
<td>classical 4th order Runge-Kutta, fixed time step</td>
</tr>
<tr>
<td>"rk23"</td>
<td>Runge-Kutta, order 2(3); Octave: ode23</td>
</tr>
<tr>
<td>"rk23bs", "ode23"</td>
<td>Bogacki-Shampine, order 2(3); Matlab: ode23</td>
</tr>
<tr>
<td>"rk34f"</td>
<td>Runge-Kutta-Fehlberg, order 3(4)</td>
</tr>
<tr>
<td>"rk45ck"</td>
<td>Runge-Kutta Cash-Karp, order 4(5)</td>
</tr>
<tr>
<td>"rk45f"</td>
<td>Runge-Kutta-Fehlberg, order 4(5); Octave: ode45, pair=1</td>
</tr>
<tr>
<td>"rk45e"</td>
<td>Runge-Kutta-England, order 4(5)</td>
</tr>
<tr>
<td>"rk45dp6"</td>
<td>Dormand-Prince, order 4(5), local order 6</td>
</tr>
<tr>
<td>"rk45dp7", "ode45"</td>
<td>Dormand-Prince 4(5), local order 7</td>
</tr>
<tr>
<td>"rk78f"</td>
<td>Runge-Kutta-Fehlberg, order 7(8)</td>
</tr>
<tr>
<td>"rk78dp"</td>
<td>Dormand-Prince, order 7(8)</td>
</tr>
</tbody>
</table>

Note that this table is based on the Runge-Kutta coefficients only, but the algorithms differ also in their implementation, in their stepsize adaption strategy and interpolation methods.

The table reflects the state at time of writing and it is of course possible that implementations change.

Methods "rk45dp7" (alias "ode45") and "rk45ck" contain specific and efficient built-in interpolation schemes (dense output).

As an alternative, Neville-Aitken polynomials can be used to interpolate between time steps. This is
available for all RK methods and may be useful to speed up computation if no dense-output formula is available. Note however, that this can introduce considerable local error; it is disabled by default (see nknots below).

Value

A list with the following elements:

- **ID**
 - name of the method (character)
- **varstep**
 - boolean value specifying if the method allows for variable time step (TRUE) or not (FALSE).
- **FSAL**
 - (first same as last) optional boolean value specifying if the method allows re-use of the last function evaluation (TRUE) or not (FALSE or NULL).
- **A**
 - coefficient matrix of the method. As link{rk} supports only explicit methods, this matrix must be lower triangular. A must be a vector for fixed step methods where only the subdiagonal values are different from zero.
- **b1**
 - coefficients of the lower order Runge-Kutta pair.
- **b2**
 - coefficients of the higher order Runge-Kutta pair (optional, for embedded methods that allow variable time step).
- **c**
 - coefficients for calculating the intermediate time steps.
- **d**
 - optional coefficients for built-in polynomial interpolation of the outputs from internal steps (dense output), currently only available for method rk45dp7 (Dormand-Prince).
- **denstype**
 - optional integer value specifying the dense output formula; currently only denstype = 1 for rk45dp7 (Dormand-Prince) and denstype = 2 for rk45ck (Cash-Karp) are supported. Undefined values (e.g., denstype = NULL) disable dense output.
- **stage**
 - number of function evaluations needed (corresponds to number of rows in A).
- **Qerr**
 - global error order of the method, important for automatic time-step adjustment.
- **nknots**
 - integer value specifying the order of interpolation polynomials for methods without dense output. If nknots < 2 (the default) then internal interpolation is switched off and integration is performed step by step between external time steps.
 - If nknots is between 3 and 8, Neville-Aitken polynomials are used, which need at least nknots + 1 internal time steps. Interpolation may speed up integration but can lead to local errors higher than the tolerance, especially if external and internal time steps are very different.
- **alpha**
 - optional tuning parameter for stepsize adjustment. If alpha is omitted, it is set to \(1/Qerr - 0.75\beta\). The default value is \(1/Qerr\) (for beta = 0).
- **beta**
 - optional tuning parameter for stepsize adjustment. Typical values are 0 (default) or \(0.4/Qerr\).

Note

- Adaptive stepsize Runge-Kuttas are preferred if the solution contains parts when the states change fast, and parts when not much happens. They will take small steps over bumpy ground and long steps over uninteresting terrain.
• As a suggestion, one may use "rk23" (alias "ode23") for simple problems and "rk45dp7" (alias "ode45") for rough problems. The default solver is "rk45dp7" (alias "ode45"), because of its relatively high order (4), re-use of the last intermediate steps (FSAL = first same as last) and built-in polynomial interpolation (dense output).

• Solver "rk23bs", that supports also FSAL, may be useful for slightly stiff systems if demands on precision are relatively low.

• Another good choice, assuring medium accuracy, is the Cash-Karp Runge-Kutta method, "rk45ck".

• Classical "rk4" is traditionally used in cases where an adequate stepsize is known a-priori or if external forcing data are provided for fixed time steps only and frequent interpolation of external data needs to be avoided.

• Method "rk45dp7" (alias "ode45") contains an efficient built-in interpolation scheme (dense output) based on intermediate function evaluations.

Starting with version 1.8 implicit Runge-Kutta (irk) methods are also supported by the general rk interface, however their implementation is still experimental. Instead of this you may consider radau for a specific full implementation of an implicit Runge-Kutta method.

Author(s)

Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

References

MATLAB (R) is a registered property of The Mathworks Inc. https://www.mathworks.com/
See Also

rk, ode

Examples

rkMethod() # returns the names of all available methods
rkMethod("rk45dp7") # parameters of the Dormand-Prince 5(4) method
rkMethod("ode45") # an alias for the same method

func <- function(t, x, parms) {
 with(as.list(c(parms, x)),{
 dP <- a * P - b * C * P
 dC <- b * P * C - c * C
 res <- c(dP, dC)
 list(res)
 })
}
times <- seq(0, 200, length = 101)
parms <- c(a = 0.1, b = 0.1, c = 0.1)
x <- c(P = 2, C = 1)

rk using ode45 as the default method
out <- rk(x, times, func, parms)

all methods can be called also from 'ode' by using rkMethod
out <- ode(x, times, func, parms, method = rkMethod("rk4"))

'ode' has aliases for the most common RK methods
out <- ode(x, times, func, parms, method = "ode45")

Comparison of local error from different interpolation methods

lsoda with lower tolerances (1e-10) used as reference
o0 <- ode(x, times, func, parms, method = "lsoda", atol = 1e-10, rtol = 1e-10)

rk45dp7 with hmax = 10 > delta_t = 2
o1 <- ode(x, times, func, parms, method = rkMethod("rk45dp7"), hmax = 10)

disable dense-output interpolation
and use only Neville-Aitken polynomials instead
o2 <- ode(x, times, func, parms,
 method = rkMethod("rk45dp7", densetype = NULL, nknots = 5), hmax = 10)

stop and go: disable interpolation completely
and integrate explicitly between external time steps
o3 <- ode(x, times, func, parms,
 method = rkMethod("rk45dp7", densetype = NULL, nknots = 0, hmax=10))

compare different interpolation methods with lsoda
mf <- par("mfrow" = c(4, 1))
matplot(o1[,1], o1[,1], type = "l", xlab = "Time", ylab = "P, C")
matplot(o0[,1], o0[,1] - o1[,1], type = "l", xlab = "Time", ylab = "Diff.", main = "Difference between lsoda and ode45 with dense output")
abline(h = 0, col = "grey")
matplot(o0[,1], o0[,1] - o2[,1], type = "l", xlab = "Time", ylab = "Diff.", main = "Difference between lsoda and ode45 with Neville-Aitken")
abline(h = 0, col = "grey")
matplot(o0[,1], o0[,1] - o3[,1], type = "l", xlab = "Time", ylab = "Diff.", main = "Difference between lsoda and ode45 in 'stop and go' mode")
abline(h = 0, col = "grey")
par(mf)

###===
rkMethod allows to define user-specified Runge-Kutta methods
###===
out <- ode(x, times, func, parms,
method = rkMethod(ID = "midpoint",
 varstep = FALSE,
 A = c(0, 1/2),
 b1 = c(0, 1),
 c = c(0, 1/2),
 stage = 2,
 Qerr = 1
)
)
plot(out)

compare method diagnostics
times <- seq(0, 200, length = 10)
o1 <- ode(x, times, func, parms, method = rkMethod("rk45ck"))
o2 <- ode(x, times, func, parms, method = rkMethod("rk78dp"))
diagnostics(o1)
diagnostics(o2)

SCOC

A Sediment Model of Oxygen Consumption

Description

A model that describes oxygen consumption in a marine sediment.

One state variable:

- sedimentary organic carbon,

Organic carbon settles on the sediment surface (forcing function Flux) and decays at a constant rate. The equation is simple:

\[
\frac{dC}{dt} = Flux - kC
\]
This model is written in FORTRAN.

Usage

SCOC(times, y = NULL, parms, Flux, ...)

Arguments

times time sequence for which output is wanted; the first value of times must be the initial time.
y the initial value of the state variable; if NULL it will be estimated based on Flux and parms,
parms the model parameter, k,
Flux a data set with the organic carbon deposition rates,
... any other parameters passed to the integrator ode (which solves the model).

Details

The model is implemented primarily to demonstrate the linking of FORTRAN with R-code.
The source can be found in the `doc/examples/dynload` subdirectory of the package.

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>

References

See Also

ccl4model, the CCl4 inhalation model.
aquaphy, the algal growth model.

Examples

```r
## Forcing function data
Flux <- matrix(ncol = 2, byrow = TRUE, data = c(
1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73, 0.277, 83, 0.186,
93, 0.140, 103, 0.255, 113, 0.231, 123, 0.309, 133, 1.127, 143, 1.923,
153, 1.091, 163, 1.001, 173, 1.691, 183, 1.404, 194, 1.226, 204, 0.767,
214, 0.893, 224, 0.737, 234, 0.772, 244, 0.726, 254, 0.624, 264, 0.439,
274, 0.168, 284, 0.280, 294, 0.202, 304, 0.193, 315, 0.315, 325, 0.599,
335, 1.889, 345, 0.996, 355, 0.681, 365, 1.135))

parms <- c(k = 0.01)
```


timelags <- 1:365
out <- SCOC(times, parms = parms, Flux = Flux)

plot(out[,"time"], out[,"Depo"], type = "l", col = "red")
lines(out[,"time"], out[,"Mineralisation"], col = "blue")

Constant interpolation of forcing function - left side of interval
fcontrol <- list(method = "constant")
out2 <- SCOC(times, parms = parms, Flux = Flux, fcontrol = fcontrol)

plot(out2[,"time"], out2[,"Depo"], type = "l", col = "red")
lines(out2[,"time"], out2[,"Mineralisation"], col = "blue")

timelags

Time Lagged Values of State Variables and Derivatives.

Description

Functions lagvalue and lagderiv provide access to past (lagged) values of state variables and derivatives.

They are to be used with function dede, to solve delay differential equations.

Usage

```r
lagvalue(t, nr)
lagderiv(t, nr)
```

Arguments

- `t`: the time for which the lagged value is wanted; this should be no larger than the current simulation time and no smaller than the initial simulation time.
- `nr`: the number of the lagged value; if NULL then all state variables or derivatives are returned.

Details

The lagvalue and lagderiv can only be called during the integration, the lagged time should not be smaller than the initial simulation time, nor should it be larger than the current simulation time. Cubic Hermite interpolation is used to obtain an accurate interpolant at the requested lagged time.

Value

a scalar (or vector) with the lagged value(s).

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
See Also

dede, for how to implement delay differential equations.

Examples

```r
## exerise 6 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
##
## two lag values
##
#-----------------------------
# the derivative function
#-----------------------------
derivs <- function(t, y, parms) {
  History <- function(t) c(cos(t), sin(t))
  if (t < 1)
    lag1 <- History(t - 1)[1]
  else
    lag1 <- lagvalue(t - 1)[1] # returns a vector; select first element
  if (t < 2)
    lag2 <- History(t - 2)[2]
  else
    lag2 <- lagvalue(t - 2,2) # faster than lagvalue(t - 2)[2]

dy1 <- lag1 * lag2
dy2 <- -y[1] * lag2

  list(c(dy1, dy2), lag1 = lag1, lag2 = lag2)
}

#-----------------------------
# parameters
#-----------------------------

r <- 3.5; m <- 19

#-----------------------------
# initial values and times
#-----------------------------

yinit <- c(y1 = 0, y2 = 0)
times <- seq(0, 20, by = 0.01)

#-----------------------------
# solve the model
#-----------------------------

yout <- dede(y = yinit, times = times, func = derivs,
              parms = NULL, atol = 1e-9)
```
plot results

plot(yout, type = "l", lwd = 2)

The predator-prey model with time lags, from Hale
problem 1 from Shampine and Thompson, 2000
solving delay differential equations with dde23
##
a vector with lag values
##
the derivative function

predprey <- function(t, y, parms) {
 tlag <- t - 1
 if (tlag < 0)
 ylag <- c(80, 30)
 else
 ylag <- lagvalue(tlag) # returns a vector
 list(c(dy1, dy2))
}

parameters

a <- 0.25; b <- -0.01; c <- -1; d <- 0.01; m <- 200

initial values and times

tyinit <- c(y1 = 80, y2 = 30)
times <- seq(0, 100, by = 0.01)

solve the model

yout <- dde(y = tyinit, times = times, func = predprey, parms = NULL)

display, plot results
plot(yout, type = "l", lwd = 2, main = "Predator-prey model", mfrow = c(2, 2))
plot(yout[,2], yout[,3], xlab = "y1", ylab = "y2", type = "l", lwd = 2)

diagnostics(yout)

A neutral delay differential equation (lagged derivative)
y'(t) = -y(t-1), y(t) t < 0 = 1/t
##
the derivative function
##
derivs <- function(t, y, parms) {
tlag <- t - 1
if (tlag < 0)
dylag <- -1
else
dylag <- lagderiv(tlag)
##
list(c(dy = -dylag), dylag = dylag)
}

initial values and times
##
yinit <- 0
times <- seq(0, 4, 0.001)

solve the model
##
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)

display, plot results
##
plot(yout, type = "l", lwd = 2)

vode
Solver for Ordinary Differential Equations (ODE)

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE) in the form:
\[\frac{dy}{dt} = f(t, y) \]

The \texttt{R} function \texttt{vode} provides an interface to the \textsc{fortran} ODE solver of the same name, written by Peter N. Brown, Alan C. Hindmarsh and George D. Byrne.

The system of ODE's is written as an \texttt{R} function or be defined in compiled code that has been dynamically loaded.

In contrast to \texttt{lsoda}, the user has to specify whether or not the problem is stiff and choose the appropriate solution method.

\texttt{vode} is very similar to \texttt{lsode}, but uses a variable-coefficient method rather than the fixed-step-interpolate methods in \texttt{lsode}. In addition, in \texttt{vode} it is possible to choose whether or not a copy of the Jacobian is saved for reuse in the corrector iteration algorithm; In \texttt{lsode}, a copy is not kept.

Usage

\begin{verbatim}
\texttt{vode(y, times, \textbf{func}, parms, rtol = 1e-6, atol = 1e-6,}
 \texttt{ jacfunc = NULL, jactype = "fullint", mf = NULL, verbose = FALSE,}
 \texttt{ tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,}
 \texttt{ maxord = NULL, bandup = NULL, banddown = NULL, maxsteps = 5000,}
 \texttt{ dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL,}
 \texttt{ ipar = NULL, nout = 0, outnames = NULL, forcings=NULL,}
 \texttt{ initforc = NULL, fcontrol=NULL, events=NULL, lags = NULL,...)}
\end{verbatim}

Arguments

- \texttt{y} the initial (state) values for the ODE system. If \texttt{y} has a name attribute, the names will be used to label the output matrix.

- \texttt{times} time sequence for which output is wanted; the first value of \texttt{times} must be the initial time; if only one step is to be taken; set \texttt{times = NULL}.

- \texttt{func} either an \texttt{R}-function that computes the values of the derivatives in the ODE system (the model definition) at time \texttt{t}, or a character string giving the name of a compiled function in a dynamically loaded shared library.

 If \texttt{func} is an \texttt{R}-function, it must be defined as: \texttt{func <- function(t, y, parms,...)}.

 \texttt{t} is the current time point in the integration, \texttt{y} is the current estimate of the variables in the ODE system. If the initial values \texttt{y} has a names attribute, the names will be available inside \texttt{func}. \texttt{parms} is a vector or list of parameters; \texttt{...} (optional) are any other arguments passed to the function.

 The return value of \texttt{func} should be a list, whose first element is a vector containing the derivatives of \texttt{y} with respect to time, and whose next elements are global values that are required at each point in \texttt{times}. The derivatives must be specified in the same order as the state variables \texttt{y}.

 If \texttt{func} is a string, then \texttt{dllname} must give the name of the shared library (without extension) which must be loaded before \texttt{vode()} is called. See package vignette "compiledCode" for more details.

- \texttt{parms} vector or list of parameters used in \texttt{func} or \texttt{jacfunc}.

- \texttt{rtol} relative error tolerance, either a scalar or an array as long as \texttt{y}. See details.
absolute error tolerance, either a scalar or an array as long as `y`. See details.

if not NULL, an R function that computes the Jacobian of the system of differential equations $\frac{\partial y_i}{\partial y_j}$, or a string giving the name of a function or subroutine in ‘dllname’ that computes the Jacobian (see vignette “compiledCode” for more about this option).

In some circumstances, supplying `jacfunc` can speed up the computations, if the system is stiff. The R calling sequence for `jacfunc` is identical to that of `func`.

If the Jacobian is a full matrix, `jacfunc` should return a matrix $\frac{\partial y_i}{\partial y}$, where the ith row contains the derivative of $\frac{dy_i}{dt}$ with respect to y_j, or a vector containing the matrix elements by columns (the way R and FORTRAN store matrices).

If the Jacobian is banded, `jacfunc` should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See first example of `lsode`.

the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by user; overruled if `mf` is not NULL.

the "method flag" passed to function vode - overrules `jactype` - provides more options than `jactype` - see details.

if TRUE: full output to the screen, e.g. will print the diagnostics of the integration - see details.

if not NULL, then vode cannot integrate past `tcrit`. The FORTRAN routine `dvode` overshoots its targets (times points in the vector `times`), and interpolates values for the desired time points. If there is a time beyond which integration should not proceed (perhaps because of a singularity), that should be provided in `tcrit`.

an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use `hmin` if you don’t know why!

an optional maximum value of the integration stepsize. If not specified, `hmax` is set to the largest difference in `times`, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.

initial step size to be attempted; if 0, the initial step size is determined by the solver.

logical; if FALSE: names of state variables are not passed to function `func`; this may speed up the simulation especially for multi-D models.

the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce `maxord` to save storage space.

number of non-zero bands above the diagonal, in case the Jacobian is banded.

number of non-zero bands below the diagonal, in case the Jacobian is banded.

maximal number of steps per output interval taken by the solver.

a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions refered to in `func` and `jacfunc`. See package vignette “compiledCode”.
initfunc if not NULL, the name of the initialisation function (which initialises values of
parameters), as provided in ‘dllname’. See package vignette "compiledCode".

initpar only when ‘dllname’ is specified and an initialisation function initfunc is in
the dll: the parameters passed to the initialiser, to initialise the common blocks
(FORTRAN) or global variables (C, C++).

rpar only when ‘dllname’ is specified: a vector with double precision values passed
to the dll-functions whose names are specified by func and jacfunc.
ipar only when ‘dllname’ is specified: a vector with integer values passed to the
dll-functions whose names are specified by func and jacfunc.
nout only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the dll - you have to perform this
check in the code - See package vignette "compiledCode".

outnames only used if ‘dllname’ is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings only used if ‘dllname’ is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.
See forcings or package vignette "compiledCode".

initforc if not NULL, the name of the forcing function initialisation function, as provided
in ‘dllname’. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol A list of control parameters for the forcing functions. forcings or package vi-
gnette "compiledCode"

events A matrix or data frame that specifies events, i.e. when the value of a state vari-
able is suddenly changed. See events for more information.

lags A list that specifies timelags, i.e. the number of steps that has to be kept. To be
used for delay differential equations. See timelags, dede for more information.

... additional arguments passed to func and jacfunc allowing this to be a generic
function.

Details
Before using the integrator vode, the user has to decide whether or not the problem is stiff.
If the problem is nonstiff, use method flag mf = 10, which selects a nonstiff (Adams) method, no
Jacobian used.
If the problem is stiff, there are four standard choices which can be specified with jacfunc or mf.
The options for jacfunc are

jac = "fullint": a full Jacobian, calculated internally by vode, corresponds to mf = 22,
jac = "fullusr": a full Jacobian, specified by user function jacfunc, corresponds to mf = 21,
jac = "bandusr": a banded Jacobian, specified by user function jacfunc; the size of the bands specified by bandup and banddown, corresponds to \(mf = 24 \).

jac = "bandint": a banded Jacobian, calculated by vode; the size of the bands specified by bandup and banddown, corresponds to \(mf = 25 \).

More options are available when specifying \(mf \) directly.

The legal values of \(mf \) are 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, -11, -12, -14, -15, -21, -22, -24, -25.

\(mf \) is a signed two-digit integer, \(mf = JSV (10* METH + MITER) \), where

- \(JSV = \text{SIGN}(mf) \) indicates the Jacobian-saving strategy: \(JSV = 1 \) means a copy of the Jacobian is saved for reuse in the corrector iteration algorithm. \(JSV = -1 \) means a copy of the Jacobian is not saved.
- \(METH \) indicates the basic linear multistep method: \(METH = 1 \) means the implicit Adams method. \(METH = 2 \) means the method based on backward differentiation formulas (BDF-s).
- \(MITER \) indicates the corrector iteration method: \(MITER = 0 \) means functional iteration (no Jacobian matrix is involved).
 - \(MITER = 1 \) means chord iteration with a user-supplied full (NEQ by NEQ) Jacobian.
 - \(MITER = 2 \) means chord iteration with an internally generated (difference quotient) full Jacobian (using NEQ extra calls to func per df/dy value).
 - \(MITER = 3 \) means chord iteration with an internally generated diagonal Jacobian approximation (using 1 extra call to func per df/dy evaluation).
 - \(MITER = 4 \) means chord iteration with a user-supplied banded Jacobian.
 - \(MITER = 5 \) means chord iteration with an internally generated banded Jacobian (using ML+MU+1 extra calls to func per df/dy evaluation).

If \(MITER = 1 \) or 4, the user must supply a subroutine jacfunc.

The example for integrator lsode demonstrates how to specify both a banded and full Jacobian.

The input parameters rtol, and atol determine the error control performed by the solver. If the request for precision exceeds the capabilities of the machine, vode will return an error code. See lsoda for details.

The diagnostics of the integration can be printed to screen by calling diagnostics. If verbose = TRUE, the diagnostics will written to the screen at the end of the integration.

See vignette("deSolve") for an explanation of each element in the vectors containing the diagnostic properties and how to directly access them.

Models may be defined in compiled C or FORTRAN code, as well as in an R-function. See package vignette "compiledCode" for details.

More information about models defined in compiled code is in the package vignette ("compiled-Code"); information about linking forcing functions to compiled code is in forcings.

Examples in both C and FORTRAN are in the `dynload` subdirectory of the deSolve package directory.
Value
A matrix of class `deSolve` with up to as many rows as elements in `times` and as many columns as elements in `y` plus the number of "global" values returned in the next elements of the return from `func`, plus and additional column for the time value. There will be a row for each element in `times` unless the FORTRAN routine `vode` returns with an unrecoverable error. If `y` has a names attribute, it will be used to label the columns of the output value.

Note
From version 1.10.4, the default of `atol` was changed from 1e-8 to 1e-6, to be consistent with the other solvers.

Author(s)
Karline Soetaert <karline.soetaert@nioz.nl>

References
Netlib: https://netlib.org

See Also
- `rk`
- `rk4` and `euler` for Runge-Kutta integrators.
- `lsoda, lsode, lsodes, lsodar, daspk` for other solvers of the Livermore family,
- `ode` for a general interface to most of the ODE solvers,
- `ode.band` for solving models with a banded Jacobian,
- `ode.1D` for integrating 1-D models,
- `ode.2D` for integrating 2-D models,
- `ode.3D` for integrating 3-D models,
diagnostics to print diagnostic messages.
Examples

```r
### ex. 1
### The famous Lorenz equations: chaos in the earth's atmosphere
###

chaos <- function(t, state, parameters) {
  with(as.list(c(state)), {
    dx <- -8/3 * x + y * z
    dy <- -10 * (y - z)
    dz <- -x * y + 28 * y - z
    list(c(dx, dy, dz))
  })
}

state <- c(x = 1, y = 1, z = 1)
times <- seq(0, 100, 0.01)
out <- vode(state, times, chaos, 0)
plot(out, type = "l") # all versus time
plot(out[,"x"], out[,"y"], type = "l", main = "Lorenz butterfly",
     xlab = "x", ylab = "y")

### ex. 2
### SCOC model, in FORTRAN - to see the FORTRAN code:
### browseURL(paste(system.file(package="deSolve"),
### "doc/examples/dynload/scoc.f",sep=""))
### example from Soetaert and Herman, 2009, chapter 3. (simplified)
###
## Forcing function data
Flux <- matrix(ncol = 2, byrow = TRUE, data = c(
  1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73, 0.277, 83, 0.186,
  93, 0.140,103, 0.255, 113, 0.331,123, 0.309,133, 1.127,143, 1.923,
  153,1.091,163, 1.001,173, 1.691,183, 1.404,194, 1.226,204, 0.767,
  214,0.893,224, 0.737,234, 0.772,244, 0.726,254, 0.624,264, 0.439,
  274,0.168,284, 0.280,294, 0.282,304, 0.319,315, 0.286,325, 0.599,
  335,1.889,345, 0.996,355, 0.681,365, 1.135))

parms <- c(k = 0.01)
meanDepo <- mean(approx(Flux[,1], Flux[,2], xout = seq(1, 365, by = 1))$y)
Yini <- c(y = as.double(meanDepo/parms))
times <- 1:365
```
out <- vode(Yini, times, func = "scocder",
 parms = parms, dllname = "deSolve",
 initforc = "scocforc", forcings = Flux,
 initfunc = "scocpar", nout = 2,
 outnames = c("Mineralisation", "Depo"))

matplot(out[,1], out[,c("Depo", "Mineralisation")],
 type = "l", col = c("red", "blue"), xlab = "time", ylab = "Depo")

Constant interpolation of forcing function - left side of interval
fcontrol <- list(method = "constant")

out2 <- vode(Yini, times, func = "scocder",
 parms = parms, dllname = "deSolve",
 initforc = "scocforc", forcings = Flux, fcontrol = fcontrol,
 initfunc = "scocpar", nout = 2,
 outnames = c("Mineralisation", "Depo"))

matplot(out2[,1], out2[,c("Depo", "Mineralisation")],
 type = "l", col = c("red", "blue"), xlab = "time", ylab = "Depo")

Constant interpolation of forcing function - middle of interval
fcontrol <- list(method = "constant", f = 0.5)

out3 <- vode(Yini, times, func = "scocder",
 parms = parms, dllname = "deSolve",
 initforc = "scocforc", forcings = Flux, fcontrol = fcontrol,
 initfunc = "scocpar", nout = 2,
 outnames = c("Mineralisation", "Depo"))

matplot(out3[,1], out3[,c("Depo", "Mineralisation")],
 type = "l", col = c("red", "blue"), xlab = "time", ylab = "Depo")

plot(out, out2, out3)

zvode

Solver for Ordinary Differential Equations (ODE) for COMPLEX variables

Description

Solves the initial value problem for stiff or nonstiff systems of ordinary differential equations (ODE) in the form:

\[\frac{dy}{dt} = f(t, y) \]

where \(dy \) and \(y \) are complex variables.

The \texttt{R} function \texttt{zvode} provides an interface to the FORTRAN ODE solver of the same name, written by Peter N. Brown, Alan C. Hindmarsh and George D. Byrne.
Usage

zvode(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
 jacfunc = NULL, jactype = "fullint", mf = NULL, verbose = FALSE,
 tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,
 maxord = NULL, bandup = NULL, banddown = NULL, maxsteps = 5000,
 dllname = NULL, initfunc = dllname, initpar = parms, rpar = NULL,
 ipar = NULL, nout = 0, outnames = NULL, forcings = NULL,
 initforc = NULL, fcontrol = NULL, ...)

Arguments

y
the initial (state) values for the ODE system. If y has a name attribute, the names
will be used to label the output matrix. \textit{y has to be complex}
times
time sequence for which output is wanted; the first value of times must be the
initial time; if only one step is to be taken; set times = NULL.
func
either an \texttt{R}-function that computes the values of the derivatives in the ODE
system (the model definition) at time \textit{t}, or a character string giving the name of
a compiled function in a dynamically loaded shared library.
If func is an \texttt{R}-function, it must be defined as: \texttt{func <- function(t, y, parms,}
...). \textit{t} is the current time point in the integration, \textit{y} is the current estimate of
the variables in the ODE system. If the initial values \textit{y} has a names attribute, the
names will be available inside func. \texttt{parms} is a vector or list of parameters; ...
(optional) are any other arguments passed to the function.
The return value of func should be a list, whose first element is a vector con-
taining the derivatives of \textit{y} with respect to time, and whose next elements are
global values that are required at each point in times. The derivatives must be
specified in the same order as the state variables \textit{y}. They should be \textit{complex
numbers}.
If func is a string, then dllname must give the name of the shared library (with-
out extension) which must be loaded before zvode() is called. See package
vignette "compiledCode" for more details.

parms
vector or list of parameters used in func or jacfunc.
rtol
relative error tolerance, either a scalar or an array as long as \textit{y}. See details.
atol
absolute error tolerance, either a scalar or an array as long as \textit{y}. See details.
jacfunc
if not NULL, an \texttt{R} function that computes the Jacobian of the system of differen-
tial equations $\frac{dy_i}{dy_j}$, or a string giving the name of a function or subroutine in
'\texttt{dllname}' that computes the Jacobian (see vignette "compiledCode" for more
about this option).
In some circumstances, supplying jacfunc can speed up the computations, if
the system is stiff. The \texttt{R} calling sequence for jacfunc is identical to that of
func.
If the Jacobian is a full matrix, jacfunc should return a matrix $\frac{dy_i}{dy_j}$, where the
ith row contains the derivative of $\frac{dy_j}{dt}$ with respect to y_j, or a vector contain-
ing the matrix elements by columns (the way \texttt{R} and FORTRAN store matrices).
Its elements should be \textit{complex numbers}.
If the Jacobian is banded, `jacfunc` should return a matrix containing only the nonzero bands of the Jacobian, rotated row-wise. See first example of `lsode`.

- **jactype**: the structure of the Jacobian, one of "fullint", "fullusr", "bandusr" or "bandint" - either full or banded and estimated internally or by user; overruled if `mf` is not NULL.

- **mf**: the "method flag" passed to function `zvode` - overrules `jactype` - provides more options than `jactype` - see details.

- **verbose**: if TRUE: full output to the screen, e.g. will print the diagnostics of the integration - see details.

- **tcrit**: if not NULL, then `zvode` cannot integrate past `tcrit`. The FORTRAN routine `dvode` overshoots its targets (times points in the vector `times`), and interpolates values for the desired time points. If there is a time beyond which integration should not proceed (perhaps because of a singularity), that should be provided in `tcrit`.

- **hmin**: an optional minimum value of the integration stepsize. In special situations this parameter may speed up computations with the cost of precision. Don’t use `hmin` if you don’t know why!

- **hmax**: an optional maximum value of the integration stepsize. If not specified, `hmax` is set to the largest difference in `times`, to avoid that the simulation possibly ignores short-term events. If 0, no maximal size is specified.

- **hini**: initial step size to be attempted; if 0, the initial step size is determined by the solver.

- **ynames**: logical; if FALSE: names of state variables are not passed to function `func`; this may speed up the simulation especially for multi-D models.

- **maxord**: the maximum order to be allowed. NULL uses the default, i.e. order 12 if implicit Adams method (meth = 1), order 5 if BDF method (meth = 2). Reduce maxord to save storage space.

- **bandup**: number of non-zero bands above the diagonal, in case the Jacobian is banded.

- **banddown**: number of non-zero bands below the diagonal, in case the Jacobian is banded.

- **maxsteps**: maximal number of steps per output interval taken by the solver.

- **dllname**: a string giving the name of the shared library (without extension) that contains all the compiled function or subroutine definitions refered to in `func` and `jacfunc`. See package vignette "compiledCode".

- **initfunc**: if not NULL, the name of the initialisation function (which initialises values of parameters), as provided in ‘dllname’. See package vignette "compiledCode".

- **initpar**: only when ‘dllname’ is specified and an initialisation function `initfunc` is in the dll: the parameters passed to the initialiser, to initialise the common blocks (FORTRAN) or global variables (C, C++).

- **rpar**: only when ‘dllname’ is specified: a vector with double precision values passed to the DLL-functions whose names are specified by `func` and `jacfunc`.

- **ipar**: only when ‘dllname’ is specified: a vector with integer values passed to the dll-functions whose names are specified by `func` and `jacfunc`.
nout

only used if dllname is specified and the model is defined in compiled code: the
number of output variables calculated in the compiled function func, present in
the shared library. Note: it is not automatically checked whether this is indeed
the number of output variables calculated in the DLL - you have to perform this
check in the code - See package vignette "compiledCode".

outnames

only used if 'dllname' is specified and nout > 0: the names of output variables
calculated in the compiled function func, present in the shared library. These
names will be used to label the output matrix.

forcings

only used if 'dllname' is specified: a list with the forcing function data sets,
each present as a two-columned matrix, with (time,value); interpolation outside
the interval [min(times), max(times)] is done by taking the value at the closest
data extreme.

See forcings or package vignette "compiledCode".

initforc

if not NULL, the name of the forcing function initialisation function, as provided
in 'dllname'. It MUST be present if forcings has been given a value. See
forcings or package vignette "compiledCode".

fcontrol

A list of control parameters for the forcing functions. forcings or package vi-
gnette "compiledCode"

... additional arguments passed to func and jacfunc allowing this to be a generic

Details

see vode, the double precision version, for details.

Value

A matrix of class deSolve with up to as many rows as elements in times and as many columns
as elements in y plus the number of "global" values returned in the next elements of the return
from func, plus and additional column for the time value. There will be a row for each element in
times unless the FORTRAN routine 'zvode' returns with an unrecoverable error. If y has a names
attribute, it will be used to label the columns of the output value.

Note

From version 1.10.4, the default of atol was changed from 1e-8 to 1e-6, to be consistent with the
other solvers.

The following text is adapted from the zvode.f source code:

When using zvode for a stiff system, it should only be used for the case in which the function f is
analytic, that is, when each f(i) is an analytic function of each y(j). Analyticity means that the partial
derivative df(i)/dy(j) is a unique complex number, and this fact is critical in the way zvode solves
the dense or banded linear systems that arise in the stiff case. For a complex stiff ODE system in
which f is not analytic, zvode is likely to have convergence failures, and for this problem one should
instead use ode on the equivalent real system (in the real and imaginary parts of y).

Author(s)

Karline Soetaert <karline.soetaert@nioz.nl>
References

Netlib: https://netlib.org

See Also

vode for the double precision version

Examples

```r
### ==============================================================
### Example 1 - very simple example
### df/dt = 1i*f, where 1i is the imaginary unit
### The initial value is f(0) = 1 = 1+0i
### ==============================================================

ZODE <- function(Time, f, Pars) {
  df <- 1i*f
  return(list(df))
}

times <- seq(0, 2*pi, length = 100)
par <- NULL
yini <- c(f = 1+0i)
out <- zvode(func = ZODE, y = yini, parms = pars, times = times,
             atol = 1e-10, rtol = 1e-10)

# The analytical solution to this ODE is the exp-function:
# f(t) = exp(1i*t)  
# = cos(t)+1i*sin(t) (due to Euler's equation)

analytical.solver <- exp(1i * times)

# compare numerical and analytical solution
```
tail(cbind(out[,2], analytical.solution))

Example 2 - example in "zvode.f",
df/dt = 1i*f (same as above ODE)
dg/dt = -1i*g*g*f (an additional ODE depending on f)
Initial values are
g(0) = 1/2.1 and
z(0) = 1

ZODE2 <- function(Time, State, Pars) {
 with(as.list(State), {
 df <- 1i * f
 dg <- -1i * g * g * f
 return(list(c(df, dg)))
 })
}

yini <- c(f = 1 + 0i, g = 1/2.1 + 0i)
times <- seq(0, 2*pi, length = 100)
out <- zvode(func = ZODE2, y = yini, parms = NULL, times = times,
 atol = 1e-10, rtol = 1e-10)

The analytical solution is
f(t) = exp(1i*t) (same as above)
g(t) = 1/(f(t) + 1.1)
analytical <- cbind(f = exp(1i * times), g = 1/(exp(1i * times) + 1.1))

compare numerical solution and the two analytical ones:
tail(cbind(out[,2], analytical[,1]))
Index

* datasets
 ccl4data, 8

* hplot
 plot.deSolve, 95

* math
 daspk, 13
 lsoda, 42
 lsodar, 49
 lsode, 55
 lsodes, 63
 ode, 71
 ode.1D, 77
 ode.2D, 83
 ode.3D, 89
 ode.band, 92
 radau, 102
 rk, 109
 rk4, 115
 rkMethod, 119
 vode, 128
 zvode, 135

* misc
 cleanEventTimes, 12

* models
 aquaphy, 5
 ccl4model, 9
 SCOC, 123

* package
 deSolve-package, 3

* utilities
 dede, 23
 diagnostics, 27
 diagnostics.deSolve, 28
 DLLfunc, 29
 DLLres, 31
 events, 33
 forcings, 39
 timelags, 125
 .C, 13, 42, 109
 .Call, 13, 42, 109
 .Fortran, 42, 109
 approx, 40
 approxfun, 39, 40
 aquaphy, 5, 10, 73, 124
 ccl4data, 8, 10
 ccl4model, 6, 9, 35, 73, 124
 cleanEventTimes, 12, 33, 34
 daspk, 4, 13, 32, 46, 53, 60, 68, 73, 106, 113, 117, 133
dede, 4, 17, 23, 45, 52, 58, 66, 73, 105, 117, 126, 131
delSolve, 98
delSolve(deSolve-package), 3
delSolve-package, 3
dev.interactive, 97
diagnostics, 18, 19, 27, 45, 46, 53, 54, 59, 60, 67, 68, 73, 79, 85, 91, 94, 106, 113, 117, 132, 133
diagnostics.deSolve, 28, 28
DLLfunc, 4, 29
DLLres, 4, 31
euler, 4, 19, 46, 53, 60, 68, 113, 133
euler(rk4), 115
events, 4, 13, 17, 33, 40, 45, 49, 52, 56, 58, 66, 73, 105, 112, 131
FME, 3
gnls, 46

hist, 97, 98
hist.deSolve(plot.deSolve), 95
INDEX

image, 97, 98
image(deSolve(plot.deSolve), 95
lagderiv, 4, 24
lagderiv(timelags), 125
lagvalue, 4, 24
lagvalue(timelags), 125
legend, 97
lsoda, 4, 18, 19, 24, 34, 42, 49, 52, 53, 56, 59,
60, 67, 68, 72, 73, 79, 94, 113, 117,
129, 132, 133
lsodar, 4, 19, 35, 46, 49, 60, 68, 73, 79, 94,
113, 117, 133
lsode, 4, 19, 34, 43, 46, 50, 53, 55, 57, 68, 73,
79, 94, 113, 117, 129, 130, 132, 133
lsodes, 4, 19, 34, 46, 53, 60, 63, 73, 79, 84,
85, 90, 91, 113, 117, 133
matplot, 98
matplot.0D(plot.deSolve), 95
matplot.1D(plot.deSolve), 95
matplot.deSolve(plot.deSolve), 95

nearestEvent(cleanEventTimes), 12
nls, 3, 42, 109
nlsme, 3, 42, 109

ode, 4, 19, 30, 46, 53, 60, 68, 71, 79, 85, 91,
94, 98, 106, 113, 117, 119, 122, 133
ode.1D, 4, 19, 46, 54, 60, 68, 73, 77, 85, 91,
94, 98, 106, 113, 117, 133
ode.2D, 4, 19, 46, 54, 60, 68, 73, 79, 83, 91,
94, 98, 106, 113, 117, 133
ode.3D, 4, 19, 46, 54, 60, 68, 73, 79, 85, 89,
94, 106, 113, 117, 133
ode.band, 4, 19, 46, 54, 60, 68, 73, 79, 85, 91,
92, 113, 117, 133
optim, 3, 42, 109

par, 97
plot, 98
plot.1D, 117
plot.1D(plot.deSolve), 95
plot.default, 97
plot.deSolve, 73, 95
print.deSolve, 98
print.deSolve(ode), 71

radau, 4, 14, 18, 19, 34, 73, 102, 112, 121
rk, 4, 19, 46, 53, 60, 68, 73, 109, 117, 119,
122, 133
rk4, 4, 19, 46, 53, 60, 68, 113, 115, 133
rkMethod, 4, 46, 53, 72, 73, 111–113, 117, 118
roots, 53
roots(events), 33

SCOC, 123
subset.deSolve(plot.deSolve), 95
summary.deSolve(ode), 71
timelags, 17, 45, 52, 58, 66, 105, 125, 131
vode, 4, 19, 46, 53, 56, 60, 68, 73, 79, 94, 113,
117, 128, 138, 139
zvode, 135