Package ‘decido’

October 13, 2022

Version 0.3.0
Title Bindings for 'Mapbox' Ear Cutting Triangulation Library
Description Provides constrained triangulation of polygons. Ear cutting (or ear
clipping) applies constrained triangulation by successively 'cutting' triangles from
a polygon defined by path/s. Holes are supported by introducing a bridge segment
between polygon paths. This package wraps the 'header-only' library 'earcut.hpp'
<https://github.com/mapbox/earcut.hpp.git> which includes a reference to the
License MIT + file LICENSE
Encoding UTF-8
LazyData true
ByteCompile true
LinkingTo Rcpp
Depends R (>= 3.2.5)
Imports Rcpp
RoxygenNote 7.1.0
Suggests covr, testthat, knitr, oz, rmarkdown, spelling
SystemRequirements C++11
VignetteBuilder knitr
URL https://hypertidy.github.io/decido
BugReports https://github.com/hypertidy/decido/issues
Language en-US
NeedsCompilation yes
Author Michael Sumner [aut, cre], Andrew Smith [ctb] (provided C++ guidance),
Mapbox [cph] (author of header library earcut.hpp), Mark Padgham [ctb] (help with
CRAN issues), David Cooley [ctb] (added header capability for linking from other
packages)
Maintainer Michael Sumner <mdsumner@gmail.com>
R topics documented:

earcut ... 2
plot_ears ... 4

Index 5

earcut Constrained polygon triangulation

Description

Produce a triangulation index into x,y coordinates of a polygon that may include holes. Holes are specified by input argument holes which marks the starting index of each hole, if any.

Usage

earcut(xy, holes = 0, ...)

Default S3 method:
earcut(xy, holes = 0L, ...)

Arguments

xy xy-coordinates, either a list, matrix, or data frame
holes index of starting position of each hole in x,y, leave set to 0 if no holes
... unused

Details

Triangles are returned in counter-clockwise orientation, a common convention that ascribes a positive area to the triangle. (Orientation may be collinear or numerically ambiguous and so may be undetermined).

Ear cutting (or ear clipping) applies constrained triangulation by successively 'cutting' triangles from a polygon defined by path/s. Holes are supported, the earcut library works with single-island-with-holes polygons, analogous to the POLYGON type in simple features.

To understand the specification of holes, see the examples with comment starting "1) Notice how the hole begins ..." in relation to the example code.

Value

integer vector of triangle index, in sets of three
earcut

See Also

plot_ears

Examples

single ring polygon
x <- c(0, 0, 0.75, 1, 0.5, 0.8, 0.69)
y <- c(0, 1, 0.8, 0.7, 0.6, 0)
(ind <- earcut(cbind(x, y)))
plot_ears(cbind(x, y), ind)

polygon with a hole
x <- c(0, 0, 0.75, 1, 0.5, 0.8, 0.69,
 0.2, 0.5, 0.5, 0.3, 0.2)
y <- c(0, 1, 0.8, 0.7, 0.6, 0,
 0.2, 0.2, 0.4, 0.6, 0.4)
ind <- earcut(cbind(x, y), holes = 8)
plot_ears(cbind(x, y), ind)

1) Notice how the hole begins at index 8,
hence holes = 8 above, and holes = c(8, 13) below
plot_ears(cbind(x, y), ind, col = "grey", border = NA)
text(x, y, labels = seq_along(x), pos = 2)

add another hole
x <- c(0, 0, 0.75, 1, 0.5, 0.8, 0.69,
 0.2, 0.5, 0.5, 0.3, 0.2, 0.15, 0.23, 0.2)
y <- c(0, 1, 0.8, 0.7, 0.6, 0,
 0.2, 0.2, 0.4, 0.4, 0.6, 0.4,
 0.65, 0.65, 0.81)
ind <- earcut(cbind(x, y), holes = c(8, 13))
plot_ears(cbind(x, y), ind, col = "grey")

simpler shape with more than one hole
the two inside holes are open to each other
(so we can use the same data for one hole or two)
x <- c(0, 0, 1, 1,
 0.4, 0.2, 0.2, 0.4,
 0.6, 0.8, 0.8, 0.6)

y <- c(0, 1, 1, 0,
 0.2, 0.2, 0.4, 0.4,
 0.6, 0.6, 0.4, 0.4)
ind <- decido::earcut(cbind(x, y), holes = c(5, 9))
plot_ears(cbind(x, y), ind, col = "grey")
plot_holes(cbind(x, y), holes = c(5, 9), col = "grey")
ind <- decido::earcut(cbind(x, y), holes = 5)
plot_ears(cbind(x, y), ind, col = "grey")
plot_holes(cbind(x, y), holes = 5, col = "grey")
plot_ears

Plot ears or polygons

Description

Plot the triangles produced by earcut, or plot the polygon paths using the same interface as earcut uses. This allows for easy comparison and checking of what the results should be.

Usage

plot_ears(xy, idx, add = FALSE, ...)
plot_holes(xy, holes = 0, add = FALSE, ...)

Arguments

xy xy-coordinates, either a list, matrix, or data frame
idx index of triangles
add add to current plot, or create a new
... arguments to polypath
holes index of starting position of holes (see earcut)

Details

For both functions the first input is a matrix of x,y coordinates.

For plot_ears the second input is the index output of earcut. The index is treated in sets of 3 values, with individual calls to polypath to draw a polygon for each triangle.

For plot_holes the second input is the holes argument that would be used for earcut. This is used to split the coordinates at these positions, inserting NA values as per the mechanism used by graphics::polypath to break coordinates into separate polygon rings. (There’s no winding rule here plot_rules is hard-coded to always use the evenodd rule, so that winding order may be ignored).

See Also

earcut

Examples

after ?polypath
x <- cbind(c(.1, .1, .9, .9, .2, .2, .8, .8),
 c(.1, .9, .9, .1, .2, .8, .8, .2))
plot_holes(x, holes = 5, col = "grey")
Index

earcut, 2, 4

graphics::polypath, 4

plot_ears, 4, 4
plot_holes, 4
plot_holes (plot_ears), 4
polypath, 4