Package ‘deconvolveR’

October 13, 2022

Title Empirical Bayes Estimation Strategies
Version 1.2-1
VignetteBuilder knitr
Suggests cowplot, ggplot2, knitr, rmarkdown
Description Empirical Bayes methods for learning prior distributions from data.
An unknown prior distribution (g) has yielded (unobservable) parameters, each of
which produces a data point from a parametric exponential family (f). The goal
is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical
Bayes methods. Details and examples are in the paper by Narasimhan and Efron
URL https://bnaras.github.io/deconvolveR/
BugReports https://github.com/bnaras/deconvolveR/issues
Encoding UTF-8
Depends R (>= 3.0)
License GPL (>= 2)
LazyData true
Imports splines, stats
RoxygenNote 7.1.0
NeedsCompilation no
Author Bradley Efron [aut],
Balasubramanian Narasimhan [aut, cre]
Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>
Repository CRAN
Date/Publication 2020-08-30 01:00:26 UTC

R topics documented:

 deconvolveR-package .. 2
 bardWordCount .. 2
deconvolveR-package

R package for Empirical Bayes *g*-modeling using exponential families.

Description

deconvolveR is a package for Empirical Bayes Deconvolution and Estimation. A friendly introduction is provided in the JSS paper reference below and this package includes a vignette containing a number of examples.

References

http://biomet.oxfordjournals.org/content/103/1/1.full.pdf+html

bardWordCount

Shakespeare word counts in the entire canon: 14,376 distinct words appeared exactly once, 4343 words appeared twice etc.

Description

Shakespeare word counts in the entire canon: 14,376 distinct words appeared exactly once, 4343 words appeared twice etc.

Usage

data(bardWordCount)

References

A function to compute Empirical Bayes estimates using deconvolution

Usage

deconv(
 tau,
 X,
 y,
 Q,
 P,
 n = 40,
 family = c("Poisson", "Normal", "Binomial"),
 ignoreZero = TRUE,
 deltaAt = NULL,
 c0 = 1,
 scale = TRUE,
 pDegree = 5,
 aStart = 1,
 ...
)

Arguments

tau
 a vector of (implicitly m) discrete support points for θ. For the Poisson and normal families, θ is the mean parameter and for the binomial, it is the probability of success.

X
 the vector of sample values: a vector of counts for Poisson, a vector of z-scores for Normal, a 2-d matrix with rows consisting of pairs, (trial size n_i, number of successes X_i) for Binomial. See details below

y
 the multinomial counts. See details below

Q
 the Q matrix, implies y and P are supplied as well; see details below

P
 the P matrix, implies Q and y are supplied as well; see details below

n
 the number of support points for X. Applies only to Poisson and Normal. In the former, implies that support of X is 1 to n or 0 to n-1 depending on the ignoreZero parameter below. In the latter, the range of X is divided into n bins to construct the multinomial sufficient statistic y ($y_k =$ number of X in bin K) described in the references below

family
 the exponential family, one of c("Poisson", "Normal", "Binomial") with "Poisson", the default
ignoreZero if the zero values should be ignored (default = TRUE). Applies to Poisson only and has the effect of adjusting \(P \) for the truncation at zero.

deltaAt the theta value where a delta function is desired (default NULL). This applies to the Normal case only and even then only if it is non-null.

c0 the regularization parameter (default 1)

scale if the \(Q \) matrix should be scaled so that the spline basis has mean 0 and columns sum of squares to be one, (default TRUE)

pDegree the degree of the splines to use (default 5). In notation used in the references below, \(p = pDegree + 1 \)

aStart the starting values for the non-linear optimization, default is a vector of 1s

... further args to function \(nlm \)

Value

a list of 9 items consisting of

mle the maximum likelihood estimate \(\hat{\alpha} \)

\(Q \) the \(m \) by \(p \) matrix \(Q \)

\(P \) the \(n \) by \(m \) matrix \(P \)

\(S \) the ratio of artificial to genuine information per the reference below, where it was referred to as \(R(\alpha) \)

cov the covariance matrix for the mle

cov.g the covariance matrix for the \(g \)

stats an \(m \) by 6 or 7 matrix containing columns for \(\theta, g, \tilde{g} \) which is \(g \) with thinning correction applied and named \(tg \), std. error of \(g \), \(G \) (the cdf of \(g \)), std. error of \(G \), and the bias of \(g \)

loglik the negative log-likelihood function for the data taking a \(p \)-vector argument

statsFunction a function to compute the statistics returned above

Details

The data \(X \) is always required with two exceptions. In the Poisson case, \(y \) alone may be specified and \(X \) omitted, in which case the sample space of the observations \(X \) is assumed to be 1, 2, ..., \(\text{length}(y) \). The second exception is for experimentation with other exponential families besides the three implemented here; \(y, P \) and \(Q \) can be specified together.

Note also that in the Poisson case where there is zero truncation, the \(stats \) matrix has an additional column \(\text{"tg"} \) which accounts for the thinning correction induced by the truncation. See vignette for details.

References

Examples

```r
set.seed(238923) ## for reproducibility
N <- 1000
theta <- rchisq(N, df = 10)
X <- rpois(n = N, lambda = theta)
tau <- seq(1, 32)
result <- deconv(tau = tau, X = X, ignoreZero = FALSE)
print(result$stats)
```

```
##
## Twin Towers Example
## See Brad Efron: Bayes, Oracle Bayes and Empirical Bayes
## disjointTheta is provided by deconvolveR package
theta <- disjointTheta; N <- length(disjointTheta)
z <- rnorm(n = N, mean = disjointTheta)
tau <- seq(from = -4, to = 5, by = 0.2)
result <- deconv(tau = tau, X = z, family = "Normal", pDegree = 6)
g <- result$stats[, "g"]
if (require("ggplot2")) {
  ggplot() +
  geom_histogram(mapping = aes(x = disjointTheta, y = ..count../sum(..count..) ),
                 color = "blue", fill = "red", bins = 40, alpha = 0.5) +
  geom_histogram(mapping = aes(x = z, y = ..count../sum(..count..) ),
                 color = "brown", bins = 40, alpha = 0.5) +
  geom_line(mapping = aes(x = tau, y = g), color = "black") +
  labs(x = paste(expression(theta), "and x"), y = paste(expression(g(theta)), " and f(x)"))
}
```

`disjointTheta`
A set of Θ values that have a bimodal distribution for testing

Description

A set of Θ values that have a bimodal distribution for testing

Usage

data(disjointTheta)

`surg`
Intestinal surgery data involving 844 cancer patients. The data consists of pairs (n_i, s_i) where n_i is the number of satellites removed and s_i is the number of satellites found to be malignant.

Description

Intestinal surgery data involving 844 cancer patients. The data consists of pairs (n_i, s_i) where n_i is the number of satellites removed and s_i is the number of satellites found to be malignant.
Usage

data(surg)

References

Index

* data
 bardWordCount, 2
 disjointTheta, 5
 surg, 5

bardWordCount, 2

deconv, 3
deconvolveR-package, 2
disjointTheta, 5

surg, 5