Package ‘deconvolveR’

February 8, 2019

Title Empirical Bayes Estimation Strategies
Version 1.1
VignetteBuilder knitr
Suggests cowplot, ggplot2, knitr, rmarkdown
Description Empirical Bayes methods for learning prior distributions from data.
 An unknown prior distribution (g) has yielded (unobservable) parameters, each of
 which produces a data point from a parametric exponential family (f). The goal
 is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical
 Bayes methods.
URL https://bnaras.github.io/deconvolveR
BugReports https://github.com/bnaras/deconvolveR/issues
Encoding UTF-8
Depends R (>= 3.0)
License GPL (>= 2)
LazyData true
Imports splines, stats
RoxygenNote 6.1.1
NeedsCompilation no
Author Bradley Efron [aut],
 Balasubramanian Narasimhan [aut, cre]
Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>
Repository CRAN
Date/Publication 2019-02-08 22:33:28 UTC

R topics documented:

 bardWordCount ... 2
deconv ... 2
decomposeR .. 4
disjointTheta .. 5
surg ... 5
Shakespeare word counts in the entire canon: 14,376 distinct words appeared exactly once, 4343 words appeared twice etc.

Description
Shakespeare word counts in the entire canon: 14,376 distinct words appeared exactly once, 4343 words appeared twice etc.

Usage
data(bardWordCount)

References

devon

Description
A function to compute Empirical Bayes estimates using deconvolution

Usage
deconv(tau, X, y, Q, P, n = 40, family = c("Poisson", "Normal", "Binomial"), ignoreZero = TRUE, deltaAt = NULL, c0 = 1, scale = TRUE, pDegree = 5, aStart = 1, ...)

Arguments
tau a vector of (implicitly m) discrete support points for \(\theta \). For the Poisson and normal families, \(\theta \) is the mean parameter and for the binomial, it is the probability of success.

X the vector of sample values: a vector of counts for Poisson, a vector of z-scores for Normal, a 2-d matrix with rows consisting of pairs, (trial size \(n_i \), number of successes \(X_i \)) for Binomial. See details below

y the multinomial counts. See details below

Q the Q matrix, implies y and P are supplied as well; see details below

P the P matrix, implies Q and y are supplied as well; see details below
the number of support points for \(X\). Applies only to Poisson and Normal. In
the former, implies that support of \(X\) is 1 to \(n\) or 0 to \(n-1\) depending on the
\texttt{ignoreZero} parameter below. In the latter, the range of \(X\) is divided into \(n\) bins
to construct the multinomial sufficient statistic \(y\) (\(y_k = \text{number of } X \text{ in bin } K\))
described in the references below

\texttt{family} \quad \text{the exponential family, one of } c(\text{"Poisson"},\text{"Normal"}, \text{"Binomial"}) \text{ with }
\text{"Poisson"}, the default

\texttt{ignoreZero} \quad \text{if the zero values should be ignored (default = TRUE). Applies to Poisson only}
\text{and has the effect of adjusting } P \text{ for the truncation at zero}

\texttt{deltaAt} \quad \text{the theta value where a delta function is desired (default NULL). This applies to}
\text{the Normal case only and even then only if it is non-null.}

\texttt{c0} \quad \text{the regularization parameter (default 1)}

\texttt{scale} \quad \text{if the } Q \text{ matrix should be scaled so that the spline basis has mean 0 and columns}
\text{sum of squares to be one, (default TRUE)}

\texttt{pDegree} \quad \text{the degree of the splines to use (default 5). In notation used in the references}
\text{below, } p = \text{pDegree} + 1

\texttt{aStart} \quad \text{the starting values for the non-linear optimization, default is a vector of 1s}

\ldots \quad \text{further args to function \texttt{nlm} }

\textbf{Value}

\text{a list of 9 items consisting of}

\texttt{mle} \quad \text{the maximum likelihood estimate } \hat{\alpha}

\texttt{Q} \quad \text{the } m \text{ by } p \text{ matrix } Q

\texttt{P} \quad \text{the } n \text{ by } m \text{ matrix } P

\texttt{S} \quad \text{the ratio of artificial to genuine information per the reference below, where it}
\text{was referred to as } R(\alpha)

\texttt{cov} \quad \text{the covariance matrix for the } \texttt{mle}

\texttt{cov.g} \quad \text{the covariance matrix for the } g

\texttt{stats} \quad \text{an } m \text{ by 6 or 7 matrix containing columns for } \texttt{theta}, \texttt{g}, \texttt{\tilde{g}} \text{ which is } g \text{ with thinning}
\text{correction applied and named } \texttt{tg}, \text{ std. error of } g, G \text{ (the cdf of } g), \text{ std. error of}
G, \text{ and the bias of } g

\texttt{loglik} \quad \text{the negative log-likelihood function for the data taking a } p \text{-vector argument}

\texttt{statsFunction} \quad \text{a function to compute the statistics returned above}

\textbf{Details}

The data \(X\) is always required with two exceptions. In the Poisson case, \(y\) alone may be specified
and \(X\) omitted, in which case the sample space of the observations \(X\) is assumed to be 1, 2, \ldots,
\texttt{length}(y). The second exception is for experimentation with other exponential families besides
the three implemented here; \(y, P\) and \(Q\) can be specified together.

Note also that in the Poisson case where there is zero truncation, the \texttt{stats} matrix has an additional
column “\texttt{tg}” which accounts for the thinning correction induced by the truncation. See vignette for
details.
References

Examples

```r
set.seed(238923) ## for reproducibility
N <- 1000
theta <- rchisq(N, df = 10)
X <- rpois(n = N, lambda = theta)
tau <- seq(1, 32)
result <- deconv(tau = tau, X = X, ignoreZero = FALSE)
print(result$stats)
##
## Twin Towers Example
## # See Brad Efron: Bayes, Oracle Bayes and Empirical Bayes
## # disjointTheta is provided by deconvolver package
theta <- disjointTheta; N <- length(disjointTheta)
z <- rnorm(n = N, mean = disjointTheta)
tau <- seq(from = -4, to = 5, by = 0.2)
result <- deconv(tau = tau, X = z, family = "Normal", pDegree = 6)
g <- result$stats[, "g"]
if (require("ggplot2")) {
  ggplot() +
    geom_histogram(mapping = aes(x = disjointTheta, y = ..count.. / sum(..count..)),
                  color = "blue", fill = "red", bins = 40, alpha = 0.5) +
    geom_histogram(mapping = aes(x = z, y = ..count.. / sum(..count..)),
                  color = "brown", bins = 40, alpha = 0.5) +
    geom_line(mapping = aes(x = tau, y = g), color = "black") +
    labs(x = paste(expression(theta), " and x"), y = paste(expression(g(theta)), " and f(x)"))
}
```

deoconvolver

R package for Empirical Bayes g-modeling using exponential families. A vignette provides detailed examples and results.

Description

R package for Empirical Bayes g-modeling using exponential families. A vignette provides detailed examples and results.
References

disjointTheta

A set of Θ values that have a bimodal distribution for testing

Description

A set of Θ values that have a bimodal distribution for testing

Usage

data(disjointTheta)

surg

Intestinal surgery data involving 844 cancer patients. The data consists of pairs (nᵢ, sᵢ) where nᵢ is the number of satellites removed and sᵢ is the number of satellites found to be malignant.

Description

Intestinal surgery data involving 844 cancer patients. The data consists of pairs (nᵢ, sᵢ) where nᵢ is the number of satellites removed and sᵢ is the number of satellites found to be malignant.

Usage

data(surg)

References

Index

*Topic data
 bardWordCount, 2
 disjointTheta, 5
 surg, 5

bardWordCount, 2

deconv, 2
deconvolveR, 4
deconvolveR-package (deconvolveR), 4
disjointTheta, 5

surg, 5